WO2023005782A1 - 一种Mn-Zn铁氧体材料及其制备方法 - Google Patents

一种Mn-Zn铁氧体材料及其制备方法 Download PDF

Info

Publication number
WO2023005782A1
WO2023005782A1 PCT/CN2022/106963 CN2022106963W WO2023005782A1 WO 2023005782 A1 WO2023005782 A1 WO 2023005782A1 CN 2022106963 W CN2022106963 W CN 2022106963W WO 2023005782 A1 WO2023005782 A1 WO 2023005782A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
ferrite material
component
sintering
content
Prior art date
Application number
PCT/CN2022/106963
Other languages
English (en)
French (fr)
Inventor
朱勇
王朝明
张政
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP22848387.1A priority Critical patent/EP4378910A1/en
Publication of WO2023005782A1 publication Critical patent/WO2023005782A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]

Definitions

  • the embodiments of the present application relate to the technical field of magnetic materials, for example, a Mn—Zn ferrite material and a preparation method thereof.
  • CN101560091A discloses a manganese-zinc ferrite material with wide temperature, low temperature coefficient and high Curie temperature.
  • the manganese-zinc The magnetic permeability of ferrite materials has a low temperature coefficient at -25 ⁇ 150 ° C, but it is not known whether the magnetic permeability can meet the demand at lower temperatures;
  • CN101863657A discloses a manganese-zinc ferrite material with high magnetic permeability at a wide temperature.
  • the manganese-zinc ferrite material is realized
  • the magnetic permeability at -60°C ⁇ 130°C is above 5000, but the temperature coefficient of the magnetic permeability is relatively high in this temperature range;
  • CN103588471A discloses a manganese-zinc ferrite material with high magnetic permeability at a wide temperature.
  • the manganese-zinc ferrite material is realized.
  • the magnetic permeability of the material is above 5000 at -55°C ⁇ 125°C, but the magnetic permeability changes greatly with temperature in this temperature range.
  • the application provides a Mn-Zn ferrite material and a preparation method thereof.
  • the Mn-Zn ferrite material provided by this application is a Mn-Zn ferrite material with high magnetic permeability and low temperature coefficient.
  • the embodiment of the present application provides a Mn-Zn ferrite material
  • the Mn-Zn ferrite material includes a main component and an auxiliary component
  • the main component includes Fe 2 O 3 , ZnO and MnO
  • the auxiliary components include CaCO 3 , Bi 2 O 3 and CoO
  • the content of CoO is 1000-5000ppm, such as 1000ppm, 2000ppm, 3000ppm, 4000ppm or 5000ppm, based on the total weight of the main component.
  • the Mn-Zn ferrite material provided by this application has a low temperature coefficient of magnetic permeability in the temperature range of -55 to 120°C, and its specific temperature coefficient ⁇ / ⁇ i ranges from 0.5 ⁇ 10 -6 to 2 ⁇ 10 - 6 . Moreover, the Mn-Zn ferrite material provided by the present application has a relatively high Curie temperature, which is greater than 160°C.
  • the interaction between the main component and the auxiliary component plays an important role in achieving the above effects, and CoO in the auxiliary component is particularly important.
  • the applicant's research found that the addition of CoO auxiliary components, and the synergistic effect of other auxiliary components, cooperate with the main component, which is beneficial to realize the high initial magnetic permeability and low temperature coefficient of the manganese zinc ferrite material.
  • the function of CaCO 3 is to increase the grain boundary resistivity, reduce loss, and increase the Q value.
  • Bi 2 O 3 has a low melting point and can be used as a flux to reduce the sintering temperature, promote the growth of grain size, and increase the initial magnetic permeability.
  • Fe 2 O 3 and MnO form a single-component manganese ferrite MnFe 2 O 4 ;
  • Zn 2+ ions are non-magnetic ions, occupying the A site,
  • Combining with MnFe 2 O 4 increases the total magnetic moment, which is beneficial to improve the initial magnetic permeability.
  • the main components As the preferred technical scheme of the present application, among the auxiliary components, the main components
  • the content of CaCO3 is 200-2000ppm, such as 200ppm, 500ppm, 1000ppm, 1500ppm or 2000ppm, etc.
  • the content of Bi2O3 is 200-2000ppm, such as 200ppm, 500ppm, 1000ppm, 1500ppm or 2000ppm.
  • the auxiliary component of the Mn-Zn ferrite material further includes MoO 3 .
  • MoO 3 makes the shrinkage rate of the blank slower, and the pores are easier to discharge, which is beneficial to increase the sintered density.
  • the content of MoO 3 is 0-1000ppm, such as 0, 100ppm, 300ppm, 500ppm, 700ppm, 900ppm or 1000ppm.
  • the content of each component of the auxiliary component is: 200-1000ppm for CaCO3, 200-1000ppm for Bi2O3 , and 100ppm for MoO3 -500ppm, CoO is 2000-4000ppm.
  • the molar percentage of each component of the main component is: Fe2O3 is 51-54mol %, such as 51mol%, 52mol%, 53mol% Or 54mol%, ZnO is 18.1-26mol%, such as 18.1mol%, 20mol%, 22mol%, 24mol% or 26mol%, etc., and the rest is MnO.
  • the molar percentages of the main components are: Fe 2 O 3 is 52-53 mol%, ZnO is 18.1-19 mol%, and the rest is MnO.
  • the embodiment of the present application provides a method for preparing the Mn-Zn ferrite material as described in the first aspect, the method comprising the following steps:
  • step (3) granulating the ferrite slurry described in step (2), and pressing after granulating to obtain a manganese-zinc ferrite blank;
  • step (3) Sintering the manganese-zinc ferrite blank described in step (3) and lowering the temperature to obtain the Mn-Zn ferrite material.
  • the preparation method provided by the application cooperates with the product formula to realize the preparation of the manganese-zinc ferrite material with high magnetic permeability and low temperature coefficient.
  • the function of pre-calcination in step (1) is to make the raw materials undergo solid-phase reaction initially, and provide one more opportunity for solid-phase reaction for the powder.
  • the function of the sintering in step (4) is to promote the solid phase reaction of iron oxide, manganese oxide and zinc oxide to form a spinel phase.
  • the mixing in step (1) is wet mixing.
  • the pre-calcination temperature in step (1) is 800-900°C, such as 800°C, 820°C, 840°C, 860°C, 880°C or 900°C.
  • the pre-burning time in step (1) is 2-3 hours, such as 2 hours, 2.2 hours, 2.4 hours, 2.6 hours, 2.8 hours or 3 hours.
  • the mixing method described in step (2) is wet sand grinding mixing.
  • the mixing time in step (2) is 100-140 min, such as 100 min, 110 min, 120 min, 130 min or 140 min, etc.
  • the granulation in step (3) is spray granulation.
  • the step (3) further includes: before the granulation, adding a binder to the ferrite slurry in the step (2) and mixing.
  • the binder comprises polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the content of the binder is 1-2wt% of the total weight of the main component and auxiliary components, such as 1wt%, 1.2wt%, 1.4wt%, 1.6wt%, 1.8wt% or 2wt%.
  • auxiliary components such as 1wt%, 1.2wt%, 1.4wt%, 1.6wt%, 1.8wt% or 2wt%.
  • the sintering temperature in step (4) is 1300-1400°C, such as 1300°C, 1350°C or 1400°C.
  • the sintering time in step (4) is 4-10 hours, such as 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours or 10 hours.
  • the sintering control oxygen content in step (4) is 3-21vol%, such as 3vol%, 4vol%, 5vol%, 6vol%, 7vol%, 8vol%, 9vol%, 10vol%, 11vol%, 12vol%, 13vol%, 14vol%, 15vol%, 16vol%, 17vol%, 18vol%, 19vol% or 20vol%, etc.
  • the method of controlling the oxygen content can be filled with nitrogen or inert gas.
  • the sintering method described in step (4) includes: sintering at 1300-1400° C. for 6-8 hours under the condition that the nitrogen atmosphere controls the oxygen content to be 19-21vol%, and then controls the oxygen content in the nitrogen atmosphere. Sintering at 1300-1400° C. for 1-2 hours under the condition that the content is 3-5 vol %.
  • the purpose of adopting this sintering method is (1) to suppress the volatilization of zinc oxide; (2) only by sintering in an equilibrium oxygen partial pressure can a single-phase polycrystalline spinel structure manganese-zinc ferrite material be produced .
  • the temperature reduction in step (4) is performed under equilibrium oxygen partial pressure.
  • the method comprises the following steps:
  • step (3) adding binder to the ferrite slurry described in step (2) and mixing, spray granulation to obtain ferrite particles, and press molding after spray granulation to obtain manganese zinc ferrite blank;
  • step (3) Sintering the manganese-zinc ferrite blank in step (3), the sintering method comprising: sintering at 1300-1400° C. for 6-8 hours under the condition of controlling the oxygen content to 19-21vol% in a nitrogen atmosphere, Then sintering at 1300-1400°C for 1-2h under the condition of nitrogen atmosphere to control the oxygen content to 3-5vol%, and then cooling down under the balance oxygen partial pressure to obtain the Mn-Zn ferrite material.
  • the Mn-Zn ferrite material provided in the examples of this application has a low temperature coefficient of magnetic permeability in the temperature range of -55 to 120°C, and its specific temperature coefficient ⁇ / ⁇ i ranges from 0.5 ⁇ 10 -6 ⁇ 2 ⁇ 10 -6 . Moreover, the Mn-Zn ferrite material provided by the present application has a relatively high Curie temperature, which is greater than 160°C.
  • the preparation of manganese-zinc ferrite material with high magnetic permeability and low temperature coefficient is realized by controlling the composition and addition amount of the main component and auxiliary component, and cooperating with the corresponding preparation method.
  • the Mn-Zn ferrite material provided in this example includes main components and auxiliary components, and the molar percentages of each component of the main component are: Fe2O3 : 52.0mol %, MnO: 29.9mol%, ZnO: 18.1mol %; based on the total weight of the main components, the content of each component of the auxiliary components is: CaCO 3 : 400ppm, Bi 2 O 3 : 400ppm, MoO 3 : 200ppm, CoO: 3000ppm.
  • the Mn-Zn ferrite material is prepared according to the following method:
  • the main components are weighed, they are uniformly mixed in a ball mill, and pre-fired at 850°C for 2.5 hours to obtain a calcined material. Add the formula amount of each auxiliary component to the calcined material, and ball mill in a sand mill for 120 minutes. Then the ferrite pellets are obtained by spray granulation. The ferrite pellets were pressed into a blank sample of H25 ⁇ 15 ⁇ 8, sintered at 1360°C for 7 hours under the condition of N2 controlling the oxygen content of 21vol%, and then under the condition of N2 controlling the oxygen content of 4vol% Sintering at 1360° C. for 1.5 hours, the cooling stage is carried out under equilibrium oxygen partial pressure, and the magnetic core (the magnetic core is the Mn—Zn ferrite material) can be obtained.
  • the Mn-Zn ferrite material provided in this example includes main components and auxiliary components, and the molar percentages of each component of the main component are: Fe 2 O 3 : 52.5 mol%, MnO: 29.0 mol%, ZnO: 18.5 mol %; based on the total weight of the main component, the content of each component of the auxiliary component is: CaCO 3 : 400ppm, Bi 2 O 3 : 600ppm, MoO 3 : 200ppm, CoO: 2000ppm.
  • the Mn-Zn ferrite material is prepared according to the following method:
  • the main components are weighed, they are uniformly mixed in a ball mill, and pre-fired at 800-900°C for 2-3 hours to obtain calcined materials. Medium ball milling for 140 minutes, and then spray granulation to obtain ferrite granules.
  • the ferrite pellets were pressed into H25 ⁇ 15 ⁇ 8 blank samples, sintered at 1340°C for 8 hours under the condition of N2 controlling the oxygen content of 21vol%, and then under the condition of N2 controlling the oxygen content of 3vol% Sintering at 1340° C. for 2 hours, the cooling stage is carried out under equilibrium oxygen partial pressure, and the magnetic core (the magnetic core is the Mn—Zn ferrite material) can be obtained.
  • the Mn-Zn ferrite material provided in this example includes a main component and an auxiliary component, and the molar percentages of each component of the main component are: Fe 2 O 3 : 53.0 mol%, MnO: 28.0 mol%, ZnO: 19.0 mol %; based on the total weight of the main component, the content of each component of the auxiliary component is: CaCO 3 : 200ppm, Bi 2 O 3 : 600ppm, MoO 3 : 200ppm, CoO: 1000ppm.
  • the Mn-Zn ferrite material is prepared according to the following method:
  • the main components are weighed, they are uniformly mixed in a ball mill, and pre-fired at 900°C for 2 hours to obtain a calcined material. Add the formula amount of each auxiliary component component to the calcined material, and ball mill it in a sand mill for 100 minutes. Then the ferrite pellets are obtained by spray granulation. The ferrite pellets were pressed into H25 ⁇ 15 ⁇ 8 blank samples, sintered at 1380°C for 6 hours under the condition of N2 controlling the oxygen content of 21vol%, and then under the condition of N2 controlling the oxygen content of 5vol% Sintering at 1380° C. for 1 hour, the cooling stage is carried out under equilibrium oxygen partial pressure, and the magnetic core (the magnetic core is the Mn—Zn ferrite material) can be obtained.
  • the Mn-Zn ferrite material provided in this example includes main components and auxiliary components, and the molar percentages of each component of the main component are: Fe2O3 : 52.0mol %, MnO: 29.9mol%, ZnO: 18.1mol %; based on the total weight of the main component, the content of each component of the auxiliary component is: CaCO 3 : 700ppm, Bi 2 O 3 : 200ppm, MoO 3 : 100ppm, CoO: 4000ppm.
  • Embodiment 1 For the preparation method of the Mn-Zn ferrite material in this embodiment, refer to Embodiment 1.
  • the Mn-Zn ferrite material provided in this example includes main components and auxiliary components, and the molar percentages of each component of the main component are: Fe2O3 : 52.0mol %, MnO: 29.9mol%, ZnO: 18.1mol %; based on the total weight of the main components, the content of each component of the auxiliary components is: CaCO 3 : 2000ppm, Bi 2 O 3 : 1000ppm, MoO 3 : 500ppm, CoO: 4000ppm.
  • Embodiment 1 For the preparation method of the Mn-Zn ferrite material in this embodiment, refer to Embodiment 1.
  • the Mn-Zn ferrite material provided in this example includes main components and auxiliary components, and the molar percentages of each component of the main component are: Fe 2 O 3 : 50.5 mol%, MnO: 34.5 mol%, ZnO: 15.0 mol %; based on the total weight of the main components, the content of each component of the auxiliary components is: CaCO 3 : 400ppm, Bi 2 O 3 : 400ppm, MoO 3 : 200ppm, CoO: 2000ppm.
  • Embodiment 1 For the preparation method of the Mn-Zn ferrite material in this embodiment, refer to Embodiment 1.
  • the Mn-Zn ferrite material provided in this example includes a main component and an auxiliary component, and the molar percentages of each component of the main component are: Fe 2 O 3 : 53.1 mol%, MnO: 29.9 mol%, ZnO: 17.0 mol %; based on the total weight of the main components, the content of each component of the auxiliary components is: CaCO 3 : 400ppm, Bi 2 O 3 : 400ppm, MoO 3 : 200ppm, CoO: 1000ppm.
  • Embodiment 1 For the preparation method of the Mn-Zn ferrite material in this embodiment, refer to Embodiment 1.
  • the Mn-Zn ferrite material provided in this embodiment includes main components and auxiliary components, and the molar percentages of each component of the main component are: Fe 2 O 3 : 54mol%, MnO: 26.5mol%, ZnO: 19.5mol% ; Based on the total weight of the main component, the content of each component of the auxiliary component is: CaCO 3 : 400ppm, Bi 2 O 3 : 400ppm, MoO 3 : 200ppm.
  • Embodiment 1 For the preparation method of the Mn-Zn ferrite material in this embodiment, refer to Embodiment 1.
  • Mn—Zn ferrite material provided in this comparative example and that of Example 1 is that, based on the total weight of the main component, CoO in the auxiliary component is 5500 ppm.
  • the Mn-Zn ferrite material provided by the application achieves high magnetic permeability and low temperature coefficient by controlling the composition and addition amount of the main component and auxiliary component, and cooperating with the corresponding preparation method Preparation of manganese zinc ferrite materials.
  • Example 6 because the content of Fe 2 O 3 in the main component is slightly lower, the initial magnetic permeability at room temperature is lower than 5000, and the specific temperature coefficient in the temperature range of 25-120°C is relatively large.
  • Example 7 because the content of ZnO in the main component is slightly lower, the initial magnetic permeability at room temperature is reduced, and the initial magnetic permeability in the range of 25 to 120 ° C is lower than 5000;
  • the present application illustrates the detailed method of the present application through the above-mentioned examples, but the present application is not limited to the above-mentioned detailed method, that is, it does not mean that the application must rely on the above-mentioned detailed method to be implemented.
  • Those skilled in the art should understand that any improvement to the present application, the equivalent replacement of each raw material of the product of the present application, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本文公布一种Mn-Zn铁氧体材料及其制备方法。所述Mn-Zn铁氧体材料包括主成分和辅助成分,所述主成分包括Fe 2O 3、ZnO和MnO;所述辅助成分包括CaCO 3、Bi 2O 3和CoO;按占主成分总重量计,CoO的含量为1000-5000ppm。所述制备方法包括:(1)将主成分的各组分混合后预烧,得到预烧后的混合物;(2)向预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;(3)对铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;(4)将锰锌铁氧体毛坯进行烧结,降温,得到所述Mn-Zn铁氧体材料。本申请提供的Mn-Zn铁氧体材料是一种高磁导率低温度系数材料。

Description

一种Mn-Zn铁氧体材料及其制备方法 技术领域
本申请实施例涉及磁性材料技术领域,例如一种Mn-Zn铁氧体材料及其制备方法。
背景技术
近年来,高磁导率锰锌铁氧体被广泛应用于信号传输及其抗电磁干扰技术中。作为这些应用的锰锌铁氧体材料,还必须使其满足在较宽的温度范围内保持稳定的磁导率,以保证电子器件在较宽的温度范围内正常工作,一般要求稳定工作的温度范围在-40~85℃,但对于军工电子产品和环境极端的民用电子产品,则要求在-55~120℃温度范围内能够稳定工作。为了在较宽的温度范围内得到稳定磁导率的锰锌铁氧体材料,大多数通过对主成分配方的限制、添加剂的加入以及烧结工艺参数的控制以实现磁导率的低温度系数尤其是低温磁导率的提升。
CN101560091A公开了一种宽温、低温度系数、高居里温度锰锌铁氧体材料,通过把氧化铁的含量限制在52.5~55mol%、氧化锌的含量限制在10~18mol%,实现了锰锌铁氧体材料在-25~150℃的磁导率具有较低的温度系数,但是更低的温度下磁导率是否能满足需求尚未可知;
CN101863657A公开了一种宽温高磁导率锰锌铁氧体材料,通过把氧化铁的含量限制在51~56mol%、氧化锌的含量限制在16~26mol%,实现了锰锌铁氧体材料在-60℃~130℃的磁导率在5000以上,但是在该温度范围内磁导率的温度系数较高;
CN103588471A公开了一种宽温高磁导率锰锌铁氧体材料,通过把氧化铁的含量限制在54~55mol%、氧化锌的含量限制在14~15.9mol%,实现了锰锌铁氧体材料在-55℃~125℃的磁导率在5000以上,但是在该温度范围内磁导率随温度的变化较大。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种Mn-Zn铁氧体材料及其制备方法。本申请提供的Mn-Zn铁氧体材料是一种高磁导率低温度系数Mn-Zn铁氧体材料。
第一方面,本申请实施例提供一种Mn-Zn铁氧体材料,所述Mn-Zn铁氧体材料包括主成分和辅助成分,所述主成分包括Fe 2O 3、ZnO和MnO;所述辅助成分包括CaCO 3、Bi 2O 3和CoO;按占主成分总重量计,CoO的含量为1000-5000ppm,例如1000ppm、2000ppm、3000ppm、4000ppm或5000ppm等。
本申请提供的Mn-Zn铁氧体材料在-55~120℃温度范围内,磁导率具有较低的温度系数,其比温度系数αμ/μi范围为0.5×10 -6~2×10 -6。并且本申请提供的Mn-Zn铁氧体材料具有较高的居里温度,其居里温度大于160℃。
本申请提供的Mn-Zn铁氧体材料中,主成分和辅助成份的相互作用,对于取得上述效果起到了重要作用,辅助成分中的CoO尤为重要。一般尖晶石铁氧体的各向异性常数K 1为负值,而CoO各向异性常数K 1>0,Co 2+加入后,Co 2+贡献的K 1值随温度的升高而急剧下降,因而有可能在低于居里温度的温度范围内存在K 1=0的抵消点,产生μi-T曲线的第二峰。申请人研究发现:CoO辅助成分的加入,并配合其他辅助成分协同作用,与主成分配合,有利于实现锰锌铁氧体材料的高初始磁导率和低温度系数。
本申请提供的Mn-Zn铁氧体材料的辅助成分中,CaCO 3的作用为CaCO 3的作用为增进晶界电阻率,降低损耗,提高Q值。Bi 2O 3的熔点低,可作为助熔剂,降低烧结温度,促进晶粒尺寸长大,提高初始磁导率。
本申请提供的Mn-Zn铁氧体材料的的主成分中,Fe 2O 3和MnO形成单组分锰铁氧体MnFe 2O 4;其中Zn 2+离子为非磁性离子,占A位,与MnFe 2O 4复合使其总磁矩增大,有利于提高初始磁导率。
本申请中,如果CoO的含量过高,会导致μi-T曲线的二峰位置往低温移动,从而导致磁导率的温度系数变高;如果CoO含量过低,会导致μi-T曲线的二峰位置往高温移动,从而导致磁导率的温度系数变高。
作为本申请优选的技术方案,所述辅助成分中,按占主成分
总重量计,CaCO 3的含量为200-2000ppm,例如200ppm、500ppm、1000ppm、1500ppm或2000ppm等,Bi 2O 3的含量为200-2000ppm,例如200ppm、500ppm、1000ppm、1500ppm或2000ppm等。
优选地,所述Mn-Zn铁氧体材料的辅助成分中还包括MoO 3。MoO 3的添加使得毛坯收缩速率变慢,气孔更加容易排出,有利于提高烧结密度。
优选地,按占主成分总重量计,所述MoO 3的含量为0-1000ppm,例如0、100ppm、300ppm、500ppm、700ppm、900ppm或1000ppm等。
优选地,所述Mn-Zn铁氧体材料中,按占主成分总重量计,辅助成分各组分含量为:CaCO 3为200-1000ppm,Bi 2O 3为200-1000ppm,MoO 3为100-500ppm,CoO为2000-4000ppm。
作为本申请优选的技术方案,所述Mn-Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe 2O 3为51-54mol%,例如51mol%、52mol%、53mol%或54mol%等,ZnO为18.1-26mol%,例如18.1mol%、20mol%、22mol%、24mol%或26mol%等,其余为MnO。
优选地,所述Mn-Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe 2O 3为52-53mol%,ZnO为18.1-19mol%,其余为MnO。
第二方面,本申请实施例提供一种如第一方面所述Mn-Zn铁氧体材料的制备方法,所述方法包括以下步骤:
(1)将主成分的各组分混合后预烧,得到预烧后的混合物;
(2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;
(3)对步骤(2)所述铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;
(4)将步骤(3)所述的锰锌铁氧体毛坯进行烧结,降温,得到所述Mn-Zn铁氧体材料。
本申请提供的制备方法与产品配方相配合,实现了高磁导率低温度系数锰锌铁氧体材料的制备。
本申请中,步骤(1)预烧的作用在于使原料初步发生固相反应,为粉料多提供一次固相反应的机会,同时预烧可以减少产品的收缩率,便于控制产品尺寸精度。步骤(4)烧结的作用在于促进氧化铁、氧化锰和氧化锌进行固相反应,形成尖晶石相。
作为本申请优选的技术方案,步骤(1)所述混合为湿式混合。
优选地,步骤(1)所述预烧的温度为800-900℃,例如800℃、820℃、840℃、 860℃、880℃或900℃等。
优选地,步骤(1)所述预烧的时间为2-3h,例如2h、2.2h、2.4h、2.6h、2.8h或3h等。
作为本申请优选的技术方案,步骤(2)所述混合的方法为湿式砂磨混合。
优选地,步骤(2)所述混合的时间为100-140min,例如100min、110min、120min、130min或140min等。
作为本申请优选的技术方案,步骤(3)所述造粒为喷雾造粒。
优选地,步骤(3)还包括:在所述造粒前,先向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合。
优选地,所述粘结剂包括聚乙烯醇(PVA)。
优选地,所述粘结剂的含量为主成分和辅助成分总重量的1-2wt%,例如1wt%、1.2wt%、1.4wt%、1.6wt%、1.8wt%或2wt%等。本申请中,如果粘结剂过多,会导致毛胚在排胶烧结的过程中开裂;如果粘结剂过少,会导致铁氧体颗粒料在压制成型的过程中开裂。
作为本申请优选的技术方案,步骤(4)所述烧结的温度为1300-1400℃,例如1300℃、1350℃或1400℃等。
优选地,步骤(4)所述烧结的时间为4-10h,例如4h、5h、6h、7h、8h、9h或10h等。
优选地,步骤(4)所述烧结控制氧含量为3-21vol%,例如3vol%、4vol%、5vol%、6vol%、7vol%、8vol%、9vol%、10vol%、11vol%、12vol%、13vol%、14vol%、15vol%、16vol%、17vol%、18vol%、19vol%或20vol%等。控制氧含量的方法可以为充入氮气或惰性气体。
作为本申请优选的技术方案,步骤(4)所述烧结的方法包括:在氮气气氛控制氧含量为19-21vol%的条件下于1300-1400℃下烧结6-8h,然后在氮气气氛控制氧含量为3-5vol%的条件下于1300-1400℃下烧结1-2h。本申请中,采用这种烧结方法,其目的在于(1)抑制氧化锌的挥发;(2)只有在平衡氧分压中烧结才能生成单相多晶尖晶石结构的锰锌铁氧体材料。
优选地,步骤(4)所述降温在平衡氧分压下进行。本申请中,所述不同温度的平衡氧分压按照以下公式的计算:lgPO 2=a-b/T,其中,PO 2为氧分压的大小,a取3~8,b为常数,取14000~15000,T为热力学温度。
作为本申请所述制备方法的进一步优选技术方案,所述方法包括以下步骤:
(1)将主成分的各组分湿式混合后800-900℃预烧2-3h,得到预烧后的混合物;
(2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,湿式砂磨混合100-140min后得到铁氧体浆料;
(3)向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合,喷雾造粒得到铁氧体颗粒,喷雾造粒后压制成型得到锰锌铁氧体毛坯;
(4)将步骤(3)所述锰锌铁氧体毛坯烧结,所述烧结的方法包括:在氮气气氛控制氧含量为19-21vol%的条件下于1300-1400℃下烧结6-8h,然后在氮气气氛控制氧含量为3-5vol%的条件下于1300-1400℃下烧结1-2h,之后在平衡氧分压下进行降温,得到所述Mn-Zn铁氧体材料。
与相关技术相比,本申请实施例具有以下有益效果:
(1)本申请实施例提供的Mn-Zn铁氧体材料在-55~120℃温度范围内,磁导率具有较低的温度系数,其比温度系数αμ/μi范围为0.5×10 -6~2×10 -6。并且本申请提供的Mn-Zn铁氧体材料具有较高的居里温度,其居里温度大于160℃。
(2)本申请实施例通过控制主成分和辅助成分的组成及其加入量,并配合相应的制备方法,实现了高磁导率低温度系数锰锌铁氧体材料的制备。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
以下为本申请典型但非限制性实施例:
实施例1
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:52.0mol%、MnO:29.9mol%、ZnO:18.1mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:400ppm、Bi 2O 3:400ppm、MoO 3:200ppm、CoO:3000ppm。
本实施例按照如下方法制备所述Mn-Zn铁氧体材料:
将主成分组分称量后,经过球磨机混合均匀,在850℃下预烧2.5小时得到预烧料,在预烧料中添加配方量的各辅助成分组分,在砂磨机中球磨120min,然后通过喷雾造粒得到铁氧体颗粒料。铁氧体颗粒料经过压制成H25×15×8的毛坯样品,在N 2控制氧含量为21vol%的条件下于1360℃下烧结7小时,然后在N 2控制氧含量为4vol%的条件下于1360℃下烧结1.5小时,降温阶段在平衡氧分压下进行,即可得到磁芯(该磁芯即为所述Mn-Zn铁氧体材料)。
实施例2
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:52.5mol%、MnO:29.0mol%、ZnO:18.5mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:400ppm、Bi 2O 3:600ppm、MoO 3:200ppm、CoO:2000ppm。
本实施例按照如下方法制备所述Mn-Zn铁氧体材料:
将主成分组分称量后,经过球磨机混合均匀,在800~900℃下预烧2~3小时得到预烧料,在预烧料中添加配方量的各辅助成分组分,在砂磨机中球磨140min,然后通过喷雾造粒得到铁氧体颗粒料。铁氧体颗粒料经过压制成H25×15×8的毛坯样品,在N 2控制氧含量为21vol%的条件下于1340℃下烧结8小时,然后在N 2控制氧含量为3vol%的条件下于1340℃下烧结2小时,降温阶段在平衡氧分压下进行,即可得到磁芯(该磁芯即为所述Mn-Zn铁氧体材料)。
实施例3
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:53.0mol%、MnO:28.0mol%、ZnO:19.0mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:200ppm、Bi 2O 3:600ppm、MoO 3:200ppm、CoO:1000ppm。
本实施例按照如下方法制备所述Mn-Zn铁氧体材料:
将主成分组分称量后,经过球磨机混合均匀,在900℃下预烧2小时得到预烧料,在预烧料中添加配方量的各辅助成分组分,在砂磨机中球磨100min,然后通过喷雾造粒得到铁氧体颗粒料。铁氧体颗粒料经过压制成H25×15×8的毛坯样品,在N 2控制氧含量为21vol%的条件下于1380℃下烧结6小时,然后在N 2控制氧含量为5vol%的条件下于1380℃下烧结1小时,降温阶段在平衡氧分压下进行,即可得到磁芯(该磁芯即为所述Mn-Zn铁氧体材料)。
实施例4
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:52.0mol%、MnO:29.9mol%、ZnO:18.1mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:700ppm、Bi 2O 3:200ppm、MoO 3:100ppm、CoO:4000ppm。
本实施例的Mn-Zn铁氧体材料制备方法参照实施例1。
实施例5
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:52.0mol%、MnO:29.9mol%、ZnO:18.1mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:2000ppm、Bi 2O 3:1000ppm、MoO 3:500ppm、CoO:4000ppm。
本实施例的Mn-Zn铁氧体材料制备方法参照实施例1。
实施例6
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:50.5mol%、MnO:34.5mol%、ZnO:15.0mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:400ppm、Bi 2O 3:400ppm、MoO 3:200ppm、CoO:2000ppm。
本实施例的Mn-Zn铁氧体材料制备方法参照实施例1。
实施例7
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:53.1mol%、MnO:29.9mol%、ZnO:17.0mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:400ppm、Bi 2O 3:400ppm、MoO 3:200ppm、CoO:1000ppm。
本实施例的Mn-Zn铁氧体材料制备方法参照实施例1。
对比例1
本实施例提供的Mn-Zn铁氧体材料括主成分和辅助成分,主成分各组分的摩尔百分含量为:Fe 2O 3:54mol%、MnO:26.5mol%、ZnO:19.5mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO 3:400ppm、Bi 2O 3:400ppm、MoO 3:200ppm。
本实施例的Mn-Zn铁氧体材料制备方法参照实施例1。
对比例2
本对比例提供的Mn-Zn铁氧体材料与实施例1区别仅在于:按占主成分总重量计,辅助成分中CoO为5500ppm。
对比例3
本对比例提供的Mn-Zn铁氧体材料与实施例1区别仅在于:按占主成分总重量计,辅助成分中CoO为500ppm。
测试方法
对各实施例和对比例提供的Mn-Zn铁氧体材料进行如下测试:
在频率f=10KHz、电压U=0.25V的条件下,在-55~120℃温度范围内,选取不同的温度点测试初始磁导率μi;
在频率f=10KHz、电压U=0.25V的条件下,测试比温度系数αμ/μ T1(×10 -6);其中温度系数αμ=(μ T2T1)/μ T1/(T 2-T 1)
在H=1194A/m、频率f=50Hz的条件下,测试25℃和100℃下的饱和磁通密度Bs;
在频率f=10KHz、电压U=0.25V的条件下,测试居里温度Tc。
表1不同温度下的初始磁导率μi数值
  -55℃ -25℃ 0℃ 25℃ 55℃ 85℃ 120℃
实施例1 5320 5899 6092 6151 5917 6145 6526
实施例2 5568 6223 6297 6188 5839 6142 6522
实施例3 5148 5528 5605 5726 5640 6000 6420
实施例4 5058 5592 5777 5622 5623 5913 6320
实施例5 4689 5102 5262 5321 5075 5494 5867
实施例6 3197 3005 2936 3050 3488 3466 5355
实施例7 6430 7307 5424 4420 4247 4267 5000
对比例1 5128 5976 4988 4381 4367 4602 4508
对比例2 5917 5463 4415 3675 3977 4215 4724
对比例3 4122 5051 5651 6145 7060 6822 7991
表2
Figure PCTCN2022106963-appb-000001
Figure PCTCN2022106963-appb-000002
综合上述实施例和对比例可知,本申请提供的Mn-Zn铁氧体材料通过控制主成分和辅助成分的组成及其加入量,并配合相应的制备方法,实现了高磁导率低温度系数锰锌铁氧体材料的制备。
实施例6因为主成分中Fe 2O 3的含量略低,导致室温下的初始磁导率偏低,低于5000,并且导致25~120℃温度范围内的的比温度系数较大。
实施例7因为主成分中ZnO的含量略低,导致室温下的初始磁导率降低,并且使得25~120℃范围内的初始磁导率低于5000;
对比例1因为辅助成分没有使用CoO,导致0~120℃范围内的初始磁导率低于5000,并且使得-55-120℃范围内的初始磁导率随温度变化较大。
对比例2因为辅助成分中CoO过多,导致μi-T曲线二峰位置向低温移动,从而导致-55~25℃温度范围内初始磁导率随温度的增加而下降的较快;
对比例3因为辅助成分中CoO过少,导致μi-T曲线二峰位置向高温移动,从而导致-55~55℃初始磁导率随温度的增加而增加的较快。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种Mn-Zn铁氧体材料,其中,所述Mn-Zn铁氧体材料包括主成分和辅助成分,所述主成分包括Fe 2O 3、ZnO和MnO;所述辅助成分包括CaCO 3、Bi 2O 3和CoO;按占主成分总重量计,CoO的含量为1000-5000ppm。
  2. 根据权利要求1所述的Mn-Zn铁氧体材料,其中,所述辅助成分中,按占主成分总重量计,CaCO 3的含量为200-2000ppm,Bi 2O 3的含量为200-2000ppm。
  3. 根据权利要求1或2所述的Mn-Zn铁氧体材料,其中,所述Mn-Zn铁氧体材料的辅助成分中还包括MoO 3
  4. 根据权利要求1-3中任一项所述的Mn-Zn铁氧体材料,其中,按占主成分总重量计,所述MoO 3的含量为0-1000ppm。
  5. 根据权利要求1-4中任一项所述的Mn-Zn铁氧体材料,其中,所述Mn-Zn铁氧体材料中,按占主成分总重量计,辅助成分各组分含量为:CaCO 3为200-1000ppm,Bi 2O 3为200-1000ppm,MoO 3为100-500ppm,CoO为2000-4000ppm。
  6. 根据权利要求1-5中任一项所述的Mn-Zn铁氧体材料,其中,所述Mn-Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe 2O 3为51-54mol%,ZnO为18.1-26mol%,其余为MnO;
    优选地,所述Mn-Zn铁氧体材料中,主成分各组分的摩尔百分含量为:Fe 2O 3为52-53mol%,ZnO为18.1-19mol%,其余为MnO。
  7. 一种如权利要求1-6任一项所述Mn-Zn铁氧体材料的制备方法,其包括以下步骤:
    (1)将主成分的各组分混合后预烧,得到预烧后的混合物;
    (2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,混合后得到铁氧体浆料;
    (3)对步骤(2)所述铁氧体浆料造粒,造粒后压制成型得到锰锌铁氧体毛坯;
    (4)将步骤(3)所述的锰锌铁氧体毛坯进行烧结,降温,得到所述Mn-Zn铁氧体材料。
  8. 根据权利要求7所述的方法,其中,步骤(1)所述混合为湿式球磨混合。
  9. 根据权利要求7或8所述的方法,其中,步骤(1)所述预烧的温度为 800-900℃。
  10. 根据权利要求7-9中任一项所述的方法,其中,步骤(1)所述预烧的时间为2-3h。
  11. 根据权利要求7-10中任一项所述的方法,其中,步骤(2)所述混合的方法为湿式砂磨混合;
    优选地,步骤(2)所述混合的时间为100-140min。
  12. 根据权利要求7-11中任一项所述的方法,其中,步骤(3)所述造粒为喷雾造粒;
    优选地,步骤(3)还包括:在所述造粒前,先向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合;
    优选地,所述粘结剂包括聚乙烯醇和/或聚乙烯醇缩丁醛酯
    优选地,所述粘结剂的含量为主成分和辅助成分总重量的1-2wt%。
  13. 根据权利要求7-12中任一项所述的方法,其中,步骤(4)所述烧结的温度为1300-1400℃;
    优选地,步骤(4)所述烧结的时间为4-10h;
    优选地,步骤(4)所述烧结控制氧含量为3-21vol%。
  14. 根据权利要求7-13中任一项所述的方法,其中,步骤(4)所述烧结的方法包括:在氮气气氛控制氧含量为19-21vol%的条件下于1300-1400℃下烧结6-8h,然后在氮气气氛控制氧含量为3-5vol%的条件下于1300-1400℃下烧结1-2h;
    优选地,步骤(4)所述降温在平衡氧分压下进行。
  15. 根据权利要求7-14中任一项所述的方法,其包括以下步骤:
    (1)将主成分的各组分湿式球磨混合后800-900℃预烧2-3h,得到预烧后的混合物;
    (2)向步骤(1)所述预烧后的混合物中加入辅助成分的各组分,湿式砂磨混合100-140min后得到铁氧体浆料;
    (3)向步骤(2)所述铁氧体浆料中加入粘结剂并进行混合,喷雾造粒得到铁氧体颗粒;喷雾造粒后压制成型得到锰锌铁氧体毛坯;
    (4)将步骤(3)所述锰锌铁氧体毛坯烧结,所述烧结的方法包括:在氮气气氛控制氧含量为19-21vol%的条件下于1300-1400℃下烧结6-8h,然后在氮 气气氛控制氧含量为3-5vol%的条件下于1300-1400℃下烧结1-2h,之后在平衡氧分压下进行降温,得到所述Mn-Zn铁氧体材料。
PCT/CN2022/106963 2021-07-26 2022-07-21 一种Mn-Zn铁氧体材料及其制备方法 WO2023005782A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22848387.1A EP4378910A1 (en) 2021-07-26 2022-07-21 Mn-zn ferrite material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110842324.X 2021-07-26
CN202110842324.XA CN113443906B (zh) 2021-07-26 2021-07-26 一种Mn-Zn铁氧体材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023005782A1 true WO2023005782A1 (zh) 2023-02-02

Family

ID=77817256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106963 WO2023005782A1 (zh) 2021-07-26 2022-07-21 一种Mn-Zn铁氧体材料及其制备方法

Country Status (3)

Country Link
EP (1) EP4378910A1 (zh)
CN (1) CN113443906B (zh)
WO (1) WO2023005782A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443906B (zh) * 2021-07-26 2022-10-14 横店集团东磁股份有限公司 一种Mn-Zn铁氧体材料及其制备方法
CN115368127B (zh) * 2022-08-22 2023-04-28 深圳顺络电子股份有限公司 一种铁氧体材料、制备方法及共模电感器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148115A (ja) * 1995-11-28 1997-06-06 Hitachi Metals Ltd 低温度係数フェライト磁心及び電子部品
JP2001044016A (ja) * 1999-07-29 2001-02-16 Kyocera Corp 高飽和磁束密度フェライト材料及びこれを用いたフェライトコア
JP2005119892A (ja) * 2003-10-14 2005-05-12 Fdk Corp 低損失フェライト
CN1649039A (zh) * 2004-01-30 2005-08-03 Tdk株式会社 MnZn铁氧体的制造方法
CN101560091A (zh) 2009-05-08 2009-10-21 海宁市联丰磁业有限公司 一种锰锌铁氧体材料及其制备方法
CN101863657A (zh) 2010-06-23 2010-10-20 横店集团东磁股份有限公司 宽温高初始磁导率的Mn-Zn铁氧体材料及其制备方法
CN103588471A (zh) 2013-06-27 2014-02-19 横店集团东磁股份有限公司 一种宽温高初始磁导率软磁铁氧体
CN106747395A (zh) * 2016-12-29 2017-05-31 天通控股股份有限公司 一种高截止频率高导锰锌铁氧体材料及其制备方法
CN108821760A (zh) * 2018-06-05 2018-11-16 横店集团东磁股份有限公司 一种降低负温损耗的MnZn功率铁氧体材料及其制备方法
CN112321293A (zh) * 2020-11-03 2021-02-05 横店集团东磁股份有限公司 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
CN112408969A (zh) * 2020-11-25 2021-02-26 广东泛瑞新材料有限公司 一种宽温低功耗的锰锌铁氧体材料及其制备方法
CN113443906A (zh) * 2021-07-26 2021-09-28 横店集团东磁股份有限公司 一种Mn-Zn铁氧体材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107555984B (zh) * 2017-10-10 2018-09-21 浙江大学 一种高频宽温低损耗MnZn铁氧体的烧结过程气氛控制方法
CN108793991B (zh) * 2018-07-11 2020-10-30 横店集团东磁股份有限公司 一种MnZn铁氧体隔磁片及其制备方法和用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148115A (ja) * 1995-11-28 1997-06-06 Hitachi Metals Ltd 低温度係数フェライト磁心及び電子部品
JP2001044016A (ja) * 1999-07-29 2001-02-16 Kyocera Corp 高飽和磁束密度フェライト材料及びこれを用いたフェライトコア
JP2005119892A (ja) * 2003-10-14 2005-05-12 Fdk Corp 低損失フェライト
CN1649039A (zh) * 2004-01-30 2005-08-03 Tdk株式会社 MnZn铁氧体的制造方法
CN101560091A (zh) 2009-05-08 2009-10-21 海宁市联丰磁业有限公司 一种锰锌铁氧体材料及其制备方法
CN101863657A (zh) 2010-06-23 2010-10-20 横店集团东磁股份有限公司 宽温高初始磁导率的Mn-Zn铁氧体材料及其制备方法
CN103588471A (zh) 2013-06-27 2014-02-19 横店集团东磁股份有限公司 一种宽温高初始磁导率软磁铁氧体
CN106747395A (zh) * 2016-12-29 2017-05-31 天通控股股份有限公司 一种高截止频率高导锰锌铁氧体材料及其制备方法
CN108821760A (zh) * 2018-06-05 2018-11-16 横店集团东磁股份有限公司 一种降低负温损耗的MnZn功率铁氧体材料及其制备方法
CN112321293A (zh) * 2020-11-03 2021-02-05 横店集团东磁股份有限公司 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
CN112408969A (zh) * 2020-11-25 2021-02-26 广东泛瑞新材料有限公司 一种宽温低功耗的锰锌铁氧体材料及其制备方法
CN113443906A (zh) * 2021-07-26 2021-09-28 横店集团东磁股份有限公司 一种Mn-Zn铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN113443906B (zh) 2022-10-14
EP4378910A1 (en) 2024-06-05
CN113443906A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP4244193B2 (ja) MnZnフェライトの製造方法及びMnZnフェライト
WO2023005782A1 (zh) 一种Mn-Zn铁氧体材料及其制备方法
KR101540516B1 (ko) 페라이트 소결체
CN112321293A (zh) 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
JP2010173888A (ja) MnZn系フェライトの製造方法
JP2007070209A (ja) MnZn系フェライトの製造方法
KR100627117B1 (ko) 페라이트 재료
EP1101736B1 (en) Mn-Zn ferrite and production thereof
JP2017075085A (ja) MnZnLi系フェライト、磁心およびトランス
KR101267302B1 (ko) 페라이트 코어
JP2008247675A (ja) MnZn系フェライトの製造方法
JP2004217452A (ja) フェライト材料およびその製造方法
JP4281990B2 (ja) フェライト材料
JP3108804B2 (ja) Mn−Znフェライト
JP6314758B2 (ja) MnZn系フェライト、及びMnZn系フェライト大型コア
JP2007031240A (ja) MnZnフェライトの製造方法及びMnZnフェライト
JP2011195415A (ja) MnZn系フェライト粉末、MnZn系フェライトコアの製造方法及びフェライトコア
JP2007297232A (ja) 酸化物磁性材料の製造方法
JP2008169072A (ja) Mn−Zn系フェライト
JP5041480B2 (ja) MnZnフェライト
JP4089970B2 (ja) フェライト材料の製造方法
JP2914554B2 (ja) 高透磁率MnZnフェライトの製造方法
JP2007031210A (ja) MnZnフェライト
JP2005179098A (ja) Mn−Ni−Zn系フェライト
JP3584437B2 (ja) Mn−Znフェライトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848387

Country of ref document: EP

Effective date: 20240226