WO2023024597A1 - 一种氢氧化钴的合成方法及氢氧化钴 - Google Patents

一种氢氧化钴的合成方法及氢氧化钴 Download PDF

Info

Publication number
WO2023024597A1
WO2023024597A1 PCT/CN2022/093593 CN2022093593W WO2023024597A1 WO 2023024597 A1 WO2023024597 A1 WO 2023024597A1 CN 2022093593 W CN2022093593 W CN 2022093593W WO 2023024597 A1 WO2023024597 A1 WO 2023024597A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
cobalt hydroxide
solution
synthetic method
ammonium citrate
Prior art date
Application number
PCT/CN2022/093593
Other languages
English (en)
French (fr)
Inventor
胡海涵
李长东
刘更好
卢星华
阮丁山
蔡勇
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2310158.7A priority Critical patent/GB2618692A/en
Priority to ES202390109A priority patent/ES2947957B2/es
Priority to MA61722A priority patent/MA61722A1/fr
Priority to DE112022000302.2T priority patent/DE112022000302T5/de
Publication of WO2023024597A1 publication Critical patent/WO2023024597A1/zh
Priority to US18/373,998 priority patent/US20240018012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metal oxide materials, and in particular relates to a synthesis method of cobalt hydroxide and cobalt hydroxide.
  • Lithium cobalt oxide batteries have a stable structure, high capacity ratio, and outstanding comprehensive performance. They are mainly used in small and medium-sized batteries, and are widely used in small electronic devices such as notebook computers and mobile phones. With the introduction of new electronic products, people's requirements for lithium cobalt oxide batteries are also getting higher and higher.
  • cobalt hydroxide directly affects the performance of cathode materials. Cobalt hydroxide is generally a rose red crystal, insoluble in water, hardly soluble in strong alkali, and is mainly used as a colorant for glass and enamel, and as a raw material for preparing other cobalt compounds. Synthesizing cobalt hydroxide by chemical methods is easy to form colloids or flocs, and has low surface activity.
  • Cobalt hydroxide slurry with small particle size is difficult to filter and consumes a lot of water; it is generally easy to agglomerate, agglomerate, and difficult to dry during the drying process; and cobalt hydroxide has high reactivity and is easily oxidized into cobalt oxyhydroxide, resulting in a decrease in yield.
  • the related art discloses a method for washing cobalt hydroxide slurry by using a filter press, which reduces the loss of cobalt hydroxide in the washing process and improves the recovery rate.
  • problems such as agglomeration and oxidation still exist in the drying process of the washed materials, and no suitable solution to this problem has been proposed.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of synthetic method of cobalt hydroxide and cobalt hydroxide, and the purity of this cobalt hydroxide is high, particle regularity, particle size distribution is even, specific surface area is big, has larger packing density, thereby has excellent Machinability.
  • the present invention adopts the following technical solutions:
  • a synthetic method for cobalt hydroxide comprising the following steps:
  • the present invention uses ammonium citrate solution as the bottom liquid, then adds cobalt salt and mixed lye, and under a protective atmosphere, cobalt hydroxide slurry is synthesized in one step, and the ammonium citrate solution is used as the bottom liquid, which can be used as a dispersant for the entire reaction process , to prevent the agglomeration of particles during the reaction process, adding a dispersant to the cobalt liquid can reduce the generation of flocs, increase the active specific surface area of cobalt hydroxide, and then use alkali leaching and detergent to wash, which can reduce the S in cobalt hydroxide content, and can protect cobalt hydroxide from oxidation and agglomeration during the drying process.
  • the ammonium citrate is pre-prepared as a 0.8-1.5 g/L ammonium citrate solution.
  • step (1) adding ammonia water is also included before the heating of the ammonium citrate.
  • the concentration of the ammonia water is 10-20g/L.
  • the protective gas is nitrogen.
  • the heating temperature is 40-60°C.
  • the cobalt salt includes cobalt sulfate solution or cobalt chloride solution.
  • the cobalt salt is prepared in advance as a cobalt salt solution; a dispersant is added to the cobalt salt solution.
  • the concentration of the cobalt sulfate solution is 1-2 mol/L.
  • the dispersant is ammonium citrate.
  • the concentration of the ammonium citrate is 0.1-0.5 mol/L.
  • the mixed lye is sodium hydroxide solution, hydrazine hydrate, and ammonia water.
  • the complexing agent aqueous solution is an aqueous ammonia solution, which can effectively control the reaction speed of the cobalt sulfate aqueous solution and the sodium hydroxide aqueous solution and form the morphology of cobalt hydroxide particles; hydrazine hydrate plays a role in effectively initially coating the cobalt hydroxide particles effect.
  • the concentration of the sodium hydroxide solution is 5-15 mol/L.
  • the volume ratio of the hydrazine hydrate is 0.5-1%.
  • the mass fraction of the ammonia water is 10-30%.
  • the volume of the ammonia water accounts for 10-12% of the total volume of the mixed lye.
  • the adjusting the pH is adjusting the pH to 10-12.
  • step (2) sodium hydroxide solution is used in the alkali leaching process, the time of alkali leaching is 1-2 hours, and the temperature of alkali leaching is 45-55°C.
  • the detergent is a citric acid solution.
  • the citric acid solution is citric acid monohydrate.
  • the concentration of the citric acid solution is 0.5-1 g/L.
  • Citric acid monohydrate can be used as a detergent to wash the filter residue after pulping (to remove excess Na + and S - in the slurry), and can be used as an antioxidant to protect cobalt hydroxide from being difficult to dry during the drying process. Oxidation, and not easy to agglomerate.
  • the present invention also provides a cobalt hydroxide, which is prepared by the synthesis method, and the specific surface area of the cobalt hydroxide is 44-65 cm 2 /g.
  • the present invention uses ammonium citrate solution as the base liquid, which can be used as a dispersant for the entire reaction process to prevent particle agglomeration during the reaction process, then add cobalt liquid and mixed lye, and synthesize cobalt hydroxide in one step under a protective atmosphere Adding dispersant to the slurry and cobalt liquid can reduce the production of flocs, increase the active specific surface area of cobalt hydroxide, have a larger bulk density, and thus have excellent processability, and then use alkali leaching and detergent to process Washing can reduce the content of S in cobalt hydroxide (high S content will lead to low battery capacity, reduced crystallization performance, and unstable structure), and can protect cobalt hydroxide from oxidation and agglomeration during the drying process .
  • hydrazine hydrate in the mixed lye of the present invention is a kind of strong reductant and plays the effect of effective primary coating cobalt hydroxide particle in the reaction process;
  • the detergent of the present invention both can be used as detergent to filter residue after pulping Washing can also be used as an antioxidant (playing the anti-oxidation effect of coating the cobalt hydroxide particles again), protecting the cobalt hydroxide from oxidation and agglomeration during the drying process.
  • Fig. 1 is the SEM figure of the cobalt hydroxide prepared by the embodiment of the present invention 1;
  • Fig. 2 is the SEM figure of the cobalt hydroxide prepared by the embodiment of the present invention 2;
  • Fig. 3 is the SEM figure of the cobalt hydroxide prepared by comparative example 1 of the present invention.
  • Fig. 4 is the SEM figure of the cobalt hydroxide prepared by comparative example 2 of the present invention
  • Fig. 5 is the XRD pattern of cobalt hydroxide prepared in Example 1-2 and Comparative Example 1-2.
  • a dispersant ammonium citrate
  • Fig. 1 is the SEM image of the cobalt hydroxide prepared in Example 1. It can be seen from Fig. 1 that the cobalt hydroxide prepared in Example 1 has a good morphology consistency and no obvious agglomeration.
  • Table 1 is each index after drying of cobalt hydroxide
  • the cobalt hydroxide prepared in Example 1 has a very low sulfur content and a large specific surface area.
  • a dispersant ammonium citrate
  • Fig. 2 is the SEM image of the cobalt hydroxide prepared in Example 2, and it can be seen from Fig. 2 that the morphology and structure of the cobalt hydroxide prepared in Example 2 are uniform without obvious agglomeration.
  • the cobalt hydroxide obtained in Example 2 has a very low sulfur content and a large specific surface area.
  • the synthetic method of the cobalt hydroxide of this comparative example comprises the following steps:
  • Fig. 3 is the SEM image of the cobalt hydroxide prepared in comparative example 1, it can be seen from Fig. 3 that the cobalt hydroxide prepared in comparative example 1 has different block sizes and agglomeration phenomenon.
  • Table 3 is each index after drying of cobalt hydroxide:
  • the cobalt hydroxide prepared in Comparative Example 1 has a larger particle size and a smaller specific surface area.
  • the synthetic method of the cobalt hydroxide of this comparative example comprises the following steps:
  • Example 2 It differs from Example 1 in that no detergent—citric acid monohydrate—is added to the washing water, and other conditions remain unchanged.
  • Fig. 4 is the SEM picture of the cobalt hydroxide prepared in comparative example 2, as can be seen from Fig. 4 the cobalt hydroxide prepared is irregular in appearance, and there is obvious agglomeration phenomenon, namely the material agglomeration is serious after drying, part Oxidized.
  • the synthetic method of the cobalt hydroxide of this comparative example comprises the following steps:
  • step (3) is: put the cobalt hydroxide slurry into a centrifuge to dry it, put it back into the kettle, and then fill up the reaction kettle with pure water.
  • the temperature of the kettle body is 50°C. Stirring for 1 hour at a stirring rate of 30 Hz to obtain a pulped cobalt hydroxide slurry; other conditions remain unchanged.
  • Fig. 5 is the XRD figure of the cobalt hydroxide prepared by embodiment 1-2 and comparative example 1-2, as can be seen from Fig. 5: the 2 ⁇ of comparative example 2 can detect the diffraction peak of cobalt oxyhydroxide at about 10.50 °, It shows that cobalt oxyhydroxide has appeared in the material, and cobalt oxyhydroxide is an impurity, indicating that cobalt hydroxide has been oxidized, thereby reducing the yield.

Abstract

本发明属于金属氧化物材料技术领域,公开了一种氢氧化钴的合成方法及氢氧化钴,该合成方法包括以下步骤:将柠檬酸铵进行搅拌加热,通入保护气,加入钴盐、混合碱液反应,调节pH,得到氢氧化钴浆料;将氢氧化钴浆料进行碱浸,过滤取滤渣,滤渣制浆,再加入洗涤剂进行洗涤,干燥即得氢氧化钴。本发明采用柠檬酸铵作为底液,再加入钴液、混合碱液,在保护气氛下,一步合成氢氧化钴浆料,钴液中加有分散剂可以减少絮状物的产生,提高氢氧化钴的活性比表面积。

Description

一种氢氧化钴的合成方法及氢氧化钴 技术领域
本发明属于金属氧化物材料技术领域,具体涉及一种氢氧化钴的合成方法及氢氧化钴。
背景技术
钴酸锂电池结构稳定、容量比高、综合性能突出,主要用于中小型号电芯,广泛应用于笔记本电脑、手机等小型电子设备中。随着电子产品的推陈出新,人们对钴酸锂电池的要求也越来越高。氢氧化钴作为钴酸锂的重要前驱体,其性能直接影响正极材料的性能。氢氧化钴一般为玫瑰红结晶体,不溶于水,难溶于强碱,主要用作玻璃和搪瓷的着色剂、制取其他钴化物的原料。采用化学方法合成氢氧化钴容易形成胶体或絮状物,同时表面活性低。
小粒度氢氧化钴浆料难过滤,用水量多;在干燥过程中普遍易团聚,容易结块,不易烘干;而且氢氧化钴反应活性高,容易氧化成羟基氧化钴,造成产率降低。相关技术公布了一种利用压滤机洗涤氢氧化钴浆料的方法,降低了氢氧化钴在洗涤过程中的损失,提高了回收率。但洗涤出的物料干燥过程中依旧存在结块、氧化等问题,也未对该问题提出合适的解决方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种氢氧化钴的合成方法及氢氧化钴,该氢氧化钴的纯度高、颗粒规则、粒径分布均匀、比表面积大,具有较大的堆积密度,从而具有优异的可加工性能。
为实现上述目的,本发明采用以下技术方案:
一种氢氧化钴的合成方法,包括以下步骤:
(1)将柠檬酸铵进行搅拌加热,通入保护气,加入钴盐、混合碱液反应,调节pH,得到氢氧化钴浆料;
(2)将所述氢氧化钴浆料进行碱浸,过滤取滤渣,滤渣制浆,再加入洗涤剂进行洗涤,干燥即得氢氧化钴。
本发明采用柠檬酸铵溶液作为底液,再加入钴盐、混合碱液,在保护气氛下,一步合成氢氧化钴浆料,柠檬酸铵溶液作为底液,可以作为做整个反应过程的分散剂,防止反应过程中颗粒的团聚,钴液中加有分散剂可以减少絮状物的产生,提高氢氧化钴的活性比表面积,再利用碱浸,洗涤剂进行洗涤,可以减少氢氧化钴中S的含量,并且可以保护氢氧化钴在烘干的过程中不易氧化,且不易结块。
优选地,步骤(1)中,所述柠檬酸铵预先配制成0.8-1.5g/L的柠檬酸铵溶液。
优选地,步骤(1)中,所述柠檬酸铵加热前还包括加入氨水。
进一步优先地,所述氨水的浓度为10-20g/L。
优选地,步骤(1)中,所述保护气为氮气。
优选地,步骤(1)中,所述加热的温度为40~60℃。
优选地,步骤(1)中,所述钴盐包括硫酸钴溶液或氯化钴溶液。
进一步优选地,所述钴盐预先配制成钴盐溶液;所述钴盐溶液中添加有分散剂。
进一步优选地,所述硫酸钴溶液的浓度为1~2mol/L。
更优选地,所述分散剂为柠檬酸铵。
更优选地,所述柠檬酸铵的浓度为0.1~0.5mol/L。
优选地,步骤(1)中,所述混合碱液为氢氧化钠溶液、水合肼、氨水。
络合剂水溶液为氨水水溶液,能够有效地控制硫酸钴水溶液和氢氧化钠水溶液发生反应的速度及形成氢氧化钴颗粒形貌;水合肼在反应过程中起到有效初步包膜氢氧化钴颗粒的作用。
进一步优选地,所述氢氧化钠溶液的浓度为5~15mol/L。
进一步优选地,所述水合肼的体积比为0.5~1%。
进一步优选地,所述氨水的质量分数为10~30%。
进一步优选地,其中所述氨水体积占所述混合碱液总体积的10-12%。
优选地,步骤(1)中,所述调节pH是将pH调节10-12。
优选地,步骤(2)中,所述碱浸的过程中使用的是氢氧化钠溶液,碱浸的时间为1-2h,碱浸的温度为45~55℃。
优选地,步骤(2)中,所述洗涤剂为柠檬酸溶液。
进一步优选地,所述柠檬酸溶液为一水柠檬酸。
进一步优选地,所述柠檬酸溶液的浓度为0.5~1g/L。
一水柠檬酸既可以作为洗涤剂对制浆后的滤渣进行洗涤(洗去浆料中的多余的Na +和S -),又可以作为抗氧化剂,保护氢氧化钴在烘干的过程中不易氧化,且不易结块。
本发明还提供一种氢氧化钴,是由所述的合成方法制得的,所述氢氧化钴的比表面积为44-65cm 2/g。
相对于现有技术,本发明的有益效果如下:
1、本发明采用柠檬酸铵溶液作为底液,可以作为做整个反应过程的分散剂,防止反应过程中颗粒的团聚,再加入钴液、混合碱液,在保护气氛下,一步合成氢氧化钴浆料,钴液中加有分散剂可以减少絮状物的产生,提高氢氧化钴的活性比表面积,具有较大的堆积密度,从而具有优异的可加工性能,再利用碱浸,洗涤剂进行洗涤,可以减少氢氧化钴中S的含量(S含量偏高会导致电池容量低,结晶性能降低,结构不稳定),并且可以保护氢氧化钴在烘干的过程中不易氧化,且不易结块。
2、本发明的混合碱液中水合肼是一种强还原剂在反应过程中起到有效初步包膜氢氧化钴颗粒的作用;本发明的洗涤剂既可以作为洗涤剂对制浆后的滤渣进行洗涤,又可以作为抗氧化剂(起到再次包膜氢氧化钴颗粒抗氧化作用),保护氢氧化钴在烘干的过程中不易氧化,且不易结块。
附图说明
图1为本发明实施例1制备的氢氧化钴的SEM图;
图2为本发明实施例2制备的氢氧化钴的SEM图;
图3为本发明对比例1制备的氢氧化钴的SEM图;
图4为本发明对比例2制备的氢氧化钴的SEM图
图5为实施例1-2和对比例1-2制备的氢氧化钴的XRD图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的氢氧化钴的合成方法,包括以下步骤:
(1)配置2mol/L的硫酸钴溶液,再添加浓度为0.5mol/L的分散剂(柠檬酸铵),得到钴液;配置10mol/L的液碱,往液碱中加入体积比为0.5%的水合肼和质量分数为10%的氨水,得到混合碱液;其中氨水体积占混合碱液总体积的10%。
(2)向100L反应釜中加入1L的1g/L的柠檬酸铵溶液和10L的15g/L的氨水作底液,加入纯水调节pH至11,通入氮气作保护气,温度升至40℃,搅拌频率为30Hz,将钴盐溶液(硫酸钴溶液和柠檬酸铵)、混合碱液(液碱、氨水、水合肼)并流加入反应釜中,控制过程pH为12,进液到釜体80%左右停止进液,继续搅拌2h,得到氢氧化钴浆料。
(3)将氢氧化钴浆料接入离心机中甩干,重新投入釜中,再加入50L的1mol/L的氢氧化钠溶液进行浸泡1h,浸泡的温度为55℃,然后将浆料过滤,甩干,重新投入釜中,再用纯水加满反应釜(100L),釜体温度为50℃,搅拌1h,搅拌速率为30hz,得到制浆好的氢氧化钴浆料;
(4)将制浆好的氢氧化钴浆料接入离心机,洗水中加入1g/L的一水柠檬酸进行洗涤,洗水用量为50L/Kg,洗完后烘干,烘箱温度为90℃,得到形貌均匀的、比表面积大的粉红色氢氧化钴粉末。
图1为实施例1制得的氢氧化钴的SEM图,从图1可以看出实施例1制得的氢氧化钴的形貌一致性较好,无明显团聚。
表1中为氢氧化钴烘干后的各项指标
Co S Na D50 BET
62.45 0.013% 0.004% 1.6μm 61cm 2/g
从表1中可得,实施例1制得的氢氧化钴的含硫量很低,比表面积大。
实施例2
本实施例的氢氧化钴的合成方法,包括以下步骤:
(1)配置1mol/L的硫酸钴溶液,再添加浓度为0.1mol/L的分散剂(柠檬酸铵),得到钴液;配置15mol/L的液碱,往液碱中加入体积比为1%的水合肼和质量分数为15%的氨水,得到混合碱液;其中氨水体积占混合碱液总体积的10%。
(2)向100L反应釜中加入1L的1g/L的柠檬酸铵溶液和10L的15g/L的氨水作底液,通入氮气作保护气,温度升至60℃,搅拌频率为30Hz,将钴盐溶液(硫酸钴溶液和柠檬酸铵)、混合碱液(液碱、氨水、水合肼)并流加入反应釜中,控制过程pH为10,进液到釜体80%左右停止进液,继续搅拌2h,得到氢氧化钴浆料。
(3)将氢氧化钴浆料接入离心机中甩干,重新投入釜中,再加入2mol/L的氢氧化钠溶液进行浸泡1h,浸泡的温度为55℃,然后将浆料过滤,甩干,重新投入釜中,再用纯水加满反应釜,釜体温度为50℃,搅拌1h,搅拌速率为30hz,得到制浆好的氢氧化钴浆料;
(4)将制浆好的氢氧化钴浆料接入离心机,洗水中加入0.1g/L的一水柠檬酸进行洗涤,洗水用量为20L/Kg,洗完后烘干,烘箱温度为90℃,得到形貌均匀的、比表面积大的粉红色氢氧化钴粉末。
图2为实施例2制得的氢氧化钴的SEM图,从图2可以看出实施例2制得的氢氧化钴的形貌结构均一,无明显团聚。
表2中为氢氧化钴烘干后的各项指标
Co S Na D50 BET
63.50 0.024% 0.005% 3.1μm 44cm 2/g
从表2中可得,实施例2制得的氢氧化钴的含硫量很低,比表面积大。
对比例1
本对比例的氢氧化钴的合成方法,包括以下步骤:
其与实施例1的区别在于:钴盐溶液(硫酸钴溶液和柠檬酸铵)和底液中不加入分散剂(钴盐中不加分散剂,同时未添加柠檬酸铵作为底液),其他条件都不变,得到粒度较大、形貌均匀性较差的氢氧化钴。
图3为对比例1的制备的氢氧化钴的SEM图,从图3中可以看出对比例1的制备的氢氧化钴的块状大小不一,有团聚现象。
表3中为氢氧化钴烘干后的各项指标:
表3
Co S Na D50 BET
62.75 0.030% 0.006% 6.1μm 11cm 2/g
从表3中可得,对比例1制得的氢氧化钴的粒度较大,比表面积小。
对比例2
本对比例的氢氧化钴的合成方法,包括以下步骤:
其与实施例1的区别在于:洗水中不加入洗涤剂——一水柠檬酸,其他条件都不变。
图4为对比例2的制备的氢氧化钴的SEM图,从图4中可以看出制备的氢氧化钴形貌不规则,且有明显的团聚现象,即烘干后物料结块严重,部分被氧化。
对比例3
本对比例的氢氧化钴的合成方法,包括以下步骤:
其与实施例1的区别在于:步骤(3)为:将氢氧化钴浆料接入离心机中甩干,重新投入釜中,再用纯水加满反应釜,釜体温度为50℃,搅拌1h,搅拌速率为30hz,得到制浆好的氢氧化钴浆料;其他条件都不变。
表4中为氢氧化钴烘干后的各项指标:
表4
Co S Na D50 BET
62.1 0.110% 0.003% 2.2μm 50cm 2/g
从表4中,将对比例3制备的氢氧化钴烘干后送检(ICP检测),S含量达到1100ppm。
图5为实施例1-2和对比例1-2制备的氢氧化钴的XRD图,从图5中可以看出:对比例2的2θ在10.50°左右可以检测到羟基氧化钴的衍射峰,说明物质中出现了羟基氧化钴,羟基氧化钴是杂质,表明氢氧化钴已经被氧化,从而降低产率。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种氢氧化钴的合成方法,其特征在于,包括以下步骤:
    (1)将柠檬酸铵进行搅拌加热,通入保护气,加入钴盐、混合碱液反应,调节pH,得到氢氧化钴浆料;
    (2)将所述氢氧化钴浆料进行碱浸,过滤取滤渣,滤渣制浆,再加入洗涤剂进行洗涤,干燥即得氢氧化钴。
  2. 根据权利要求1所述的合成方法,其特征在于,步骤(1)中,所述柠檬酸铵预先配制成0.8-1.5g/L的柠檬酸铵溶液。
  3. 根据权利要求1所述的合成方法,其特征在于,步骤(1)中,所述保护气为氮气。
  4. 根据权利要求1所述的合成方法,其特征在于,步骤(1)中,所述钴盐包括硫酸钴、氯化钴中的一种。
  5. 根据权利要求4所述的合成方法,其特征在于,所述钴盐预先配制成钴盐溶液;优选的,所述钴盐溶液中添加有分散剂;所述分散剂为柠檬酸铵。
  6. 根据权利要求1所述的合成方法,其特征在于,步骤(1)中,所述混合碱液为氢氧化钠溶液、水合肼、氨水。
  7. 根据权利要求6所述的合成方法,其特征在于,所述氨水的体积占所述混合碱液总体积的10-12%。
  8. 根据权利要求1所述的合成方法,其特征在于,步骤(2)中,所述碱浸的过程中使用的是氢氧化钠溶液,碱浸的时间为1-2h,碱浸的温度为45~55℃。
  9. 根据权利要求1所述的合成方法,其特征在于,步骤(2)中,所述洗涤剂为柠檬酸溶液。
  10. 一种氢氧化钴,其特征在于,是由权利要求1-9任一项所述的合成方法制得的,所述氢氧化钴的比表面积为44-65cm 2/g。
PCT/CN2022/093593 2021-08-24 2022-05-18 一种氢氧化钴的合成方法及氢氧化钴 WO2023024597A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB2310158.7A GB2618692A (en) 2021-08-24 2022-05-18 Synthesis method for cobalt hydroxide and cobalt hydroxide
ES202390109A ES2947957B2 (es) 2021-08-24 2022-05-18 Metodo de sintesis de hidroxido de cobalto e hidroxido de cobalto
MA61722A MA61722A1 (fr) 2021-08-24 2022-05-18 Procédé de synthèse d'hydroxyde de cobalt et hydroxyde de cobalt
DE112022000302.2T DE112022000302T5 (de) 2021-08-24 2022-05-18 Kobalthydroxidsyntheseverfahren und kobalthydroxid
US18/373,998 US20240018012A1 (en) 2021-08-24 2023-09-28 Synthesis method of cobalt hydroxide and cobalt hydroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110977138.7 2021-08-24
CN202110977138.7A CN113753965B (zh) 2021-08-24 2021-08-24 一种氢氧化钴的合成方法及氢氧化钴

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,998 Continuation US20240018012A1 (en) 2021-08-24 2023-09-28 Synthesis method of cobalt hydroxide and cobalt hydroxide

Publications (1)

Publication Number Publication Date
WO2023024597A1 true WO2023024597A1 (zh) 2023-03-02

Family

ID=78791039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093593 WO2023024597A1 (zh) 2021-08-24 2022-05-18 一种氢氧化钴的合成方法及氢氧化钴

Country Status (7)

Country Link
US (1) US20240018012A1 (zh)
CN (1) CN113753965B (zh)
DE (1) DE112022000302T5 (zh)
ES (1) ES2947957B2 (zh)
GB (1) GB2618692A (zh)
MA (1) MA61722A1 (zh)
WO (1) WO2023024597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177614A (zh) * 2023-03-23 2023-05-30 科立鑫(珠海)新能源有限公司 一种钴氧化物制备过程降低废料率的工艺方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753965B (zh) * 2021-08-24 2022-11-15 广东邦普循环科技有限公司 一种氢氧化钴的合成方法及氢氧化钴
CN115849459A (zh) * 2022-12-29 2023-03-28 贵州雅友新材料有限公司 一种氢氧化钴的制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569444A (en) * 1990-06-18 1996-10-29 Blanchard; Philippe Process of obtaining a metal hydroxide powder and powder obtained by the process
CN1359353A (zh) * 1999-06-29 2002-07-17 Omg芬兰公司 制备高密度和大粒度氢氧化钴或钴混合氢氧化物的方法及由该方法制备的产品
CN101269848A (zh) * 2008-03-05 2008-09-24 广州融捷材料科技有限公司 一种高密度球形四氧化三钴及其制备方法
CN101544408A (zh) * 2009-04-17 2009-09-30 中国科学院上海硅酸盐研究所 水热法制备层片状Co(OH)2或Co3O4纳米棒的方法
CN104058468A (zh) * 2013-03-19 2014-09-24 南通瑞翔新材料有限公司 一种致密球形氧化钴及其制备方法
CN108946824A (zh) * 2018-09-14 2018-12-07 兰州金川新材料科技股份有限公司 一种大粒度四氧化三钴的制备方法
CN109987645A (zh) * 2018-01-03 2019-07-09 格林美(江苏)钴业股份有限公司 一种氢氧化亚钴的制备方法
CN113753965A (zh) * 2021-08-24 2021-12-07 广东邦普循环科技有限公司 一种氢氧化钴的合成方法及氢氧化钴

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233175B2 (ja) * 2014-02-05 2017-11-22 住友金属鉱山株式会社 水酸化コバルト粒子及びその製造方法、並びに正極活物質及びその製造方法
CN104445442B (zh) * 2014-12-09 2016-05-11 英德佳纳金属科技有限公司 一种低氯/硫、大粒径氢氧化钴及其制备方法
CN111559762A (zh) * 2020-05-27 2020-08-21 广东先导稀材股份有限公司 一种氢氧化钴的制备方法
CN111807421A (zh) * 2020-06-23 2020-10-23 湖南邦普循环科技有限公司 一种降低镍钴锰三元正极材料前驱体硫含量的方法
CN113277572B (zh) * 2021-07-22 2021-11-26 金驰能源材料有限公司 一种低钠硫镍钴复合氢氧化物前驱体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569444A (en) * 1990-06-18 1996-10-29 Blanchard; Philippe Process of obtaining a metal hydroxide powder and powder obtained by the process
CN1359353A (zh) * 1999-06-29 2002-07-17 Omg芬兰公司 制备高密度和大粒度氢氧化钴或钴混合氢氧化物的方法及由该方法制备的产品
CN101269848A (zh) * 2008-03-05 2008-09-24 广州融捷材料科技有限公司 一种高密度球形四氧化三钴及其制备方法
CN101544408A (zh) * 2009-04-17 2009-09-30 中国科学院上海硅酸盐研究所 水热法制备层片状Co(OH)2或Co3O4纳米棒的方法
CN104058468A (zh) * 2013-03-19 2014-09-24 南通瑞翔新材料有限公司 一种致密球形氧化钴及其制备方法
CN109987645A (zh) * 2018-01-03 2019-07-09 格林美(江苏)钴业股份有限公司 一种氢氧化亚钴的制备方法
CN108946824A (zh) * 2018-09-14 2018-12-07 兰州金川新材料科技股份有限公司 一种大粒度四氧化三钴的制备方法
CN113753965A (zh) * 2021-08-24 2021-12-07 广东邦普循环科技有限公司 一种氢氧化钴的合成方法及氢氧化钴

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, HONG: "Preparation of Cobalt Hydroxide by Crystallization Control Method", CHINESE JOURNAL OF SYNTHETIC CHEMISTRY, vol. 26, no. 8, 31 December 2018 (2018-12-31), XP093039588 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116177614A (zh) * 2023-03-23 2023-05-30 科立鑫(珠海)新能源有限公司 一种钴氧化物制备过程降低废料率的工艺方法
CN116177614B (zh) * 2023-03-23 2023-11-21 科立鑫(珠海)新能源有限公司 一种钴氧化物制备过程降低废料率的工艺方法

Also Published As

Publication number Publication date
ES2947957B2 (es) 2024-03-13
CN113753965B (zh) 2022-11-15
CN113753965A (zh) 2021-12-07
GB202310158D0 (en) 2023-08-16
ES2947957A2 (es) 2023-08-24
DE112022000302T5 (de) 2023-09-14
US20240018012A1 (en) 2024-01-18
GB2618692A (en) 2023-11-15
MA61722A1 (fr) 2024-01-31
ES2947957R1 (es) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2023024597A1 (zh) 一种氢氧化钴的合成方法及氢氧化钴
CN111874958B (zh) 一种ncma高镍四元前驱体的湿法合成方法
WO2022267420A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN113562711B (zh) 磷酸铁及其制备方法和应用
CN109422297B (zh) 一种镍钴锰前驱体结晶过程中调控成核的方法
CN105304897B (zh) 一种大颗粒氢氧化钴电池材料的制备方法
CN109546144B (zh) 三元前驱体的制备方法及其应用
CN107188149A (zh) 一种电池级高纯纳米磷酸铁的工艺
CN104445442A (zh) 一种低氯/硫、大粒径氢氧化钴及其制备方法
WO2024040907A1 (zh) 一种电池级碳酸锂的制备方法
CN104625082A (zh) 一种纳米级镍粉的制备方法
CN101462942A (zh) 利用酸洗废液生产高纯电池级草酸亚铁的方法
CN104692446A (zh) 一种高纯低氯高活性氧化铜的制备方法
CN115490273B (zh) 一种大比表三元前驱体连续制备的方法及制备得到的前驱体
CN114150378B (zh) 一种高球形三元前驱体及其制备方法
CN115448382A (zh) 一种高镍三元前驱体及其制备方法和应用
CN113845156A (zh) 一种低钠硫超高镍四元前驱体的制备方法
CN112259820A (zh) 一种利用废旧锂电池制备核壳型三元正极材料的方法
CN115504490B (zh) 一种外场辅助制备电池级碳酸锂的方法
CN114455641B (zh) 一种低氯含量的碳酸钴的制备方法
CN111573717B (zh) 以工业偏钛酸制备高纯纳米钛酸锂的方法
CN107082454A (zh) 一种制备球形氢氧化镍的方法
CN102616827B (zh) 一种高纯活性氧化铜的工业化制备方法
CN116854063A (zh) 一种球形磷酸铁及其制备方法
CN116177616A (zh) 一种nca正极材料用纳米片状球形结构nc高镍前驱体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310158

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220518

WWE Wipo information: entry into national phase

Ref document number: 112022000302

Country of ref document: DE