WO2024040907A1 - 一种电池级碳酸锂的制备方法 - Google Patents

一种电池级碳酸锂的制备方法 Download PDF

Info

Publication number
WO2024040907A1
WO2024040907A1 PCT/CN2023/079085 CN2023079085W WO2024040907A1 WO 2024040907 A1 WO2024040907 A1 WO 2024040907A1 CN 2023079085 W CN2023079085 W CN 2023079085W WO 2024040907 A1 WO2024040907 A1 WO 2024040907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium carbonate
reaction
battery
carbonate
Prior art date
Application number
PCT/CN2023/079085
Other languages
English (en)
French (fr)
Inventor
张金超
刘少葵
刘勇奇
巩勤学
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024040907A1 publication Critical patent/WO2024040907A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to the technical field of battery-grade lithium carbonate, and specifically to a method for preparing battery-grade lithium carbonate.
  • lithium carbonate As an important compound of lithium salts, lithium carbonate is widely used in the new energy automobile industry. Most cathode materials such as lithium cobalt oxide, lithium nickel oxide, lithium nickel cobalt oxide, lithium iron phosphate and lithium nickel cobalt manganate are prepared using lithium carbonate as raw materials. become.
  • battery-grade lithium carbonate production methods mainly include high-temperature lithium precipitation method, electrolysis method, causticization method, hydrogenation decomposition method, etc.
  • the commonly used high-temperature lithium precipitation method refers to the precipitation reaction of a lithium-containing solution and a sodium carbonate solution at high temperature to generate lithium carbonate. This method has the advantages of high conversion rate and fast reaction speed, but it also has high sodium impurity content in the product.
  • the problem; the electrolysis method mainly electrolyzes a saturated lithium salt solution to obtain high-purity lithium hydroxide, and then introduces an appropriate amount of CO 2 gas to generate battery-grade lithium carbonate.
  • This method has the advantage of high product purity, but the production cost is high; harsh
  • the chemical method refers to reacting high-purity lithium carbonate with calcium hydroxide aqueous solution, obtaining high-purity lithium hydroxide after separation and removal of impurities, and then passing in an appropriate amount of CO 2 gas to generate battery-grade lithium carbonate.
  • This method has the advantage of high product purity.
  • the production process is long and the operating cost is high; the hydrogenation decomposition method is to pass excess CO 2 gas into the insoluble lithium carbonate solution to generate lithium bicarbonate with greater solubility.
  • the lithium bicarbonate solution is easy to decompose when heated, and can be heated Decompose lithium bicarbonate to produce battery-grade lithium carbonate.
  • This method has the advantages of simple operation and high product purity.
  • the object of the present invention is to provide a method for preparing battery-grade lithium carbonate.
  • the present invention provides a method for preparing battery-grade lithium carbonate, which includes:
  • High-temperature lithium precipitation Add sodium carbonate solution to the lithium-containing mother liquor to perform high-temperature lithium precipitation to obtain crude lithium carbonate;
  • the crude lithium carbonate is subjected to a multi-stage cycle operation of hydrogenation reaction and thermal decomposition reaction;
  • the multi-stage loop operation includes:
  • Hydrogenation reaction Divide the crude lithium carbonate into multiple parts, one part of which is mixed with water to make a pure water slurry, continue to pass carbon dioxide into the pure water slurry to perform a hydrogenation reaction until the lithium carbonate solid is completely dissolved, and filter After removing insoluble impurities, a lithium bicarbonate solution is obtained;
  • Thermal decomposition reaction heating the lithium bicarbonate solution, the solution gradually becomes turbid and a white precipitate of lithium carbonate is formed, and high-purity lithium carbonate and the lithium-containing filtrate are separated;
  • the hydrogenation reaction and the thermal decomposition reaction are treated as one cycle, and in subsequent cycles, the lithium-containing filtrate is returned and mixed with another portion of the crude lithium carbonate for filtrate pulping to form a filtrate slurry; the multi-stage cycle
  • the number of cycles of operation is at least 4 times;
  • the high-purity lithium carbonate is directly dried without washing to obtain battery-grade lithium carbonate powder.
  • the invention has the following beneficial effects:
  • the method for preparing battery-grade lithium carbonate provided in this application greatly reduces the consumption of pure water by reusing the lithium-containing filtrate after the thermal decomposition reaction for pulping. Due to the solubility of lithium carbonate, the less pure water is used, the less lithium carbonate will be dissolved, and the conversion rate of solid lithium carbonate will be greatly improved.
  • the microporous filtration impurity removal reaction in the hydrogenation reaction the problem of P, Si, Ca and other metal ion enrichment in the multi-stage cyclic hydrogenation reaction is cleverly avoided, the number of cycles of the lithium-containing filtrate is increased, and the purity and conversion of the lithium carbonate product are greatly improved. Rate.
  • the lithium carbonate product prepared by the process flow described in the invention has a high first-time pass rate and can reach the battery-grade lithium carbonate standard without filter press washing, thus greatly shortening the production process.
  • the process of the present invention has no complicated parameter adjustment steps, clear experimental phenomena, and is conducive to industrial production operations; it does not require high equipment, and the impurity removal reactions all remove impurities through precipitation, which is conducive to reducing production costs.
  • Figure 1 is a process flow diagram of a method for preparing battery-grade lithium carbonate provided by the present invention
  • Figure 2 is an SEM image of the lithium carbonate product of Example 1 of the present invention.
  • Figure 3 is an SEM image of the lithium carbonate product of Comparative Example 1 of the present invention.
  • Figure 4 is a diagram of the inner wall of the beaker after the lithium precipitation reaction in Example 1 of the present invention.
  • Figure 5 is a diagram of the inner wall of the beaker after the lithium precipitation reaction in Comparative Example 1 of the present invention.
  • the present invention provides a method for preparing battery-grade lithium carbonate, which includes the following steps:
  • the lithium-containing solution is concentrated and impurities (P, Mg, Fe, Al, Ni, Co, Mn, etc.) are removed to obtain a lithium-containing mother liquor.
  • Impurity removal includes adjusting the pH of the concentrated lithium-containing solution to between 10-14. , add calcium hydroxide solution, the lithium content in the concentrated lithium-containing solution is 15-25g/L, the molar ratio of the added amount of calcium hydroxide solution to the P content in the concentrated lithium-containing solution is 1-1.5:1, Stir the reaction at 50-80°C for 15-45 minutes to precipitate phosphorus and various metal ions, and filter them out.
  • the lithium content of the concentrated solution is between 20-25g/L; the pH of the lithium-containing mother solution is adjusted to between 10-12; the molar ratio of the calcium hydroxide dosage to the P content in the solution is between 1-1.2:1;
  • the reaction temperature is between 60-70°C, the reaction time is between 15-20min, and the stirring speed is between 300-500rpm.
  • reaction mechanism of impurity removal is to Converted into Ca 3 (PO 4 ) 2 precipitate, other metal ions generate corresponding precipitates under alkaline conditions, and are removed by filtration.
  • the reaction formula is as follows:
  • the mass proportion of sodium carbonate in the sodium carbonate solution is 10%-30%, and the molar ratio of the amount of sodium carbonate solution to the Li content in the lithium-containing mother liquor is 0.5-0.8:1; high temperature
  • the reaction temperature of lithium precipitation is 60-90°C, the reaction time is 30-120min, and the stirring speed is 300-700rpm; during the reaction process, white precipitates continue to appear in the solution.
  • Precipitate is produced, and crude lithium carbonate is obtained by filtration.
  • the reaction formula is as follows:
  • the mass proportion of sodium carbonate in the sodium carbonate solution is 20%-30%, and the molar ratio of the amount of sodium carbonate solution to the Li content in the lithium-containing mother liquor is 0.5-0.6:1;
  • the reaction temperature of lithium is 80-90°C, the reaction time is 90-120min, and the stirring speed is 400-600rpm.
  • battery-grade lithium carbonate powder serving as the second seed crystal for the reaction is also added to the system; the amount of the second seed crystal added is 2%-8% of the theoretical crude lithium carbonate amount; further preferably, it is 4 %-8%. It should be noted that adding seed crystals is beneficial to reducing the impurity content in crude lithium carbonate and effectively avoiding the wall-sticking phenomenon of lithium carbonate in the reactor.
  • the crude lithium carbonate is subjected to a multi-stage cycle operation of hydrogenation reaction and thermal decomposition reaction; wherein, the multi-stage cycle operation includes:
  • Hydrogenation reaction Divide the crude lithium carbonate into multiple parts, and mix one part with water to make a pure water slurry. Continue to pass carbon dioxide into the pure water slurry to perform the hydrogenation reaction until the lithium carbonate solid is completely dissolved. After filtering the insoluble impurities, Obtain lithium bicarbonate solution; the reaction temperature of the hydrogenation reaction is 20-40°C, and the reaction time is 60-120 minutes; filtration in the hydrogenation reaction uses a 0.5-2 ⁇ m microporous filter, and microporous filter filtration can remove Si, Ca, etc. impurities, which greatly improves the one-time qualification rate of the product without the need for multiple washings.
  • the CO 2 gas after the reaction is collected during the hydrogenation reaction and passed into the next stage of the hydrogenation reaction, which greatly improves the recycling rate of CO 2 .
  • the impurity removal reaction is carried out before the high-temperature lithium precipitation reaction, which avoids problems such as PO 4 3- enrichment and metal ion precipitation in the subsequent multi-stage hydrogenation reaction, and is beneficial to improving the purity of the final product.
  • Thermal decomposition reaction Heating the lithium bicarbonate solution, the solution gradually becomes turbid and a white precipitate of lithium carbonate is formed. High-purity lithium carbonate and the lithium-containing filtrate are separated. The Li content in the lithium-containing filtrate is 2.5-4g/L, and the Na and S content are lower than 0.6g/L.
  • battery-grade lithium carbonate powder serving as the first seed crystal is added to the lithium bicarbonate solution.
  • the amount of the first seed crystal added is 2%-8% of the theoretical amount of crude lithium carbonate, and it is heated to 70-95°C. , stir for 30-120 minutes and then filter while hot to obtain high-purity lithium carbonate and lithium-containing filtrate.
  • the above hydrogenation reaction and thermal decomposition reaction are treated as one cycle, and in subsequent cycles, the lithium-containing filtrate is returned and mixed with another portion of crude lithium carbonate to slurry the filtrate to form a filtrate slurry; this application reuses the lithium-containing filtrate after the thermal decomposition reaction
  • the filtrate is pulped, which greatly reduces the consumption of pure water. Due to the solubility of lithium carbonate, the less pure water is used, the less lithium carbonate will be dissolved, and the conversion rate of solid lithium carbonate will be greatly improved.
  • the number of cycles of the multi-stage circulation operation is at least 4 times; due to the continuous recycling of the thermal decomposition reaction filtrate, the Na and S content are continuously enriched, resulting in the continuous increase in the Na and S impurity content in the product lithium carbonate, so the hydrogenation of crude lithium carbonate
  • the number of cycles of thermal decomposition reaction is 4-5 times, preferably 5 times.
  • High-purity lithium carbonate is directly dried without washing to obtain battery-grade lithium carbonate powder. Greatly reduces the consumption of pure water.
  • the addition amount of pure water, lithium-containing filtrate or crude lithium carbonate solid is controlled by controlling the Li content.
  • the Li content in the pure water pulping is 8.5-9.5g/L
  • each stage in the subsequent cycle The Li content in the filtrate slurry is 6.5-9.5g/L.
  • the embodiment of the present invention provides a method for preparing battery-grade lithium carbonate. The specific steps are as follows:
  • Lithium carbonate powder serves as a reaction seed crystal.
  • the amount of seed crystal added is between 4% of the theoretical amount of crude lithium carbonate.
  • the reaction is stirred at 85°C and 400 rpm for 120 minutes. After filtration, the crude lithium carbonate solid is obtained, and the filtrate is returned to the evaporation concentration system. It should be noted that adding seed crystals is beneficial to reducing the impurity content in crude lithium carbonate and effectively avoiding the wall-sticking phenomenon of lithium carbonate in the reactor.
  • the amount of seed crystal added is between 4% of the theoretical amount of crude lithium carbonate. Heat to 90°C, stir the reaction at 400 rpm for 120 minutes, and then filter while hot. High-purity lithium carbonate precipitate and lithium-containing filtrate are obtained. Battery-grade lithium carbonate powder can be obtained directly from the high-purity lithium carbonate precipitate without washing and drying. The lithium-containing filtrate is used for second-stage hydrogenation reaction pulping.
  • the amount of seed crystal added is between 4% of the theoretical amount of crude lithium carbonate. Heat to 90°C and stir at 400 rpm for 120 minutes. Then, filter while hot to obtain high-purity lithium carbonate precipitate and lithium-containing filtrate. The high-purity lithium carbonate precipitate can be directly obtained into battery-grade lithium carbonate powder without washing and drying.
  • the lithium-containing filtrate is used for three-stage hydrogenation reaction pulping.
  • the addition amount is between 4% of the theoretical amount of crude lithium carbonate, heated to 90°C, stirred for 120 minutes and then filtered while hot to obtain high-purity lithium carbonate precipitate and lithium-containing filtrate.
  • the high-purity lithium carbonate precipitate can be directly used without washing and drying. Battery grade lithium carbonate powder is obtained, and the lithium-containing filtrate is returned to the concentration system.
  • c 1 is the mass concentration of Li in the qualified lithium liquid
  • c 2 is the mass concentration of Li in the filtrate after the high-temperature lithium precipitation reaction
  • V 1 is the volume of the qualified lithium liquid
  • V 2 is the volume of the filtrate after the high-temperature lithium precipitation reaction.
  • is the mass fraction of Li in crude lithium carbonate
  • m 1 is the added mass of crude lithium carbonate in the first-stage hydrogenation reaction
  • m 2 is the added mass of crude lithium carbonate in the second-stage hydrogenation reaction
  • m 3 is the crude carbonic acid in the third-stage hydrogenation reaction Lithium added mass
  • m 4 is the added mass of crude lithium carbonate in the four-stage hydrogenation reaction
  • m 5 is the added mass of crude lithium carbonate in the five-stage hydrogenation reaction
  • c 5 is the mass concentration of Li in the lithium-containing filtrate after the five-stage thermal decomposition reaction
  • V5 is the volume of lithium-containing filtrate after the five-stage thermal decomposition reaction.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the high-temperature lithium precipitation reaction temperature of sodium carbonate in step S2 is 60°C.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the high-temperature lithium precipitation reaction time in step S2 is 60 minutes.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the molar ratio of the amount of sodium carbonate in step S2 to the Li content in the solution is 0.5:1.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the hydrogenation reaction time in step S3 is 60 minutes.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the hydrogenation reaction temperature in step S3 is 40°C.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the thermal decomposition reaction time in step S3 is 60 minutes.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the thermal decomposition reaction temperature in step S3 is 70°C.
  • This embodiment provides a battery-grade lithium carbonate preparation process.
  • the only difference from Embodiment 1 is that only four stages of hydrogenation and thermal decomposition reactions are performed.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that no battery-grade lithium carbonate powder is added as a seed crystal in steps S2 and S3.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that the two impurity removal reactions were not performed.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that in step (3), microporous filtration is not used in the filtration and impurity removal section, and only ordinary filter paper is used for filtration, with a pore size of 40 microns.
  • microporous filtration can significantly reduce the Si and Ca content in the filtrate, which is beneficial to improving product purity.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that only one stage of hydrogenation and thermal decomposition reactions are performed.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that only two stages of hydrogenation and thermal decomposition reactions are performed.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that only three stages of hydrogenation and thermal decomposition reactions are performed.
  • This comparative example provides a battery-grade lithium carbonate preparation process.
  • the only difference from Example 1 is that six stages of hydrogenation and thermal decomposition reactions are performed.
  • the method for preparing battery-grade lithium carbonate greatly reduces the amount of pure water by reusing the lithium-containing filtrate after the thermal decomposition reaction for pulping. Due to the solubility of lithium carbonate, the less pure water is used, the less lithium carbonate will be dissolved, and the conversion rate of solid lithium carbonate will be greatly improved.
  • the Ca impurity introduced in the first step of impurity removal reaction can be removed in the form of calcium carbonate precipitation in the second step of impurity removal, cleverly avoiding multi-stage cyclic hydrogenation.
  • the problem of enrichment of P, Si, Ca and other metal ions during the reaction increases the number of cycles of lithium-containing filtrate and greatly improves the purity and conversion rate of lithium carbonate products.
  • a two-step lithium precipitation reaction high-temperature lithium precipitation of sodium carbonate, high-temperature decomposition of lithium bicarbonate, and addition of seed crystals during the reaction process, the reactor wall sticking condition is greatly improved and the impurity content of the lithium carbonate product is reduced.
  • the lithium carbonate product prepared by the process flow described in the invention has a high first-time pass rate and can reach the battery-grade lithium carbonate standard without filter press washing, thus greatly shortening the production process.
  • the process of the present invention has no complicated parameter adjustment steps, clear experimental phenomena, and is conducive to industrial production operations; it does not require high equipment, and the impurity removal reactions all remove impurities through precipitation, which is conducive to reducing production costs.

Abstract

本发明公开了一种电池级碳酸锂的制备方法,涉及电池级碳酸锂技术领域。该制备方法包括向含锂母液中加入碳酸钠溶液进行高温沉锂得到粗碳酸锂;对粗碳酸锂进行氢化反应和热分解反应的多段循环操作:将粗碳酸锂与水混合制成纯水浆料,通入二氧化碳进行氢化反应直至碳酸锂完全溶解,过滤得到碳酸氢锂溶液;加热碳酸氢锂溶液至沉淀生成,分离高纯碳酸锂和含锂滤液;将含锂滤液返回与另一份粗碳酸锂混合进行滤液制浆形成滤液浆料;多段循环操作的循环次数至少为4次。本申请通过重复利用热分解反应后的含锂滤液制浆,大大减少纯水用量。由于碳酸锂溶解度的问题,纯水用量越少,相应溶解的碳酸锂就会越少,固体碳酸锂转化率得到较大提升。

Description

一种电池级碳酸锂的制备方法 技术领域
本发明涉及电池级碳酸锂技术领域,具体而言,涉及一种电池级碳酸锂的制备方法。
背景技术
碳酸锂作为锂盐的重要化合物,广泛用于新能源汽车行业,钴酸锂、镍酸锂、镍钴酸锂、磷酸铁锂和镍钴锰酸锂等正极材料大多使用碳酸锂为原料制备而成。
目前电池级碳酸锂生产方法主要有高温沉锂法、电解法、苛化法、氢化分解法等。其中常用的高温沉锂法是指将含锂溶液与碳酸钠溶液在高温下发生沉淀反应生成碳酸锂,此方法具备转化率高、反应速度快等优点,但也存在产品中钠杂质含量过高的问题;电解法主要是电解饱和的锂盐溶液,得到高纯度氢氧化锂,再通入适量CO2气体生成电池级碳酸锂,此法具备产品纯度高的优点,但生产成本较高;苛化法是指将高纯度碳酸锂与氢氧化钙水溶液反应,经过分离除杂后得到高纯度氢氧化锂,再通入适量CO2气体生成电池级碳酸锂,此法具备产品纯度高的优点,但生产流程较长,操作成本较高;氢化分解法是指向难溶的碳酸锂溶液通入过量CO2气体生成溶解度更大的碳酸氢锂,碳酸氢锂溶液受热易分解,可通过加热的方式分解碳酸氢锂生成电池级碳酸锂,此法具有操作简单、产品纯度高的优点。
目前采用氢化工艺的有中国专利200710019052.3《一种利用盐湖锂资源制取高纯碳酸锂的工艺方法》,以盐湖卤水为原料制备工业级碳酸锂,通入CO2气体氢化,经过相关的除杂过程后,在负压条件下分解碳酸氢锂,洗涤多次制备电池级的碳酸锂;专利CN106517258B《电池级碳酸锂的制备方法》通过氢化工业级碳酸锂得到碳酸氢锂溶液,再加热碳酸氢锂溶液得到较高纯度碳酸锂固体,将得到的碳酸锂与氢氧化钙苛化制备氢氧化锂,最后向氢氧化锂苛化液中通入CO2制备高纯度碳酸锂固体,洗涤多次后得到电池级的碳酸锂。这些方法制备的碳酸锂产品大多需要经过多次洗涤才能使产品合格,纯水消耗量较大,导致大量碳酸锂产品溶于水中,造成碳酸锂转化率较低。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种电池级碳酸锂的制备方法。
本发明通过以下技术方案实现:
第一方面,本发明提供一种电池级碳酸锂的制备方法,其包括:
高温沉锂:向含锂母液中加入碳酸钠溶液进行高温沉锂得到粗碳酸锂;
对所述粗碳酸锂进行氢化反应和热分解反应的多段循环操作;
其中,所述多段循环操作包括:
氢化反应:将所述粗碳酸锂分为多份,其中一份与水混合制成纯水浆料,向所述纯水浆料中持续通入二氧化碳进行氢化反应直至碳酸锂固体完全溶解,过滤不溶物杂质后得到碳酸氢锂溶液;
热分解反应:加热所述碳酸氢锂溶液,溶液逐渐浑浊并有碳酸锂白色沉淀生成,分离高纯碳酸锂和含锂滤液;
所述氢化反应和所述热分解反应作为一次循环,且在后续循环中,将所述含锂滤液返回与另一份所述粗碳酸锂混合进行滤液制浆形成滤液浆料;所述多段循环操作的循环次数至少为4次;
所述高纯碳酸锂不经洗涤,直接干燥后得到电池级碳酸锂粉末。
本发明具有以下有益效果:本申请提供的电池级碳酸锂的制备方法通过重复利用热分解反应后的含锂滤液制浆,大大减少纯水用量。由于碳酸锂溶解度的问题,纯水用量越少,相应溶解的碳酸锂就会越少,固体碳酸锂转化率得到较大提升。通过在氢化反应中微孔过滤除杂反应,巧妙的避免了多段循环氢化反应中P、Si、Ca及其他金属离子富集问题,提高了含锂滤液循环次数,大大提高碳酸锂产品纯度和转化率。通过两步沉锂反应:碳酸钠高温沉锂、碳酸氢锂高温分解沉锂,有利于降低碳酸锂产品杂质含量。本发明所描述的工艺流程制备的碳酸锂产品一次合格率高,可以无需经过压滤洗涤就可达到电池级碳酸锂标准,大大缩短生产流程。本发明工艺无复杂调节参数步骤、实验现象鲜明,有利于工业生产操作;对设备要求不高,除杂反应均通过沉淀除杂,有利于降低生产成本。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明提供的一种电池级碳酸锂的制备方法的工艺流程图;
图2为本发明实施例1碳酸锂产品SEM图;
图3为本发明对比例1碳酸锂产品SEM图;
图4为本发明实施例1沉锂反应后烧杯内壁图;
图5为本发明对比例1沉锂反应后烧杯内壁图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
请参阅图1,本发明提供一种电池级碳酸锂的制备方法,其包括如下步骤:
S1、除杂反应。
含锂溶液经浓缩除杂(P、Mg、Fe、Al、Ni、Co、Mn等)后获得含锂母液,其中,除杂包括将浓缩后的含锂溶液的pH调至10-14之间,加入氢氧化钙溶液,浓缩后的含锂溶液中锂含量在15-25g/L,氢氧化钙溶液的加入量与浓缩后的含锂溶液中P含量的摩尔比为1-1.5:1,在50-80℃下搅拌反应15-45min,将磷和多种金属离子进行沉淀,过滤去除。
优选地,浓缩后的溶液锂含量在20-25g/L之间;调节含锂母液pH至10-12之间;氢氧化钙用量与溶液中P含量摩尔比在1-1.2:1之间;反应温度在60-70℃之间,反应时间在15-20min之间,搅拌速度在300-500rpm。
除杂的反应机理是将转化为Ca3(PO4)2沉淀,其他金属离子在碱性条件下生成相应沉淀,过滤去除,反应式如下:
Mn++nOH-→M(OH)n↓(Mn+为金属离子)
S2、高温沉锂。
向含锂母液中加入碳酸钠溶液进行高温沉锂分离得到粗碳酸锂和粗滤液,粗滤液返回蒸发浓缩系统。
具体来说,在高温沉锂过程中,碳酸钠溶液中碳酸钠质量占比为10%-30%,碳酸钠溶液的用量与含锂母液中Li含量的摩尔比为0.5-0.8:1;高温沉锂的反应温度为60-90℃,反应时间为30-120min,搅拌速度为300-700rpm;在反应过程中,溶液中不断有白色沉 淀产生,过滤得到粗碳酸锂,反应式如下:
优选地,在高温沉锂过程中,碳酸钠溶液中碳酸钠质量占比为20%-30%,碳酸钠溶液的用量与含锂母液中Li含量的摩尔比为0.5-0.6:1;高温沉锂的反应温度为80-90℃,反应时间为90-120min,搅拌速度为400-600rpm。
进一步地,在高温沉锂时还向体系中加入充当反应第二晶种的电池级碳酸锂粉末;第二晶种的添加量为理论粗碳酸锂量的2%-8%;进一步优选为4%-8%。需要说明的是,添加晶种有利于降低粗碳酸锂中杂质含量,有效避免反应器内碳酸锂粘壁现象。
S3、多段循环操作。
对粗碳酸锂进行氢化反应和热分解反应的多段循环操作;其中,多段循环操作包括:
氢化反应:将粗碳酸锂分为多份,其中一份与水混合制成纯水浆料,向纯水浆料中持续通入二氧化碳进行氢化反应直至碳酸锂固体完全溶解,过滤不溶物杂质后得到碳酸氢锂溶液;氢化反应的反应温度为20-40℃,反应时间为60-120min;氢化反应中的过滤采用0.5-2μm微孔过滤器过滤,微孔过滤器过滤可以除去Si、Ca等杂质,极大的提高了产品的一次合格率,无需多次洗涤,氢化反应中收集反应后的CO2气体,通入下一段氢化反应中,极大的提高了CO2的循环利用率。在高温沉锂反应之前进行除杂反应,避免了后续多段氢化反应中PO4 3-富集、金属离子沉淀等问题,有利于提高最终产品的纯度。
热分解反应:加热碳酸氢锂溶液,溶液逐渐浑浊并有碳酸锂白色沉淀生成,分离高纯碳酸锂和含锂滤液,含锂滤液中Li含量为2.5-4g/L,Na、S含量低于0.6g/L。
热分解反应中,向碳酸氢锂溶液中加入充当第一晶种的电池级碳酸锂粉末,第一晶种的添加量为理论粗碳酸锂量的2%-8%,加热至70-95℃,搅拌反应30-120min后趁热过滤得到高纯碳酸锂和含锂滤液。
上述氢化反应和热分解反应作为一次循环,且在后续循环中,将含锂滤液返回与另一份粗碳酸锂混合进行滤液制浆形成滤液浆料;本申请重复利用热分解反应后的含锂滤液制浆,大大减少纯水用量。由于碳酸锂溶解度的问题,纯水用量越少,相应溶解的碳酸锂就会越少,固体碳酸锂转化率得到较大提升。
多段循环操作的循环次数至少为4次;由于不断循环使用热分解反应滤液,其中的Na、S含量不断富集,导致产品碳酸锂中Na、S杂质含量不断升高,因此粗碳酸锂的氢化、热分解反应的循环次数为4-5次,优选为5次。
高纯碳酸锂不经洗涤,直接干燥后得到电池级碳酸锂粉末。极大的减少了纯水的用量。多段循环操作中,通过控制Li含量来控制纯水、含锂滤液或粗碳酸锂固体的加入量,本申请中,纯水制浆中Li含量为8.5-9.5g/L,后续循环中每段滤液浆料中Li含量为6.5-9.5g/L。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本发明实施例提供一种电池级碳酸锂的制备方法,具体步骤如下所示:
S1、除杂反应、过滤:
取一定量浓缩后的含锂母液,其中锂含量在21.3g/L,向含锂母液中加入氢氧化钠调节pH至12,再向溶液中加入少量氢氧化钙溶液,氢氧化钙用量与溶液中P含量摩尔比在1.2:1之间,在60℃、300rpm下搅拌反应30min,经过滤后得到合格含锂母液。
S2、高温沉锂反应、过滤:
取一定量的合格含锂母液,向含锂母液中滴加浓度为30wt%的碳酸钠溶液,碳酸钠用量与溶液中Li含量摩尔比在0.6:1之间,向混合溶液中加入适量电池级碳酸锂粉末,充当反应晶种,晶种添加量为理论粗碳酸锂量的4%之间,在85℃、400rpm下搅拌反应120min,经过过滤后得到粗碳酸锂固体,滤液返回蒸发浓缩系统。需要说明的是,添加晶种有利于降低粗碳酸锂中杂质含量,有效避免反应器内碳酸锂粘壁现象。
S3、多段氢化、热分解反应循环操作:
(1)一段氢化、热分解反应:
取一定量未洗涤的粗碳酸锂固体与纯水混合制浆,其中Li含量在8.5g/L,向浆液中持续通入过量CO2,在25℃下搅拌反应120min,直至溶液中白色沉淀完全分解,得到较为澄清的碳酸氢锂溶液;收集反应后的CO2气体,通入二段氢化反应釜;氢化反应后的溶液经过0.5μm微孔过滤器过滤,除去不溶性Si、Ca等杂质;向过滤后的碳酸氢锂溶液加入适量电池级碳酸锂粉末,充当反应晶种,晶种添加量为理论粗碳酸锂量的4%之间,加热至90℃,400rpm下搅拌反应120min后趁热过滤得到高纯碳酸锂沉淀和含锂滤液,高纯碳酸锂沉淀不经洗涤干燥后直接可以得到电池级碳酸锂粉末,含锂滤液用作二段氢化反应制浆。
(2)二段氢化、热分解反应:
补加一定量未洗涤的粗碳酸锂固体与一段热分解反应后的含锂滤液混合制浆,其中Li含量保持在8.5g/L,向浆液中持续通入过量CO2,在25℃下搅拌反应120min,直至 溶液中白色沉淀完全分解,得到较为澄清的碳酸氢锂溶液;收集反应后的CO2气体,通入三段氢化反应釜;氢化反应后的溶液经过0.5μm微孔过滤器过滤,除去不溶性Si、Ca等杂质;向过滤后的碳酸氢锂溶液加入适量电池级碳酸锂粉末,充当反应晶种,晶种添加量为理论粗碳酸锂量的4%之间,加热至90℃,400rpm搅拌反应120min后趁热过滤得到高纯碳酸锂沉淀和含锂滤液,高纯碳酸锂沉淀不经洗涤干燥后直接可以得到电池级碳酸锂粉末,含锂滤液用作三段氢化反应制浆。
(3)三段氢化、热分解反应:
补加一定量未洗涤的粗碳酸锂固体与二段热分解反应后的含锂滤液混合制浆,其中Li含量保持在8.5g/L,向浆液中持续通入过量CO2,在25℃下搅拌反应120min,直至溶液中白色沉淀完全分解,得到较为澄清的碳酸氢锂溶液;收集反应后的CO2气体,通入四段氢化反应釜;氢化反应后的溶液经过0.5μm微孔过滤器过滤,除去不溶性Si、Ca等杂质;向过滤后的碳酸氢锂溶液加入适量电池级碳酸锂粉末,充当反应晶种,晶种添加量为理论粗碳酸锂量的4%之间,加热至90℃,400rpm搅拌反应120min后趁热过滤得到高纯碳酸锂沉淀和含锂滤液,高纯碳酸锂沉淀不经洗涤干燥后直接可以得到电池级碳酸锂粉末,含锂滤液用作四段氢化反应制浆。
(4)四段氢化、热分解反应:
补加一定量未洗涤的粗碳酸锂固体与三段热分解反应后的含锂滤液混合制浆,其中Li含量保持在8.5g/L,向浆液中持续通入过量CO2,在25℃下搅拌反应120min,直至溶液中白色沉淀完全分解,得到较为澄清的碳酸氢锂溶液;收集反应后的CO2气体,通入五段氢化反应釜;氢化反应后的溶液经过0.5μm微孔过滤器过滤,除去不溶性Si、Ca等杂质;向过滤后的碳酸氢锂溶液加入适量电池级碳酸锂粉末,充当反应晶种,晶种添加量为理论粗碳酸锂量的4%之间,加热至90℃,400rpm搅拌反应120min后趁热过滤得到高纯碳酸锂沉淀和含锂滤液,高纯碳酸锂沉淀不经洗涤干燥后直接可以得到电池级碳酸锂粉末,含锂滤液用作五段氢化反应制浆。
(5)五段氢化、热分解反应:
补加一定量未洗涤的粗碳酸锂固体与四段热分解反应后的含锂滤液混合制浆,其中Li含量保持在8.5g/L之间,向浆液中持续通入过量CO2,在25℃下搅拌反应120min,直至溶液中白色沉淀完全分解,得到较为澄清的碳酸氢锂溶液;收集反应后的CO2气体,返回CO2气体储罐。氢化反应后的溶液经过0.5μm微孔过滤器过滤,除去不溶性Si、Ca等杂质;向过滤后的碳酸氢锂溶液加入适量电池级碳酸锂粉末,充当反应晶种,晶 种添加量为理论粗碳酸锂量的4%之间,加热至90℃,搅拌反应120min后趁热过滤得到高纯碳酸锂沉淀和含锂滤液,高纯碳酸锂沉淀不经洗涤干燥后直接可以得到电池级碳酸锂粉末,含锂滤液返回浓缩系统。
其中,碳酸锂转化率计算公式为:
步骤(2)中碳酸钠高温沉锂反应:
其中:c1为合格锂液中Li的质量浓度,c2为高温沉锂反应后滤液中Li的质量浓度;V1为合格锂液体积,V2为高温沉锂反应后滤液体积。
步骤(3)中氢化、热分解反应:
其中:ω为粗碳酸锂中Li的质量分数;m1为一段氢化反应中粗碳酸锂添加质量,m2为二段氢化反应中粗碳酸锂添加质量,m3为三段氢化反应中粗碳酸锂添加质量,m4为四段氢化反应中粗碳酸锂添加质量,m5为五段氢化反应中粗碳酸锂添加质量;c5为五段热分解反应后含锂滤液中Li的质量浓度;V5为五段热分解反应后含锂滤液体积。
实施例2
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S2中碳酸钠高温沉锂反应温度为60℃。
实施例3
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S2中高温沉锂反应时间为60min。
实施例4
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S2中碳酸钠用量与溶液中Li含量摩尔比在0.5:1。
计算上述实施例1-4步骤S2中碳酸锂转化率。
计算结果请参阅表1:
表1.实施例1-4步骤S2中碳酸锂转化率统计表
实施例5
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S3中氢化反应时间为60min。
实施例6
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S3中氢化反应温度为40℃
实施例7
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S3中热分解反应时间为60min
实施例8
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S3中热分解反应温度为70℃。
计算实施例1、实施例5-8的步骤S3中碳酸锂转化率。
计算结果请参阅表2:
表2.实施例1、5-8步骤S3中碳酸锂转化率统计表
实施例9
本实施例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:只进行四段氢化、热分解反应。
对比例1
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤S2、S3中均未添加电池级碳酸锂粉末为晶种。
将实施例1和对比例1制备获得的碳酸锂产品进行数据效果对比,对比结果请参阅表3。
表3.实施例1和对比例1的碳酸锂产品杂质含量统计表
实施例1和对比例1制备获得的碳酸锂产品的形貌效果对比请参阅图2和图3,可以看出,添加晶种的实施例1所制备的碳酸锂颗粒表面更加光滑,颗粒一致性较好。从图4和图5可以看出,添加晶种后,沉锂反应后烧杯内壁洁净无粘壁现象。
对比例2
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:两次除杂反应均未进行。
将实施例1和对比例2制备获得的碳酸锂产品进行数据效果对比,对比结果请参阅表4。
表4.实施例1和对比例2的碳酸锂产品杂质含量统计表
从表4可以看出,经过两次除杂后,产品碳酸锂达到电池级标准,而未经除杂的碳酸锂产品中Si、Ca杂质含量明显超标。
对比例3
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:步骤(3)中过滤除杂段未使用微孔过滤,仅使用普通滤纸过滤,孔径为40微米。
步骤(3)除杂过滤后碳酸氢锂滤液数据效果对比请参阅表5:
表5.实施例1和对比例3的碳酸锂产品杂质含量统计表
可以看出:使用微孔过滤能够明显降低滤液中Si、Ca的含量,有利于提高产品纯度。
对比例4
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:只进行一段氢化、热分解反应。
对比例5:
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:只进行两段氢化、热分解反应。
对比例6:
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:只进行三段氢化、热分解反应。
对比例7:
本对比例提供一种电池级碳酸锂制备工艺,与实施例1的区别仅在于:进行六段氢化、热分解反应。
将实施例1、实施例9、对比例4-7的碳酸锂产品杂质含量和转化率进行对比,对比结果请参阅表6。
表6.实施例1和9以及对比例4-7的碳酸锂产品杂质含量和转化率统计表
可以看出:随着氢化、热分解反应段数的增加,碳酸锂转化率不断升高,同时产品中的Na、S含量也不断升高。当循环次数超过五次后,产品中Na、S含量超标,不满足电池级碳酸锂标准。
综上所述,本申请提供的电池级碳酸锂的制备方法通过重复利用热分解反应后的含锂滤液制浆,大大减少纯水用量。由于碳酸锂溶解度的问题,纯水用量越少,相应溶解的碳酸锂就会越少,固体碳酸锂转化率得到较大提升。通过两步除杂方式结合:高温沉 锂前除杂反应、氢化反应中微孔过滤除杂反应,同时第一步除杂反应引入的Ca杂质可以在第二步除杂中以碳酸钙沉淀的形式去除,巧妙的避免了多段循环氢化反应中P、Si、Ca及其他金属离子富集问题,提高了含锂滤液循环次数,大大提高碳酸锂产品纯度和转化率。通过两步沉锂反应:碳酸钠高温沉锂、碳酸氢锂高温分解沉锂,以及在反应过程中添加晶种,大大改善反应器粘壁情况,降低碳酸锂产品杂质含量。本发明所描述的工艺流程制备的碳酸锂产品一次合格率高,可以无需经过压滤洗涤就可达到电池级碳酸锂标准,大大缩短生产流程。本发明工艺无复杂调节参数步骤、实验现象鲜明,有利于工业生产操作;对设备要求不高,除杂反应均通过沉淀除杂,有利于降低生产成本。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电池级碳酸锂的制备方法,其特征在于,其包括:
    高温沉锂:向含锂母液中加入碳酸钠溶液进行高温沉锂得到粗碳酸锂;
    对所述粗碳酸锂进行氢化反应和热分解反应的多段循环操作;
    其中,所述多段循环操作包括:
    氢化反应:将所述粗碳酸锂分为多份,其中一份与水混合制成纯水浆料,向所述纯水浆料中持续通入二氧化碳进行氢化反应直至碳酸锂固体完全溶解,过滤不溶物杂质后得到碳酸氢锂溶液;
    热分解反应:加热所述碳酸氢锂溶液,溶液逐渐浑浊并有碳酸锂白色沉淀生成,分离高纯碳酸锂和含锂滤液;
    所述氢化反应和所述热分解反应作为一次循环,且在后续循环中,将所述含锂滤液返回与另一份所述粗碳酸锂混合进行滤液制浆形成滤液浆料;所述多段循环操作的循环次数至少为4次;
    所述高纯碳酸锂不经洗涤,直接干燥后得到电池级碳酸锂粉末。
  2. 根据权利要求1所述的电池级碳酸锂的制备方法,其特征在于,所述多段循环操作的循环次数为4-5次,优选为5次。
  3. 根据权利要求1所述的电池级碳酸锂的制备方法,其特征在于,所述多段循环操作中,所述纯水制浆中Li含量为8.5-9.5g/L,后续循环中每段所述滤液浆料中Li含量为6.5-9.5g/L。
  4. 根据权利要求1所述的电池级碳酸锂的制备方法,其特征在于,所述氢化反应的反应温度为20-40℃,反应时间为60-120min;
    优选地,所述氢化反应中的过滤采用0.5-2μm微孔过滤器过滤;
    优选地,所述氢化反应中收集反应后的CO2气体,通入二段氢化反应中。
  5. 根据权利要求1所述的电池级碳酸锂的制备方法,其特征在于,所述高温沉锂中碳酸钠溶液的用量与所述含锂母液中Li含量的摩尔比为0.5-0.8:1;进一步优选为0.5-0.6:1;
    优选地,所述碳酸钠溶液中碳酸钠质量占比为10%-30%;进一步优选为20%-30%。
  6. 根据权利要求5所述的电池级碳酸锂的制备方法,其特征在于,所述高温沉锂的反应温度为60-90℃,反应时间为30-120min,搅拌速度为300-700rpm;
    优选地,所述高温沉锂的反应温度为80-90℃,反应时间为90-120min,搅拌速度为400-600rpm。
  7. 根据权利要求5所述的电池级碳酸锂的制备方法,其特征在于,所述热分解反应中,向所述碳酸氢锂溶液中加入充当第一晶种的电池级碳酸锂粉末,所述第一晶种的添加量为理论粗碳酸锂量的2%-8%,加热至70-95℃,搅拌反应30-120min后趁热过滤得到所述高纯碳酸锂和所述含锂滤液;
    优选地,所述含锂滤液中Li含量为2.5-4g/L,Na、S含量低于0.6g/L。
  8. 根据权利要求1-7任一项所述的电池级碳酸锂的制备方法,其特征在于,在所述高温沉锂时还向体系中加入充当反应第二晶种的电池级碳酸锂粉末;所述第二晶种的添加量为理论粗碳酸锂量的2%-8%;进一步优选为4%-8%。
  9. 根据权利要求1-7任一项所述的电池级碳酸锂的制备方法,其特征在于,所述含锂母液是由含锂溶液经浓缩除杂后获得的;所述除杂包括将浓缩后的所述含锂溶液的pH调至10-14之间,加入氢氧化钙溶液,在50-80℃下搅拌反应15-45min,将磷和多种金属离子进行沉淀,过滤去除;
    优选地,浓缩后的所述含锂溶液中锂含量在15-25g/L,进一步优选为20-25g/L;
    优选地,所述氢氧化钙溶液的加入量与浓缩后的所述含锂溶液中P含量的摩尔比为1-1.5:1,进一步优选为1-1.2:1。
  10. 根据权利要求1-7任一项所述的电池级碳酸锂的制备方法,其特征在于,经所述高温沉锂后分离所述粗碳酸锂和粗滤液,所述粗滤液返回蒸发浓缩系统。
PCT/CN2023/079085 2022-08-25 2023-03-01 一种电池级碳酸锂的制备方法 WO2024040907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211023595.3 2022-08-25
CN202211023595.3A CN115286017B (zh) 2022-08-25 2022-08-25 一种电池级碳酸锂的制备方法

Publications (1)

Publication Number Publication Date
WO2024040907A1 true WO2024040907A1 (zh) 2024-02-29

Family

ID=83831553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079085 WO2024040907A1 (zh) 2022-08-25 2023-03-01 一种电池级碳酸锂的制备方法

Country Status (2)

Country Link
CN (1) CN115286017B (zh)
WO (1) WO2024040907A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286017B (zh) * 2022-08-25 2024-03-12 广东邦普循环科技有限公司 一种电池级碳酸锂的制备方法
CN115536046A (zh) * 2022-11-07 2022-12-30 广东邦普循环科技有限公司 含锂溶液联产碳酸锂和氢氧化锂的方法
CN116216749B (zh) * 2023-01-13 2024-02-09 广东邦普循环科技有限公司 一种利用盐湖碳酸锂制备电池级碳酸锂的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
CN102398910A (zh) * 2010-11-25 2012-04-04 兰州大学 一种除去电池级碳酸锂中钙、镁、铁、钠、钾阳离子杂质的方法
CN102583453A (zh) * 2011-08-31 2012-07-18 四川长和华锂科技有限公司 一种生产电池级碳酸锂或高纯碳酸锂的工业化方法
CN106315629A (zh) * 2016-08-30 2017-01-11 山东瑞福锂业有限公司 一种利用电池级碳酸锂沉锂母液回收制备高纯碳酸锂的工艺
CN106365182A (zh) * 2016-08-30 2017-02-01 荆门市格林美新材料有限公司 脉冲式氢化工业级碳酸锂制备电池级碳酸锂的方法
CN106517258A (zh) * 2016-11-23 2017-03-22 荆门市格林美新材料有限公司 电池级碳酸锂的制备方法
CN115286017A (zh) * 2022-08-25 2022-11-04 广东邦普循环科技有限公司 一种电池级碳酸锂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318925B (zh) * 2013-06-19 2015-01-21 海门容汇通用锂业有限公司 一种用锂精矿生产高纯碳酸锂的方法
CN103833053B (zh) * 2014-01-21 2015-12-30 四川天齐锂业股份有限公司 制备5n级高纯碳酸锂的方法
CN106276988B (zh) * 2016-08-12 2018-06-29 青海大学 一种以碳酸钾为沉淀剂制备电池级碳酸锂的方法
CN109368671A (zh) * 2018-12-06 2019-02-22 东营石大胜华新能源有限公司 一种高纯氟化锂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
CN102398910A (zh) * 2010-11-25 2012-04-04 兰州大学 一种除去电池级碳酸锂中钙、镁、铁、钠、钾阳离子杂质的方法
CN102583453A (zh) * 2011-08-31 2012-07-18 四川长和华锂科技有限公司 一种生产电池级碳酸锂或高纯碳酸锂的工业化方法
CN106315629A (zh) * 2016-08-30 2017-01-11 山东瑞福锂业有限公司 一种利用电池级碳酸锂沉锂母液回收制备高纯碳酸锂的工艺
CN106365182A (zh) * 2016-08-30 2017-02-01 荆门市格林美新材料有限公司 脉冲式氢化工业级碳酸锂制备电池级碳酸锂的方法
CN106517258A (zh) * 2016-11-23 2017-03-22 荆门市格林美新材料有限公司 电池级碳酸锂的制备方法
CN115286017A (zh) * 2022-08-25 2022-11-04 广东邦普循环科技有限公司 一种电池级碳酸锂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HU MIN, GONG HANZHANG, WU HUADONG, GUO JIA, ZHANG LINFENG, ZHOU YUXI: "Preparation of battery-grade lithium carbonate from lithium-containing industrial waste", WUJIYAN-GONGYE = INORGANIC CHEMICALS INDUSTRY, TIANJIN HUAGONG YANJIUSUO, CN, vol. 52, no. 3, 1 March 2020 (2020-03-01), CN , pages 80 - 84, XP093143482, ISSN: 1006-4990, DOI: 10.11962/1006-4990.2019-0221 *
WEI HAOTIAN HUAN ZHANG MENGLONG TIAN YONGPAN YU JIANCHENG ZHAO : "Research Progress in Preparation and Purification of Battery-Grade Lithium Carbonate", MODERN CHEMICAL INDUSTRY, HUAXUE GONGYE BU KEXUE JISHU QINGBAO YANJIUSUO, BEIJING, CN, vol. 38, no. 8, 31 August 2018 (2018-08-31), CN , pages 33 - 37, XP009552976, ISSN: 0253-4320 *
YANRU LI, LIANG ZHU, YUAN ,, ZUOLIANG SHA, MEIJIE YANG, YUEHUA ZUO: "Research on purifying process of coarse lithium carbonate", INORGANIC CHEMICALS INDUSTRY., vol. 45, no. 8, 1 August 2013 (2013-08-01), pages 15 - 17, XP093143494 *
ZHOU XIAO-DONG, YE HUA;GUO QING, SUN MING-CANG, CHEN WU-JIE: "Purification of Lithium Carbonate by Carbonation-Decomposition Method", NONFERROUS METALS(EXTRACTIVE METALLURGY)., no. 4, 1 December 2018 (2018-12-01), pages 42 - 45, XP093143490, DOI: 10.3969/j.issn.1007-7545.2018.04.010 *

Also Published As

Publication number Publication date
CN115286017A (zh) 2022-11-04
CN115286017B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2024040907A1 (zh) 一种电池级碳酸锂的制备方法
JP7376862B2 (ja) Ncma高ニッケル四元系前駆体の湿式合成法
CN112645299A (zh) 一种磷酸铁的制备方法和应用
CN107188149B (zh) 一种电池级高纯纳米磷酸铁的工艺
WO2022227668A1 (zh) 一种磷酸铁锂废料的回收方法及应用
CN112551498A (zh) 一种磷酸铁锂提锂后磷铁渣的回收方法
CN115477293B (zh) 一种低杂质高比表面积的无水磷酸铁的制备方法
CN114105172A (zh) 一种粗制碳酸锂石灰苛化碳化生产高纯碳酸锂的方法
CN109592699A (zh) 电池级氢氧化锂的制备方法
CN108529666B (zh) 由无机钛源制备钛酸锂的方法、产品及应用
WO2023169432A1 (zh) 一种制备电池级氢氧化锂和碳酸锂的方法和系统
CN112342383B (zh) 三元废料中镍钴锰与锂的分离回收方法
WO2023246156A1 (zh) 一种苛化法制备氢氧化锂的工艺及其应用
WO2023221630A1 (zh) 一种多孔磷酸铁及其制备方法
WO2024066175A1 (zh) 一种沉锂母液去除碳酸根的方法
CN114835172B (zh) 一种氢氧化钴颗粒及其制备方法与应用
CN113896214B (zh) 一种硫酸锂溶液吸附碳化制备高纯碳酸锂的方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN113564688B (zh) 一种碳酸钙晶须的制备方法
CN110615453B (zh) 一种直接制备电池级碳酸锂的方法
CN111517367A (zh) 制备高纯仲钨酸铵的方法
CN111606337B (zh) 一种单分散碳酸锂晶体的结晶方法及采用多级梯度结晶提高产品收率的方法
CN117361592A (zh) 一种工业碳酸锂提纯制备电池级碳酸锂的方法
CN111333087A (zh) 一种氢氧化锂的制备方法
CN115818605A (zh) 二水磷酸铁及其制备方法、磷酸铁锂正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856004

Country of ref document: EP

Kind code of ref document: A1