WO2024037615A1 - 一种离子型共价有机框架材料、其固相合成方法及应用 - Google Patents

一种离子型共价有机框架材料、其固相合成方法及应用 Download PDF

Info

Publication number
WO2024037615A1
WO2024037615A1 PCT/CN2023/113687 CN2023113687W WO2024037615A1 WO 2024037615 A1 WO2024037615 A1 WO 2024037615A1 CN 2023113687 W CN2023113687 W CN 2023113687W WO 2024037615 A1 WO2024037615 A1 WO 2024037615A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
monomer
trimethylpyridine
organic monomer
organic framework
Prior art date
Application number
PCT/CN2023/113687
Other languages
English (en)
French (fr)
Inventor
张振杰
张朋辉
王志方
张雨曙
陈瑶
Original Assignee
耀科新材料(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 耀科新材料(天津)有限公司 filed Critical 耀科新材料(天津)有限公司
Publication of WO2024037615A1 publication Critical patent/WO2024037615A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/13Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes

Definitions

  • the invention belongs to the field of porous organic materials, and specifically relates to an ionic covalent organic framework material, its synthesis and application as an ion exchange and adsorption resin.
  • Covalent organic framework materials are a type of two-dimensional (2D) or three-dimensional (3D) crystalline organic porous polymers connected by organic monomers through covalent bonds. They have clear structures, high specific surface areas, and uniform pore environments. Control, low density and other advantages. After customized design, COFs have developed connection methods including borate esters, Schiff bases, polyimides, ether bases, vinyl, etc., thus developing applications in fields such as biomedicine, environmental treatment, energy storage and conversion, etc. Application scenarios. Although the current types and applications of COFs have been greatly developed, they still face many problems. For example, their synthesis methods require special organic solvents and catalysts as reaction media, and their high temperature and high pressure reaction conditions seriously hinder the large-scale production of COFs.
  • the present invention develops a new type of vinyl COFs material based on solid-phase synthesis that can be mass-produced by regulating and screening the organic monomers and synthesis conditions of COFs, and selecting appropriate catalysts and synthesis methods.
  • pre-synthesis or post-modification methods will be used to achieve ionization of materials to form cheap materials with ion exchange capabilities.
  • Ionic COFs to achieve their applications as ion exchange and adsorption resins.
  • the purpose of the present invention is to adopt a green, solvent-free solid-phase synthesis method to design and synthesize a series of new and stable vinyl-linked COFs.
  • Such COFs have the advantages of low price, stable structure, and the ability to achieve large-scale synthesis.
  • Another purpose of the present invention is to construct COFs into ionic COFs with high ion exchange and adsorption capabilities through one-pot methods or post-modification methods.
  • Other objects of the present invention will be apparent to those skilled in the art from the foregoing and following descriptions.
  • the first aspect of the present invention provides a synthesis method of vinyl ionic covalent organic framework materials, which is characterized in that COFs materials are constructed in a one-step or step-by-step method through vinyl covalent connection.
  • a solid-phase synthesis method of vinyl-linked ionic covalent organic framework materials, reacting under non-solvent conditions includes the following reaction steps:
  • Organic monomer 1 and organic monomer perform a condensation reaction in the presence of a catalyst and without solvent;
  • step (1) When the organic monomer 1 is an ionized monomer, separate and purify the product of step (1) to obtain the final product; when the organic monomer 1 is a non-ionized monomer, further use the product of step (1) The acid is ionized and the final product is obtained after separation and purification;
  • organic monomer 1 is an ionized or non-ionized polymethyl-substituted 5-6 membered heteroaromatic ring, and the heteroatom of the heteroaromatic ring is N, S or O; organic monomer 2 is end-capped.
  • the catalyst is a dehydration reaction catalyst
  • the acid in step (2) is a monovalent or binary non-strongly oxidizing acid
  • the reaction in step (1) can also use the precursor of the organic monomer 1, RX (R is a branched chain or alkyl group of 1-12 carbons, X is a halogen) and Organic monomer 2 is obtained through a one-pot reaction in the presence of a catalyst.
  • the organic monomer 1 is any one of the following structures:
  • R 1 is a methyl group
  • R 2 is an alkyl chain or an alkoxy chain
  • X - is a halide ion or an oxygen-containing anion
  • n is 3, 4, or 5
  • the alkyl group has 1-10 carbon atoms. Branched or branched alkyl;
  • Preferred oxygen-containing anions are acetate (acetate), formic acid (formate), benzoate, sulfate, carbonate, phosphate, nitrate, nitrite, sulfite, permanganate, chlorate, Chlorite, manganate, ferrate, bromate, perbromate, orthosilicate, fluorosulfate, metaphosphate, iodate, metaaluminate, oxalate (oxalate), urate, pyrophosphate , dichromate, metasilicate, pyrosulfate, thiosulfate, selenate, hypobromite, hypofluorite, hypoiodite, orthoperiodate, hypochlorite, perchlorate, chromate, antimonate , arsenate, tellurate, disilicate, stannate, selenite, metazincrate, bicarbonate, bisulfate, hydrogen phosphate, dihydrogen phosphate, gluconate
  • Organic monomer 2 has the following structure:
  • R 3 is an aldehyde group
  • n 2 or 3
  • A is one of the following:
  • the aforementioned ionized monomer means an ionic compound monomer composed of positively charged cations and negatively charged anions.
  • the organic monomer 1 used to construct the COFs material can be ionized by pre-synthesis or post-modification.
  • the organic monomer 1 is 2,3,4-trimethylpyridine, 2,3,5-trimethylpyridine, 2,3,6-trimethylpyridine, 2,4,6-trimethylpyridine.
  • the organic monomer 2 is Phthalaldehyde, 1,4-bis(4-aldehylphenyl)benzene, 4,4'-biphenyldicarboxaldehyde, 1,2-bis(4'-formylphenyl)acetylene, 4,4'- (1,3-butadiyne-1,4-diyl)bisbenzaldehyde, 2,5-dimethoxy-1,
  • the catalyst is a substituted or unsubstituted compound containing an anhydride functional group, a compound containing a carboxylic acid functional group, a compound containing an imidazole functional group or a compound containing a hydroxyl functional group.
  • the substituents are halogen groups, alkyl groups, alkoxy groups, hydroxyl groups, etc., wherein the alkyl group is a branched or linear alkyl group of 1 to 5 carbon atoms.
  • the catalyst is a substituted or unsubstituted compound as follows: benzoic anhydride, 4-trifluoromethylbenzoic anhydride, phenylacetic anhydride, acetic anhydride, trifluoroacetic anhydride, benzoic acid, 4-fluorobenzoic acid, One or more of 4-bromobenzoic acid, propionic acid, aromatic acid, imidazole, benzimidazole, phenol or diphenyl dimethyl ether.
  • the substituents are halogen groups, alkyl groups, alkoxy groups, hydroxyl groups, etc., wherein the alkyl group is a branched or linear alkyl group of 1 to 5 carbon atoms.
  • the acid is a monobasic or binary non-strongly oxidizing acid. Includes organic acids and inorganic acids.
  • the acid is one or more of dilute sulfuric acid, dilute hydrochloric acid, dilute nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, n-butyric acid or n-octanoic acid with a concentration of 0.01 mol/L to 2 mol/L.
  • the reaction temperature of step (1) is greater than or equal to the temperature at which both organic monomer 1 and organic monomer 2 are in a molten state.
  • the preferred reaction temperature is 120-200°C.
  • the synthesis temperature is 120-200°C.
  • the reaction time is 3-7 days, more preferably 5 days.
  • the pressure of the reaction system is 0-1 atm.
  • the sealed reaction vessel is one of a Pyrex tube that is resistant to high temperature and high pressure, an ampoule that requires flame sealing, or a steel high-pressure reactor with a polytetrafluoroethylene lining.
  • the pore diameter of the COFs material is 0.6-4.9nm; further preferably, it is 1.0nm-5nm; more preferably, it is 1.2-3.2nm.
  • the molar ratio of organic monomer 1 and organic monomer 2 is 1:4 to 4:1, more preferably 1:1 to 1:2.
  • the molar ratio of catalyst and organic monomer 1 is 1:5 to 5:1, more preferably 1:3 to 3:1.
  • the ratio of acid 3 to organic monomer 1 is 1:5 to 5:1, and a more preferred ratio is 1:1 to 1:4.
  • the product form of the ionic covalent organic framework material is that the covalent organic framework material is uniform foam, block, porous sponge, cylinder, sphere, pentagram, cube or cylinder.
  • the synthesis method of the present invention is carried out under the following reaction steps, which mainly include:
  • the synthesis method 1 is to directly add the catalyst, organic monomer 1, and organic monomer 2 into a reactor to polymerize at high temperature under closed conditions to obtain COFs materials, and then perform cleaning and purification.
  • Reactions of formula I can also be used RX (R is a branched chain or alkyl group of 1-12 carbons, X is halogen) and monomer 2 are obtained through a one-pot reaction in the presence of a catalyst.
  • the cleaning and purification conditions are: washing the obtained solid powder with DMF to remove unreacted monomers, then washing with CH 3 OH to remove excess added regulator, and finally washing the obtained solid powder in Heat and dry in a vacuum high-temperature oven at a temperature of 100°C for 12 hours to obtain highly crystalline COFs.
  • step 1 Preferably, in step 1:
  • Organic monomer 1 mainly includes: 2,3,4-trimethylpyridine, 2,3,5-trimethylpyridine, 2,3,6-trimethylpyridine, 2,4,6-trimethylpyridine , 2,4,6-trimethylpyridine, 3,4,5-trimethylpyridine, 3,4,6-trimethylpyridine 2,3,5,6-tetramethylpyrazine, 3,6 -Dimethylpyridazine, 2,5-dimethylpyrimidine, 1-ethyl-2,4,6-trimethylpyridin-1-ammonium chloride, 1-ethyl-2,4,6-trimethyl One or more of 1-propylpyridin-1-ammonium bromide and 1-propyl-2,4,6-trimethylpyridin-1-ammonium bromide.
  • Organic monomer 2 mainly includes: terephthalaldehyde, 1,4-bis(4-aldehylphenyl)benzene, 4,4'-biphenyldicarboxaldehyde, 1,2-bis(4'-formylphenyl) )acetylene, 4,4'-(1,3-butadiyne-1,4-diyl)bisbenzaldehyde, 2,5-dimethoxy-1,4-terephthalaldehyde, 4,7- Bis(4-aldehydephenyl)benzofuran, 4,7-bis(4-aldehydephenyl)benzothiophene, 4,7-bis(4-aldehydephenyl)benzoselenol, 1, 3,5-Benzenetricaldehyde, 2-Hydroxy-1,3,5-Benzenetricarboxaldehyde, 2,4-dihydroxy-1,3,5-Benzenetricarboxaldehy
  • the above-mentioned monomer 1 and monomer 2 can be combined at will, and the target COFs can be prepared under the conditions of catalyst and any one of them.
  • step 2
  • Acids 3 mainly include: formic acid, acetic acid, propionic acid, n-butyric acid, n-octanoic acid, hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid.
  • Another aspect of the present invention provides a vinyl-linked ionic covalent organic framework material, which is characterized in that it is prepared by the aforementioned method.
  • the preferred material has a pore diameter of 1.0 nm-5 nm; more preferably, it is 1.2-3.2 nm.
  • the vinyl-linked ionic covalent organic framework material of the present invention has the following structure:
  • alkyl chain or an alkoxy chain is an alkyl chain or an alkoxy chain, and the alkyl group is a linear or branched alkyl group of 1 to 10 carbon atoms;
  • the vinyl-linked ionic covalent organic framework material is:
  • a third aspect of the present invention provides an application of the aforementioned vinyl-linked ionic covalent organic framework material as an ion exchange and adsorption resin.
  • adsorption experiments show that the obtained framework material can effectively adsorb dichromate, perrhenate (technetate analog) and other oxygen-containing anions from water, and has fast adsorption kinetics and good cycle stability.
  • this invention has the following innovations:
  • the solvent-free synthesis method avoids the use of highly toxic catalysts and solvents, reduces energy consumption, achieves preliminary large-scale production at the kilogram level, improves the crystallinity and specific surface area of COFs, and has excellent universal applicability.
  • the material designed in the present invention has the ability to quickly absorb oxygen-containing acid radicals from water. Compared with commercial ion exchange resins and materials reported in the literature, it has the advantages of high adsorption capacity, fast adsorption rate, good cycle performance, and low swelling rate.
  • Figure 1 Lists the structural formulas of some of the organic monomers used in the synthesis of covalent organic framework materials used in the present invention for exemplary explanation.
  • Figure 2 A schematic diagram illustrating the synthesis route of some covalent organic framework materials prepared by the present invention.
  • Figure 3 Powder diffraction pattern of representative covalent organic framework materials prepared in the present invention.
  • Figure 4 Infrared spectrum of representative covalent organic framework materials prepared by the present invention.
  • Figure 5 77K nitrogen isothermal adsorption and desorption curve of representative covalent organic framework materials prepared by the present invention.
  • Figure 6 Morphology and macro-preparation diagram of representative covalent organic framework materials prepared by the present invention.
  • Figure 7 Characterization of the adsorption performance of representative covalent organic framework materials prepared by the present invention on perrhenate radicals.
  • Example 1-2 is the material The synthesis method
  • Example 3 is a test of the perrhenate ion adsorption behavior of the representative material.
  • step 1 in reaction 1 weigh 2,3,4-trimethylpyridine, 2,3,5-trimethylpyridine, 2,3,6-trimethylpyridine, 2,4,6-trimethylpyridine, Trimethylpyridine, one of 2,4,6-trimethylpyridine, 3,4,5-trimethylpyridine (0.2mmol, 24mg), terephthalaldehyde (0.3mmol, 40.2mg), bromine Ethane (0.2mmol 15 ⁇ L), as well as benzoic anhydride (0.225mmol, 50.9mg), 4-trifluoromethylbenzoic anhydride (0.225mmol, 81.50mg), acetic anhydride (0.5mmol, 51.04mg), benzoic acid ( One of 0.6mmol, 73.28mg), 4-fluorobenzoic acid (0.6mmol, 86.47mg) or propionic acid (0.6mmol, 44.4mg), carefully put it into a thick-walled glass tube that is resistant to high temperature and pressure.
  • the COF materials prepared by the present invention all have rapid adsorption kinetics and can reach adsorption equilibrium within 2 minutes. Its technetium removal rate within the same period of time is significantly higher than the currently commercially available high technetium/rhenate removal material PuroliteA530E. And the final material removal rate exceeds 99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明通过设计新型的方法通过两种手段构建一系列离子型乙烯基共价有机框架材料。这类材料具有高结晶性和比表面积,价格低廉,合成方法简单,能够自成型,能够宏量生产等特点。在合成过程中避免了有机溶剂的使用,避免了反应过程导致高压的危险,适合大规模制备,具有工业生产的潜力。此外这些离子型的COFs材料具有能够高效从水体中筛分出含氧阴离子的能力,具有极大的工业实际应用前景。

Description

一种离子型共价有机框架材料、其固相合成方法及应用
本申请基于申请号为202210996696.2、申请日为2022年08月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于多孔有机材料领域,具体涉及一种离子型共价有机框架材料、其合成和作为离子交换和吸附树脂的应用。
背景技术
共价有机框架材料(COFs)是一类由有机单体通过共价键连接的二维(2D)或三维(3D)晶态有机多孔聚合物,具有结构清晰、比表面积高、孔环境均匀可调控、密度低等优点。经过定制化设计,COFs已经发展出包括硼酸酯、席夫碱、聚酰亚胺、醚碱、乙烯基等连接方式,由此开发出例如生物医药,环境处理,能源储存与转化等领域的应用场景。尽管目前的COF种类和应用得到了极大的发展,但是依然面临着诸多问题,例如,其合成方法需要特殊的有机溶剂和催化剂作为反应介质,其高温高压的反应条件严重阻碍了COFs的大规模生产;由于拓扑学设计要求COFs的设计单体中需要引入具有特定对称性的节点型单体,这类单体的设计困难,合成费力,往往还需要贵金属催化剂和有毒试剂。因此设计更绿色廉价的结构以满足工业生产的使用是非常有必要的。
自工业革命以来,水体的污染受到了越来越广泛的关注。目前节能减排,降低污染已经成为了社会和企业追求的目标。阴离子污染物,尤其是含氧酸根离子是一类重要的水体污染物。很多重要的工业过程例如冶金,电镀,油漆,印染乃至石化燃料的燃烧都会排放大量含氧阴离子污染物。除此之外,在核能工业也存在着放射性含氧酸根污染物的排放。这些污染物会严重影响水体,导致严重的生态问题并且对生物体的健康造成严重影响。因此开发具有高容量,快速吸附动力学和循环稳定性的离子交换材料用于含氧阴离子污染物的移除是迫切需要的,且具有实际意义。
一方面,本发明通过对COFs的有机单体和合成条件进行调控和筛选、选用适宜的催化剂和合成方法,开发出可以大量生产的一类新型的基于可固相合成的乙烯基COFs材料。另一方面,将采取预合成或者后修饰的手段可以实现材料的离子化,形成具有离子交换能力的廉价 离子型COFs,以实现其作为离子交换和吸附树脂的应用。
发明内容
本发明的目的是采取绿色的、无溶剂的固相合成方法设计合成一系列新型的、稳定的乙烯基连接的COFs,这种COFs具有价格低廉,结构稳定,能够实现规模化合成等优势。
本发明的另外一个目的,是通过一锅法或后修饰的手段将COFs构建成具有高离子交换和吸附能力的离子型COFs。本发明的其他目的对于熟悉技术者而言,直接由前述和下述的说明即可清楚。
本发明的第一方面是提供了乙烯基离子型共价有机框架材料的合成方法,其特征在于,通过乙烯基共价的连接方式一步或者分步的方法构筑COFs材料。
优选的,一种乙烯基连接的离子型共价有机框架材料的固相合成方法,在非溶剂条件下进行反应,包括如下反应步骤:
(1)有机单体1和有机单体在催化剂存在、无溶剂的条件下进行缩合反应;
(2)当有机单体1为离子化单体时,将步骤(1)的产物分离纯化得到终产物;当有机单体1为非离子化单体时,进一步将步骤(1)的产物用酸进行离子化处理,分离纯化后得到终产物;
其中,有机单体1为离子化或非离子化的多甲基取代的5-6元杂芳环,所述杂芳环的杂原子为N、S或O;有机单体2为封端为甲醛基的直线性的二连接单体或夹角为120度的三连接单体;
催化剂为脱水反应催化剂;
步骤(2)中的酸为一元或二元的非强氧化性酸,
当有机单体1为离子化单体时,步骤(1)的反应也可以用有机单体1的前体、RX(R为1-12个碳的支链或烷基,X为卤素)与有机单体2在催化剂存在条件下通过一锅法反应得到。
优选的,有机单体1为下述结构的任意一种:
其中R1为甲基,R2为烷基链或者烷氧基链,X-为卤素离子或含氧阴离子,n为3、4、或5,所述烷基为1-10个碳原子的支链或支链的烷基;
优选的含氧阴离子为醋酸(乙酸)根、甲酸(蚁酸)根、苯甲酸根、硫酸根、碳酸根、磷酸根、硝酸根、亚硝酸根、亚硫酸根、高锰酸根、氯酸根、亚氯酸根、锰酸根、高铁酸根、溴酸根、高溴酸根、正硅酸根、氟硫酸根、偏磷酸根、碘酸根、偏铝酸根、乙二酸(草酸)根、尿酸根、焦磷酸根、重铬酸根、偏硅酸根、焦硫酸根、硫代硫酸根、硒酸根、次溴酸根、次氟酸根、次碘酸根、正高碘酸根、次氯酸根、高氯酸根、铬酸根、锑酸根、砷酸根、碲酸根、二硅酸根、锡酸根、亚硒酸根、偏锌酸根、碳酸氢根、硫酸氢根、磷酸氢根、磷酸二氢根、葡萄糖酸根、柠檬酸根、苹果酸根、甘醇酸根、乳酸根、雷酸根、氟磷酸根、单氟磷酸根、连二亚硫酸根、偏高碘酸根、硼酸根、次磷酸根、次硫酸根、氰酸根、异氰酸根、乙基磺酸根、三硝基苯甲酸根、三氟乙酸根、三氯乙酸根、甲磺酸根、苯磺酸根、环乙硫醇磺酸根、锇酸根、高氙酸根、氙酸根、焦亚硫酸根、过一硫酸根、过二硫酸根、偏钒酸根等。
有机单体2为下述结构:
其中R3为醛基,n为2或3,A为下面中的一种:
其中,“---”表示与R3的连接位置。
前述离子化单体的含义为其由正电荷的阳离子和负电荷的阴离子构成离子化合物单体。本发明是将构建COFs材料的有机单体1,采取预合成或者后修饰的手段可以实现材料的离子化。优选的,所述有机单体1为2,3,4-三甲基吡啶,2,3,5-三甲基吡啶,2,3,6-三甲基吡啶,2,4,6-三甲基吡啶,2,4,6-三甲基吡啶,3,4,5-三甲基吡啶,3,4,6-三甲基吡啶2,3,5,6-四甲基吡嗪,3,6-二甲基哒嗪,2,5-二甲基嘧啶,1-乙基-2,4,6-三甲基吡啶-1-氯化铵,1-乙基-2,4,6-三甲基吡啶-1-溴化铵,1-丙基-2,4,6-三甲基吡啶-1-溴化铵中的一种或几种;所述有机单体2为对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚、1,3,5-均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4’,4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4’,4”,4”’-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三(4-甲酰基-联苯-4-基)-1,3,5-三嗪中的任意一种。
所述催化剂为取代或未取代的含有酸酐官能团的化合物、含有羧酸官能团的化合物、含有咪唑官能团的化合物或含有羟基官能团的化合物。所述取代基为卤素基团、烷基、烷氧基、羟基等,其中烷基为1-5个碳原子的支链或直链的烷基。
优选的,所述催化剂为取代或未取代的如下化合物:苯甲酸酐、4-三氟甲基苯甲酸酐、苯乙酸酐、乙酸酐、三氟乙酸酐、苯甲酸、4-氟苯甲酸、4-溴苯甲酸、丙酸、芳香酸、咪唑、苯并咪唑、苯酚或联苯二甲醚中的一种或几种。所述取代基为卤素基团、烷基、烷氧基、羟基等,其中烷基为1-5个碳原子的支链或直链的烷基。
所述酸为一元或二元的非强氧化性酸。包括有机酸和无机酸。
优选的,所述酸为浓度为0.01mol/L到2mol/L的稀硫酸、稀盐酸、稀硝酸、磷酸、甲酸、乙酸、丙酸、正丁酸或正辛酸中的一种或几种。
步骤(1)的反应温度大于等于有机单体1和有机单体2均处于熔融状态的温度。
优选的反应温度为120-200℃。
优选的,合成温度为120-200℃。
优选的,反应时间3-7天,更优选为5天。
优选的,反应体系的压强为0-1atm。
优选的,所述密闭反应容器为耐高温高压的Pyrex管、需火焰封管的安瓿瓶、带有聚四氟乙烯衬里的钢制高压反应釜中的一种。
优选的,所述COFs材料的孔径为0.6-4.9nm;进一步优选为1.0nm-5nm;更优选为1.2-3.2nm。
优选的,在反应1和2中,有机单体1和有机单体2的摩尔比为1:4至4:1,更优选为1:1至1:2。
优选的,在反应体系中,催化剂和有机单体1的摩尔比为1:5至5:1,更优选为1:3至3:1。
优选的,在反应体系1中,酸3与有机单体1的比例为1:5至5:1,更为优选的比例为1:1至1:4。
所述离子型共价有机框架材料产物形态为所述共价有机框架材料为均匀的泡沫状、块体、多孔海绵状、圆柱状、球体、五角星状、正方体状或圆柱状。
优选的,本发明合成方法是在以下反应步骤下进行反应,主要包括:
(1)将有机单体1和有机单体2加入反应器中,加入催化剂进行反应;
(2)反应结束后,得到离子化的COFs产物,或者将未离子化的COFs用酸处理;
(3)清洗纯化,干燥以获得离子化的COFs产物。
优选的,所述合成方法1是将催化剂、有机单体1、有机单体2,直接加入反应器中在密闭条件下高温聚合得到COFs材料,再进行清洗纯化。
优选的,在本发明合成方法中,当有机单体1为离子型单体时,示例性的化学反应方程式可以概括为式1:
式I的反应也可以用RX(R为1-12个碳的支链或烷基,X为卤素)与单体2在催化剂存在条件下通过一锅法反应得到。
优选的,在本发明合成方法中的当单体1为非离子型单体离子时,通过酸化制备离子型COFs的合成方法,示例性的化学反应式可以概括为式2:
优选地,在合成方法1中,清洗提纯条件为,将得到的固体粉末用DMF洗涤以除去未反应单体,再用CH3OH洗涤以除去过量加入的调节剂,最后将得到的固体粉末在真空高温烘箱中100℃的温度条件下加热干燥12h,以得到高结晶性的COFs。
优选的,在步骤1中:
有机单体1主要包括:2,3,4-三甲基吡啶,2,3,5-三甲基吡啶,2,3,6-三甲基吡啶,2,4,6-三甲基吡啶,2,4,6-三甲基吡啶,3,4,5-三甲基吡啶,3,4,6-三甲基吡啶2,3,5,6-四甲基吡嗪,3,6-二甲基哒嗪,2,5-二甲基嘧啶,1-乙基-2,4,6-三甲基吡啶-1-氯化铵,1-乙基-2,4,6-三甲 基吡啶-1-溴化铵,1-丙基-2,4,6-三甲基吡啶-1-溴化铵中的一种或几种。
有机单体2主要包括:对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚、1,3,5-均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4’,4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4’,4”,4”’-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三(4-甲酰基-联苯-4-基)-1,3,5-三嗪中的任意一种。
在上述提到的单体1和单体2可以随意组合,在催化剂的条件下中任意一个参与的条件下均可制备目标COFs。
在步骤2中:
在上述提到的单体1和单体2可以随意组合。
酸3主要包括:甲酸、乙酸、丙酸、正丁酸、正辛酸、盐酸、硫酸、磷酸、硝酸。
本发明另一方面提供一种乙烯基连接的离子型共价有机框架材料,其特征在于,由前述方法制备得到。优选的材料的孔径为1.0nm-5nm;更优选为1.2-3.2nm。
优选的,本发明的乙烯基连接的离子型共价有机框架材料具有如下结构:
(1)结构式I
(2)结构式II
其中,为5-6元杂芳环,杂原子为N、S或O;
为:
式I中“....”表示省略的如式I所示的重复结构单元,式II中“....”表示省略的如式II所示的重复结构单元。
为卤素离子或含氧阴离子;
式II中为烷基链或者烷氧基链,所述烷基为1-10个碳原子的直链或支链的烷基;
优选的,乙烯基连接的离子型共价有机框架材料为:
其中,式I中“....”表示省略的如式I所示的重复结构单元,
式II中“....”表示省略的如式II所示的重复结构单元。
本发明第三方面,提供一种前述乙烯基连接的离子型共价有机框架材料作为离子交换和吸附树脂的应用。
优选的,吸附实验表明,所得的框架材料能够有效地从水中高效的吸附重铬酸根,高铼酸根(锝酸根模拟物)等含氧阴离子,具有快速的吸附动力学和良好的循环稳定性。
与现有材料相比,该发明有以下创新之处:
1.开发具有工业生产应用的新型乙烯基连接的反应单体,极大的降低了材料成本。通过无溶剂的合成法避免了高毒性催化剂、溶剂的使用,降低了能耗,实现了千克级的初步规模化生产,提高了COFs的结晶性和比表面积,其具备极佳的普适性。
2.优化了现有的乙烯基连接COFs材料的合成方法,得益于固相反应易成型的优点,成功的避免了挥发性有机溶剂的参与,可以一步制备高结晶性的COF块体材料,并且为COFs材料的大规模生产提供了新方法。
3.本发明设计的材料具有从水中快速吸附含氧酸根的能力。相比于商用离子交换树脂和文献报道的材料,其吸附量高,吸附速率快,循环性能好,溶胀率低等优势。
4.通过对发明所制备的代表性的共价有机框架材料的等温吸附曲线的拟合发现,吸附曲线更符合Freundlich吸附曲线,这说明本发明所述材料兼具在吸附过程中综合多种作用力,结合了离子交换和孔吸附的能力,因此具有更好的阴离子吸附效果,同时具备交换和吸附的性能。
附图说明:
图1:列举了部分本发明所用到的合成共价有机框架材料所用的有机单体的结构式,进行示例性说明。
图2:列举了部分本发明所制备的共价有机框架材料的合成路线示意图。
图3:本发明所制备的代表性共价有机框架材料的粉末衍射图。
图4:本发明所制备的代表性共价有机框架材料的红外光谱图。
图5:本发明所制备的代表性共价有机框架材料的77K氮气等温吸脱附曲线图。
图6:本发明所制备的代表性共价有机框架材料的形貌和宏量制备图。
图7:本发明所制备的代表性共价有机框架材料的对与高铼酸根的吸附性能表征。
具体实施方式:
除非本申请上下文中另有其他说明,否则本申请中所用技术术语及缩写均具有本领域技术人员所知的常规含义;除非另有说明,否则下述实施例中所用原料化合物均为商购获得,其中作为对比的材料的阴离子交换树脂PuroliteA530E为目前商用的Cl-型大孔型聚苯乙烯二乙烯苯交联树脂用于高锝/铼酸根移除的强碱型阴离子交换树脂材料。其中实施例1-2为该材料 的合成方法,实施例3为代表材料的高铼酸根离子吸附行为的测试。
按照本发明所提到的,对乙烯基连接共价有机框架整体材料的合成及相关性能表征测试,其具体实施方式如下。相反,下列实施例仅用于对本发明进一步解释和发明,而不应视为限制本发明的范围。
实施例1:
依照反应1中步骤1所示,称取2,3,4-三甲基吡啶,2,3,5-三甲基吡啶,2,3,6-三甲基吡啶,2,4,6-三甲基吡啶,2,4,6-三甲基吡啶,3,4,5-三甲基吡啶(0.2mmol,24mg)中的一种,对苯二甲醛(0.3mmol,40.2mg)、溴乙烷(0.2mmol 15μL),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,小心地装入耐高温高压的厚壁玻璃管中。抽真空至管内压力达到0.15mmHg后从真空线上取下,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入200℃烘箱中反应5天。反应后得到黄色粉末的固体粉末,将其在DMF,CH3OH中浸泡后,在四氢呋喃溶剂中索氏提取持续48h,从而得到黄色的完整块体,产率约为86%-98%。
依照反应1中步骤2所示,将清洗后的中性COF与盐酸(0.1mmol 20mL)混合。抽滤后在四氢呋喃溶剂中索氏提取持续48h,从而得到红色的完整块体产率约为99%。如图3a所示,粉末X-射线测试揭示,利用所制备的粉末样品具有很高的结晶性,图4a红外光谱测试进一步证明该材料是乙烯基连接COFs材料,图5a为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为1353m2/g,图6a为该材料的整体外貌,图6c为该材料的宏量生产的材料外观。
实施例2:
依照反应2所示,称取2,3,4-三甲基吡啶,2,3,5-三甲基吡啶,2,3,6-三甲基吡啶,2,4,6-三甲基吡啶,2,4,6-三甲基吡啶,3,4,5-三甲基吡啶,3,4,6-三甲基吡啶(0.2mmol,24mg)中的一种,对苯二甲醛(0.3mmol,40.2mg)、溴乙烷(0.2mmol 15μL),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg) 中的一种,小心地装入耐高温高压的厚壁玻璃管中。抽真空至管内压力达到0.15mmHg后从真空线上取下,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入200℃烘箱中反应5天。反应后得到黄色粉末的固体粉末,将其在DMF,CH3OH中浸泡后,在四氢呋喃溶剂中索氏提取持续48h,从而得到深红色块体,产率约为84%-98%。如图3b所示,粉末X-射线测试揭示,利用所制备的粉末样品具有很高的结晶性,图4b红外光谱测试进一步证明该材料是乙烯基连接COFs材料,图5b为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为1238m2/g,图6b为该材料的整体外貌。
实施例3:
COF直接用于吸收测量,无需进一步处理。实验在pH=7下进行,固/液比为2g L-1。在每个样品中,将30mg吸附剂材料添加到15ml含有42ppm ReO4 -的水溶液中。震荡混合物30秒、1分钟、2分钟、4分钟、6分钟、8分钟、10分钟、20分钟、40分钟和80分钟后收集样品。使用0.22μm尼龙膜过滤器分离样品以进行ICP分析,所得结果如图7所示。本发明所制备的COF材料都具有快速地的吸附动力学,能够在2分钟内达到吸附平衡。其相同时间内锝移除速率明显高于目前商用的用于高锝/铼酸根移除材料PuroliteA530E。并且材料最终移除率超过99%。
最后应说明的是:以上所述仅为本发明的优选实施例,并不用于对本发明做任何形式上的限制。任何熟悉本领域的研究及技术人员,在不脱离本发明的技术方案范围的情况下,利用上述内容对本发明的技术方案做出的非创新性变动和修改,例如仅更改原料试剂添加比例、反应时长和操作流程等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种乙烯基连接的离子型共价有机框架材料的固相合成方法,其特征在于,在非溶剂条件下进行反应,包括如下反应步骤:
    (1)有机单体1和有机单体2在催化剂存在、无溶剂的条件下进行缩合反应;
    (2)当有机单体1为离子化单体时,将步骤(1)的产物分离纯化得到终产物;当有机单体1为非离子化单体时,进一步将步骤(1)的产物用酸进行离子化处理,分离纯化后得到终产物;
    其中,有机单体1为离子化或非离子化的多甲基取代的5-6元杂芳环,所述杂芳环的杂原子为N、S或O;有机单体2为封端为甲醛基的直线性的二连接单体或夹角为120度的三连接单体;
    催化剂为脱水反应催化剂;
    步骤(2)中的酸为一元或二元的非强氧化性酸,
    当有机单体1为离子化单体时,步骤(1)的反应也可以用有机单体1前体、RX(R为1-12个碳的支链或烷基,X为卤素)与有机单体2在催化剂存在条件下通过一锅法反应得到。
  2. 如权利要求1所述的固相合成方法,其特征在于,
    有机单体1为下述结构任意一种:
    其中R1为甲基,R2为烷基链或者烷氧基链,X-为卤素离子或含氧阴离子,n为3、4或5,所述烷基为1-10个碳原子的支链或支链的烷基;
    有机单体2为:
    其中,R3为醛基,n为2或3,A为下述结构中的任意一种:
    其中,“---”表示与R3的连接位置。
  3. 如权利要求1所述的固相合成方法,其特征在于,所述有机单体1为2,3,4-三甲基吡啶,2,3,5-三甲基吡啶,2,3,6-三甲基吡啶,2,4,6-三甲基吡啶,2,4,6-三甲基吡啶,3,4,5-三甲基吡啶,3,4,6-三甲基吡啶,2,3,5,6-四甲基吡嗪,3,6-二甲基哒嗪,2,5-二甲基嘧啶,1-乙基-2,4,6-三甲基吡啶-1-氯化铵,1-乙基-2,4,6-三甲基吡啶-1-溴化铵,1-丙基-2,4,6-三甲基吡啶-1-溴化铵中的一种或几种;所述有机单体2为对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚、1,3,5-均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4’,4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4’,4”,4”’-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三(4-甲酰基-联苯-4-基)-1,3,5-三嗪中的任意一种或几种。
  4. 如权利要求1所述的固相合成方法,其特征在于,所述催化剂为取代或未取代的含有酸酐官能团的化合物、含有羧酸官能团的化合物、含有咪唑官能团的化合物或含有羟基官能团的化合物;优选的所述催化剂为取代或未取代的如下化合物:苯甲酸酐、4-三氟甲基苯甲酸酐、苯乙酸酐、乙酸酐、三氟乙酸酐、苯甲酸、4-氟苯甲酸、4-溴苯甲酸、丙酸、芳香酸、咪唑、苯并咪唑、苯酚或联苯二甲醚中的一种或几种。
  5. 如权利要求1所述的固相合成方法,其特征在于,所述酸为浓度为0.01mol/L到2mol/L 的稀硫酸、稀盐酸、稀硝酸、磷酸、甲酸、乙酸、丙酸、正丁酸或正辛酸中的一种或几种。
  6. 如权利要求1所述的固相合成方法,其特征在于步骤(1)的反应温度大于等于有机单体1和有机单体2均处于熔融状态的温度。
  7. 一种如权利要求1-6的方法制备得到的乙烯基连接的离子型共价有机框架材料,其特征在于,所述材料的孔径为1.0nm-5nm;优选为1.2-3.2nm。
  8. 如权利要求7所述的乙烯基连接的离子型共价有机框架材料,其特征在于,所述共价有机框架材料结构为:
    其中,式I中“....”表示省略的如式I所示的重复结构单元,
    式II中“....”表示省略的如式II所示的重复结构单元。
  9. 如权利要求7所述的乙烯基连接的离子型共价有机框架材料,其特征在于,所述共价有机框架材料为泡沫状、块体、多孔海绵状、圆柱状、球体、五角星状、正方体状或圆柱状。
  10. 如权利要求7-9所述的乙烯基连接的离子型共价有机框架材料的用途,其特征在于,该共价有机框架材料用作阴离子交换和吸附树脂,优选的用于水中含氧酸根离子的交换和吸附。
PCT/CN2023/113687 2022-08-19 2023-08-18 一种离子型共价有机框架材料、其固相合成方法及应用 WO2024037615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210996696.2A CN117624521A (zh) 2022-08-19 2022-08-19 一种离子型共价有机框架材料、其固相合成方法及应用
CN202210996696.2 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024037615A1 true WO2024037615A1 (zh) 2024-02-22

Family

ID=89940767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113687 WO2024037615A1 (zh) 2022-08-19 2023-08-18 一种离子型共价有机框架材料、其固相合成方法及应用

Country Status (2)

Country Link
CN (1) CN117624521A (zh)
WO (1) WO2024037615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118027330A (zh) * 2024-04-12 2024-05-14 成都理工大学 一种2,2'-联吡啶基三维共价有机框架材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190336939A1 (en) * 2018-05-02 2019-11-07 Chung Yuan Christian University Modified Porous Composite Structure, Method for Manufacturing the Same and Method for Absorbing Organic Liquid
CN112521567A (zh) * 2020-12-02 2021-03-19 新乡学院 一类温控离子液体功能化的温度响应共价有机框架材料及其制备方法
CN112708090A (zh) * 2020-12-25 2021-04-27 上海交通大学 一种碳碳双键桥连共价有机框架材料及其制备方法
CN114409862A (zh) * 2022-02-17 2022-04-29 上海交通大学 一种基于2,4,6-三甲基吡啶的乙烯基桥联二维共价有机框架材料及其制备方法
CN114773556A (zh) * 2020-12-30 2022-07-22 南开大学 一种共价有机框架材料的绿色固相合成方法
WO2022247674A1 (zh) * 2021-05-28 2022-12-01 清华大学 三维羧酸共价有机框架材料及制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190336939A1 (en) * 2018-05-02 2019-11-07 Chung Yuan Christian University Modified Porous Composite Structure, Method for Manufacturing the Same and Method for Absorbing Organic Liquid
CN112521567A (zh) * 2020-12-02 2021-03-19 新乡学院 一类温控离子液体功能化的温度响应共价有机框架材料及其制备方法
CN112708090A (zh) * 2020-12-25 2021-04-27 上海交通大学 一种碳碳双键桥连共价有机框架材料及其制备方法
CN114773556A (zh) * 2020-12-30 2022-07-22 南开大学 一种共价有机框架材料的绿色固相合成方法
WO2022247674A1 (zh) * 2021-05-28 2022-12-01 清华大学 三维羧酸共价有机框架材料及制备方法和应用
CN114409862A (zh) * 2022-02-17 2022-04-29 上海交通大学 一种基于2,4,6-三甲基吡啶的乙烯基桥联二维共价有机框架材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BISHNU P. BISWAL, SUMAN CHANDRA, SHARATH KANDAMBETH, BINIT LUKOSE, THOMAS HEINE, RAHUL BANERJEE: "Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 135, no. 14, 10 April 2013 (2013-04-10), pages 5328 - 5331, XP055097320, ISSN: 00027863, DOI: 10.1021/ja4017842 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118027330A (zh) * 2024-04-12 2024-05-14 成都理工大学 一种2,2'-联吡啶基三维共价有机框架材料及其制备方法和应用

Also Published As

Publication number Publication date
CN117624521A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
Xu et al. Exchange reactions in metal-organic frameworks: New advances
Pan et al. A new Zn (ii)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes
Liu et al. A multifunctional Zr (iv)-based metal–organic framework for highly efficient elimination of Cr (vi) from the aqueous phase
Wang et al. A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal
Reineke et al. From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites
Wu et al. Fluorescence detection of Mn 2+, Cr 2 O 7 2− and nitroexplosives and photocatalytic degradation of methyl violet and rhodamine B based on two stable metal–organic frameworks
Saha et al. Porous magnesium carboxylate framework: Synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction
US8470075B2 (en) Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
Saha et al. A magnesium-based multifunctional metal–organic framework: Synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study
Shi et al. A new three-dimensional metal–organic framework constructed from 9, 10-anthracene dibenzoate and Cd (ii) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes
Hu et al. Ionic covalent organic frameworks for highly effective catalysis
Wang et al. Two luminescent metal–organic frameworks with multifunctional properties for nitroaromatic compounds sensing and photocatalysis
Zhang et al. Fluorinated metal–organic frameworks for enhanced stability and iodine adsorption selectivity under humid conditions
WO2024037615A1 (zh) 一种离子型共价有机框架材料、其固相合成方法及应用
Tan et al. Synthesis of zinc-based metal–organic framework as highly efficient photocatalyst for decomposition of organic dyes in aqueous solution
Wang et al. Triazine–polycarboxylic acid complexes: synthesis, structure and photocatalytic activity
Kumar et al. Fluorine-containing triazole-decorated silver (I)-based cationic metal–organic framework for separating organic dyes and removing oxoanions from water
Chen et al. Introducing a flexible tetracarboxylic acid linker into functional coordination polymers: Synthesis, structural traits, and photocatalytic dye degradation
Li et al. A new coordination polymer assembled by one rigid coligand for the photocatalytic degradation of rhodamine B
Yadav et al. Open metal site (OMS)-inspired investigation of adsorption and catalytic functions in a porous metal–organic framework (MOF)
Zhang et al. Three two-dimensional coordination polymers constructed from transition metals and 2, 3-norbornanedicarboxylic acid: Hydrothermal synthesis, crystal structures and photocatalytic properties
Zhang et al. Iodine Adsorption–Desorption-Induced Structural Transformation and Improved Ag+ Turn-On Luminescent Sensing Performance of a Nonporous Eu (III) Metal–Organic Framework
Xiong et al. Construction of a series of Co (II)-based coordination polymers with boosted photocatalytic activity for the removal of dye contaminants
Tsai et al. Effective enhancement of performances on photo-assisted dye degradation using a Zn coordination polymer and its post-modified Cu/Zn bimetallic analogue under natural environments
Zhang et al. Two 1D coordination polymers constructed from 3, 3′, 4, 4′-biphenyltetracarboxylic acid and 4, 4′-bipyridine: hydrothermal syntheses and photocatalytic performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854512

Country of ref document: EP

Kind code of ref document: A1