WO2022247674A1 - 三维羧酸共价有机框架材料及制备方法和应用 - Google Patents

三维羧酸共价有机框架材料及制备方法和应用 Download PDF

Info

Publication number
WO2022247674A1
WO2022247674A1 PCT/CN2022/093033 CN2022093033W WO2022247674A1 WO 2022247674 A1 WO2022247674 A1 WO 2022247674A1 CN 2022093033 W CN2022093033 W CN 2022093033W WO 2022247674 A1 WO2022247674 A1 WO 2022247674A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
organic framework
dimensional
covalent organic
framework material
Prior art date
Application number
PCT/CN2022/093033
Other languages
English (en)
French (fr)
Inventor
徐宏
何向明
李宗龙
Original Assignee
清华大学
北京华睿新能动力科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 北京华睿新能动力科技发展有限公司 filed Critical 清华大学
Priority to JP2023573397A priority Critical patent/JP2024521853A/ja
Priority to EP22810401.4A priority patent/EP4349885A4/en
Publication of WO2022247674A1 publication Critical patent/WO2022247674A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic

Definitions

  • the present application relates to the technical field of covalent organic framework materials, in particular to a three-dimensional carboxylic acid covalent organic framework material and its preparation method and application.
  • Covalent Organic Frameworks are organic porous polymer materials with periodicity and crystallinity. Because of its uniform pore size, it is often called “organic zeolite” and has a wide range of applications in research fields such as gas adsorption, catalysis, and energy storage.
  • the research on covalent organic framework materials is mainly concentrated in the field of two-dimensional materials, and the target functional groups introduced are mainly concentrated in functional groups such as hydroxyl and alkynyl groups, which makes the final covalent organic framework materials have fewer active sites.
  • the traditional method of introducing target functional groups usually adopts the post-modification method, but the harsh chemical environment in the post-modification process will lead to the collapse of the pores, which will greatly reduce the specific surface area of the prepared covalent organic framework material.
  • post-modification is often incomplete, which will also lead to the decline of active sites in the material.
  • the present application provides a three-dimensional carboxylic acid covalent organic framework material, its preparation method, and its application.
  • the present application provides a three-dimensional carboxylic acid covalent organic framework material, which is formed by linking monomers and compounds through imine bonds formed by the reaction of formyl groups in the monomers and amino groups in the compounds.
  • the structural formula of the monomer is any one of formula I, II, III:
  • R is selected from C, Si, substituted or unsubstituted biphenyl, or Where * is the linking site;
  • R 2 to R 31 are independently selected from H, C 1 to C 6 straight chain alkyl, C 1 to C 6 branched chain alkyl, or C 1 to C 6 alkoxy;
  • R 32 , R 33 , R 42 , and R 43 are independently selected from H, Cl, Br, F, I, nitro, hydroxyl, C 1 ⁇ C 6 straight chain alkyl, C 1 ⁇ C 6 branched chain Alkyl, or C 1 -C 6 alkoxy;
  • R 34 -R 41 are independently selected from H, Cl, Br, F, I, carboxyl, nitro, hydroxyl, C 1 -C 6 linear alkyl, C 1 -C 6 branched alkyl, or C 1 -C 6 alkoxy, and at least one of R 34 -R 41 is carboxyl.
  • the monomer is selected from any one of formula VI, VII, VIII:
  • the monomer is selected from any one of formulas VI and VII:
  • R 2 to R 9 are independently selected from H or C 1 to C 6 alkoxy groups, and the two groups connected to the phenyl group and adjacent to the formyl group are different.
  • the structural formula of the compound is formula IV or V:
  • R 34 to R 41 are carboxyl groups.
  • the compound is selected from any one of formulas IX and X:
  • R 34 to R 41 are independently selected from H or carboxyl, and at least one of R 34 to R 41 is carboxyl.
  • the same monomer molecule and multiple compound molecules are connected through the imine bond formed by the reaction of the formyl group with the amino group, and the same compound molecule and multiple monomer molecules are connected through the formyl group The imine bond formed by reaction with the amino group is linked.
  • Another aspect of the present application provides a method for preparing the above-mentioned three-dimensional carboxylic acid covalent organic framework material, which includes the following steps:
  • the monomer and the compound are mixed with a first organic solvent and a catalyst, oxygen is removed, and then heated and reacted in a sealed state to prepare a three-dimensional carboxylic acid covalent organic framework material.
  • the first organic solvent is selected from 1,2-dichlorobenzene, 1,4-dioxane, n-butanol, ethanol, methylene chloride, N,N-dimethylformamide , at least one of chloroform, acetone, acetonitrile and tetrahydrofuran.
  • the catalyst is at least one selected from acetic acid, formic acid, benzenesulfonic acid and toluenesulfonic acid.
  • the reaction temperature of the heating reaction is 80°C-150°C, and the reaction time is 3-7 days.
  • the preparation method further includes the steps of washing, purifying and drying the reacted product.
  • Another aspect of the present application provides an application of the above-mentioned three-dimensional carboxylic acid covalent organic framework material as a gas adsorbent.
  • Another aspect of the present application provides a gas adsorbent, which includes the above-mentioned three-dimensional carboxylic acid covalent organic framework material.
  • Fig. 1 is a schematic diagram of synthesizing a three-dimensional carboxylic acid covalent organic framework material in an embodiment of the present application.
  • Fig. 2 is a powder X-ray diffraction (PXRD) spectrum of a three-dimensional carboxylic acid covalent organic framework material prepared in an embodiment of the present application.
  • PXRD powder X-ray diffraction
  • Fig. 3 is the adsorption-desorption isotherm curve of the three-dimensional carboxylic acid covalent organic framework material for nitrogen gas prepared in one embodiment of the present application.
  • Fig. 4 is the adsorption-desorption isotherm curve of the three-dimensional carboxylic acid covalent organic framework material for carbon dioxide prepared in one embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • THF Tetrahydrofuran
  • o-DCB 1,2-dichlorobenzene
  • PXRD polycrystalline X-ray diffraction
  • substituted means that a hydrogen atom in the described group is replaced by a substituent.
  • substituted or unsubstituted means that the described group may be substituted or unsubstituted.
  • substituted it should be understood that it is optionally substituted by an acceptable group in the art, including but not limited to: nitro, halogen atom, C 1-10 alkyl, C 1-10 alkane Oxygen, or a combination of the above groups, etc.
  • alkyl refers to a saturated hydrocarbon group, which refers to a hydrocarbon group obtained by removing one H from an alkane molecule.
  • the n in the symbol “C n " before the alkyl group represents the carbon number of the alkyl group, which may be an integer from 1 to 10. The carbon number of the alkyl group may be 1-10, 1-8, 1-6 or 1-4.
  • Alkyl groups may be straight-chain or branched-chain.
  • C 1-9 straight-chain alkyl refers to a straight-chain alkyl group containing 1 to 9 carbon atoms, and each occurrence can be independently a C 1 straight-chain alkyl, a C 2 straight-chain alkyl , C 3 straight chain alkyl, C 4 straight chain alkyl, C 5 straight chain alkyl, C 6 straight chain alkyl, C 7 straight chain alkyl, C 8 straight chain alkyl or C 9 straight chain alkyl.
  • C 1-9 branched chain alkyl refers to a branched chain alkyl group containing 1 to 9 carbon atoms, each time it appears, it can be independently C 1 branched chain alkyl, C 2 branched chain alkyl, C 3 branched chain alkyl, C 4 branched chain alkyl, C 5 branched chain alkyl, C 6 branched chain alkyl, C 7 branched chain alkyl, C 8 branched chain alkyl or C 9 branched chain alkyl.
  • alkoxy refers to a group having an -O-alkyl group, ie comprising an alkyl group as defined above and an oxygen atom through which the alkyl group is attached to the core structure.
  • C 1 -C 6 alkoxy refers to an alkoxy group whose alkyl moiety contains 1 to 6 carbon atoms, and each occurrence can be independently C 1 alkoxy, C 2 alkoxy , C 3 alkoxy, C 4 alkoxy, C 5 alkoxy or C 6 alkoxy.
  • the alkyl portion of an alkoxy group may also be branched or branched.
  • Suitable examples include, but are not limited to: methoxy (-O-CH 3 or -OMe), ethoxy (-O-CH 2 CH 3 or -OEt), and tert-butoxy (-OC(CH 3 ) 3 or -OtBu).
  • the structural formula of the monomer is any one of formulas I to III:
  • R is selected from C, Si, substituted or unsubstituted biphenyl, or Where * is the linking site;
  • R 2 to R 31 are independently selected from H, C 1 to C 6 straight chain alkyl, C 1 to C 6 branched chain alkyl, or C 1 to C 6 alkoxy;
  • R 32 , R 33 , R 42 , and R 43 are independently selected from H, Cl, Br, F, I, nitro, hydroxyl, C 1 ⁇ C 6 straight chain alkyl, C 1 ⁇ C 6 branched chain Alkyl, or C 1 -C 6 alkoxy;
  • R 34 -R 41 are independently selected from H, Cl, Br, F, I, carboxyl, nitro, hydroxyl, C 1 -C 6 linear alkyl, C 1 -C 6 branched alkyl, or C 1 -C 6 alkoxy, and at least one of R 34 -R 41 is carboxyl.
  • the prepared three-dimensional carboxylic acid covalent organic framework material has abundant active sites and high specific surface area.
  • the three-dimensional carboxylic acid covalent organic framework material is formed by linking monomers and compounds through imine bonds formed by the reaction of formyl groups and amino groups, wherein, part or all of the formyl groups in each monomer molecule and the corresponding number One amino group of each compound molecule reacts to form an imine bond, and part or all of the amino groups in each compound molecule reacts with one formyl group of a corresponding number of monomer molecules to form an imine bond.
  • the same monomer molecule and multiple compound molecules are connected through the imine bond formed by the reaction of the formyl group with the amino group, and the same compound molecule and multiple monomer molecules are connected through the formyl group The imine bond formed by reaction with the amino group is linked.
  • each monomer molecule is connected with 1 to 4 compound molecules through the imine bonds generated after the reaction, and each compound molecule is connected with 1 or 2 monomer molecules.
  • the body molecules are linked by imine bonds formed after the reaction.
  • the number of compound molecules connected to the same monomer molecule through synthetic imine bonds is 3-4, and the number of monomer molecules connected to the same compound molecule through synthetic imine bonds is 2.
  • each monomer molecule is connected with 1 to 6 compound molecules through the imine bonds generated after the reaction, and each compound molecule is connected with 1 or 2 monomer molecules Linked by imine bonds generated after the reaction.
  • the number of compound molecules linked to the same monomer molecule through synthetic imine bonds is 4-6, and the number of monomer molecules linked to the same compound molecule through synthetic imine bonds is 2.
  • the monomer is selected from any one of formula VI, VII, VIII:
  • the monomer is selected from any one of formulas VI and VII:
  • R 2 to R 9 are independently selected from H or C 1 to C 6 alkoxy groups, and the two groups connected to the phenyl group and adjacent to the formyl group are different, that is, R 2 and R3 is different, R4 is different from R5 , R6 is different from R7 , R8 is different from R9 .
  • the structural formula of the compound is formula IV or V:
  • R 34 to R 41 are carboxyl groups.
  • the compound is selected from any one of formula IX, X:
  • R 34 to R 41 are independently selected from H or carboxyl, and at least one of R 34 to R 41 is carboxyl.
  • the monomer is selected from any of the following structures:
  • the compound is selected from any one of the following structures:
  • the embodiment of the present application provides a method for preparing the above-mentioned three-dimensional carboxylic acid covalent organic framework material, which includes the following steps:
  • the monomer and the compound are mixed with a first organic solvent and a catalyst to form a mixture, and the oxygen in the mixture is removed, and then heating reaction is carried out in a sealed state to prepare a three-dimensional carboxylic acid covalent organic framework material.
  • the method for removing oxygen is a freezing-thawing method
  • the specific steps include: using liquid nitrogen to freeze the mixture placed in a sealed container, vacuumize the container after the freezing is complete, and then place the container in a static state. Allow to return to room temperature. The freeze-thaw process can be repeated to completely remove oxygen from the mixture.
  • the temperature of the heating reaction is 80°C-150°C, and the time is 3-7 days. In one embodiment, the temperature of the heating reaction is 120° C., and the time is 5 days.
  • the monomer and the compound before mixing the monomer and the compound with the organic solvent and the catalyst, the monomer and the compound may be mixed first, and oxygen in the mixed monomer and compound may be removed.
  • the method for removing oxygen is to fill the container containing the mixed monomers and compounds with non-oxygen gas to perform gas replacement.
  • the charging and discharging times are not limited, as long as the oxygen in the reactants can be removed.
  • the non-oxygen gas may be one or both of nitrogen or helium.
  • the first organic solvent may be selected from alcohols, ethers, aromatic hydrocarbons, amides, sulfoxides, amides, and derivatives thereof.
  • the first organic solvent includes, but is not limited to, 1,2-dichlorobenzene, 1,4-dioxane, n-butanol, ethanol, dichloromethane, N,N-dimethylformamide , chloroform, acetone, acetonitrile, tetrahydrofuran, and combinations thereof.
  • the catalyst is a catalyst commonly used in the preparation of covalent organic framework materials known in the art, and can be selected from at least one of carboxylic acid and sulfonic acid, for example, can be selected from acetic acid, formic acid, benzenesulfonic acid and at least one of toluenesulfonic acid.
  • the molar ratio of the catalyst to the first organic solvent is 1:5 ⁇ 1:30. In one embodiment, the molar ratio of the catalyst to the first organic solvent is 1:10.
  • the preparation method further includes the steps of washing, purifying and drying the reacted product.
  • the specific steps of washing are: soaking the obtained product in a second organic solvent.
  • the second organic solvent can be selected from one or more of tetrahydrofuran, ethanol or acetone.
  • the washing is to soak the obtained product in a second organic solvent for 24 hours, wherein a fresh second organic solvent is replaced every 8 hours.
  • both the first organic solvent and the second organic solvent are selected from ultra-dry solvents to ensure that the solvents have high purity and low water content.
  • the purification method is Soxhlet extraction
  • the solvent used for extraction may be acetone or tetrahydrofuran
  • the extraction time used is 20h-30h.
  • the solvent used for extraction is acetone
  • the extraction time is 24 hours.
  • the drying condition is vacuum drying, and the drying temperature is 25° C. to 140° C. In one embodiment, the drying temperature is 80° C.
  • the embodiment of the present application also provides an application of the above-mentioned three-dimensional carboxylic acid covalent organic framework material as a gas adsorbent.
  • the three-dimensional carboxylic acid covalent organic framework material can be used as an adsorbent to adsorb fuel gases such as hydrogen, methane and ammonia, and pollutant gases such as carbon dioxide and sulfur dioxide.
  • fuel gases such as hydrogen, methane and ammonia
  • pollutant gases such as carbon dioxide and sulfur dioxide.
  • the present application selects monomers with the structure shown in formula I, formula II or formula III and compounds with the structure shown in formula IV or formula V, and synthesizes a three-dimensional carboxylic acid covalent organic framework material with carboxyl group through the method of pre-modification.
  • the material has abundant active sites, can form uniformly distributed pores on the surface, and has a high specific surface area. Moreover, the material has excellent adsorption and catalytic functions, and can be used for gas adsorption and extraction or enrichment of metal ions.
  • the glass tube was taken out and returned to room temperature. Then the reaction product was placed in a 20mL sample bottle and soaked in ultra-dry tetrahydrofuran. The tetrahydrofuran was replaced every 8 hours for a total of 3 times, filtered, and extracted with acetone for 24 hours. Further, the reaction product was vacuum-dried at 80° C. for 12 h to obtain a yellow product.
  • Figure 2 is the PXRD pattern of the three-dimensional carboxylic acid covalent organic framework material obtained in this example, it can be seen from the figure that the material has excellent crystallization ability.
  • Figure 3 is the nitrogen adsorption/desorption isotherm of the three-dimensional carboxylic acid covalent organic framework material prepared in this example, where P is the partial pressure of nitrogen, and P0 is the saturated vapor pressure of nitrogen at the temperature of liquid nitrogen. It can be seen that the nitrogen adsorption capacity increases sharply at lower pressure ( ⁇ 0.1P/P 0 ), indicating that the material has a large number of micropores.
  • Fig. 4 is the adsorption/desorption isotherm of carbon dioxide gas under different pressures of the three-dimensional carboxylic acid covalent organic framework material prepared in this example, where the abscissa is the pressure of carbon dioxide gas. It can be seen from Figure 3 and Figure 4 that the material has a strong adsorption capacity, indicating that it has a large specific surface area and abundant active sites.
  • the preparation method of this example is basically the same as that of Example 1, except that the monomers, compounds, catalysts and reaction temperatures used are different. Concrete synthetic steps are as follows:
  • the reaction system at the lower end of the glass tube was completely submerged in 77K liquid nitrogen, the liquid part was completely frozen, and then vacuumized to thaw and return to room temperature, and the freeze-thaw procedure was repeated 3 times.
  • the glass tube mouth was sealed with a hand-held flame gun.
  • the glass tube was placed in a blast oven at 90°C for 120 h.
  • the reaction product was placed in a 20mL sample bottle and soaked in ultra-dry tetrahydrofuran. The tetrahydrofuran was replaced every 8 hours for a total of 3 times, filtered, and extracted with acetone for 24 hours. Further, the reaction product was vacuum-dried at 80° C. for 12 h to obtain a dark yellow product.
  • the preparation method of this example is basically the same as that of Example 1, except that the monomers, compounds, catalysts and reaction temperatures used are different. Concrete synthetic steps are as follows:
  • the reaction system at the lower end of the glass tube was completely submerged in 77K liquid nitrogen, the liquid part was completely frozen, and then vacuumized to thaw and return to room temperature, and the freeze-thaw procedure was repeated 3 times.
  • the glass tube mouth was sealed with a hand-held flame gun.
  • the glass tube was placed in a blast oven at 90°C for 120 h.
  • the reaction product was placed in a 20mL sample bottle and soaked in ultra-dry tetrahydrofuran. The tetrahydrofuran was replaced every 8 hours for a total of 3 times, filtered, and extracted with acetone for 24 hours. Further, the reaction product was vacuum-dried at 80° C. for 12 h to obtain a pale yellow product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及一种三维羧酸共价有机框架材料及制备方法和应用。所述三维羧酸共价有机框架材料由单体与化合物通过单体中的甲酰基与化合物中的氨基反应形成的亚胺键连接而成。单体结构式为式(I)、式(II)或式(III),R1为C、Si、取代或未取代的联苯基,或式(VI)*为连接位点;R2~R31分别独立地选自H、C1~C6直链烷基、C1~C6支链烷基,或C1~C6烷氧基。化合物结构式为(IV)或(V),R32~R43分别独立地选自H、Cl、Br、F、I、硝基、羟基、C1~C6直链烷基、C1~C6支链烷基,或C1~C6烷氧基,R34~R41中至少有一个为羧基。

Description

三维羧酸共价有机框架材料及制备方法和应用
相关申请
本申请要求2021年05月28日申请的,申请号为202110592504.7,名称为“三维羧酸共价有机框架材料及制备方法和应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及共价有机框架材料技术领域,具体而言,涉及一种三维羧酸共价有机框架材料及其制备方法和应用。
背景技术
共价有机框架材料(Covalent Organic Frameworks,COFs)属于有机多孔聚合物材料,其具有周期性和结晶性。由于其具有均一的孔尺寸,因此常被称为“有机沸石”,在气体吸附、催化领域及能量存储等研究领域具有广泛的应用。
目前共价有机框架材料的研究主要集中在二维材料领域,引入的目标官能团也主要集中在羟基、炔基等功能基团,这使得最终制得的共价有机框架材料的活性位点较少。而且传统引入目标官能团的方法通常是采用后修饰方式,但后修饰过程中苛刻的化学环境会导致孔道的塌陷,从而导致制得的共价有机框架材料的比表面积大为降低。与此同时,后修饰往往修饰不完全,也会导致材料中活性位点的下降。
发明内容
基于此,本申请提供一种三维羧酸共价有机框架材料及其制备方法,以及其应用。
本申请一方面提供一种三维羧酸共价有机框架材料,由单体与化合物通过所述单体中的甲酰基与所述化合物中的氨基反应形成的亚胺键连接形成。
所述单体的结构式为式I、II、III中的任意一种:
Figure PCTCN2022093033-appb-000001
其中,R 1选自C、Si、取代或未取代的联苯基,或
Figure PCTCN2022093033-appb-000002
其中*为连接位点;
R 2~R 31分别独立地选自H、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基;
所述化合物的结构式为式IV或V:
Figure PCTCN2022093033-appb-000003
其中,R 32、R 33、R 42、R 43分别独立地选自H、Cl、Br、F、I、硝基、羟基、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基;R 34~R 41分别独立地选自H、Cl、Br、F、I、羧基、硝基、羟基、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基,且R 34~R 41中至少有一个为羧基。
在一些实施例中,所述单体选自式VI、VII、VIII中的任意一种:
Figure PCTCN2022093033-appb-000004
在一些实施例中,所述单体选自式VI、VII中的任意一种:
Figure PCTCN2022093033-appb-000005
其中,R 2~R 9分别独立地选自H或C 1~C 6烷氧基,且与苯基连接且与甲酰基相邻的两个基团不相同。
在一些实施例中,所述化合物的结构式为式IV或V:
Figure PCTCN2022093033-appb-000006
其中,R 34~R 41中至少有两个为羧基。
在一些实施例中,所述化合物选自式IX、X中的任意一种:
Figure PCTCN2022093033-appb-000007
其中,R 34~R 41分别独立地选自H或羧基,且R 34~R 41中至少有一个为羧基。
在一些实施例中,同一单体分子与多个化合物分子通过所述甲酰基与所述氨基反应形 成的所述亚胺键连接,并且,同一化合物分子与多个单体分子通过所述甲酰基与所述氨基反应形成的所述亚胺键连接。
本申请另一方面提供一种上述三维羧酸共价有机框架材料的制备方法,其包括以下步骤:
将所述单体、所述化合物与第一有机溶剂及催化剂混合并去除氧气,然后在密封状态下进行加热反应制备三维羧酸共价有机框架材料。
在一些实施例中,所述第一有机溶剂选自1,2-二氯苯、1,4-二氧六环、正丁醇、乙醇、二氯甲烷、N,N-二甲基甲酰胺、氯仿、丙酮、乙腈及四氢呋喃中的至少一种。
在一些实施例中,所述催化剂选自乙酸、甲酸、苯磺酸及甲基苯磺酸中的至少一种。
在一些实施例中,所述加热反应的反应温度为80℃~150℃,反应时间为3~7天。
在一些实施例中,所述制备方法还包括将反应后的产物进行洗涤、提纯和干燥的步骤。
本申请另一方面提供一种上述三维羧酸共价有机框架材料作为气体吸附剂的应用。
本申请另一方面提供一种气体吸附剂,所述气体吸附剂包括上述三维羧酸共价有机框架材料。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例中合成三维羧酸共价有机框架材料的示意图。
图2为本申请一个实施例中制备的三维羧酸共价有机框架材料的粉末X射线衍射(PXRD)图谱。
图3为本申请一个实施例中制备的三维羧酸共价有机框架材料对氮气的吸附-脱附等温曲线。
图4为本申请一个实施例中制备的三维羧酸共价有机框架材料对二氧化碳的吸附-脱附等温曲线。
具体实施方式
现将详细地提供本申请实施例的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本申请。实际上,对本领域技术人员而言,显而易见的是,可以对本申 请进行多种修改和变化而不背离本申请的范围或精神。例如,作为一个实施例的部分而说明或描述的特征可以用于另一实施例中,来产生更进一步的实施例。
因此,旨在本申请覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本申请的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施例的描述,而非意在限制本申请更广阔的方面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
除了在操作实施例中所示以外或另外表明之外,所有在说明书和权利要求中表示成分的量、物化性质等所使用的数字理解为在所有情况下通过术语“约”来调整。例如,因此,除非有相反的说明,否则上述说明书和所附权利要求书中列出的数值参数均是近似值,本领域的技术人员能够利用本文所公开的教导内容寻求获得的所需特性,适当改变这些近似值。用端点表示的数值范围的使用包括该范围内的所有数字以及该范围内的任何范围,例如,1至5包括1、1.1、1.3、1.5、2、2.75、3、3.80、4和5等等。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本文中使用的缩写和符号与化学和生物学领域的技术人员通常使用的这类缩写和符号一致。具体地,在实施例和整个说明书中可能使用括号中的缩写代替以下名词:
四氢呋喃(THF)、1,2-二氯苯(o-DCB)、多晶X射线衍射(PXRD)
术语和定义
在本申请中,“取代”表示所描述的基团中的氢原子被取代基所取代。
本申请中,“取代或未取代”表示所描述的基团可以被取代,也可以不被取代。当所描述的基团被取代时,应理解为任选被本领域可接受的基团所取代,包括但不限于:硝基、卤素原子、C 1-10的烷基、C 1-10的烷氧基,或上述基团的组合等。
在本申请中,“烷基”即指饱和烃基,是指从烷烃分子中去除掉一个H而成的烃基。烷基前的符号“C n”中的n代表烷基的碳数,可以为1~10中的整数。烷基的碳数可以为1 至10、1至8、1至6或1至4。烷基可以是直链烷基或支链烷基。例如,“C 1-9直链烷基”是指包含1~9个碳原子的直链烷基,每次出现时,可以互相独立地为C 1直链烷基、C 2直链烷基、C 3直链烷基、C 4直链烷基、C 5直链烷基、C 6直链烷基、C 7直链烷基、C 8直链烷基或C 9直链烷基。“C 1-9支链烷基”是指包含1~9个碳原子的支链烷基,每次出现时,可以互相独立地为C 1支链烷基、C 2支链烷基、C 3支链烷基、C 4支链烷基、C 5支链烷基、C 6支链烷基、C 7支链烷基、C 8支链烷基或C 9支链烷基。
术语“烷氧基”是指具有-O-烷基的基团,即包含如上所定义的烷基和氧原子,且所述烷基经由该氧原子连接至母核结构。例如,“C 1~C 6烷氧基”是指烷基部分包含1~6个碳原子的烷氧基,每次出现时,可以互相独立地为C 1烷氧基、C 2烷氧基、C 3烷氧基、C 4烷氧基、C 5烷氧基或C 6烷氧基。如上所定义,烷氧基的烷基部分也可以是支链烷基或支链烷基。合适的实例包括但不限于:甲氧基(-O-CH 3或-OMe)、乙氧基(-O-CH 2CH 3或-OEt)和叔丁氧基(-O-C(CH 3) 3或-OtBu)。
本申请提供了一种三维羧酸共价有机框架材料,其由单体与化合物通过所述单体中的甲酰基与所述化合物中的氨基反应形成的亚胺键(-C=N-)连接形成。
所述单体的结构式为式I~III中的任意一种:
Figure PCTCN2022093033-appb-000008
Figure PCTCN2022093033-appb-000009
R 1选自C、Si、取代或未取代的联苯基,或
Figure PCTCN2022093033-appb-000010
其中*为连接位点;
R 2~R 31分别独立地选自H、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基;
化合物的结构式为式IV或V:
Figure PCTCN2022093033-appb-000011
其中,R 32、R 33、R 42、R 43分别独立地选自H、Cl、Br、F、I、硝基、羟基、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基;R 34~R 41分别独立地选自H、Cl、Br、F、I、 羧基、硝基、羟基、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基,且R 34~R 41中至少有一个为羧基。
本申请实施例通过在单体中引入带有羧基的化合物,使制备得到的三维羧酸共价有机框架材料具有丰富活性位点和高比表面积。
在一些实施例中,三维羧酸共价有机框架材料由单体与化合物通过甲酰基与氨基反应形成的亚胺键连接形成,其中,每个单体分子中的部分或全部甲酰基与对应数量的化合物分子各自的一个氨基反应形成的亚胺键,并且,每个化合物分子中的部分或全部氨基与对应数量的单体分子各自的一个甲酰基反应形成亚胺键。
在一些实施例中,同一单体分子与多个化合物分子通过所述甲酰基与所述氨基反应形成的所述亚胺键连接,并且,同一化合物分子与多个单体分子通过所述甲酰基与所述氨基反应形成的所述亚胺键连接。
在所述单体的结构式为式I或II的实施例中,每个单体分子与1~4个化合物分子通过反应后生成的亚胺键连接,且每个化合物分子与1或2个单体分子通过反应后生成的亚胺键连接。在一些实施例中,与同一单体分子通过合成的亚胺键连接的化合物分子数量为3~4个,与同一化合物分子通过合成的亚胺键连接的单体分子数量为2个。
在所述单体的结构式为式III的实施例中,每个单体分子与1~6个化合物分子通过反应后生成的亚胺键连接,且每个化合物分子与1或2个单体分子通过反应后生成的亚胺键连接。在一些实施例中,与同一单体分子通过合成的亚胺键连接的化合物分子数量为4~6个,与同一化合物分子通过合成的亚胺键连接的单体分子数量为2个。
在一些实施例中,所述单体选自式VI、VII、VIII中的任意一种:
Figure PCTCN2022093033-appb-000012
Figure PCTCN2022093033-appb-000013
在一些实施例中,所述单体选自式VI、VII中的任意一种:
Figure PCTCN2022093033-appb-000014
其中,R 2~R 9分别独立地选自H或C 1~C 6烷氧基,且与苯基连接且与甲酰基相邻的两个基团不相同,即同一结构式中的R 2与R 3不同,R 4与R 5不同,R 6与R 7不同,R 8与R 9不同。
在一些实施例中,所述化合物的结构式为式IV或V:
Figure PCTCN2022093033-appb-000015
其中,R 34~R 41中至少有两个为羧基。
在一些实施例中,化合物选自式IX、X中的任意一种:
Figure PCTCN2022093033-appb-000016
其中,R 34~R 41分别独立地选自H或羧基,且R 34~R 41中至少有一个为羧基。
在一些实施例中,所述单体选自以下结构中的任意一种:
Figure PCTCN2022093033-appb-000017
在一些实施例中,所述化合物选自以下结构中的任意一种:
Figure PCTCN2022093033-appb-000018
本申请实施例提供一种上述三维羧酸共价有机框架材料的制备方法,其包括以下步骤:
将所述单体、所述化合物与第一有机溶剂及催化剂混合形成混合物,并去除混合物中的氧气,然后在密封状态下进行加热反应制备三维羧酸共价有机框架材料。
在一实施例中,所述去除氧气的方法为冰冻-解冻方法,具体步骤包括:采用液氮将置于密封容器中的所述混合物冰冻,待冰冻完全后对容器抽真空,然后将容器静置至恢复至室温。所述冰冻-解冻这一流程可以重复操作以完全除去所述混合物中的氧气。
所述加热反应的温度为80℃~150℃,时间为3~7天。在一实施例中,加热反应的温度为120℃,时间为5天。
在一些实施例中,在将所述单体和所述化合物与有机溶剂和催化剂混合之前,还可以先将单体与化合物进行混合,并去除混合的单体和化合物中的氧气。在一实施例中,所述去除氧气的方法为对容置有混合的单体和化合物的容器充放非氧气体,从而进行气体置换。其中,充放次数不作限制,只要能够将反应物中氧气除去即可。在一些实施例中,所述非氧气体可以为氮气或氦气中的一种或两种。
在一些实施例中,第一有机溶剂可以选自醇类、醚类、芳香烃、酰胺类、亚砜类、酰胺类、及其衍生物等。在一些实施例中,第一有机溶剂包括但不限于1,2-二氯苯、1,4-二氧六环、正丁醇、乙醇、二氯甲烷、N,N-二甲基甲酰胺、氯仿、丙酮、乙腈、四氢呋喃、及其组合。
在一些实施例中,催化剂为本领域已知的常用于制备共价有机框架材料的催化剂,可以选自羧酸和磺酸中的至少一种,例如可以选自乙酸、甲酸、苯磺酸和甲基苯磺酸中的至少一种。所述催化剂与所述第一有机溶剂的摩尔比为1:5~1:30。在一实施例中,催化剂与第一有机溶剂的摩尔比为1:10。
在一些实施例中,所述制备方法还包括将反应后的产物进行洗涤、提纯和干燥的步骤。
所述洗涤具体步骤为:将所得产物置于第二有机溶剂中进行浸泡。其中,第二有机溶 剂可以选自四氢呋喃、乙醇或丙酮中的一种或多种。
在一些实施例中,所述洗涤为将所得产物置于第二有机溶剂中浸泡24h,其中每隔8h更换一次新鲜的第二有机溶剂。
在些一实施例中,第一有机溶剂和第二有机溶剂均选自超干溶剂,以保证溶剂具有高纯度和低含水量。
在一实施例中,所述提纯方法为索氏提取,提取所用溶剂可以为丙酮或四氢呋喃,所用提取时间为20h~30h。在一实施例中,提取所用溶剂为丙酮,提取时间为24h。
所述干燥的条件为真空干燥,干燥温度为25℃~140℃,在一实施例中,干燥温度为80℃。
本申请实施例还提供一种上述三维羧酸共价有机框架材料作为气体吸附剂的应用。
所述三维羧酸共价有机框架材料作为吸附剂可以用于吸附氢气,甲烷,氨气等燃料气体,和二氧化碳、二氧化硫等污染物气体。
本申请选用具有式I、式II或式III所示结构的单体及式IV或式V所示结构的化合物,通过前修饰的方法合成了带有羧基的三维羧酸共价有机框架材料。该材料具有丰富的活性位点,表面能够形成均匀分布的孔,并具有高的比表面积。而且该材料具有优异的吸附、催化功能,可用于气体吸附和金属离子的提取或富集。
以下结合具体实施例和对比例对本申请的三维羧酸共价有机框架材料及制备方法和应用作进一步详细的说明。
如无特殊说明,本申请以下实施例中所用试剂及材料均可通过市售购得。
实施例1
1、三维羧酸共价有机框架材料的制备
在高硼耐压玻璃管(规格为长×直径=15×8mm 2)中加入22.5mg 2,2',7,7'-四甲氧基-3,3',6,6'-四甲酰基-9,9'-螺二芴单体与27.2mg 4,4'-二氨基-[1,1'-联苯]-2,2'-二羧酸,并用橡胶塞将玻璃管密封。然后对玻璃管重复抽真空后充入氮气以除去反应物中的氧气。随后依次加入1mL超干1,2-二氯苯溶剂和100μL冰醋酸,室温下静置30min。接下来把玻璃管下端的反应体系完全浸没在77K的液氮中,将液体部分完全冰冻,然后抽真空解冻并恢复到室温,按照冰冻-解冻的程序重复操作3次。将处理好的玻璃管下部的溶剂重新用液氮冰冻并抽真空后,用手持型火焰枪将玻璃管口封住。待溶剂完全溶解且恢复到室温后,将玻璃管置于120℃的鼓风烘箱中反应120h,反应结束后将玻璃管取出并恢复到室温。然后将反应产物置于20mL的样品瓶中,并用超干四氢呋喃浸泡,每8h更换一次四氢呋喃,共更 换3次后过滤,并用丙酮索式提取24h。进而将反应产物在80℃下真空干燥12h,即得黄色产物。
上述黄色产物的合成过程及结构如图1所示。
2、性能测试
1)采用Bruker D8 Advance射线衍射仪对上述制得的三维羧酸共价有机框架材料进行PXRD测试,测试角度为2°~40°,扫描速度为0.02°/s。
2)在液氮温度即77K的条件下,利用BEL sorp-max II测试了上述三维羧酸共价有机框架材料对氮气的吸附-脱附性能。
3)在二氧化碳温度为298K,压力为0bar至50bar的条件下,利用BSD-PH Full-Auto High Pressure & Desorption Analyzer测试了上述三维羧酸共价有机框架材料对二氧化碳的吸附-脱附性能。
图2为本实施例中得到的三维羧酸共价有机框架材料的PXRD图,由图中可看出该材料具有优异的结晶能力。
图3为本实施例制得的三维羧酸共价有机框架材料的氮气吸附/脱附等温线,其中,P为氮气分压,P0为液氮温度下氮气的饱和蒸汽压。可以看到,在较低气压(<0.1P/P 0)下对氮气的吸附量即急剧上升,表明材料存在大量微孔。图4为本实施例制得的三维羧酸共价有机框架材料的二氧化碳气体在不同压强下的吸附/脱附等温线,其中横坐标为二氧化碳气体的压强。从图3和图4中可以看出该材料吸附能力较强,说明其具有较大的比表面积及丰富的活性位点。
实施例2
本实施例与实施例1的制备方法基本相同,不同之处在于:所用的单体、化合物、催化剂及反应温度不同。具体合成步骤如下:
在高硼耐压玻璃管(规格为长×直径=15×8mm 2)中加入21.6mg四(4-醛基苯基)甲烷与27.2mg 4,4'-二氨基-[1,1'-联苯]-2,2'-二羧酸,并用橡胶塞将玻璃管密封。然后在玻璃管中重复充入氮气以除去反应物中的氧气。随后依次加入1mL超干1,4-二氧六环和100μL 6M醋酸水溶液,室温下静置30min。接下来把玻璃管下端的反应体系完全浸没在77K的液氮中,将液体部分完全冰冻,然后抽真空解冻并恢复到室温,按照冰冻-解冻的程序重复操作3次。将处理好的玻璃管下部的溶剂重新用液氮冰冻并抽真空后,用手持型火焰枪将玻璃管口封住。待溶剂完全溶解且恢复到室温后,将玻璃管置于90℃的鼓风烘箱中反应120h,反应结束后将玻璃管取出并恢复到室温。然后将反应产物置于20mL的样品瓶中,并用超 干四氢呋喃浸泡,每8h更换一次四氢呋喃,共更换3次后过滤,并用丙酮索式提取24h。进而将反应产物在80℃下真空干燥12h,即得暗黄色产物。
实施例3
本实施例与实施例1的制备方法基本相同,不同之处在于:所用的单体、化合物、催化剂及反应温度不同。具体合成步骤如下:
在高硼耐压玻璃管(规格为长×直径=15×8mm 2)中加入27.6mg 1,3,5,7-四(4-苯甲醛基)-金刚烷与27.2mg 4,4'-二氨基-[1,1'-联苯]-2,2'-二羧酸,并用橡胶塞将玻璃管密封。然后在玻璃管中重复充入氮气以除去反应物中的氧气。随后依次加入1mL超干1,4-二氧六环和100μL 6M醋酸水溶液,室温下静置30min。接下来把玻璃管下端的反应体系完全浸没在77K的液氮中,将液体部分完全冰冻,然后抽真空解冻并恢复到室温,按照冰冻-解冻的程序重复操作3次。将处理好的玻璃管下部的溶剂重新用液氮冰冻并抽真空后,用手持型火焰枪将玻璃管口封住。待溶剂完全溶解且恢复到室温后,将玻璃管置于90℃的鼓风烘箱中反应120h,反应结束后将玻璃管取出并恢复到室温。然后将反应产物置于20mL的样品瓶中,并用超干四氢呋喃浸泡,每8h更换一次四氢呋喃,共更换3次后过滤,并用丙酮索式提取24h。进而将反应产物在80℃下真空干燥12h,即得淡黄色产物。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施例,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种三维羧酸共价有机框架材料,其特征在于,由单体与化合物通过所述单体中的甲酰基与所述化合物中的氨基反应形成的亚胺键连接形成,所述单体的结构式为式I、II、III中的任意一种:
    Figure PCTCN2022093033-appb-100001
    其中,R 1选自C、Si、取代或未取代的联苯基,或
    Figure PCTCN2022093033-appb-100002
    *为连接位点;
    R 2~R 31分别独立地选自H、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基;
    所述化合物的结构式为IV或V:
    Figure PCTCN2022093033-appb-100003
    其中,R 32、R 33、R 42、R 43分别独立地选自H、Cl、Br、F、I、硝基、羟基、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基;R 34~R 41分别独立地选自H、Cl、Br、F、I、羧基、硝基、羟基、C 1~C 6直链烷基、C 1~C 6支链烷基,或C 1~C 6烷氧基,且R 34~R 41中至少有一个为羧基。
  2. 根据权利要求1所述的三维羧酸共价有机框架材料,其特征在于,所述单体选自式VI、VII、VIII中的任意一种:
    Figure PCTCN2022093033-appb-100004
  3. 根据权利要求1或2所述的三维羧酸共价有机框架材料,其特征在于,所述单体选自式VI、VII中的任意一种:
    Figure PCTCN2022093033-appb-100005
    其中,R 2~R 9分别独立地选自-H或C 1~C 6烷氧基,且与苯基连接且与甲酰基相邻的两个基团不相同。
  4. 根据权利要求1-3任一项所述的三维羧酸共价有机框架材料,其特征在于,所述化合物的结构式为式IV或V:
    Figure PCTCN2022093033-appb-100006
    其中,R 34~R 41中至少有两个为羧基。
  5. 根据权利要求1-4任一项所述的三维羧酸共价有机框架材料,其特征在于,所述化合物选自式IX、X中的任意一种:
    Figure PCTCN2022093033-appb-100007
    其中,R 34~R 41分别独立地选自H或羧基,且R 34~R 41中至少有一个为羧基。
  6. 根据权利要求1-5任一项所述的三维羧酸共价有机框架材料,其特征在于,所述单体选自以下结构中的任意一种:
    Figure PCTCN2022093033-appb-100008
  7. 根据权利要求1-6任一项所述的三维羧酸共价有机框架材料,其特征在于,所述化合物选自以下结构中的任意一种:
    Figure PCTCN2022093033-appb-100009
  8. 根据权利要求1-7任一项所述的三维羧酸共价有机框架材料,其特征在于,同一单 体分子与多个化合物分子通过所述甲酰基与所述氨基反应形成的所述亚胺键连接,并且,同一化合物分子与多个单体分子通过所述甲酰基与所述氨基反应形成的所述亚胺键连接。
  9. 如权利要求1-7任一项所述的三维羧酸共价有机框架材料的制备方法,其特征在于,包括以下步骤:
    将所述单体和所述化合物和第一有机溶剂及催化剂混合并去除氧气,然后在密封状态下进行加热反应制备三维羧酸共价有机框架材料。
  10. 根据权利要求9所述的三维羧酸共价有机框架材料的制备方法,其特征在于,所述有机溶剂选自1,2-二氯苯、1,4-二氧六环、正丁醇、乙醇、二氯甲烷、N,N-二甲基甲酰胺、氯仿、丙酮、乙腈及四氢呋喃中的至少一种。
  11. 根据权利要求9或10所述的三维羧酸共价有机框架材料的制备方法,其特征在于,所述催化剂为乙酸、甲酸、苯磺酸及甲基苯磺酸中的至少一种。
  12. 根据权利要求9-11任一项所述的三维羧酸共价有机框架材料的制备方法,其特征在于,所述加热反应的温度为80℃~150℃,时间为3~7天。
  13. 权利要求9-12任一项所述的三维羧酸共价有机框架材料的制备方法,其特征在于,所述制备方法还包括将反应后的产物进行洗涤、提纯和干燥的步骤。
  14. 如权利要求1-8任一项所述的三维羧酸共价有机框架材料作为气体吸附剂的应用。
  15. 一种气体吸附剂,其特征在于,包括根据权利要求1-5任一项所述的三维羧酸共价有机框架材料。
PCT/CN2022/093033 2021-05-28 2022-05-16 三维羧酸共价有机框架材料及制备方法和应用 WO2022247674A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023573397A JP2024521853A (ja) 2021-05-28 2022-05-16 三次元カルボン酸共有結合性有機構造体材料及び製造方法並びに使用
EP22810401.4A EP4349885A4 (en) 2021-05-28 2022-05-16 THREE-DIMENSIONAL COVALENT CARBOXYLIC ACID ORGANIC STRUCTURE, ITS PREPARATION METHOD AND ITS USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110592504.7 2021-05-28
CN202110592504.7A CN115403777B (zh) 2021-05-28 2021-05-28 三维羧酸共价有机框架材料及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022247674A1 true WO2022247674A1 (zh) 2022-12-01

Family

ID=84156384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093033 WO2022247674A1 (zh) 2021-05-28 2022-05-16 三维羧酸共价有机框架材料及制备方法和应用

Country Status (4)

Country Link
EP (1) EP4349885A4 (zh)
JP (1) JP2024521853A (zh)
CN (1) CN115403777B (zh)
WO (1) WO2022247674A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037615A1 (zh) * 2022-08-19 2024-02-22 耀科新材料(天津)有限公司 一种离子型共价有机框架材料、其固相合成方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143348A2 (en) * 2016-02-18 2017-08-24 The Regents Of The University Of California Novel three-dimensional boron-rich clusters
CN107915658A (zh) * 2016-10-09 2018-04-17 中国科学院大连化学物理研究所 基于金刚烷单元的三维共价有机框架材料及其合成和应用
KR20180074094A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 이산화황 흡착제용 공유결합성 유기 골격구조체 및 그 제조방법
CN108503853A (zh) * 2018-05-04 2018-09-07 武汉大学 一种基于仲胺基键合的共价有机框架材料及其制备方法和应用
CN111303442A (zh) * 2020-02-22 2020-06-19 吉林大学 一种氮氧自由基功能化的三维共价有机框架材料及其制备方法
CN111349249A (zh) * 2020-04-22 2020-06-30 南开大学 一种共价有机框架材料、其制备方法及用途
CN112250883A (zh) * 2020-10-30 2021-01-22 武汉大学 一种具有呼吸效应的共价有机框架材料、其制备方法及应用
CN112574370A (zh) * 2019-09-27 2021-03-30 台州学院 一种三维含羟基共价有机骨架材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3254755B1 (en) * 2016-06-10 2021-04-14 Centre National de la Recherche Scientifique CNRS High degree of condensation titanium-based inorganic-organic hybrid solid material, method for preparing same and uses thereof
CN111205478B (zh) * 2020-03-04 2021-04-13 清华大学 三维共价有机框架化合物及其制备方法,以及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143348A2 (en) * 2016-02-18 2017-08-24 The Regents Of The University Of California Novel three-dimensional boron-rich clusters
CN107915658A (zh) * 2016-10-09 2018-04-17 中国科学院大连化学物理研究所 基于金刚烷单元的三维共价有机框架材料及其合成和应用
KR20180074094A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 이산화황 흡착제용 공유결합성 유기 골격구조체 및 그 제조방법
CN108503853A (zh) * 2018-05-04 2018-09-07 武汉大学 一种基于仲胺基键合的共价有机框架材料及其制备方法和应用
CN112574370A (zh) * 2019-09-27 2021-03-30 台州学院 一种三维含羟基共价有机骨架材料及其制备方法
CN111303442A (zh) * 2020-02-22 2020-06-19 吉林大学 一种氮氧自由基功能化的三维共价有机框架材料及其制备方法
CN111349249A (zh) * 2020-04-22 2020-06-30 南开大学 一种共价有机框架材料、其制备方法及用途
CN112250883A (zh) * 2020-10-30 2021-01-22 武汉大学 一种具有呼吸效应的共价有机框架材料、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4349885A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037615A1 (zh) * 2022-08-19 2024-02-22 耀科新材料(天津)有限公司 一种离子型共价有机框架材料、其固相合成方法及应用

Also Published As

Publication number Publication date
CN115403777B (zh) 2023-09-29
EP4349885A1 (en) 2024-04-10
EP4349885A4 (en) 2024-10-02
CN115403777A (zh) 2022-11-29
JP2024521853A (ja) 2024-06-04

Similar Documents

Publication Publication Date Title
CN111375385B (zh) 一种双金属有机骨架吸附剂的制备方法及其应用
CN107814932B (zh) 一种聚离子液体有机多孔聚合物及制备方法与应用
CN107459656B (zh) 一种离子化共价有机框架材料及其制备方法和催化应用
WO2022247674A1 (zh) 三维羧酸共价有机框架材料及制备方法和应用
CN109575308A (zh) 一种二维含氟共价有机框架化合物的无催化高效制备方法
WO2012155417A1 (zh) 类分子筛金属双咪唑多孔配位聚合物及其制备方法
CN106905526A (zh) 具有气体吸附性能的刚性骨架多孔聚合物及其制备方法和应用
CN113214493B (zh) 一种钴基金属有机骨架材料的制备及其低碳烃分离应用
CN109232226B (zh) 一种微孔金属有机骨架材料及其制备方法与应用
CN114835908A (zh) 一种分离乙烷/乙烯的金属-有机框架材料的制备,及其应用
CN111825849B (zh) 含脲基的金属-有机框架化合物及其制备方法
CN108117537B (zh) 基于四硫富瓦烯单元的三维共价有机框架材料及合成方法
CN115386082B (zh) 含有笼状单元结构的多孔共价有机框架材料及其合成方法
CN113462051A (zh) 一种超支化聚乙烯基多孔液体及其制备方法
CN105778062A (zh) 一种聚合物及其制备方法
CN112500562A (zh) 一种基于三蝶烯的氨基衍生物的三维共价有机框架材料及其制备方法
CN113136037B (zh) 一种改性mil-101材料的合成修饰方法
CN115260512B (zh) 直接合成单组分共价有机框架气凝胶的方法
CN115677952A (zh) 三维共价有机框架材料及其制备方法和应用
CN113429534B (zh) 一种高稳定强碱性多孔离子交换材料的制备方法
CN112625069B (zh) 一种基于芘四吡唑配体的钴的金属有机框架材料和制备方法及其应用
CN107778360B (zh) 一种制备醋酸卡泊芬净的方法
CN112934201B (zh) 一种复合废气吸附材料及其制备方法
CN110028640B (zh) 一种基于三苯基咪唑-间苯三酚的多孔聚合物及其制备方法和用途
CN105885015A (zh) 并噻唑交联多孔有机聚合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573397

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022810401

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022810401

Country of ref document: EP

Effective date: 20240102

WWE Wipo information: entry into national phase

Ref document number: 18564624

Country of ref document: US