WO2022259458A1 - (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法 - Google Patents

(s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法 Download PDF

Info

Publication number
WO2022259458A1
WO2022259458A1 PCT/JP2021/022096 JP2021022096W WO2022259458A1 WO 2022259458 A1 WO2022259458 A1 WO 2022259458A1 JP 2021022096 W JP2021022096 W JP 2021022096W WO 2022259458 A1 WO2022259458 A1 WO 2022259458A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
propanediol
culture
halogeno
reaction
Prior art date
Application number
PCT/JP2021/022096
Other languages
English (en)
French (fr)
Inventor
加奈 本石
篤 中川
有紀子 成相
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to PCT/JP2021/022096 priority Critical patent/WO2022259458A1/ja
Publication of WO2022259458A1 publication Critical patent/WO2022259458A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture

Definitions

  • the present invention provides a method for producing (S)-3-halogeno-2-methyl-1,2-propanediol from an enantiomeric mixture of 3-halogeno-2-methyl-1,2-propanediol using microorganisms. Regarding.
  • optically active form of 3-halogeno-2-methyl-1,2-propanediol is an extremely important and useful compound in the production of optically active compounds such as pharmaceuticals, agricultural chemicals, and physiologically active substances.
  • Patent Document 1 can be cited as a method for producing optically active 3-halogeno-2-methyl-1,2-propanediol using microorganisms.
  • Patent Document 1 can be cited as a method for producing optically active 3-halogeno-2-methyl-1,2-propanediol using microorganisms.
  • the present invention enables the efficient production of (S)-3-halogeno-2-methyl-1,2-propanediol with high optical purity (S)-3-halogeno-2-methyl-1,2-propanediol. It aims at providing the manufacturing method of.
  • Patent Document 1 the ability to act on an enantiomeric mixture of 3-halogeno-2-methyl-1,2-propanediol to leave the S-isomer of 3-halogeno-2-methyl-1,2-propanediol.
  • microorganism of the present invention When culturing a microorganism having (hereinafter sometimes referred to as "microorganism of the present invention"), regarding the pH of the medium, attention is paid only to the pH of the prepared medium, that is, the pH at the start of the culture, and the pH during the culture There is no suggestion that the pH fluctuates or that the pH is controlled within a specific range.
  • the present inventors have noticed that the culture of the microorganism of the present invention abruptly changes the pH of the medium. Normally, the pH is not controlled during culture as in Patent Document 1, or when the pH of the medium is controlled during culture, the pH of the prepared medium, that is, the pH at the start of culture is maintained. is common technical knowledge.
  • the present inventors surprisingly found that when pH control was not performed or when the pH of the medium during culture was controlled to maintain the pH at the start of culture by controlling the minimum pH of the medium during culture within a specific pH range located between the pH at the start of the culture and the minimum pH during the culture when no pH control was performed, That is, by culturing while controlling the minimum pH of the medium during culture within a specific range, in the subsequent reaction step, (S)-3-halogeno-2-methyl-1, with high optical purity in a short reaction time.
  • the inventors have completed the present invention by finding that 2-propanediol can be obtained.
  • the present invention provides the ability to act on an enantiomeric mixture of 3-halogeno-2-methyl-1,2-propanediol to leave the S-isomer of 3-halogeno-2-methyl-1,2-propanediol.
  • the microorganism is Pseudomonas sp. At least one selected from the group consisting of DS-SI-5 strain (international deposit number: FERM BP-7080) and Pseudomonas nitroreducens DS-S-RP8 strain (international deposit number: FERM BP-7793) Seeds or more are preferred.
  • 3-halogeno-2-methyl-1,2- (S)-3-halogeno-2-methyl-1,2-propanediol with high optical purity can be efficiently obtained from the enantiomeric mixture of propanediol.
  • the method for producing optically active (S)-3-halogeno-2-methyl-1,2-propanediol of the present invention acts on the enantiomer mixture of 3-halogeno-2-methyl-1,2-propanediol to A microorganism belonging to the genus Pseudomonas, which has the ability to retain the S-isomer of 3-halogeno-2-methyl-1,2-propanediol, is cultured at a minimum pH of more than 4.6 and less than 6.0.
  • a culturing step of culturing within the range a reaction step of reacting the microorganism obtained in the culturing step or a treated product thereof with a mixture of enantiomers of 3-halogeno-2-methyl-1,2-propanediol; It is a manufacturing method including
  • halogeno in 3-halogeno-2-methyl-1,2-propanediol means halogenation, specifically fluoro (F), chloro (Cl), bromo (Br ), iodination (I). Among them, chlorination (Cl) is preferred. Therefore, as the microorganism, 3-chloro-2-methyl-1,2 - It is preferable to have the ability to retain the S form of propanediol (CAS No. 120255-23-4).
  • the enantiomeric mixture of starting compound 3-halogeno-2-methyl-1,2-propanediol can be obtained, for example, by chemical ring-opening reaction of an enantiomeric mixture of 2-methyl-epihalohydrin, although the production method is not limited. Any ring-opening reaction may be used as long as it can synthesize a mixture of enantiomers of 3-halogeno-2-methyl-1,2-propanediol, but it is preferably obtained by a ring-opening reaction under acidity with sulfuric acid.
  • the microorganism used in the present invention acts on the enantiomeric mixture of 3-halogeno-2-methyl-1,2-propanediol to produce S of 3-halogeno-2-methyl-1,2-propanediol. It is not particularly limited as long as it has the ability to keep the body alive. That is, the microorganism used in the present invention acts on the enantiomer mixture of 3-halogeno-2-methyl-1,2-propanediol to convert the R form of 3-halogeno-2-methyl-1,2-propanediol. It is not particularly limited as long as it has the ability to selectively decompose and leave the S-isomer of 3-halogeno-2-methyl-1,2-propanediol.
  • Microorganisms that have the ability to retain the S-isomer of 3-halogeno-2-methyl-1,2-propanediol include microorganisms belonging to the genus Pseudomonas. Among them, Pseudomonas sp. DS-SI-5 strain (international deposit number: FERM BP-7080), Pseudomonas nitroreducens DS-S-RP8 strain (international deposit number: FERM BP-7793) are preferred, and Pseudomonas sp.
  • DS-SI-5 strain (international deposit number: FERM BP-7080), Pseudomonas nitroreducens DS-S-RP8 strain (international deposit number: FERM BP-7793) are more preferred, and Pseudomonas sp. DS-SI-5 strain (international deposit number: FERM BP-7080) is more preferable.
  • Microorganisms capable of retaining the S-isomer of 3-halogeno-2-methyl-1,2-propanediol can be used singly or in combination of two or more. (S)-3-halogeno-2-methyl-1,2- - Propanediol can be produced.
  • the microorganism of the present invention may be a wild strain, a mutant strain, a genetically modified strain, or a cell fusion strain, as long as it has the ability to retain the S-isomer of 3-halogeno-2-methyl-1,2-propanediol. may be
  • Culturing step In the culturing step, the ability to act on the enantiomer mixture of 3-halogeno-2-methyl-1,2-propanediol to leave the S-isomer of 3-halogeno-2-methyl-1,2-propanediol.
  • a microorganism belonging to the genus Pseudomonas having a is cultured so that the minimum pH during culture is in the range of more than 4.6 and less than 6.0.
  • the composition of the medium used in the culture process is not particularly limited as long as it is a medium in which microorganisms can normally grow.
  • Media include those used for expansion culture (pre-culture medium) and those used for production culture (main culture medium).
  • the main culture medium can be adjusted based on the medium used as the pre-culture medium by further containing additives.
  • the properties of the medium it is preferably a liquid medium, but may be an agar medium.
  • the medium may generally contain a nitrogen source, minerals, etc., in addition to the carbon source.
  • Carbon sources include carbohydrates and carbohydrate materials.
  • Carbohydrates include sugars (monosaccharides, disaccharides, oligosaccharides), polysaccharides, and sugar alcohols.
  • Sugars include lactose, sucrose, glucose, starch, xylitol, dextrose and the like, with glycerin being preferred.
  • the carbohydrate material may be any organic composition containing carbohydrates, such as milk and its processed products (skimmed milk powder, whey, milk powder, condensed milk, etc.), soymilk and its processed products (soymilk hydrolyzate, etc.), Foods such as cereals, fruits and vegetables can be mentioned.
  • Milk includes that from any mammal such as cows, goats, sheep, buffaloes, camels, llamas, donkeys, yaks, horses, reindeer, and the like.
  • the sugar may be isolated or contained in sugar material.
  • fructose sucrose
  • sucrose may be in the form contained in fruits (sugar material).
  • One of these carbon sources may be used alone, or two or more of them may be used in combination. Among them, glycerin is preferred.
  • the concentration of the carbon source in the medium is not particularly limited, and may be appropriately set according to the type of medium, culture method, etc. For example, it is 0.1 to 5 w/v%, preferably 0.5 to 4 w/v. v%, more preferably 0.5 to 2.5 w/v%.
  • any inorganic nitrogen source or organic nitrogen source can be used as the nitrogen source.
  • proteins such as yeast extract (brewer's yeast, etc.), meat extract, casein; protein hydrolysates such as peptone (protease peptone, etc.); peptides such as peptides; nitrogen salts and the like.
  • yeast extract, peptone and ammonium sulfate are preferred, and yeast extract and peptone are more preferred.
  • the concentration of the nitrogen source in the medium is not particularly limited, and may be appropriately set according to the type of medium and culture method. ⁇ 4 w/v%, more preferably 0.5-2.5 w/v%; for peptides, for example 0.1-5 w/v%, preferably 0.5-4 w/v%, 0.5 to 2.5 w/v% is preferable; in the case of nitrogen-containing salts, for example, 0.03 to 1.5 w/v%, preferably 0.05 to 1 w/v%, more preferably 0.05 to 1.5 w/v%. 1 to 0.5 w/v%.
  • Minerals include, for example, manganese (manganese sulfate, etc.), zinc, iron, sodium (sodium acetate, etc.), potassium (dipotassium hydrogen sulfate, potassium phosphate, etc.), magnesium (magnesium sulfate, etc.), calcium, phosphorus (phosphate potassium, etc.), sulfur (manganese sulfate, potassium hydrogen sulfate, magnesium sulfate, etc.), trace elements, and the like. These minerals may be used individually by 1 type, and may be used in combination of multiple types. Among these minerals, manganese, sodium, magnesium and potassium are preferred.
  • the concentration of minerals in the medium is not particularly limited, and may be appropriately set according to the type of medium and culture method. 003 to 0.008 w/v%; for sodium, for example 0.05 to 1.5 w/v%, preferably 0.1 to 1 w/v%; for magnesium, for example 0.001 to 0.02 w/v%, preferably 0.005 to 0.015 w/v%; in the case of potassium, for example 0.05 to 1 w/v%, preferably 0.1 to 0.5 w/v% is mentioned.
  • the medium contains vitamins (vitamin B group, etc.), surfactants (nonionic surfactants (Tween, etc.), anionic surfactants (SDS, etc.), etc.), antibacterial agents (triclosan, etc.). , antibiotics (monesin, etc.).
  • vitamins vitamin B group, etc.
  • surfactants nonionic surfactants (Tween, etc.), anionic surfactants (SDS, etc.), etc.
  • antibacterial agents triclosan, etc.
  • antibiotics monoesin, etc.
  • the concentration of other components in the medium is not particularly limited, and may be appropriately set according to the type of other components, the type of medium, the culture method, etc.
  • the concentration of the surfactant As, for example, 0.01 to 0.5 w/v%, preferably 0.02 to 0.3 w/v%.
  • the method for culturing microorganisms in the production method of the present invention is not particularly limited as long as the culture is performed so that the minimum pH during cultivation is in the range of more than 4.6 and less than 6.0, as long as the conditions are such that microorganisms can grow.
  • the culture temperature may be any temperature at which microorganisms can grow, for example, 20 to 40°C, preferably 25 to 37°C.
  • the culture time may be appropriately set according to the type of microorganism to be actually cultured, and may be, for example, 10 to 96 hours. In addition, the culture time may be sufficient as long as the microorganisms grow enough to be used in the next reaction step. Well, it is preferably 12 or more.
  • the next reaction step can be performed. Incidentally, in this specification, when simply described as OD, it means an optical density (OD value) at 660 nm.
  • the aeration rate When culturing using a culture tank, the aeration rate may be 0.1 to 1 vvm, and the stirring speed may be 50 to 600 rpm.
  • the culture can be cultured under pressure or without pressure.
  • the pressure when pressurizing may be adjusted within the range of 0.1 to 1.5 kgf/cm 2 .
  • the pH of the culture solution gradually decreases (shifts to the acidic side) as the microorganisms grow during the culture.
  • the pH of the culture solution drops significantly during the growth phase, dropping to 4.6 or less, and then remaining at 4.6 or less until the end of the growth phase. Therefore, pH is controlled in the culture step in the production method of the present invention.
  • the minimum pH during culture may be controlled to be in the range of more than 4.6 and less than 6.0, and the lower limit is preferably 4.7 or more, more preferably 4.8 or more, It is more preferably 4.9 or more, particularly preferably 5.0 or more, and most preferably 5.1 or more, and the upper limit is preferably 5.9 or less, more preferably 5.8 or less, and still more preferably 5.7. Below, it is particularly preferably 5.6 or less, most preferably 5.5 or less. As used herein, exceeding 4.6 means exceeding 4.6.
  • the pH of the prepared medium is not particularly limited as long as it is equal to or higher than the lowest pH during the culture, but is preferably 6.0 or higher, more preferably 6.5 or higher, and is preferred. is 9.0 or less, more preferably 8.5 or less, still more preferably 8.0 or less, particularly preferably 7.5 or less, most preferably 7.0 or less.
  • the pH at the start of culture is within the above range, the effect tends to be obtained more favorably.
  • the pH control of the culture solution in the culture process is performed for the purpose of suppressing the pH of the culture solution from decreasing (transitioning to acidity) during culture, so a base is used for pH control.
  • a base that can be used for culturing microorganisms can be used.
  • Salt aqueous solution; alkali hydroxide aqueous solution such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution; ammonia aqueous solution and the like can be exemplified.
  • alkali hydroxide aqueous solutions such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, and calcium hydroxide aqueous solution are preferable.
  • the pH control of the culture solution in the culture step may be performed at the timing when the pH of the culture solution decreases (transitions to acidity) during culture. It is preferably controlled during the growth phase when the pH drops (changes to acidic). By preventing the pH from shifting to the acidic side during the growth phase, it is possible to obtain microorganisms with high stereoselective decomposition activity and high stereospecificity.
  • the culture step if the pH of the culture solution is left as it is without controlling the decrease in pH as in Patent Document 1, and the lowest pH during culture becomes 4.6 or less, the stereoselective decomposition activity will decrease.
  • the timing of starting the pH control of the culture solution is not particularly limited, but the pH control may be performed, for example, at the timing of entering the growth phase during the culture. Also, the timing of pH control may be appropriately selected according to the growth state of microorganisms. Above all, after the pH value during culture reaches a predetermined minimum pH value, it is preferable to maintain the pH value during culture at the minimum pH value until the end of the growth phase. At the timing of entering is more preferable.
  • the growth phase refers to the time axis because the cells contained in the culture medium undergo cell division at regular intervals to proliferate, and the total number of cells contained in the entire culture medium each doubles. It means the period during which the logarithm of the number of cells is linear with respect to
  • the period during which the pH during culture is controlled within the minimum pH range during culture is preferably 5% or more, more preferably 7% or more, and 10% or more of the entire culture time. More preferably, it is 13% or more, particularly preferably 15% or more, and the upper limit is not particularly limited, but it is preferably 80% or less of the entire culture time, and 75% or less. is more preferably 70% or less, particularly preferably 60% or less, and most preferably 50% or less.
  • microorganisms used in the reaction process can be obtained.
  • reaction Step the microorganism obtained in the culture step or its treated product is reacted with a mixture of enantiomers of 3-halogeno-2-methyl-1,2-propanediol.
  • the microorganism obtained in the culture step or its processed product can be used.
  • the "processed product of microorganisms” includes crushed microbial cells, enzymes extracted from microbial cells, and the like. Examples of microorganisms or treated products thereof include those immobilized according to a conventional method.
  • reacting means that a microorganism or a treated product thereof and an enantiomeric mixture of 3-halogeno-2-methyl-1,2-propanediol as a substrate are reacted in one reaction system. It refers to bringing the enzyme and the substrate into contact by coexisting with the.
  • enzyme refers to an enzyme having stereoselective decomposing ability for (R)-3-halogeno-2-methyl-1,2-propanediol present inside or outside the cells or in the product treated with the microorganism.
  • a mixture of enantiomers of 3-halogeno-2-methyl-1,2-propanediol is added to a suspension obtained by suspending cells separated from a culture medium in an appropriate solution, for example, a buffer.
  • an appropriate solution for example, a buffer.
  • 3-halogeno- Stereoselective decomposition reactions may be performed by adding enantiomeric mixtures of 2-methyl-1,2-propanediol.
  • the reaction temperature is preferably 15-60°C, more preferably 25-35°C. Within the above temperature range, the reaction tends to proceed sufficiently and sufficient enzymatic activity can be obtained.
  • a mixture of enantiomers of 3-halogeno-2-methyl-1,2-propanediol, which is a substrate, may be added to the culture solution obtained in the culture step to carry out the reaction.
  • the pH in the reaction step is preferably 4.0-7.0, more preferably 5.0-6.5. This is because neutral or acidic conditions are preferred because under alkaline conditions, the substrate readily undergoes ring closure to form glycidol. Moreover, if it is the said range, there exists a tendency for sufficient enzyme activity to be obtained.
  • the decomposition reaction proceeds more efficiently by bringing the reaction system to an aerobic condition by ventilation.
  • a higher dissolved oxygen concentration in the reaction system is preferable.
  • the dissolved oxygen concentration can also be increased by pressurizing the reaction system.
  • the aeration amount may be 0.1 to 1 vvm, and the stirring speed may be 50 to 600 rpm.
  • the reaction can be carried out under pressure or without pressure. The pressure when pressurizing may be adjusted within the range of 0.1 to 1.5 kgf/cm 2 .
  • the substrate concentration in the reaction solution is preferably 0.1-20% (w/v), more preferably 1-10% (w/v), even more preferably 1-5% (w/v).
  • concentration range there is a tendency that an optically active substance can be obtained efficiently and sufficient enzymatic activity can be obtained.
  • the microorganism obtained in the culture step or the treated product thereof has a very high enzymatic activity, even if the substrate concentration in the reaction solution is relatively high, in a relatively short time, a high optical Pure (S)-3-halogeno-2-methyl-1,2-propanediol is obtained.
  • the lower limit of the substrate concentration in the reaction solution is preferably 1.5% (w/v) or more, More preferably 2.0% (w/v) or more, still more preferably 2.5% (w/v) or more, particularly preferably 3.0% (w/v) or more, most preferably 3.2% ( w/v) or more, more preferably 3.3% (w/v) or more.
  • the substrate may be added all at once at the beginning, or may be added in portions.
  • the amount of the microorganism or its processed product used should be such that the reaction is completed in about 20 to 72 hours.
  • the reaction should normally be carried out with stirring or shaking.
  • the reaction time varies depending on the concentration of the substrate, the amount of the microorganism or its processed product, etc., but it is preferable to complete the reaction in about 20 to 72 hours.
  • the end point is determined by measuring the optical purity of the desired optically active substance by analysis such as gas chromatography.
  • the pH in the culture solution can be controlled within the optimum range by adding an appropriate alkali or acid.
  • alkali calcium carbonate suspension, sodium carbonate solution, potassium carbonate, alkali carbonate aqueous solution such as ammonium carbonate; alkali hydroxide aqueous solution such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution those commonly used to neutralize acids, such as aqueous ammonia, can be used.
  • Acids that are commonly used to neutralize alkalis such as hydrochloric acid and phosphoric acid, can be used.
  • 3-halogeno-2-methyl-1 stereoselectively or stereospecifically by allowing the microorganism of the present invention or its treated product to act on the enantiomeric mixture of 3-halogeno-2-methyl-1,2-propanediol. , 2-propanediol is decomposed.
  • the (S)-3-halogeno-2-methyl-1,2-propanediol remaining in the reaction solution thus obtained can be recovered by a general method. For example, after removing the cells from the reaction solution by centrifugation or the like, the supernatant may be concentrated by an evaporator and extracted with a solvent such as ether. Furthermore, after dehydrating this extract using anhydrous magnesium sulfate or the like, the solvent is removed under reduced pressure to obtain a syrup of (S)-3-halogeno-2-methyl-1,2-propanediol. can be done. Furthermore, it may be purified by conventional methods such as extraction, distillation and various types of chromatography.
  • the aqueous layer was removed, and the organic layer was dehydrated with magnesium sulfate (anhydrous), filtered, and used for analysis by gas chromatography under the following conditions.
  • the optical purities were determined by the following equations after obtaining the areas of the respective charts for the S-isomer and R-isomer.
  • Example 1 Pseudomonas sp. Reaction using DS-SI-5 strain 100 ml of medium (pH 6 .8) was placed in a 500 ml baffled Erlenmeyer flask and autoclaved at 121° C. for 20 minutes. Then, Pseudomonas sp. grown in advance on the same nutrient medium plate. DS-SI-5 strain was inoculated and aerobically cultured at 30° C. for 24 hours.
  • Example 2 The method described in Example 1, except that the lowest pH of the culture solution during cultivation (i.e., the lowest pH of the culture solution during cultivation) was controlled to be 5.5 or higher, and the culture was continued until OD 13.2. cultured in the same manner as That is, the pH of the culture medium was maintained at 5.5 for 20% of the total culture time.
  • the concentration of 3-chloro-2-methyl-1,2-propanediol after completion of the reaction was 1.42% (remaining rate 43%).
  • the obtained 3-chloro-2-methyl-1,2-propanediol had an optical purity of 97.4% e.e. e. (S)-3-chloro-2-methyl-1,2-propanediol as described above.
  • Example 2 The method described in Example 1, except that the lowest pH of the culture solution during cultivation (i.e., the lowest pH of the culture solution during cultivation) was controlled to be 6.0 or higher, and the culture was continued until the OD reached 13.0. cultured in the same manner as That is, the pH of the culture medium was maintained at 6.0 for 15% of the total culture time.
  • the concentration of 3-chloro-2-methyl-1,2-propanediol after completion of the reaction was 1.71% (remaining rate 51.8%).
  • the obtained 3-chloro-2-methyl-1,2-propanediol had an optical purity of 77.7% e.e. e. (S)-3-chloro-2-methyl-1,2-propanediol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、高光学純度の(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールをより効率よく製造できる(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールの製造方法を提供する。 本発明は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する、シュードモナス(Pseudomonas)属に属する微生物を、培養中の最低pHが4.6超過6.0未満の範囲となるように培養する培養工程と、 前記培養工程で得られた微生物、又はその処理物を、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物と反応させる反応工程と、 を含む(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールの製造方法に関する。

Description

(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法
 本発明は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物から、微生物を利用して(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法に関する。
 3-ハロゲノ-2-メチル-1,2-プロパンジオールの光学活性体は、医薬品・農薬・生理活性物質等の光学活性化合物の製造において極めて重要、且つ有用な化合物である。
 微生物を用いた光学活性な3-ハロゲノ-2-メチル-1,2-プロパンジオールの製法として、特許文献1を挙げることができる。しかしながら、工業的により効率的な製造方法の開発が求められている。
特開2006-197803号公報
 本発明は、高光学純度の(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールをより効率よく製造できる(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールの製造方法を提供することを目的とする。
 上記目的を達成するために本発明者らは研究を重ね、以下の知見を得た。
 特許文献1では、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する微生物(以下、「本発明の微生物」ということもある)を培養する際、培地のpHに関し、調製した培地のpH、すなわち、培養開始時のpHのみに着目しており、培養中にpHが変動することやそのpHを特定範囲内に制御することに関して一切示唆がない。
 これに対して、本発明者らは、上記本発明の微生物を培養することにより、培地のpHが急激に変動することに着目した。通常、培養中は特許文献1の様にpHを制御しないか、もしくは培養中に培地のpHを制御する場合は、調製した培地のpH、すなわち、培養開始時のpHを維持するように行うことが技術常識である。本発明者らは、この技術常識に反し、鋭意検討した結果、驚くべきことに、pH制御を行わなかった場合や培養中の培地のpHを培養開始時のpHを維持するように制御した場合に比べて、培養中の培地の最低pHを、培養開始時のpHと、pH制御を行わなかった場合の培養中の最低pHとの間に位置する特定のpH範囲内に制御することにより、すなわち、培養中の培地の最低pHを特定範囲内に制御して培養することにより、その後の反応工程において、短い反応時間で高い光学純度の(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを得ることができることを見出して、本発明を完成した。
 すなわち、本発明は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する、シュードモナス(Pseudomonas)属に属する微生物を、培養中の最低pHが4.6超過6.0未満の範囲となるように培養する培養工程と、
 前記培養工程で得られた微生物、又はその処理物を、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物と反応させる反応工程と、
を含む(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールの製造方法に関する。
 前記製造方法において、前記微生物が、シュードモナス(Pseudomonas)sp.DS-SI-5株(国際寄託番号:FERM BP-7080)、シュードモナスニトロレデューセンス(Pseudomonas nitroreducens)DS-S-RP8株(国際寄託番号:FERM BP-7793)からなる群より選ばれる少なくとも1種以上であることが好ましい。
 本発明によれば、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する、シュードモナス(Pseudomonas)属に属する微生物を、培養中の最低pHが4.6超過6.0未満の範囲となるように培養することにより、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物から、効率よく高光学純度の(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールが得られる。
 以下、本発明を詳細に説明する。
 本発明の光学活性(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールの製造方法は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する、シュードモナス(Pseudomonas)属に属する微生物を、培養中の最低pHが4.6超過6.0未満の範囲となるように培養する培養工程と、前記培養工程で得られた微生物、又はその処理物を、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物と反応させる反応工程と、を含む製造方法である。
 本明細書において、3-ハロゲノ-2-メチル-1,2-プロパンジオールにおけるハロゲノとは、ハロゲン化を意味し、具体的には、フルオロ(F)化、クロロ(Cl)化、ブロモ(Br)化、ヨード(I)化を意味する。中でも、クロロ(Cl)化が好ましい。よって、前記微生物としては、3-クロロ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物(CAS No.597-33-1)に作用して、3-クロロ-2-メチル-1,2-プロパンジオールのS体(CAS No.120255-23-4)を残存させうる能力を有することが好ましい。
原料化合物
 3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物は、その製造方法は限定されないが、例えば、2-メチル-エピハロヒドリンのエナンチオマー混合物の化学的開環反応によって得られる。3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物を合成できればどのような開環反応でもよいが、好ましくは、硫酸酸性下での開環反応で得ることができる。
本発明の微生物
 本発明に使用する微生物は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する限り、特に限定されない。すなわち、本発明に使用する微生物は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのR体を選択的に分解し、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する限り、特に限定されない。
 3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する微生物としては、シュードモナス属に属する微生物が挙げられる。中でも、シュードモナスsp.DS-SI-5株(国際寄託番号:FERM BP-7080)、シュードモナスニトロレデューセンス(Pseudomonas nitroreducens)DS-S-RP8株(国際寄託番号:FERM BP-7793)が好ましく、シュードモナスsp.DS-SI-5株(国際寄託番号:FERM BP-7080)、シュードモナスニトロレデューセンス(Pseudomonas nitroreducens)DS-S-RP8株(国際寄託番号:FERM BP-7793)がより好ましく、シュードモナスsp.DS-SI-5株(国際寄託番号:FERM BP-7080)が更に好ましい。3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する微生物は1種を単独で、又は2種以上を組み合わせて使用できる。本発明方法において、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する微生物を用いることで、(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造することができる。
 本発明の微生物は、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する限り、野生株、変異株、遺伝子組換え株、又は細胞融合株等のいずれであってもよい。
培養工程
 培養工程では、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する、シュードモナス(Pseudomonas)属に属する微生物を、培養中の最低pHが4.6超過6.0未満の範囲となるように培養する。
 培養工程に用いる、培地の組成としては、通常、微生物が生育する培地であれば、特に制限されない。培地としては、拡大培養に用いられるもの(前培養培地)、及び生産培養に用いられるもの(本培養培地)が挙げられる。本培養培地は、前培養培地として用いられる培地を基本として、さらに添加物を含有させて調整することができる。培地の性状については、好ましくは液体培地であるが、寒天培地であってもよい。培地は、炭素源の他、一般的には窒素源、ミネラル等を含んでいてもよい。
 炭素源としては、糖質及び糖質材料が挙げられる。糖質としては、糖類(単糖、二糖、オリゴ糖)、多糖類、及び糖アルコールが挙げられる。糖類としては、乳糖、ショ糖、グルコース、デンプン、キシリトール、デキストロース等が挙げられ、グリセリンが好ましい。糖質材料は、糖質を含む有機組成物であればよく、例えば、乳及びその加工品(脱脂粉乳、ホエイ、ミルクパウダー、練乳等)、豆乳及びその加工品(豆乳加水分解物等)、穀類、果実、野菜等の食品が挙げられる。乳としては、ウシ、ヤギ、ヒツジ、水牛、ラクダ、ラマ、ロバ、ヤク、ウマ、トナカイ等の任意の哺乳動物に由来するものが挙げられる。なお糖質は、単離されたものであってもよいし、糖質材料に含まれているものであってもよい。例えば、フルクトース(糖質)は、果実(糖質材料)に含まれる形態のものを用いてもよい。これらの炭素源は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。中でも、グリセリンが好ましい。
 培地中の炭素源の濃度については特に限定されず、培地の種類や培養方式等に応じて適宜設定すればよいが、例えば、0.1~5w/v%、好ましくは0.5~4w/v%、より好ましくは0.5~2.5w/v%が挙げられる。
 窒素源としては、任意の無機窒素源又は有機窒素源を使用することができる。例えば、酵母エキス(ビール酵母等)、肉エキス、カゼイン等のタンパク質;ペプトン(プロテアーゼペプトン等)等のタンパク質加水分解物、ペプチド等のペプチド類;アンモニウム塩(クエン酸アンモニウム等)、硝酸塩等の含窒素塩等が挙げられる。これらの窒素源は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。中でも、酵母エキス、ペプトン、硫酸アンモニウムが好ましく、酵母エキス、ペプトンがより好ましい。
 培地中の窒素源の濃度については特に限定されず、培地の種類や培養方式等に応じて適宜設定すればよいが、タンパク質の場合、例えば0.1~5w/v%、好ましくは0.5~4w/v%、より好ましくは0.5~2.5w/v%が挙げられ;ペプチド類の場合、例えば0.1~5w/v%、好ましくは0.5~4w/v%、より好ましくは0.5~2.5w/v%が挙げられ;含窒素塩の場合、例えば0.03~1.5w/v%、好ましくは0.05~1w/v%、より好ましくは0.1~0.5w/v%が挙げられる。
 ミネラルとしては、例えば、マンガン(硫酸マンガン等)、亜鉛、鉄、ナトリウム(酢酸ナトリウム等)、カリウム(硫酸水素二カリウム、リン酸カリウム等)、マグネシウム(硫酸マグネシウム等)、カルシウム、リン(リン酸カリウム等)、硫黄(硫酸マンガン、硫酸水素カリウム、硫酸マグネシウム等)、微量元素等が挙げられる。これらのミネラルは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのミネラルの中でも、好ましくは、マンガン、ナトリウム、マグネシウム、カリウムが挙げられる。
 培地中のミネラルの濃度については特に限定されず、培地の種類や培養方式等に応じて適宜設定すればよいが、マンガンの場合、例えば0.001~0.01w/v%、好ましくは0.003~0.008w/v%が挙げられ;ナトリウムの場合、例えば0.05~1.5w/v%、好ましくは0.1~1w/v%が挙げられ;マグネシウムの場合、例えば0.001~0.02w/v%、好ましくは0.005~0.015w/v%が挙げられ;カリウムの場合、例えば0.05~1w/v%、好ましくは0.1~0.5w/v%が挙げられる。
 培地は、上記成分以外に、ビタミン(ビタミンB群等)、界面活性剤(非イオン性界面活剤(Tween等)、陰イオン性界面活性剤(SDS等)等)、抗菌剤(トリクロサン等)、抗生物質(モネシン等)等の他の成分を含んでもよい。これらの他の成分は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらの他の成分の中でも、好ましくは界面活性剤、より好ましくは非イオン性界面活性剤が挙げられる。
 培地中の他の成分の濃度については特に限定されず、他の成分の種類、培地の種類、培養方式等に応じて適宜設定すればよいが、界面活性剤を含む場合、界面活性剤の濃度として、例えば0.01~0.5w/v%、好ましくは0.02~0.3w/v%が挙げられる。
 本発明の製造方法における微生物の培養方法としては、培養中の最低pHが4.6超過6.0未満の範囲となるように培養する限り、微生物が成育する条件下であれば特に限定されない。
 培養温度としては、微生物が成育できる温度であればよく、例えば20~40℃、好ましくは25~37℃が挙げられる。培養時間としては、実際に培養する微生物の種類等に合せて適宜設定すればよく、例えば10~96時間が挙げられる。また、微生物が次の反応工程に用いることができる程度に十分に生育する培養時間であればよく、微生物が十分に生育しているかの判断指標として、培養液のODが、10以上であればよく、12以上であることが好ましい。本発明においては、培養液のODが上記判断基準を超えた時点で、次の反応工程に移行することができる。
なお、本明細書において、単にODと記載した場合は660nmにおける光学濃度(OD値)を意味する。
 また、培養槽を用いて培養を行う場合、通気量は、0.1~1vvmであればよく、撹拌速度は50~600rpmであればよい。培養は加圧または無加圧のいずれでも培養することができる。なお、加圧する場合の圧力は、0.1~1.5kgf/cmの範囲で調整すればよい。
 本発明の培養工程においては、培養中に微生物が増殖するに伴い、培養液のpHが徐々に低下(酸性側へ推移)する。特に、増殖期において培養液のpHが大きく低下し、pHが4.6以下にまで低下し、その後増殖期が終了するまで4.6以下のままとなる。そこで、本発明の製造方法における培養工程では、pHを制御する。より、具体的には、培養中の最低pHを4.6超過6.0未満の範囲となるように制御すればよく、下限は、好ましくは4.7以上、より好ましくは4.8以上、さらに好ましくは4.9以上、特に好ましくは5.0以上、最も好ましくは5.1以上であり、上限は、好ましくは5.9以下、より好ましくは5.8以下、さらに好ましくは5.7以下、特に好ましくは5.6以下、最も好ましくは5.5以下である。
本明細書において、4.6超過とは4.6を超えることを意味する。
 調製した培地のpH、すなわち、培養開始時のpHは、上記培養中の最低pH以上のpHであれば特に限定されないが、好ましくは6.0以上、より好ましくは6.5以上であり、好ましくは9.0以下、より好ましくは8.5以下、さらに好ましくは8.0以下、特に好ましくは7.5以下、最も好ましくは7.0以下である。培養開始時のpHが上記範囲内であると、効果がより好適に得られる傾向がある。
 培養工程における培養液のpH制御は、培養中の培養液のpHが低下(酸性に推移)することを抑制する目的で行うため、pH制御には塩基を用いる。培養液のpH制御に用いる塩基としては、通常、微生物の培養に用いることのできる塩基を用いることができ、例えば、炭酸カルシウム懸濁液、炭酸ナトリウム溶液、炭酸カリウム、炭酸アンモニウムのような炭酸アルカリ塩水溶液;水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液のような水酸化アルカリ塩水溶液;アンモニア水溶液等を例示することができる。中でも、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液のような水酸化アルカリ塩水溶液が好ましい。
 培養工程における培養液のpH制御は、培養中に培養液のpHが低下(酸性に推移)してくるタイミングで制御を行えばよく、具体的には、例えば、微生物が増殖し、培養液のpHが低下(酸性に推移)する増殖期において、制御することが好ましい。増殖期において、pHが酸性側に推移することを防ぐことで、立体選択分解活性が高く、立体特異性が高い微生物を得ることができる。なお、培養工程において、特許文献1の様に培養液のpHの低下を制御せずに、そのまま放置しておき、培養中の最低pHが4.6以下となると、立体選択分解活性が低下し、次の反応工程に用いても効率よく高光学純度の(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールが得られない。なお、培養液のpH制御を開始するタイミングは、特に限定されないが、例えば、培養中に増殖期に入ったタイミングで、pH制御を行えばよい。また、微生物の生育状態に応じて、適宜pH制御のタイミングを選択すればよい。
中でも、培養中のpH値が、予め決めておいた最低pH値となった後は、培養中のpH値を増殖期が終了するまで最低pH値に維持することが好ましく、培養中に増殖期に入ったタイミングで、pH制御を開始し、培養中のpH値が、予め決めておいた最低pH値となった後は、培養中のpH値を増殖期が終了するまで最低pH値に維持することがより好ましい。
 なお、本明細書において、増殖期とは、培養液に含まれる細胞が一定の間隔で細胞分裂して増殖し、培養液全体に含まれる細胞の総数がそれぞれ2倍ずつになるために時間軸に対して細胞数の対数が直線となる期間のことを意味する。
 培養中のpHが、前記培養中の最低pH範囲内に制御されている期間は、培養時間全体の5%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることがさらに好ましく、13%以上であることが特に好ましく、15%以上であることが最も好ましく、上限は特に限定されないが、培養時間全体の80%以下であることが好ましく、75%以下であることがより好ましく、70%以下であることが更に好ましく、60%以下であることが特に好ましく、50%以下であることが最も好ましい。
 このようにして微生物を培養することにより、反応工程に用いる微生物が得られる。
反応工程
 反応工程では、前記培養工程で得られた微生物、又はその処理物を、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物と反応させる。
 本発明の反応工程においては、前記培養工程で得られた微生物、又はその処理物を使用することができる。「微生物の処理物」には、菌体破砕物、菌体から抽出された酵素等が含まれる。微生物、又はその処理物は、常法に従い固定化したもの等を挙げることができる。
 本発明の反応工程において、「反応させる」とは、微生物、又はその処理物と、基質である3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物とを、一つの反応系内に共存させることにより、酵素と基質とを接触させることをいう。ここでいう酵素は、菌体内外又は微生物処理物中に存在する、(R)-3-ハロゲノ-2-メチル-1,2-プロパンジオールに対して立体選択的な分解能を有する酵素である。
 本発明の反応工程は、培養液から分離した菌体を適当な溶液、例えば緩衝液に懸濁した懸濁液に3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物を加えることにより行ってもよい。
 また、微生物を固定化したもの、微生物処理物、又は微生物処理物を固定化したものを用いる場合も、これらを緩衝液のような溶液中に懸濁又は溶解させたものに、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物を加えることにより、立体選択的な分解反応を行ってもよい。
 いずれの場合も、反応温度は15~60℃が好ましく、25~35℃がより好ましい。上記温度範囲であれば十分に反応が進行し、かつ十分な酵素活性が得られる傾向がある。
 より具体的には、前記培養工程で得られた培養液に基質である3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物を加え反応を行えばよい。
 反応工程におけるpHは4.0~7.0が好ましく、5.0~6.5がより好ましい。これはアルカリ性条件下では、基質が閉環してグリシドールが生成し易いため、中性ないしは酸性条件が好ましいからである。また、上記範囲であれば、十分な酵素活性が得られる傾向がある。
 また、反応工程において、必要に応じて、通気により反応系を好気的条件にすることにより、一層効率的に分解反応が進行する。反応系内の溶存酸素濃度は高い方が好ましい。反応系を加圧することにより溶存酸素濃度を高くすることもできる。反応工程において、通気を行う場合の通気量は、0.1~1vvmであればよく、撹拌速度は50~600rpmであればよい。また。反応は加圧または無加圧のいずれでも反応することができる。なお、加圧する場合の圧力は、0.1~1.5kgf/cmの範囲で調整すればよい。
 反応液中の基質濃度は0.1~20%(w/v)が好ましく、1~10%(w/v)がより好ましく、1~5%(w/v)がさらに好ましい。上記の濃度範囲であれば、効率的に光学活性体を得ることができ、かつ十分な酵素活性が得られる傾向がある。
 ここで、前記培養工程で得られた微生物、又はその処理物は、非常に高い酵素活性を有するため、反応液中の基質濃度が比較的高い場合であっても比較的短時間で、高光学純度の(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールが得られる。そのため、前記培養工程で得られた微生物、又はその処理物をより効率的に利用するためには、反応液中の基質濃度の下限値は、好ましくは1.5%(w/v)以上、より好ましくは2.0%(w/v)以上、さらに好ましくは2.5%(w/v)以上、特に好ましくは3.0%(w/v)以上、最も好ましくは3.2%(w/v)以上、より最も好ましくは3.3%(w/v)以上である。
 基質は初期に一括して加えてもよく、分割して添加してもよい。微生物、又はその処理物の使用量は、20~72時間程度で反応が完了する量とすればよい。
 反応は通常撹拌あるいは振盪しながら行えばよい。反応時間は基質濃度、微生物又はその処理物の量等により異なるが、20~72時間程度で終了させるのが好ましい。好ましくはガスクロマトグラフィー等の分析により、目的とする光学活性体の光学純度を測定して終点を決定するのがよい。
 反応の進行に伴い、反応液のpHが徐々に低下あるいは上昇する場合は、適当なアルカリまたは酸を添加することにより培養液中のpHを至適範囲内にコントロールすればよい。例えば、アルカリとしては炭酸カルシウム懸濁液、炭酸ナトリウム溶液、炭酸カリウム、炭酸アンモニウのような炭酸アルカリ塩水溶液;水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液のような水酸化アルカリ塩水溶液;アンモニア水溶液等の通常酸を中和させるのに使用されるものを使用できる。また、酸としては、塩酸、燐酸等の通常アルカリを中和させるのに使用されるものを使用できる。
 本発明の微生物、又はその処理物を3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用させることにより、立体選択的又は立体特異的に3-ハロゲノ-2-メチル-1,2-プロパンジオールのR体が分解される。
精製工程
 この様にして得られた反応液中に残存する(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールは一般的な方法で回収することができる。例えば、反応液から菌体を遠心分離等で除いた後、上清をエバポレーターにより濃縮し、エーテル等の溶媒で抽出すればよい。さらに、この抽出液を無水硫酸マグネシウム等を用いて脱水した後、減圧下で溶媒を除去することにより、(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールのシロップを得ることができる。さらに、抽出、蒸留、各種クロマトグラフィーのような常法で精製してもよい。
(実施例)
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。実施例中の%は特に記載のない限り%(w/v)を表す。
(合成例1)
3-クロロ-2-メチル-1,2-プロパンジオールの合成
 有機合成用3Lのフラスコに、イオン交換水1700g、濃硫酸2.7gを添加し、反応液の温度を65-70℃に保ち、攪拌しながら2-メチル-エピクロルヒドリン1014.5gを滴下し、熟成も含め5時間反応させた。反応液中の2-メチル-エピクロルヒドリン及び3-クロロ-2-メチル-1,2-プロパンジオールの定量は、ガスクロマトグラフィー(GLサイエンス社製のカラム担体:PEG20M,60-80メッシュ(0.31-0.42mm))により行った。炭酸水素ナトリウムを加えて反応液のpHを6.0に調整した後、濃縮し、3-クロロ-2-メチル-1,2-プロパンジオールのシロップを1200g得た。
3-クロロ-2-メチル-1,2-プロパンジオールの光学純度の測定方法
3-クロロ-2-メチル-1,2-プロパンジオール250mgを1,2-ジクロロエタン10mLに溶解させ、4-ジメチルアミノピリジン600mgを加え、溶解後、冷却しながら塩化アセチル350μLを添加し、撹拌することによりアセチル化反応を行った。反応液に1N塩酸10mLを加えて撹拌し、静置分液後、水層を取り除いた。同様に5%炭酸水素ナトリウム10mLで洗浄し、続いて水10mLで洗浄した。水層を取り除き、有機層を硫酸マグネシウム(無水)で脱水、ろ過したものを下記条件でガスクロマトグラフィーにより分析に用いた。なお、光学純度はS体とR体の各チャートの面積を求め、次式により光学純度を求めた。
<計算式>
光学純度(%e.e.) =(S体の面積-R体の面積)/(S体の面積+R体の面積)×100
 
<GC条件>
カラム           :CHIRALDEX G-BP (30mm×0.25mm I.D. Df=0.125μm)
検出器           :FID
スプリット比        :1/100
カラム流量(mL/min) :0.8
全流量(mL/min)   :50
キャリアー         :水素
カラム温度(℃)       :110
検出器温度(℃)       :250
注入量(μL)             :2.0
R体のリテンションタイム:19分、S体のリテンションタイム:21分
(実施例1)
シュードモナスsp.DS-SI-5株を用いた反応
 1.5w/v%ペプトン、1.75w/v%酵母エキス、1.0w/v%グリセリン、0.2w/v%硫酸アンモニウムからなる組成の培地100ml(pH6.8)を、500ml容のバッフル付き三角フラスコに入れ、121℃で20分間、加圧蒸気滅菌した。次いで、あらかじめ同栄養培地プレートで生育させたシュードモナスsp.DS-SI-5株を植菌し、30℃で24時間好気的に培養した。
 1.5w/v%ペプトン、1.75w/v%酵母エキス、1.0w/v%グリセリン、0.2w/v%硫酸アンモニウムからなる組成の培地2.3L(pH6.8)を入れた5L容培養器を121℃、20分間加圧蒸気滅菌した。次いで上述した方法で得たシュードモナス(Pseudomonas)sp.DS-SI-5株の培養液100ml(4.2%(v/v)量)を上記培地に無菌的に接種し、30℃、500rpm、通気量0.2vvmでOD14.4となるまで培養した。なお、培養中のpHが徐々に低下するため、培養中において、培養液の最低pH(すなわち、培養中の培養液の最低pH)が5.1以上となるように、25%(w/w)NaOH水溶液を滴下しpHを制御した。すなわち、培養時間全体の23%において、培養液のpHを5.1に維持した。
 培養後、合成例1で合成したラセミ体3-クロロ-2-メチル-1,2-プロパンジオール75.9g(3.3%)を加え30℃、500rpm、0.1vvmで24時間反応させた。反応中反応の進行によりpHが徐々に低下するので、25%(w/w)NaOH水溶液を滴下しpHを6.0に維持した。反応終了後、反応液を取り出し、遠心操作により菌体を除去し、上清液を得た。この上清液をエバポレーターで濃縮し、エーテルにより抽出した。続いて無水硫酸マグネシウムにより脱水後、減圧下でエーテルを除去し、3-クロロ-2-メチル-1,2-プロパンジオールのシロップを得、反応液中の3-クロロ-2-メチル-1,2-プロパンジオールの残存量、光学純度を測定した。反応終了後の3-クロロ-2-メチル-1,2-プロパンジオールの濃度は1.27%(残存率38.4%)であった。また、得られた3-クロロ-2-メチル-1,2-プロパンジオールは光学純度98.8%e.e.以上の(S)-3-クロロ-2-メチル-1,2-プロパンジオールであった。
(比較例1)
 培養中のpHを制御せず、実施例1と同様に培養を行った。OD12.4であった。なお、培養中における培養液の最低pH(すなわち、培養中の培養液の最低pH)は4.6まで低下した。すなわち、培養時間全体の25%において、培養液のpHは4.6であった。基質の仕込み量は、実施例1に記載した方法と同じ方法で反応を行った。反応終了後の3-クロロ-2-メチル-1,2-プロパンジオールの濃度は1.47%(残存率44.5%)であった。また、得られた3-クロロ-2-メチル-1,2-プロパンジオールは光学純度74.6%e.e.以上の(S)-3-クロロ-2-メチル-1,2-プロパンジオールであった。
(実施例2)
 培養中における培養液の最低pH(すなわち、培養中の培養液の最低pH)が5.5以上となるように制御し、OD13.2となるまで培養した以外は、実施例1に記載した方法と同じ方法で培養を行った。すなわち、培養時間全体の20%において、培養液のpHを5.5に維持した。反応終了後の3-クロロ-2-メチル-1,2-プロパンジオールの濃度は1.42%(残存率43%)であった。また、得られた3-クロロ-2-メチル-1,2-プロパンジオールは光学純度97.4%e.e.以上の(S)-3-クロロ-2-メチル-1,2-プロパンジオールであった。
(比較例2)
 培養中における培養液の最低pH(すなわち、培養中の培養液の最低pH)が6.0以上となるように制御し、OD13.0となるまで培養した以外は、実施例1に記載した方法と同じ方法で培養を行った。すなわち、培養時間全体の15%において、培養液のpHを6.0に維持した。反応終了後の3-クロロ-2-メチル-1,2-プロパンジオールの濃度は1.71%(残存率51.8%)であった。また、得られた3-クロロ-2-メチル-1,2-プロパンジオールは光学純度77.7%e.e.の(S)-3-クロロ-2-メチル-1,2-プロパンジオールであった。
 上記の結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 上記の結果より、培養工程において、培養中の培養液の最低pH、すなわち、培養中における培養液の最低pHを4.6超過6.0未満の範囲に制御することで、反応液中の基質濃度が3.3%(w/v)と高いにもかかわらず、短い反応時間で高い光学純度の(S)-3-クロロ-2-メチル-1,2-プロパンジオールを得ることができた。一方、培養中の培養液のpHを制御しなかった場合(比較例1)、(S)-3-クロロ-2-メチル-1,2-プロパンジオールの光学純度が74.6%e.e.であった。また、培養中の培養液のpHを制御しても、培養中の培養液の最低pHが6.0以上で制御を行った場合(比較例2)、(S)-3-クロロ-2-メチル-1,2-プロパンジオールの光学純度は、77.7%e.e.と低かった。

Claims (2)

  1.  3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物に作用して、3-ハロゲノ-2-メチル-1,2-プロパンジオールのS体を残存させうる能力を有する、シュードモナス(Pseudomonas)属に属する微生物を、培養中の最低pHが4.6超過6.0未満の範囲となるように培養する培養工程と、
     前記培養工程で得られた微生物、又はその処理物を、3-ハロゲノ-2-メチル-1,2-プロパンジオールのエナンチオマー混合物と反応させる反応工程と、
    を含む(S)-3-ハロゲノ-2-メチル-1,2-プロパンジオールの製造方法。
  2.  微生物が、シュードモナス(Pseudomonas)sp.DS-SI-5株(国際寄託番号:FERM BP-7080)、シュードモナスニトロレデューセンス(Pseudomonas nitroreducens)DS-S-RP8株(国際寄託番号:FERM BP-7793)からなる群より選ばれる少なくとも1種以上である請求項1に記載の方法。

     
     
PCT/JP2021/022096 2021-06-10 2021-06-10 (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法 WO2022259458A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022096 WO2022259458A1 (ja) 2021-06-10 2021-06-10 (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022096 WO2022259458A1 (ja) 2021-06-10 2021-06-10 (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法

Publications (1)

Publication Number Publication Date
WO2022259458A1 true WO2022259458A1 (ja) 2022-12-15

Family

ID=84426022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022096 WO2022259458A1 (ja) 2021-06-10 2021-06-10 (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法

Country Status (1)

Country Link
WO (1) WO2022259458A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057096A (ja) * 1996-08-20 1998-03-03 Nitto Chem Ind Co Ltd 光学活性1,2−プロパンジオール−1−トシラートの製造法
WO2005007865A1 (ja) * 2003-07-17 2005-01-27 Kaneka Corporation 光学活性α-メチルシステイン誘導体の製造方法
JP2006197803A (ja) * 2004-01-05 2006-08-03 Daiso Co Ltd 微生物を利用した光学活性3−クロロ−2−メチル−1,2−プロパンジオールの製造方法
JP2007302591A (ja) * 2006-05-10 2007-11-22 Daiso Co Ltd 1,2−プロパンジオールアセタール誘導体の製造方法
WO2008146888A1 (ja) * 2007-05-29 2008-12-04 Daiso Co., Ltd. 光学活性1,2-ジオール類の製造に用いられる不斉酸化酵素

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057096A (ja) * 1996-08-20 1998-03-03 Nitto Chem Ind Co Ltd 光学活性1,2−プロパンジオール−1−トシラートの製造法
WO2005007865A1 (ja) * 2003-07-17 2005-01-27 Kaneka Corporation 光学活性α-メチルシステイン誘導体の製造方法
JP2006197803A (ja) * 2004-01-05 2006-08-03 Daiso Co Ltd 微生物を利用した光学活性3−クロロ−2−メチル−1,2−プロパンジオールの製造方法
JP2007302591A (ja) * 2006-05-10 2007-11-22 Daiso Co Ltd 1,2−プロパンジオールアセタール誘導体の製造方法
WO2008146888A1 (ja) * 2007-05-29 2008-12-04 Daiso Co., Ltd. 光学活性1,2-ジオール類の製造に用いられる不斉酸化酵素

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA MASAHIRO, ITOH TOHRU, WAKI CHIKAKO: "Multiplication of Pseudomonas aeruginosa in vitro", JOURNAL OF THE JAPANESE ASSOCIATION FOR INFECTIOUS DISEASES, vol. 49, no. 6, 1 January 1975 (1975-01-01), JP , pages 251 - 257, XP009541904, ISSN: 0387-5911, DOI: 10.11150/kansenshogakuzasshi1970.49.251 *

Similar Documents

Publication Publication Date Title
JP2019513379A (ja) 乳酸マグネシウム発酵方法
WO2022259458A1 (ja) (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法
JP2002520066A (ja) 固定化微生物によるマンニトールの製造方法
JP7014240B2 (ja) (s)-3-ハロゲノ-2-メチル-1,2-プロパンジオールを製造する方法
JP4742610B2 (ja) フマル酸の製造方法
IE62149B1 (en) Biocatalytic process for the production of L-(-)-carnitine from crotonobetaine and strains of proteeae for use in said process
US20110065156A1 (en) Process of production of vanillin with immobilized microorganisms
JP4197815B2 (ja) 微生物による(s)−3−ハロゲノ−1,2−プロパンジオールの製法
JPH01144996A (ja) カルニチンヒドロリアーゼの分離方法およびl(−)−カルニチン合成への利用
JPH09154589A (ja) エリスリトールの製造方法
JP3758566B2 (ja) 微生物培養法によるr体1,2−プロパンジオールの製法
JP4306453B2 (ja) 微生物利用によるs体1,2−プロパンジオールの製法
JP4133822B2 (ja) D−アラニンの製造方法
KR20050072066A (ko) 미생물을 이용한 광학 활성 3-클로로-2-메틸-1,2-프로판디올의 제조 방법
JPS58201992A (ja) 微生物によるβ−置換プロピオン酸またはそのアミドの製造法
JP2005117905A (ja) 光学活性1−ベンジル−3−ピロリジノールの製造方法
JP5001016B2 (ja) エルロースの製造方法
JP3740205B2 (ja) (r)−2−アルカノールの製造法
JP4793131B2 (ja) 光学活性2,3−ジクロロ−2−メチル−1−プロパノールおよび光学活性2−メチルエピクロルヒドリンの製造方法
LU82804A1 (fr) Procede de production d'acide 2,5-dicetogluconique
JP3192835B2 (ja) (s)−1,3−ブタンジオールの製法
JP3659123B2 (ja) 4−ハロゲノ−3−アルカノイルオキシブチロニトリルの光学分割方法
FR2508061A1 (fr) Procede de production d'inosine et/ou de guanosine
JPH10234390A (ja) 微生物を用いた光学活性ブタンジオールの製造方法
JP4042557B2 (ja) 光学活性テトラヒドロフラン−2−カルボン酸及びそのエステルの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE