WO2022260168A1 - ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法 - Google Patents

ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法 Download PDF

Info

Publication number
WO2022260168A1
WO2022260168A1 PCT/JP2022/023481 JP2022023481W WO2022260168A1 WO 2022260168 A1 WO2022260168 A1 WO 2022260168A1 JP 2022023481 W JP2022023481 W JP 2022023481W WO 2022260168 A1 WO2022260168 A1 WO 2022260168A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
derivative
represented
hydroxythienoimidazole
mol
Prior art date
Application number
PCT/JP2022/023481
Other languages
English (en)
French (fr)
Inventor
雅彦 関
和志 真島
隼人 劒
大樹 加藤
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2022557190A priority Critical patent/JP7229434B1/ja
Priority to CN202280008852.8A priority patent/CN116685567A/zh
Priority to EP22820346.9A priority patent/EP4353728A1/en
Publication of WO2022260168A1 publication Critical patent/WO2022260168A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to methods for producing hydroxythienoimidazole derivatives, vinyl sulfide derivatives, n-butylidene sulfide derivatives, and saturated straight-chain hydrocarbon-substituted thienoimidazole derivatives.
  • biotin shown below is considered a type of vitamin useful as animal feed and pharmaceuticals.
  • Non-Patent Document 1 describes a biotin synthesis method using the Grignard reagent ClMg(CH 2 ) 3 OMe. Specifically, as shown below, the thiolactone compound (A) is subjected to an addition reaction with the Grignard reagent, and then the product is hydrolyzed to obtain an intermediate (B), which is then dehydrated to obtain a compound (C). ) is obtained, the compound (C) is hydrogenated to obtain the compound (D), and finally the compound (D) is subjected to coupling with a malonate ester and deprotection to obtain biotin is stated to obtain "Bn” represents a benzyl group, and "Me” represents a methyl group.
  • An object of the present invention is to provide a method for producing a hydroxythienoimidazole derivative, a vinyl sulfide derivative, an n-butylidene sulfide derivative, and a saturated linear hydrocarbon-substituted thienoimidazole derivative in high yield.
  • a method for producing a hydroxythienoimidazole derivative represented by formula (II) below is provided.
  • a thiolactone derivative represented by the following formula (I) a Grignard reagent represented by the following formula (1), and a copper salt are mixed to obtain a hydroxythienoimidazole derivative represented by the following formula (II).
  • a thiolactone derivative represented by the following formula (I) a Grignard reagent represented by the following formula (1), and a copper salt are mixed to obtain a hydroxythienoimidazole derivative represented by the following formula (II).
  • a hydroxythienoimidazole derivative represented by the following formula (II) including the step of obtaining
  • R 1 and R 2 are each independently an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group.
  • R 3 is an alkyl group, an alkyl group having a substituent, an aryl group, or an aryl group having a substituent.
  • X 1 is a halogen atom.
  • R 1 and R 2 have the same definitions as in formula (I).
  • R 3 has the same definition as in formula (1).
  • a method for producing a hydroxythienoimidazole derivative represented by formula (IV) below comprises mixing a thiolactone derivative represented by the above formula (I), a Grignard reagent represented by the following formula (2), and a copper salt to obtain a hydroxythienoimidazole derivative represented by the following formula (IV). including the step of obtaining
  • each X2 is independently a halogen atom.
  • R 1 and R 2 have the same definitions as in formula (I).
  • a method for producing a vinyl sulfide derivative represented by the following formula (III) includes the steps of obtaining a hydroxythienoimidazole derivative represented by the above formula (II) by the method according to the above embodiment, dehydrating the obtained hydroxythienoimidazole derivative, and obtaining a product represented by the following formula (III). and obtaining a vinyl sulfide derivative.
  • R 1 and R 2 have the same definitions as in formula (I).
  • R 3 has the same definition as in formula (1).
  • This production method includes the steps of obtaining the vinyl sulfide derivative represented by the above formula (III) by the method according to the above embodiment, and bringing the obtained vinyl sulfide derivative into contact with hydrogen in the presence of a catalyst to obtain the following formula ( obtaining a saturated linear hydrocarbon-substituted thienoimidazole derivative represented by VI).
  • R 1 and R 2 have the same definitions as in formula (I).
  • R 3 has the same definition as in formula (1).
  • This production method includes the steps of obtaining a hydroxythienoimidazole derivative represented by the above formula (IV) by the method according to the above embodiment, dehydrating the obtained hydroxythienoimidazole derivative, and obtaining a product represented by the following formula (V). obtaining the n-butylidene sulfide derivative.
  • R 1 and R 2 have the same definitions as in formula (I).
  • a method for producing hydroxythienoimidazole derivatives, vinyl sulfide derivatives, n-butylidene sulfide derivatives, and saturated linear hydrocarbon-substituted thienoimidazole derivatives with high yield is provided.
  • a production method comprises mixing a thiolactone derivative represented by the above formula (I) and a Grignard reagent represented by the above formula (1) or (2) in the presence of a copper salt, and obtaining a hydroxythienoimidazole derivative represented by formula (II) or (IV) above.
  • Hydroxythienoimidazole derivatives can be used, for example, as intermediates for the synthesis of biotin and biotin derivatives described above.
  • a hydroxythienoimidazole derivative can be obtained in high yield. That is, copper (Cu) has a high affinity with sulfur (S). Therefore, Cu in the copper salt is easily coordinated to the S atom of the thiolactone derivative, and as a result activates the S atom site of the thiolactone derivative. It is believed that this makes it easier for the Grignard reagent to react with the carbon atom having a carbonyl group adjacent to the S atom of the thiolactone derivative.
  • a thiolactone derivative is represented by the following formula (I).
  • Thiolactone derivatives can be used as intermediates for biotin synthesis as described above.
  • R 1 and R 2 are each independently an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group.
  • R 1 and R 2 may be the same functional group, or different types of functional groups.
  • R 1 and R 2 are each independently preferably an alkyl group having a substituent, more preferably an alkyl group having a phenyl group, and even more preferably a benzyl group.
  • the alkyl group represented by R 1 or R 2 may be linear or branched.
  • the number of carbon atoms in the alkyl group represented by R 1 or R 2 is, for example, 1 or more and 20 or less, preferably 1 or more and 10 or less, more preferably 1 or more and 8 or less, still more preferably 1 or more and 6 or less, still more preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, still more preferably 1 or 2, and still more preferably 1.
  • the alkyl group represented by R 1 or R 2 may have a substituent.
  • Substituents that the alkyl group represented by R 1 or R 2 may have include, for example, those having 3 to 20 carbon atoms (preferably 6 to 20 carbon atoms, more preferably 6 to 14 carbon atoms, still more preferably 6 or more 10 or less), an alkoxy group having 1 or more and 6 or less carbon atoms (preferably 1 or more and 4 or less, more preferably 1 or more and 3 or less, still more preferably 1 or 2), and a halogen atom.
  • Aryl groups can be monocyclic, bicyclic or tricyclic aromatic hydrocarbon ring groups.
  • the aryl group is preferably a monocyclic 3- to 8-membered ring, more preferably a phenyl group.
  • An alkoxy group may be linear or branched.
  • Halogen atoms can be selected from fluorine, chlorine, bromine and iodine atoms.
  • a substituent which the alkyl group represented by R 1 or R 2 may have an aryl group having 3 or more and 8 or less carbon atoms is preferable, and a phenyl group is more preferable.
  • the alkyl group represented by R 1 or R 2 has a substituent, the number of substituents is, for example, 1 or more and 5 or less, preferably 1 or more and 3 or less, more preferably 1 or 2, still more preferably 1. be.
  • the aryl group represented by R 1 or R 2 can be a monocyclic, bicyclic or tricyclic aromatic hydrocarbon ring group.
  • the aryl group represented by R 1 or R 2 is preferably a 3- to 8-membered monocyclic ring.
  • the number of carbon atoms in the aryl group represented by R 1 or R 2 is, for example, 3 or more and 30 or less, preferably 3 or more and 20 or less, more preferably 6 or more and 20 or less, still more preferably 6 or more and 14 or less, still more preferably It is 6 or more and 10 or less.
  • the aryl group represented by R 1 or R 2 is preferably a phenyl group.
  • the aryl group represented by R 1 or R 2 may have a substituent.
  • Substituents that the aryl group represented by R 1 or R 2 may have include, for example, 1 to 6 carbon atoms (preferably 1 to 4, more preferably 1 to 3, still more preferably 1 or 2) alkyl groups, alkoxy groups having 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms, still more preferably 1 or 2 carbon atoms), carboxyl groups, halogen atoms, and the like.
  • Alkyl groups and alkoxy groups may be linear or branched.
  • Halogen atoms can be selected from fluorine, chlorine, bromine and iodine atoms.
  • the number of substituents is, for example, 1 or more and 5 or less, preferably 1 or more and 3 or less, more preferably 1 or 2, and still more preferably 1. be.
  • the first Grignard reagent is represented by the following formula (1).
  • R 3 is an alkyl group, an alkyl group having a substituent, an aryl group, or an aryl group having a substituent.
  • the above descriptions of the alkyl group, substituted alkyl group, aryl group, and substituted aryl group represented by R 1 or R 2 refer to the alkyl group and substituted aryl group represented by R 3 It also applies to alkyl groups, aryl groups, and aryl groups having substituents. Examples of the alkyl group, substituted alkyl group, aryl group, and substituted aryl group represented by R 3 include the same groups as those exemplified for R 1 and R 2 .
  • R 3 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
  • X 1 is a halogen atom.
  • a halogen atom can be selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom or a bromine atom.
  • the first Grignard reagent is obtained, for example, by bringing an organic halogen derivative represented by the following formula (1a) into contact with magnesium.
  • R 3 and X 1 have the same definitions as in formula (1).
  • Magnesium may be powdered or strip-shaped.
  • the contact temperature between the organohalogen derivative represented by the above formula (1a) and magnesium is, for example, 40°C or higher and 150°C or lower, preferably 60°C or higher and 100°C or lower.
  • the contact time between the organohalogen derivative represented by the formula (1a) and magnesium is, for example, 10 minutes or more and 10 hours or less, preferably 1 hour or more and 5 hours or less.
  • the amount of the organic halogen derivative represented by formula (1a) per 1 mol of magnesium is, for example, 0.1 mol or more and 2 mol or less, preferably 0.5 mol or more and 1.5 mol or less.
  • the contact between the organohalogen derivative represented by the above formula (1a) and magnesium is preferably carried out in the presence of a magnesium activator.
  • a magnesium activator for example, at least one selected from the group consisting of 1,2-dibromoethane, bromine, iodine, and trimethylsilyl chloride can be used.
  • the amount of the magnesium activator to 1 mol of magnesium is, for example, 0.01 mol or more and 1.5 mol or less, preferably 0.2 mol or more and 0.8 mol or less.
  • the contact between the organohalogen derivative represented by the above formula (1a) and magnesium is preferably carried out in the presence of the first reaction solvent.
  • the first reaction solvent include acetonitrile, propionitrile, tetrahydrofuran (THF), 2-methyl-tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether, diisopropyl ether, dimethyloxyethane, diglyme, acetone, and methyl ethyl ketone.
  • the amount of the first reaction solvent used in the production of the first Grignard reagent is, for example, 0.001 mL or more and 10 mL or less, preferably 0.01 mL or more and 1 mL or less, relative to 1 mg of magnesium.
  • the first Grignard reagent When using the first reaction solvent, it is preferable to prepare the first Grignard reagent by the following method. First, the organic halogen derivative represented by the formula (1a) and half of the first reaction solvent are mixed to prepare an organic halogen derivative solution. Next, magnesium, magnesium activator, and half of the first reaction solvent are mixed to obtain a first mixture. An organohalogen derivative solution is added dropwise to this first mixture to obtain a second mixture. After the second mixture is heated to the above contact temperature, it is stirred for the above contact time to obtain the first Grignard reagent.
  • Copper salt The valence of the copper atom contained in the copper salt is preferably monovalent or divalent, more preferably monovalent.
  • a copper salt in which the valence of the copper atom is monovalent has excellent catalytic activity.
  • Copper salts include, for example, copper (I) chloride (CuCl), copper (II) chloride (CuCl 2 ), copper (I) bromide (CuBr), copper (II) bromide (CuBr 2 ), copper cyanide (I) (CuCN), copper (I) 3-methylsalicylate, copper mesitylene (I) (MesCu), copper (I) isopropoxy (iPrOCu), copper (I) iodide (CuI), copper (II) iodide ) (CuI 2 ), copper(I) acetate (CuOAc), copper(II) acetate (Cu(OAc) 2 ), copper(II) sulfate (CuSO 4 ), copper(I) oxide (Cu 2
  • Copper (I) thiophene-2-carboxylate is preferably used as the sulfur-containing copper salt.
  • CuCl, CuI or CuBr is particularly preferred among the copper salts in which the valence of the copper atom is monovalent.
  • CuCl, CuI and CuBr are particularly catalytic.
  • a method for producing a hydroxythienoimidazole derivative represented by formula (II) comprises mixing a thiolactone derivative represented by formula (I), a first Grignard reagent, and a copper salt.
  • the amount of copper salt used is preferably 0.05 mol or more and 1 mol or less per 1 mol of the first Grignard reagent.
  • the amount of the copper salt used is more preferably 0.5 mol or more and 0.8 mol or less, still more preferably 0.6 mol or more and 0.72 mol or less, relative to 1 mol of the first Grignard reagent. be.
  • the amount of the copper salt used is generally 0.1 mol or more and 10 mol or less, preferably 0.5 mol or more and 5 mol or less, more preferably 0.5 mol or more and 2 mol or less, relative to 1 mol of the thiolactone derivative.
  • the amount of the first Grignard reagent to be used is generally 0.5 to 10 mol, preferably 1.0 to 5 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the thiolactone derivative. It is below.
  • the thiolactone derivative, the first Grignard reagent, and the copper salt may be mixed in the presence of the second reaction solvent.
  • the second reaction solvent include tetrahydrofuran (THF), 2-methyl-tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether, cyclopentyl methyl ether, dimethoxyethane, diglyme, methylene chloride, toluene, xylene, hexane, At least one selected from heptane and the like can be used.
  • the second reaction solvent may be used singly or in combination of two or more as a mixed solvent.
  • the second reaction solvent is preferably THF, toluene or a mixed solvent thereof.
  • the amount of the second reaction solvent used is, for example, 1 mL or more and 100 mL or less, preferably 2 mL or more and 50 mL or less, per 1 g of the thiolactone derivative.
  • the temperature at which the thiolactone derivative, the first Grignard reagent, and the copper salt are mixed is, for example, within the range of -40°C or higher and 100°C or lower.
  • the temperature during mixing is preferably -20°C or higher and 40°C or lower, more preferably -10°C or higher and 20°C or lower. Within this temperature range, the yield of the hydroxythienoimidazole derivative tends to be higher.
  • the time for mixing the thiolactone derivative, the first Grignard reagent and the copper salt is usually 0.5 to 72 hours, preferably 1 to 48 hours.
  • the mixing of the thiolactone derivative, the first Grignard reagent and the copper salt is preferably carried out by the following method.
  • a first Grignard reagent and a copper salt are mixed to obtain an organic copper reagent.
  • a first Grignard reagent solution obtained by dissolving the first Grignard reagent in the first or second reaction solvent may be used.
  • a copper salt solution obtained by dissolving the copper salt in the second reaction solvent may be used.
  • the temperature for mixing the first Grignard reagent and the copper salt may be within the range of the temperature for mixing the thiolactone derivative, the first Grignard reagent, and the copper salt.
  • the mixing time of the first Grignard reagent and the copper salt is, for example, 1 minute or more and 1 hour or less.
  • the first Grignard reagent and the copper salt are thought to form a copper complex represented by the following formula (3).
  • R 3 and X 1 have the same definitions as in formula (1).
  • Y represents an anion of the copper salt.
  • Each of m and n is an integer of 1 or more and 3 or less.
  • this organocopper reagent is brought into contact with the thiolactone derivative represented by formula (I).
  • a thiolactone derivative solution obtained by dissolving this thiolactone derivative in a second reaction solvent may be used.
  • the contact temperature of the organocopper reagent and the thiolactone derivative may be within the range of the mixing temperature of the thiolactone derivative, the first Grignard reagent, and the copper salt.
  • the contact time of the organocopper reagent and the thiolactone derivative may be within the range of the mixing time of the thiolactone derivative, the first Grignard reagent, and the copper salt.
  • hydroxythienoimidazole derivative represented by formula (II)>
  • a hydroxythienoimidazole derivative is represented by the following formula (II). Hydroxythienoimidazole derivatives can be used as intermediates for biotin synthesis as described above.
  • R 1 and R 2 have the same definitions as in formula (I).
  • R 3 has the same definition as in formula (1).
  • a hydroxythienoimidazole derivative is derived into biotin by a known method.
  • a vinyl sulfide derivative represented by the following formula (III) is obtained by dehydrating the hydroxythienoimidazole derivative represented by the formula (II).
  • R 1 and R 2 have the same definitions as in formula (I).
  • R 3 has the same definition as in formula (1).
  • Examples of dehydration methods for hydroxythienoimidazole derivatives include acid treatment and heat treatment.
  • the acid treatment includes, for example, contacting the hydroxythienoimidazole derivative represented by formula (II) with an acid catalyst.
  • Acid catalysts include, for example, sulfuric acid, hydrochloric acid, or mixtures thereof.
  • the temperature of the heat treatment is, for example, -20 to 120°C, preferably 0 to 70°C. Acid treatment and heat treatment may be combined.
  • the vinyl sulfide derivative represented by formula (III) is hydrogenated, for example, in the presence of a Pd catalyst to obtain a compound represented by formula (VI) below.
  • a Pd catalyst for example, a Pd catalyst
  • the obtained compound is reacted with CH 2 (COOEt) 2 to obtain a compound represented by the following formula (XI).
  • Biotin is obtained by debenzylation of the resulting compound followed by treatment with, for example, hydrogen bromide.
  • "Et" represents an ethyl group.
  • R 1 and R 2 have the same definitions as in formula (I).
  • R 3 has the same definition as in formula (1).
  • This saturated straight-chain hydrocarbon-substituted thienoimidazole derivative is obtained by, for example, contacting the vinyl sulfide derivative represented by the formula (III) obtained by the method according to the above embodiment with hydrogen (H 2 ) in the presence of a catalyst. obtained by
  • catalysts include platinum catalysts such as platinum carbon and platinum oxide; palladium catalysts such as palladium black, palladium carbon, palladium acetate, palladium chloride, and palladium oxide; nickel catalysts such as Raney nickel, cobalt catalysts such as Raney cobalt, and ruthenium chloride catalysts. Ruthenium catalysts, iridium catalysts such as iridium chloride, and iron catalysts such as iron powder may be used. At least one of Raney nickel and palladium carbon is preferred.
  • the amount of the catalyst is, for example, 0.001 to 1000 mol%, preferably 0.1 to 800 mol%, relative to the substrate vinyl sulfide derivative.
  • the hydrogen pressure is, for example, 1 to 150 atmospheres, preferably 1 to 50 atmospheres.
  • the contact temperature is, for example, 10 to 200°C, preferably 25 to 150°C.
  • the contact time is, for example, 0.5 to 100 hours, preferably 1 to 72 hours.
  • the contact between the vinyl sulfide derivative represented by formula (III) and hydrogen in the presence of a catalyst may be carried out in the presence of a solvent.
  • Solvents include methanol, ethanol, isopropanol, butanol, 2-butanol, ethylene glycol, 1,2-dimethoxyethane, methyl cellosolve, ethyl acetate, methyl acetate, THF, cyclopentyl methyl ether, 1,4-dioxane, acetic acid, water. , or a mixed solvent thereof can be used.
  • methanol or a mixed solvent of methanol and water is used.
  • the amount of the solvent used is, for example, 1-200 mL, preferably 3-100 mL, per 1 g of the vinyl sulfide derivative that is the substrate.
  • the hydroxythienoimidazole derivative represented by formula (IV) is produced by the same method as the method for producing the hydroxythienoimidazole derivative represented by formula (II) above, except that the second Grignard reagent is used instead of the first Grignard reagent. It can be manufactured by the method of
  • a method for producing a hydroxythienoimidazole derivative represented by formula (IV) includes mixing a thiolactone derivative represented by formula (I), a Grignard reagent represented by formula (2), and a copper salt. Including process.
  • R 1 and R 2 have the same definitions as in formula (I).
  • X2 has the same definition as in formula ( 2 ).
  • the second Grignard reagent is represented by the following formula (2).
  • each X2 is independently a halogen atom.
  • a halogen atom can be selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom or a bromine atom.
  • Two X2's may be the same kind of halogen atom or different kinds of halogen atoms.
  • an organic halogen derivative represented by the following formula (2a) is used. It can be manufactured by the same method as the method.
  • a second Grignard reagent and a copper salt are mixed in the same manner as in the method for producing the hydroxythienoimidazole derivative represented by formula (II). It is preferred to use an organocopper reagent prepared by
  • the second Grignard reagent and the copper salt are thought to form a copper complex represented by the following formula (4).
  • X2 has the same meaning as in formula ( 2 ).
  • Z represents an anion of the copper salt.
  • p and q are each an integer of 1 or more and 3 or less.
  • the amount of copper salt used is preferably 0.1 mol or more and 2 mol or less per 1 mol of the second Grignard reagent.
  • the amount of the copper salt used is more preferably 0.5 mol or more and 1.5 mol or less, still more preferably 0.6 mol or more and 1.2 mol or less, relative to 1 mol of the second Grignard reagent.
  • the amount of the copper salt used is generally 0.1 mol or more and 10 mol or less, preferably 0.5 mol or more and 5 mol or less, more preferably 0.5 mol or more and 2 mol or less, relative to 1 mol of the thiolactone derivative.
  • the amount of the second Grignard reagent used is generally 0.5 mol or more and 10 mol or less, preferably 1.0 mol or more and 5 mol or less, more preferably 1.0 mol or more and 2 mol or less, per 1 mol of the thiolactone derivative. be.
  • a hydroxythienoimidazole derivative is represented by the following formula (IV). This hydroxythienoimidazole derivative can be used as an intermediate for the synthesis of biotin derivatives.
  • R 1 and R 2 have the same definitions as in formula (I).
  • n-butylidene sulfide derivative represented by the following formula (V) is obtained.
  • This n-butylidene sulfide derivative can be used as an intermediate for biotin synthesis.
  • R 1 and R 2 have the same definitions as in formula (I).
  • Examples of dehydration methods for hydroxythienoimidazole derivatives include acid treatment and heat treatment.
  • Acid treatment includes, for example, contacting the hydroxythienoimidazole derivative represented by formula (IV) with an acid catalyst.
  • Acid catalysts include, for example, sulfuric acid, hydrochloric acid, or mixtures thereof.
  • the temperature of the heat treatment is, for example, -20 to 120°C, preferably 0 to 70°C. Acid treatment and heat treatment may be combined.
  • first Grignard reagent was prepared by the following method. Mg (24.3 mg, 1.00 mmol, 2.0 eq) was activated by adding THF (1.00 mL), 1,2-dibromoethane (0.05 mL), followed by 1-chloro-3-methoxy A solution of propane (54.3 mg, 0.500 mmol, 1.00 eq) in THF (1.00 mL) was slowly added dropwise. After the addition was completed, the mixture was stirred at 80°C for 3 hours.
  • the mixture was stirred at a temperature of 0° C. for 2 hours to obtain a reactant.
  • the reaction was developed by thin layer chromatography (TLC) to confirm completion of the reaction.
  • TLC thin layer chromatography
  • a developing solvent a mixed solvent in which ethyl acetate and n-hexane were mixed at a volume ratio of 1:1 was used.
  • the Rf value of the compound represented by formula (II') was 0.11.
  • the plate used in TLC is coated with silica gel, and this silica gel acts as an acid, and hydrolysis of the intermediate (see formula (Ia)) yields the compound represented by formula (II'). .
  • Example 2 The amount of 1,2-dibromoethane was 0.025 mL, the amount of CuCl was 18.6 mg (0.188 mmol, 0.75 equivalents), and the amount of THF solution of the first Grignard reagent was 1 .10 mL (0.275 mmol, 1.1 equivalents) was used to convert the compound represented by formula (I′) to formula (III′) in the same manner as described in Example 1. A compound was obtained. The yield of the compound represented by formula (III') was 100%.
  • a second Grignard reagent was prepared by the following method. Mg (48.6 mg, 2.00 mmol, 4.0 eq) was activated by addition of THF (1.00 mL), 1,2-dibromoethane (0.05 mL, 0.58 mmol), followed by 1,4 - A solution of dichlorobutane (63.5 mg, 0.500 mmol, 1.00 eq) in THF (1.00 mL) was slowly added dropwise. After the addition was completed, the mixture was stirred at 80°C for 3 hours.
  • reaction product was stirred at a temperature of 0° C. for 1 hour to obtain a reaction product.
  • the reaction was developed by thin layer chromatography (TLC) to confirm completion of the reaction.
  • TLC thin layer chromatography
  • a developing solvent a mixed solvent in which ethyl acetate and n-hexane were mixed at a volume ratio of 1:1 was used.
  • the Rf value of the compound represented by formula (IV') was 0.15.
  • the plate used in TLC is coated with silica gel, and this silica gel acts as an acid, and the hydrolysis of the intermediate (see formula (Ib)) yields the compound represented by formula (IV'). .
  • Raney nickel (92.5 wt% in water, 100 mg, 1.58 mmol, 6.7 eq) was quickly weighed into a glass autoclave test tube and methanol (5.00 mL) was added. After adding a methanol solution (5.00 mL) of the compound represented by formula (III') (92.6 mg, 0.235 mmol, 1.0 equivalent), the mixture was stirred at 40°C under a hydrogen pressure of 20 atm for 20 hours. The reaction was developed by thin layer chromatography (TLC) to confirm completion of the reaction. As a developing solvent, a mixed solvent in which ethyl acetate and n-hexane were mixed at a volume ratio of 1:1 was used. The Rf value of the compound represented by formula (VI') was 0.51.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の高収率な製造方法の提供を課題とし、かかる課題を解決するために、一実施形態に係る製造方法は、式(I)に表されるチオラクトン誘導体と、式(1)又は(2)に表されるグリニャール試薬とを、銅塩の存在下で混合して、式(II)又は(IV)に表されるヒドロキシチエノイミダゾール誘導体を得る工程を含む。

Description

ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法
 本発明は、ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法に関する。
 下記に表されるビオチンは、動物飼料や医薬品として有用なビタミンの一種と考えられている。
Figure JPOXMLDOC01-appb-C000010
 非特許文献1には、グリニャール試薬ClMg(CHOMeを用いたビオチンの合成法が記載されている。具体的には、下記に示すように、チオラクトン化合物(A)と上記グリニャール試薬とを付加反応させ、次いで、生成物を加水分解することにより得た中間体(B)を脱水して化合物(C)を得た後、この化合物(C)を水素化することにより化合物(D)を得、最後に、この化合物(D)を、マロン酸エステルとのカップリング、及び脱保護に付すことによりビオチンを得ることが記載されている。なお、「Bn」はベンジル基を表し、「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000011
 本発明の目的は、ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の高収率な製造方法を提供することにある。
 一実施形態によると、下記式(II)に表されるヒドロキシチエノイミダゾール誘導体の製造方法が提供される。この製造方法は、下記式(I)に表されるチオラクトン誘導体、下記式(1)に表されるグリニャール試薬、及び銅塩を混合して、下記式(II)に表されるヒドロキシチエノイミダゾール誘導体を得る工程を含む。
Figure JPOXMLDOC01-appb-C000012
 式(I)において、R及びRは、それぞれ独立して、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基である。
Figure JPOXMLDOC01-appb-C000013
 式(1)において、Rは、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基である。Xは、ハロゲン原子である。
Figure JPOXMLDOC01-appb-C000014
 式(II)において、R及びRは、式(I)におけるものと同義である。Rは、式(1)におけるものと同義である。
 他の実施形態によると、下記式(IV)に表されるヒドロキシチエノイミダゾール誘導体の製造方法が提供される。この製造方法は、上記式(I)に表されるチオラクトン誘導体、下記式(2)に表されるグリニャール試薬、及び銅塩を混合して、下記式(IV)に表されるヒドロキシチエノイミダゾール誘導体を得る工程を含む。
Figure JPOXMLDOC01-appb-C000015
 式(2)において、Xは、それぞれ独立して、ハロゲン原子である。
Figure JPOXMLDOC01-appb-C000016
 式(IV)において、R及びRは、式(I)におけるものと同義である。
 他の実施形態によると、下記式(III)に表されるビニルスルフィド誘導体の製造方法が提供される。この製造方法は、上記実施形態に係る方法で上記式(II)に表されるヒドロキシチエノイミダゾール誘導体を得る工程と、得られたヒドロキシチエノイミダゾール誘導体を脱水して、下記式(III)に表されるビニルスルフィド誘導体を得る工程とを含む。
Figure JPOXMLDOC01-appb-C000017
 式(III)において、R及びRは、式(I)におけるものと同義である。Rは、式(1)におけるものと同義である。
 他の実施形態によると、下記式(VI)に表される飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法が提供される。この製造方法は、上記実施形態に係る方法で上記式(III)に表されるビニルスルフィド誘導体を得る工程と、触媒存在下で得られたビニルスルフィド誘導体と水素とを接触させて、下記式(VI)に表される飽和直鎖炭化水素置換チエノイミダゾール誘導体を得る工程とを含む。
Figure JPOXMLDOC01-appb-C000018
 式(VI)において、R及びRは、式(I)におけるものと同義である。Rは、式(1)におけるものと同義である。
 他の実施形態によると、下記式(V)に表されるn-ブチリデンスルフィド誘導体の製造方法が提供される。この製造方法は、上記実施形態に係る方法で上記式(IV)に表されるヒドロキシチエノイミダゾール誘導体を得る工程と、得られたヒドロキシチエノイミダゾール誘導体を脱水して、下記式(V)に表されるn-ブチリデンスルフィド誘導体を得る工程とを含む。
Figure JPOXMLDOC01-appb-C000019
 式(V)において、R及びRは、式(I)におけるものと同義である。
 本発明によると、ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の高収率な製造方法が提供される。
 一実施形態に係る製造方法は、上記式(I)に表されるチオラクトン誘導体と、上記式(1)又は(2)に表されるグリニャール試薬とを、銅塩の存在下で混合して、上記式(II)又は(IV)に表されるヒドロキシチエノイミダゾール誘導体を得る工程を含む。ヒドロキシチエノイミダゾール誘導体は、例えば、上記ビオチン、及びビオチン誘導体の合成のための中間体として使用し得る。
 この方法によると、ヒドロキシチエノイミダゾール誘導体を高収率で得ることができる。すなわち、銅(Cu)は、硫黄(S)との親和性が高い。したがって、銅塩のCuは、チオラクトン誘導体のS原子に配位し易く、その結果、チオラクトン誘導体のS原子部位を活性化させる。これにより、チオラクトン誘導体のS原子に隣接するカルボニル基を有する炭素原子に、グリニャール試薬が反応し易くなると考えられる。この製造方法によると、例えば、銅塩を添加しない従来法と比較して、必要最低限量のグリニャール試薬を用いて、低温かつ短時間で反応が完結し、また、パラジウム触媒等の高価な触媒を使用せずとも、高収率でヒドロキシチエノイミダゾール誘導体が得られる。それゆえ、低コストで効率的にビオチンを製造できる。
 以下、実施形態に係る製造方法について、詳細に説明する。
<式(I)に表されるチオラクトン誘導体>
 チオラクトン誘導体は、下記式(I)に表される。チオラクトン誘導体は、上述したビオチン合成のための中間体として用い得る。
Figure JPOXMLDOC01-appb-C000020
 式(I)において、R及びRは、それぞれ独立して、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基である。R及びRは、互いに同一の官能基であってもよく、互いに異なる種類の官能基であってもよい。R及びRは、それぞれ独立して、置換基を有するアルキル基であることが好ましく、フェニル基を有するアルキル基であることがより好ましく、ベンジル基であることがより一層好ましい。
 R又はRで表されるアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。R又はRで表されるアルキル基の炭素数は、例えば1以上20以下、好ましくは1以上10以下、より好ましくは1以上8以下、より一層好ましくは1以上6以下、より一層好ましくは1以上4以下、より一層好ましくは1以上3以下、より一層好ましくは1又は2、より一層好ましくは1である。
 R又はRで表されるアルキル基は、置換基を有していてもよい。R又はRで表されるアルキル基が有し得る置換基としては、例えば、炭素数3以上20以下(好ましくは6以上20以下、より好ましくは6以上14以下、より一層好ましくは6以上10以下)のアリール基、炭素数1以上6以下(好ましくは1以上4以下、より好ましくは1以上3以下、より一層好ましくは1又は2)のアルコキシ基、ハロゲン原子等が挙げられる。アリール基は、単環式、二環式又は三環式の芳香族炭化水素環基であり得る。アリール基は、3員環以上8員環以下の単環式であることが好ましく、フェニル基であることがより好ましい。アルコキシ基は、直鎖状であってもよく、分岐鎖状であってもよい。ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択することができる。R又はRで表されるアルキル基が有し得る置換基としては、炭素数3以上8以下のアリール基が好ましく、フェニル基がより好ましい。R又はRで表されるアルキル基が置換基を有する場合、置換基の数は、例えば1以上5以下、好ましくは1以上3以下、より好ましくは1又は2、より一層好ましくは1である。
 R又はRで表されるアリール基は、単環式、二環式又は三環式の芳香族炭化水素環基であり得る。R又はRで表されるアリール基は、3員環以上8員環以下の単環式であることが好ましい。R又はRで表されるアリール基の炭素数は、例えば3以上30以下、好ましくは3以上20以下、より好ましくは6以上20以下、より一層好ましくは6以上14以下、より一層好ましくは6以上10以下である。R又はRで表されるアリール基は、フェニル基であることが好ましい。
 R又はRで表されるアリール基は、置換基を有していてもよい。R又はRで表されるアリール基が有し得る置換基としては、例えば、炭素数1以上6以下(好ましくは1以上4以下、より好ましくは1以上3以下、より一層好ましくは1又は2)のアルキル基、炭素数1以上6以下(好ましくは1以上4以下、より好ましくは1以上3以下、より一層好ましくは1又は2)のアルコキシ基、カルボキシル基、ハロゲン原子等が挙げられる。アルキル基及びアルコキシ基は、直鎖状であってもよく、分岐鎖状であってもよい。ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択することができる。R又はRで表されるアリール基が置換基を有する場合、置換基の数は、例えば1以上5以下、好ましくは1以上3以下、より好ましくは1又は2、より一層好ましくは1である。
<第1グリニャール試薬>
 第1グリニャール試薬は、下記式(1)に表される。
Figure JPOXMLDOC01-appb-C000021
 式(1)において、Rは、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基である。R又はRで表される、アルキル基、置換基を有するアルキル基、アリール基、及び、置換基を有するアリール基に関する上記説明は、Rで表される、アルキル基、置換基を有するアルキル基、アリール基、及び、置換基を有するアリール基にも適用される。Rで表される、アルキル基、置換基を有するアルキル基、アリール基、及び、置換基を有するアリール基としては、R及びRで挙げたものと同様のものが挙げられる。Rは、炭素数1以上6以下のアルキル基であることが好ましく、メチル基又はエチル基であることがより好ましい。
 Xは、ハロゲン原子である。ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択することができるが、塩素原子又は臭素原子であることが好ましい。
 第1グリニャール試薬は、例えば、下記式(1a)に表される有機ハロゲン誘導体を、マグネシウムと接触させることにより得られる。
Figure JPOXMLDOC01-appb-C000022
 上記式(1a)において、R及びXは、式(1)におけるものと同義である。
 マグネシウムとしては、単体のマグネシウムを用いる。マグネシウムは、粉末状であってもよく、短冊状であってもよい。
 上記式(1a)に表される有機ハロゲン誘導体とマグネシウムとの接触温度は、例えば40℃以上150℃以下、好ましくは60℃以上100℃以下である。上記式(1a)に表される有機ハロゲン誘導体とマグネシウムとの接触時間は、例えば10分以上10時間以下、好ましくは1時間以上5時間以下である。
 1モルのマグネシウムに対する式(1a)に表される有機ハロゲン誘導体の量は、例えば0.1モル以上2モル以下、好ましくは0.5モル以上1.5モル以下である。
 上記式(1a)に表される有機ハロゲン誘導体とマグネシウムとの接触は、マグネシウム活性剤の存在下で行われることが好ましい。マグネシウム活性剤としては、例えば、1,2-ジブロモエタン、臭素、ヨウ素、及びトリメチルシリルクロリドからなる群より選ばれる少なくとも1種を用いることができる。1モルのマグネシウムに対するマグネシウム活性剤の量は、例えば0.01モル以上1.5モル以下、好ましくは0.2モル以上0.8モル以下である。
 上記式(1a)に表される有機ハロゲン誘導体とマグネシウムとの接触は、第1反応溶媒存在下で行われることが好ましい。第1反応溶媒としては、例えば、アセトニトリル、プロピオニトリル、テトラヒドロフラン(THF)、2-メチル-テトラヒドロフラン、1,4-ジオキサン、tert-ブチルメチルエーテル、ジイソプロピルエーテル、ジメチルオキシエタン、ジグライム、アセトン、メチルエチルケトン、ジエチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン、トルエン、キシレン、ヘキサン及びヘプタンからなる群より選ばれる少なくとも1種を用いることができる。
 第1グリニャール試薬の製造において用いられる第1反応溶媒の量は、1mgのマグネシウムに対して、例えば0.001mL以上10mL以下であり、好ましくは0.01mL以上1mL以下である。
 第1反応溶媒を用いる場合、以下の方法で第1グリニャール試薬を調製することが好ましい。先ず、式(1a)に表される有機ハロゲン誘導体と半量の第1反応溶媒とを混合して有機ハロゲン誘導体溶液を調製する。次に、マグネシウム、マグネシウム活性剤、及び半量の第1反応溶媒を混合して第1混合物を得る。この第1混合物に有機ハロゲン誘導体溶液を滴下して、第2混合物を得る。第2混合物を上記接触温度まで加熱した後、上記接触時間にわたって攪拌して第1グリニャール試薬を得る。
<銅塩>
 銅塩に含まれる銅原子の価数は、1価又は2価であることが好ましく、1価であることがより好ましい。銅原子の価数が1価である銅塩は、触媒作用が優れている。銅塩としては、例えば、塩化銅(I)(CuCl)、塩化銅(II)(CuCl)、臭化銅(I)(CuBr)、臭化銅(II)(CuBr)、シアン化銅(I)(CuCN)、3-メチルサリチル酸銅(I)、メシチレン銅(I)(MesCu)、イソプロポキシ銅(I)(iPrOCu)、ヨウ化銅(I)(CuI)、ヨウ化銅(II)(CuI)、酢酸銅(I)(CuOAc)、酢酸銅(II)(Cu(OAc))、硫酸銅(II)(CuSO)、酸化銅(I)(CuO)、酸化銅(II)(CuO)、ピバル酸銅(I)(CuOPiv)、ピバル酸銅(II)(Cu(OPiv))、硫黄含有銅塩等から選ばれる少なくとも1種を用いることができる。硫黄含有銅塩としては、銅(I)チオフェン-2-カルボン酸塩を用いることが好ましい。銅原子の価数が1価である銅塩のうち、CuCl、CuI又はCuBrが特に好ましい。CuCl、CuI及びCuBrは、触媒作用が特に優れている。
<式(II)に表されるヒドロキシチエノイミダゾール誘導体を製造する方法>
 式(II)に表されるヒドロキシチエノイミダゾール誘導体を製造する方法は、式(I)に表されるチオラクトン誘導体と、第1グリニャール試薬と、銅塩とを混合する工程を含む。
 式(I)に表されるチオラクトン誘導体と式(1)に表されるグリニャール試薬とを、銅塩の存在下で混合すると、付加反応が進行し、下記式(Ia)に表される中間体が生成する。次いで、このものの加水分解を経て、上記式(II)に表されるヒドロキシチエノイミダゾール誘導体が得られると考えられる。この加水分解反応は、水又は酸を用いて処理することにより実施できる。酸としては、例えば、塩酸、硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸、ギ酸、酢酸、プロピオン酸、塩化アンモニウム、シリカゲル等から選ばれる少なくとも1種を用いることができる。
Figure JPOXMLDOC01-appb-C000023
 銅塩の使用量は、第1グリニャール試薬 1モルに対して、0.05モル以上1モル以下であることが好ましい。銅塩の使用量は、第1グリニャール試薬 1モルに対して、より好ましくは、0.5モル以上0.8モル以下であり、より一層好ましくは、0.6モル以上0.72モル以下である。
 銅塩の使用量は、チオラクトン誘導体 1モルに対して、通常0.1モル以上10モル以下、好ましくは0.5モル以上5モル以下、より好ましくは0.5モル以上2モル以下である。
 第1グリニャール試薬の使用量は、チオラクトン誘導体 1モルに対して、通常0.5モル以上10モル以下、好ましくは1.0モル以上5モル以下、より好ましくは1.0モル以上2.0モル以下である。
 チオラクトン誘導体と、第1グリニャール試薬と、銅塩との混合は、第2反応溶媒存在下で行われてもよい。第2反応溶媒としては、例えば、テトラヒドロフラン(THF)、2-メチル-テトラヒドロフラン、1,4-ジオキサン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジメトキシエタン、ジグライム、塩化メチレン、トルエン、キシレン、ヘキサン、ヘプタン等から選ばれる少なくとも1種を用いることができる。第2反応溶媒は、1種を単独で使用してもよいし、2種以上を組み合わせて混合溶媒として使用してもよい。第2反応溶媒は、好ましくは、THF、トルエン又はこれらの混合溶媒である。
 第2反応溶媒の使用量は、チオラクトン誘導体 1gに対して、例えば、1mL以上100mL以下、好ましくは2mL以上50mL以下である。
 チオラクトン誘導体と、第1グリニャール試薬と、銅塩とを混合する際の温度は、例えば、-40℃以上100℃以下の範囲内である。混合の際の温度は、好ましくは-20℃以上40℃以下、より好ましくは-10℃以上20℃以下の範囲内である。この温度範囲内であると、ヒドロキシチエノイミダゾール誘導体の収率がより高まる傾向にある。
 チオラクトン誘導体と第1グリニャール試薬と銅塩とを混合する際の時間は、通常0.5~72時間、好ましくは1~48時間である。
 チオラクトン誘導体と第1グリニャール試薬と銅塩との混合は、以下の方法で行われることが好ましい。
 先ず、第1グリニャール試薬及び銅塩を混合して有機銅試薬を得る。第1グリニャール試薬としては、第1グリニャール試薬を第1又は第2反応溶媒に溶解させた第1グリニャール試薬溶液を用いてもよい。また、銅塩としては、銅塩を第2反応溶媒に溶解させた銅塩溶液を用いてもよい。第1グリニャール試薬及び銅塩の混合温度は、上記のチオラクトン誘導体、第1グリニャール試薬、及び銅塩の混合温度の範囲内であればよい。第1グリニャール試薬及び銅塩の混合時間は、例えば、1分以上1時間以下とする。
 この有機銅試薬において、第1グリニャール試薬と銅塩とは、下記式(3)に表される銅錯体を形成していると考えられる。
Figure JPOXMLDOC01-appb-C000024
 式(3)において、R及びXは、式(1)におけるものと同義である。Yは、銅塩の陰イオンを表す。m及びnは、それぞれ、1以上3以下の整数である。
 次に、この有機銅試薬と式(I)に表されるチオラクトン誘導体とを接触させる。式(I)に表されるチオラクトン誘導体としては、このチオラクトン誘導体を第2反応溶媒に溶解させたチオラクトン誘導体溶液を用いてもよい。有機銅試薬及びチオラクトン誘導体の接触温度は、上記のチオラクトン誘導体、第1グリニャール試薬、及び銅塩の混合温度の範囲内であればよい。有機銅試薬及びチオラクトン誘導体の接触時間は、上記のチオラクトン誘導体、第1グリニャール試薬、及び銅塩の混合時間の範囲内であればよい。
<式(II)に表されるヒドロキシチエノイミダゾール誘導体>
 ヒドロキシチエノイミダゾール誘導体は、下記式(II)に表される。ヒドロキシチエノイミダゾール誘導体は、上述したビオチン合成のための中間体として用い得る。
Figure JPOXMLDOC01-appb-C000025
 式(II)において、R及びRは、式(I)におけるものと同義である。Rは、式(1)におけるものと同義である。
 ヒドロキシチエノイミダゾール誘導体は公知の方法でビオチンへと誘導される。
 例えば、先ず、式(II)に表されるヒドロキシチエノイミダゾール誘導体を脱水することにより、下記式(III)に表されるビニルスルフィド誘導体が得られる。
Figure JPOXMLDOC01-appb-C000026
 式(III)において、R及びRは、式(I)におけるものと同義である。Rは、式(1)におけるものと同義である。
 ヒドロキシチエノイミダゾール誘導体の脱水方法としては、例えば、酸処理又は加熱処理が挙げられる。酸処理は、例えば、式(II)に表されるヒドロキシチエノイミダゾール誘導体と酸触媒とを接触させることを含む。酸触媒としては、例えば、硫酸、塩酸、又はこれらの混合物が挙げられる。加熱処理の温度は、例えば-20~120℃、好ましくは0~70℃である。酸処理と加熱処理とを組み合わせてもよい。
 次に、式(III)に表されるビニルスルフィド誘導体を、例えば、Pd触媒存在下で水素付加し、下記式(VI)に表される化合物を得る。得られた式(VI)に表される化合物と臭化水素とを反応させて下記式(VIII)に表される化合物を得た後、得られた化合物とCH(COOEt)とを反応させて下記式(XI)に表される化合物を得る。得られた化合物を脱ベンジル化した後、例えば臭化水素で処理することにより、ビオチンが得られる。なお、「Et」はエチル基を表す。
Figure JPOXMLDOC01-appb-C000027
<式(VI)に表される飽和直鎖炭化水素置換チエノイミダゾール誘導体>
 飽和直鎖炭化水素置換チエノイミダゾール誘導体は、下記式(VI)に表される。飽和直鎖炭化水素置換チエノイミダゾール誘導体は、上述したビオチン合成のための中間体として用い得る。
Figure JPOXMLDOC01-appb-C000028
 式(VI)において、R及びRは、式(I)におけるものと同義である。Rは、式(1)におけるものと同義である。
 この飽和直鎖炭化水素置換チエノイミダゾール誘導体は、例えば、上記実施形態に係る方法で得られた式(III)に表されるビニルスルフィド誘導体を、触媒存在下、水素(H)と接触させることにより得られる。
 触媒としては、白金炭素、酸化白金などの白金触媒;パラジウムブラック、パラジウム炭素、酢酸パラジウム、塩化パラジウム、酸化パラジウムなどのパラジウム触媒;ラネーニッケルなどのニッケル触媒、ラネーコバルトなどのコバルト触媒、塩化ルテニウムなどのルテニウム触媒、塩化イリジウムなどのイリジウム触媒、鉄粉などの鉄触媒を用い得る。好ましくは、ラネーニッケル及びパラジウム炭素の少なくとも一方である。
 触媒の量は、基質であるビニルスルフィド誘導体に対して、例えば0.001~1000mol%、好ましくは0.1~800mol%である。
 触媒存在下での式(III)に表されるビニルスルフィド誘導体と水素との接触の際には、水素圧は、例えば1~150気圧とし、好ましくは1~50気圧とする。
 また、触媒存在下での式(III)に表されるビニルスルフィド誘導体と水素との接触の際には、接触温度を、例えば10~200℃とし、好ましくは25~150℃とする。
 触媒存在下での式(III)に表されるビニルスルフィド誘導体と水素との接触の際には、接触時間を、例えば0.5~100時間とし、好ましくは1~72時間とする。
 触媒存在下での式(III)に表されるビニルスルフィド誘導体と水素との接触は、溶媒存在下で行われてもよい。溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、2-ブタノール、エチレングリコール、1,2-ジメトキシエタン、メチルセロソルブ、酢酸エチル、酢酸メチル、THF、シクロペンチルメチルエーテル、1,4-ジオキサン、酢酸、水、又は、これらの混合溶媒を用い得る。好ましくは、メタノール、又はメタノールと水の混合溶媒を用いる。
 溶媒の使用量は、基質であるビニルスルフィド誘導体1gに対して、例えば1~200mLとし、好ましくは3~100mLとする。
<式(IV)に表されるヒドロキシチエノイミダゾール誘導体を製造する方法>
 式(IV)に表されるヒドロキシチエノイミダゾール誘導体は、第1グリニャール試薬の代わりに第2グリニャール試薬を用いること以外は、上述した式(II)に表されるヒドロキシチエノイミダゾール誘導体の製造方法と同一の方法で製造できる。
 すなわち、式(IV)に表されるヒドロキシチエノイミダゾール誘導体を製造する方法は、式(I)に表されるチオラクトン誘導体と、式(2)に表されるグリニャール試薬と、銅塩とを混合する工程を含む。
 式(I)に表されるチオラクトン誘導体と式(2)に表されるグリニャール試薬とを、銅塩の存在下で混合すると、付加反応が進行し、下記式(Ib)に表される中間体を生成する。次いで、このものの加水分解を経て、上記式(IV)に表されるヒドロキシチエノイミダゾール誘導体が得られると考えられる。この加水分解反応は、水又は酸を用いて処理することにより実施できる。酸としては、例えば、塩酸、硫酸、リン酸、メタンスルホン酸、パラトルエンスルホン酸、ギ酸、酢酸、プロピオン酸、塩化アンモニウム、シリカゲル等から選ばれる少なくとも1種を用いることができる。
Figure JPOXMLDOC01-appb-C000029
 式(Ib)において、R及びRは、式(I)におけるものと同義である。Xは、式(2)におけるものと同義である。
<第2グリニャール試薬>
 第2グリニャール試薬は、下記式(2)に表される。
Figure JPOXMLDOC01-appb-C000030
 式(2)において、Xは、それぞれ独立して、ハロゲン原子である。ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択することができるが、塩素原子又は臭素原子であることが好ましい。2個のXは、同一種類のハロゲン原子であってもよいし、異なる種類のハロゲン原子であってもよい。
 第2グリニャール試薬は、例えば、上記式(1a)に表される有機ハロゲン誘導体の代わりに、下記式(2a)に表される有機ハロゲン誘導体を用いること以外は、上述した第1グリニャール試薬の製造方法と同一の方法で製造できる。
Figure JPOXMLDOC01-appb-C000031
 上記式(2a)において、Xは、式(2)におけるものと同義である。
 なお、式(IV)に表されるヒドロキシチエノイミダゾール誘導体の製造においても、式(II)に表されるヒドロキシチエノイミダゾール誘導体の製造方法と同様に、第2グリニャール試薬及び銅塩を混合して得られた有機銅試薬を用いることが好ましい。
 この有機銅試薬において、第2グリニャール試薬と銅塩とは、下記式(4)に表される銅錯体を形成していると考えられる。
Figure JPOXMLDOC01-appb-C000032
 式(4)において、Xは、式(2)におけるものと同義である。Zは、銅塩の陰イオンを表す。p及びqは、それぞれ、1以上3以下の整数である。
 銅塩の使用量は、第2グリニャール試薬 1モルに対して、0.1モル以上2モル以下であることが好ましい。銅塩の使用量は、第2グリニャール試薬 1モルに対して、より好ましくは0.5モル以上1.5モル以下であり、より一層好ましくは0.6モル以上1.2モル以下である。
 銅塩の使用量は、チオラクトン誘導体 1モルに対して、通常0.1モル以上10モル以下、好ましくは0.5モル以上5モル以下、より好ましくは0.5モル以上2モル以下である。
 第2グリニャール試薬の使用量は、チオラクトン誘導体 1モルに対して、通常0.5モル以上10モル以下、好ましくは1.0モル以上5モル以下、より好ましくは1.0モル以上2モル以下である。
<式(IV)に表されるヒドロキシチエノイミダゾール誘導体>
 ヒドロキシチエノイミダゾール誘導体は、下記式(IV)に表される。このヒドロキシチエノイミダゾール誘導体は、ビオチン誘導体の合成のための中間体として用い得る。
Figure JPOXMLDOC01-appb-C000033
 式(IV)において、R及びRは、式(I)におけるものと同義である。
 このヒドロキシチエノイミダゾール誘導体を脱水することにより、下記式(V)に表されるn-ブチリデンスルフィド誘導体が得られる。このn-ブチリデンスルフィド誘導体は、ビオチン合成のための中間体として用い得る。
Figure JPOXMLDOC01-appb-C000034
 式(V)において、R及びRは、式(I)におけるものと同義である。
 ヒドロキシチエノイミダゾール誘導体の脱水方法としては、例えば、酸処理又は加熱処理が挙げられる。酸処理は、例えば、式(IV)に表されるヒドロキシチエノイミダゾール誘導体と酸触媒とを接触させることを含む。酸触媒としては、例えば、硫酸、塩酸、又はこれらの混合物が挙げられる。加熱処理の温度は、例えば-20~120℃、好ましくは0~70℃である。酸処理と加熱処理とを組み合わせてもよい。
<実施例1>
 下記反応式に示すように、式(I’)に表される化合物から、式(III’)に表される化合物を得た。なお、「Bn」はベンジル基を表し、「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000035
(第1グリニャール試薬の調製)
 先ず、以下の方法で第1グリニャール試薬を準備した。Mg(24.3mg、1.00mmol、2.0当量)にTHF(1.00mL)、1,2-ジブロモエタン(0.05mL)を加えて活性化させた後、1-クロロ-3-メトキシプロパン(54.3mg、0.500mmol、1.00当量)のTHF(1.00mL)溶液をゆっくり滴下した。すべて加え終わった後、80℃で3時間撹拌した。
(ヒドロキシチエノイミダゾール誘導体の製造)
 CuCl(24.8mg、0.250mmol、1.0当量)の乾燥THF(1.50mL)懸濁液に、上記の方法で得られた第1グリニャール試薬(0.25M)のTHF溶液(1.50mL、0.375mmol、1.5当量)を0℃の温度下で5分間にわたって滴下した後、0℃の温度で10分間攪拌して有機銅試薬を得た。この有機銅試薬に、式(I’)に表される化合物(84.6mg、0.250mmol、1.0当量)のTHF溶液(2.00mL)を0℃の温度下で5分間にわたって滴下した後、0℃の温度で2時間にわたって攪拌して反応物を得た。反応物を薄層クロマトグラフィー(TLC)で展開し、反応終了を確認した。展開溶媒としては、酢酸エチルとn-ヘキサンと1:1の体積比で混合した混合溶媒を用いた。式(II’)に表される化合物のRf値は0.11であった。なお、TLCで使用されるプレートにはシリカゲルが塗布されており、このシリカゲルが酸として働き、中間体(式(Ia)参照)の加水分解により、式(II’)に表される化合物が生じる。反応物に10%HSO溶液(2mL)とトルエン(5mL)とを0℃の温度下で加えた後、室温で30分にわたって攪拌し、水層と有機層とに分離させて有機層を得た。
 なお、式(II’)に表される化合物のNMR結果は下記のとおりであった。
H NMR (400MHz,CDCl,30℃) δ 7.35-7.22(m,10H),5.16-5.10(m,1H),4.86-4.78(m,1H),4.43(s,1H),4.17-3.96(m,3H),3.67(dd,J=15.7,9.3Hz,1H),3.61-3.32(m,5H),3.04-2.77(m,2H),2.38-2.31(m,1H),2.01-1.67(m,3H)。
(ビニルスルフィド誘導体の製造)
 次に、この有機層に1滴(触媒量)の濃硫酸を加えた後、60℃で1時間にわたって攪拌して混合物を得た。この混合物を上記と同様の方法でTLCで展開した。式(III’)に表される化合物のRf値は0.50であった。混合物を5mLの1M塩酸で3回洗浄し、更に5mLの食塩水で洗浄した後、NaSOを用いて乾燥させて残留物を得た。この残留物についてNMRを用いて分析して、上記式(III’)に表される化合物を含むことを確認した。収率は97%であった。式(III’)に表される化合物のNMR結果は下記のとおりであった。
H NMR (400MHz,CDCl,30℃) δ 7.36-7.27(m,10H),5.51(t,J=7.0Hz,1H),4.93(d,J=15.6Hz,1H),4.79(d,J=15.3Hz,1H),4.30(d,J=7.7Hz,1H),4.23(d,J=15.3Hz,1H),4.10-4.04(m,2H),3.36(dt,J=12.9,2.1Hz,2H),3.32(s,3H),3.00-2.92(m,2H),2.41-2.23(m,2H)。
<実施例2>
 1,2-ジブロモエタンの量を0.025mLとしたこと、CuClの量を18.6mg(0.188mmol、0.75当量)としたこと、及び、第1グリニャール試薬のTHF溶液の量を1.10mL(0.275mmol、1.1当量)としたこと以外は、実施例1に記載したのと同様の方法で、式(I’)に表される化合物から式(III’)に表される化合物を得た。式(III’)に表される化合物の収率は100%であった。
<実施例3>
 下記反応式に示すように、式(I’)に表される化合物から、式(V’)に表される化合物を得た。なお、「Bn」はベンジル基を表す。
Figure JPOXMLDOC01-appb-C000036
(第2グリニャール試薬の調製)
 先ず、以下の方法で第2グリニャール試薬を準備した。Mg(48.6mg、2.00mmol、4.0当量)にTHF(1.00mL)、1,2-ジブロモエタン(0.05mL、0.58mmol)を加えて活性化させた後、1,4-ジクロロブタン(63.5mg、0.500mmol、1.00当量)のTHF(1.00mL)溶液をゆっくり滴下した。すべて加え終わった後、80℃で3時間撹拌した。
(ヒドロキシチエノイミダゾール誘導体の製造)
 CuCl(27.2mg、0.275mmol、1.1当量)の乾燥THF(2.00mL)懸濁液に、上記の方法で得られた第2グリニャール試薬(0.25M)のTHF溶液(1.10mL、0.275mmol、1.1当量)を0℃の温度下で5分間にわたって滴下した後、0℃の温度で10分間攪拌して有機銅試薬を得た。この有機銅試薬に、式(I’)に表される化合物(84.6mg、0.250mmol、1.0当量)のTHF溶液(2.00mL)を0℃の温度下で5分間にわたって滴下した後、0℃の温度で1時間にわたって攪拌して反応物を得た。反応物を薄層クロマトグラフィー(TLC)で展開し、反応終了を確認した。展開溶媒としては、酢酸エチルとn-ヘキサンとを1:1の体積比で混合した混合溶媒を用いた。式(IV’)に表される化合物のRf値は0.15であった。なお、TLCで使用されるプレートにはシリカゲルが塗布されており、このシリカゲルが酸として働き、中間体(式(Ib)参照)の加水分解により、式(IV’)に表される化合物が生じる。反応物に10%HSO溶液(2mL)とトルエン(5mL)とを0℃の温度下で加えた後、室温で30分にわたって攪拌し、水層と有機層とに分離させて有機層を得た。
(ビニルスルフィド誘導体の製造)
 次に、この有機層に1滴(触媒量)の濃硫酸を加えた後、60℃で1時間にわたって攪拌して混合物を得た。この混合物を上記と同様の方法でTLCで展開した。式(V’)に表される化合物のRf値は0.6であった。混合物を5mLの1M塩酸で3回洗浄し、更に5mLの食塩水で洗浄した後、NaSOを用いて乾燥させて残留物を得た。この残留物についてNMRを用いて分析して、上記式(V’)に表される化合物を含むことを確認した。収率は36%であった。式(V’)に表される化合物のNMR結果は下記のとおりであった。
H NMR (400MHz,CDCl,30℃) δ 7.36-7.24(m,10H),5.46(t,J=7.2Hz,1H),4.97(d,J=15.8Hz,1H),4.81(d,J=15.2Hz,1H),4.31-4.20(m,2H),4.15-4.01(m,2H),3.00-2.92(m,2H),2.04(hept,J=8.0Hz,2H),1.39(sext,J=7.3Hz,1H),1.26(t,J=7.1Hz,1H),0.91(t,J=7.3Hz,3H)。
<実施例4>
 下記反応式に示すように、下記式(III’)に表される化合物から、式(VI’)に表される化合物を得た。なお、「Bn」はベンジル基を表し、「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000037
 ラネーニッケル(92.5質量%(水中)、100mg、1.58mmol、6.7当量)をオートクレーブ用ガラス試験管に手早く量り取り、メタノール(5.00mL)を加えた。式(III’)に表される化合物(92.6mg、0.235mmol、1.0当量)のメタノール溶液(5.00mL)を加えた後、水素圧20atm下、40℃で20時間撹拌した。反応物を薄層クロマトグラフィー(TLC)で展開し、反応終了を確認した。展開溶媒としては、酢酸エチルとn-ヘキサンと1:1の体積比で混合した混合溶媒を用いた。式(VI’)に表される化合物のRf値は0.51であった。氷で冷却後、大気開放し、セライト濾過(酢酸エチル、5mL×4)によりラネーニッケルを乾燥させないように注意しながら除いた。有機層を1M HCl水溶液(20mL×3)、食塩水(5mL×1)で洗浄後、NaSOで乾燥した。溶媒留去により、式(VI’)に表される化合物を収量90.8mg、収率97%で得た。なお、式(III’)に表される化合物は痕跡量のみ含まれていた。式(VI’)に表される化合物のNMRの分析結果は下記のとおりであった。
H NMR (400 MHz,CDCl,30°C) δ 7.34-7.24(m,10H),5.10(d,J=15.2Hz,1H),4.75(d,J=15.1Hz,1H),4.14(d,J=15.2Hz,1H),3.99-3.95(m,2H),3.87(dd,J=9.5,5.6Hz,1H),3.43-3.35(m,2H),3.34(s,3H),3.335-3.25(m,1H),3.17-3.11(m,1H),2.77-2.66(m,1H),1.90-1.74(m,2H),1.61-1.45(m,2H);13C{H} NMR (100MHz,CDCl,30℃) δ 161.1,137.1,137.0,128.8,128.80,128.4,127.8,72.2,62.7,61.3,58.7,54.2,47.9,46.8,34.9,29.2,25.6; HRMS (FAB) m/z calcd. for C2329S 397.1950 ([M+H]) found 397.1946。

Claims (9)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立して、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基である。]
    に表されるチオラクトン誘導体、
     下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基であり、Xは、ハロゲン原子である。]
    に表されるグリニャール試薬、及び
     銅塩
    を混合して、下記式(II):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R及びRは、前記式(I)におけるものと同義であり、Rは、前記式(1)におけるものと同義である。]
    に表されるヒドロキシチエノイミダゾール誘導体を得る工程を含む、ヒドロキシチエノイミダゾール誘導体の製造方法。
  2.  前記工程において、前記式(1)に表されるグリニャール試薬及び前記銅塩を混合して有機銅試薬を形成させた後、前記有機銅試薬と前記式(I)に表されるチオラクトン誘導体とを接触させて、前記式(II)に表されるヒドロキシチエノイミダゾール誘導体を得る、請求項1に記載のヒドロキシチエノイミダゾール誘導体の製造方法。
  3.  1モルの前記式(1)に表されるグリニャール試薬に対する前記銅塩の量は、0.05モル以上1モル以下である、請求項1に記載のヒドロキシチエノイミダゾール誘導体の製造方法。
  4.  請求項1乃至3の何れか一項に記載の方法で前記ヒドロキシチエノイミダゾール誘導体を得る工程と、
     前記ヒドロキシチエノイミダゾール誘導体を脱水して、下記式(III):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R及びRは、式(I)におけるものと同義であり、Rは、式(1)におけるものと同義である。]
    に表されるビニルスルフィド誘導体を得る工程と
    を含む、ビニルスルフィド誘導体の製造方法。
  5.  請求項4に記載の方法で前記ビニルスルフィド誘導体を得る工程と、
     触媒存在下で前記ビニルスルフィド誘導体と水素とを接触させて、下記式(VI):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R及びRは、式(I)におけるものと同義であり、Rは、式(1)におけるものと同義である。]
    に表される飽和直鎖炭化水素置換チエノイミダゾール誘導体を得る工程と
    を含む、飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法。
  6.  下記式(I):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R及びRは、それぞれ独立して、アルキル基、置換基を有するアルキル基、アリール基、又は、置換基を有するアリール基である。]
    に表されるチオラクトン誘導体、
     下記式(2):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Xは、それぞれ独立して、ハロゲン原子である。]
    に表されるグリニャール試薬、及び
     銅塩
    を混合して、下記式(IV):
    Figure JPOXMLDOC01-appb-C000008
    [式中、R及びRは、前記式(I)におけるものと同義である。]に表されるヒドロキシチエノイミダゾール誘導体を得る工程を含む、ヒドロキシチエノイミダゾール誘導体の製造方法。
  7.  前記工程において、前記式(2)に表されるグリニャール試薬及び前記銅塩を混合して有機銅試薬を形成させた後、前記有機銅試薬と前記式(I)に表されるチオラクトン誘導体とを接触させて、前記式(IV)に表されるヒドロキシチエノイミダゾール誘導体を得る、請求項6に記載のヒドロキシチエノイミダゾール誘導体の製造方法。
  8.  1モルの前記式(2)に表されるグリニャール試薬に対する前記銅塩の量は、0.1モル以上2モル以下である、請求項6に記載のヒドロキシチエノイミダゾール誘導体の製造方法。
  9.  請求項6乃至8の何れか一項に記載の方法で前記ヒドロキシチエノイミダゾール誘導体を得る工程と、
     前記ヒドロキシチエノイミダゾール誘導体を脱水して、下記式(V):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R及びRは、前記式(I)におけるものと同義である。]に表されるn-ブチリデンスルフィド誘導体を得る工程と
    を含む、n-ブチリデンスルフィド誘導体の製造方法。
PCT/JP2022/023481 2021-06-11 2022-06-10 ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法 WO2022260168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022557190A JP7229434B1 (ja) 2021-06-11 2022-06-10 ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法
CN202280008852.8A CN116685567A (zh) 2021-06-11 2022-06-10 羟基噻吩并咪唑衍生物、乙烯基硫醚衍生物、正丁亚基硫醚衍生物、及饱和直链烃取代噻吩并咪唑衍生物的制造方法
EP22820346.9A EP4353728A1 (en) 2021-06-11 2022-06-10 Hydroxy thienoimidazole derivative, vinyl sulfide derivative, n-butylidene sulfide derivative, and production method for saturated straight-chain hydrocarbon-substituted thienoimidazole derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-098332 2021-06-11
JP2021098332 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022260168A1 true WO2022260168A1 (ja) 2022-12-15

Family

ID=84424576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023481 WO2022260168A1 (ja) 2021-06-11 2022-06-10 ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法

Country Status (5)

Country Link
EP (1) EP4353728A1 (ja)
JP (1) JP7229434B1 (ja)
CN (1) CN116685567A (ja)
TW (1) TW202317584A (ja)
WO (1) WO2022260168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080317A1 (ja) * 2022-10-13 2024-04-18 株式会社トクヤマ ヒドロキシビオチン誘導体及びビニルビオチン誘導体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327279B1 (ja) * 1969-11-29 1978-08-07
WO2008124922A1 (en) * 2007-04-12 2008-10-23 Endorecherche, Inc. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators
US20130065935A1 (en) * 2011-07-15 2013-03-14 Michael P. Kavanaugh Novel Inhibitors of the Amino Acid Transporters ASCT1 and ASCT2

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327279B2 (ja) 2011-06-13 2013-10-30 株式会社デンソー 超音波センサ装置
CN105418634B (zh) * 2015-12-10 2018-07-10 蚌埠丰原医药科技发展有限公司 生物素中间体杂质的制备方法
CN107973806A (zh) * 2016-10-21 2018-05-01 大丰海嘉诺药业有限公司 一种制备d-生物素溴盐中间体的方法
CN110577547B (zh) * 2019-08-05 2021-05-11 浙江工业大学 一种生物素中间体的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327279B1 (ja) * 1969-11-29 1978-08-07
WO2008124922A1 (en) * 2007-04-12 2008-10-23 Endorecherche, Inc. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators
US20130065935A1 (en) * 2011-07-15 2013-03-14 Michael P. Kavanaugh Novel Inhibitors of the Amino Acid Transporters ASCT1 and ASCT2

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS 1 January 1900 (1900-01-01), LEE H. L, RAGGIOLINI E G, USKOKOVIC M R: "Synthesis of D-biotin from cysteine", XP002375145, Database accession no. 1988-492607 *
ISAKA ICHIRO, KAZUO KUBO, MUTSUO TAKASHIMA, MASUO MURAKAMI: "Studies on the synthesis of biotin. 3. Grignard-reaction of 3,4-(1',3'-dibenzyl-2'-oxoimidazolido)-2-oxothiophane", PHARMACY MAGAZINE, vol. 88, no. 8, 31 August 1968 (1968-08-31), pages 1068 - 1073, XP093014488, DOI: 10.1248/yakushi1947.88.8_1068 *
KATO DAIKI, TOMOYA MURASE, JALINDAR TALODE, HARUKI NAGAE, HAYATO TSURUGI, MASAHIKO SEKI, KAZUSHI MASHIMA: "Diarylcuprates for Selective Syntheses of Multifunctionalized Ketones from Thioesters under Mild Conditions", CHEMISTRY - A EUROPEAN JOURNAL, vol. 28, no. 26, 15 March 2022 (2022-03-15), pages e202200474, XP093014490, DOI: 10.1002/chem.202200474 *
M. GERECKEJ. -P. ZIMMERMANNW. ASCHWANDE: "116. Versuche zur Biotinsynthese. Herstellung von (3aS, 6aR)-1,3-Dibenzyl-tetrahydro-4H-thieno[3,4-d]imidazol-2,4(1H)-dion", HELV. CHIM. ACTA., vol. 53, 1970, pages 991 - 999
WARM ALEKSANDER, NAUGHTON ANDREW B., SAIKALI ELIE A.: "Process Development Implications of Biotin Production Scale-Up", ORGANIC PROCESS RESEARCH & DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, US, vol. 7, no. 3, 1 May 2003 (2003-05-01), US , pages 272 - 284, XP093014489, ISSN: 1083-6160, DOI: 10.1021/op020089o *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080317A1 (ja) * 2022-10-13 2024-04-18 株式会社トクヤマ ヒドロキシビオチン誘導体及びビニルビオチン誘導体の製造方法

Also Published As

Publication number Publication date
JPWO2022260168A1 (ja) 2022-12-15
EP4353728A1 (en) 2024-04-17
JP7229434B1 (ja) 2023-02-27
TW202317584A (zh) 2023-05-01
CN116685567A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN107417505A (zh) α‑卤代四甲基环己酮及其与(2,3,4,4‑四甲基环戊基)甲基羧酸酯的制备方法
JP7229434B1 (ja) ヒドロキシチエノイミダゾール誘導体、ビニルスルフィド誘導体、n-ブチリデンスルフィド誘導体、及び飽和直鎖炭化水素置換チエノイミダゾール誘導体の製造方法
CN103402973B (zh) 化合物及其生产方法,以及用于生产磷酸奥司他韦的方法
TWI628185B (zh) 一種製備曲前列尼爾的中間體、其製備方法以及藉由其製備曲前列尼爾的方法
US6476250B1 (en) Optically active fluorinated binaphthol derivative
CN113173908A (zh) 一种噻吩类化合物的制备方法
CN111499600A (zh) 一种多取代2,3-二氢呋喃类化合物的合成方法
JP2917552B2 (ja) α−メチレンシクロペンタノン誘導体の製造法
KR102467497B1 (ko) 유기금속 화합물을 제조하기 위한 리간드의 합성 방법
JP7470080B2 (ja) (6z,9z)-6,9-ドデカジエン-1-イン及びその製造方法
JPH0959290A (ja) フェロセニルジフェニルホスフィン誘導体、該配位子金属錯体によるヒドロシリル化
JP4034040B2 (ja) 含フッ素ジエン化合物
US8211820B2 (en) Catalyst composition, and process for production of cross-coupling compound using the same
CN106496005B (zh) 一种4-(4-氯苯基)环己酮的合成方法
JP2000044509A (ja) 含フッ素カルボン酸誘導体及びその製造方法
JP2008069104A (ja) ヘリセン誘導体、トリイン誘導体、ヘリセン誘導体の製造方法
EP3450421B1 (en) Method for preparing treprostinil and intermediate therefor
JP2007145752A (ja) 光学活性なα−トリフルオロメチルケトン化合物の製造方法
JP4839678B2 (ja) ジハロゲン化ビアリール誘導体の製造方法
JP2003055285A (ja) 4−tert−ブトキシ−4’−ハロゲノビフェニルおよびその製法、並びに4−ハロゲノ−4’−ヒドロキシビフェニルの製法
JP2004292340A (ja) α−ペンタフルオロエチルアクリル酸誘導体およびその製造方法
JPH08311020A (ja) β−カロテンの製造方法
CN112010884A (zh) 一种苯基(1-苯基乙基)硅烷的合成方法
JP2018108942A (ja) アセト酢酸エステルアルカリ塩の製造方法および脂肪族ジケトンの製造方法
CN116003445A (zh) 一类烷基锌试剂及其制备方法与应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022557190

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008852.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18287236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022820346

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022820346

Country of ref document: EP

Effective date: 20240111