CN109232226B - 一种微孔金属有机骨架材料及其制备方法与应用 - Google Patents

一种微孔金属有机骨架材料及其制备方法与应用 Download PDF

Info

Publication number
CN109232226B
CN109232226B CN201811058118.4A CN201811058118A CN109232226B CN 109232226 B CN109232226 B CN 109232226B CN 201811058118 A CN201811058118 A CN 201811058118A CN 109232226 B CN109232226 B CN 109232226B
Authority
CN
China
Prior art keywords
organic framework
metal organic
framework material
microporous metal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811058118.4A
Other languages
English (en)
Other versions
CN109232226A (zh
Inventor
江继军
邱千峰
陈成侠
韦张文
曹陈陈
王大为
王海平
范雅楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201811058118.4A priority Critical patent/CN109232226B/zh
Publication of CN109232226A publication Critical patent/CN109232226A/zh
Application granted granted Critical
Publication of CN109232226B publication Critical patent/CN109232226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/418Preparation of metal complexes containing carboxylic acid moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/33Polycyclic acids
    • C07C63/331Polycyclic acids with all carboxyl groups bound to non-condensed rings
    • C07C63/3334,4' - Diphenyldicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/155Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Hydrochlorofluorocarbons [HCFC]; Chlorofluorocarbons [CFC]

Abstract

本发明公开了一种微孔金属有机骨架材料及其制备方法与应用。所述微孔金属有机骨架材料的分子式为Cu3(C32H14F12O10),属于单斜晶系、P21/c空间群;其比表面积为600~700 m2/g,微孔孔容为0.20~0.30 cm3/g,微孔直径为1.0~2.0 nm。本发明的微孔金属有机骨架材料制备方法简单、无毒安全,比表面积大,展现出优良的气体吸附储存效果;不但具有良好的结晶度,并且由于其配体上的官能团和特殊的铜链结构,使材料具有良好的热稳定性、化学稳定性以及空气和水稳定性,适用范围广;而且该材料可以在吸附气体后进行脱附,并保持良好晶体结构,从而可以做到多次循环利用,具有很好的应用前景。

Description

一种微孔金属有机骨架材料及其制备方法与应用
技术领域
本发明属于杂化材料技术领域。更具体地,涉及一种微孔金属有机骨架材料及其制备方法与应用。
背景技术
氟利昂系列气体由于其具有沸点低,毒性小,化学稳定性好,常常被用于各种制冷剂、发泡剂、喷雾剂、溶剂和聚合物单体原料。由于人们生产生活对于氟利昂的大量使用,也引发或加剧了一些环境问题,比如臭氧空洞和温室效应。研究表明氟利昂是一类重要的温室气体,并且也是形成臭氧空洞的主要元凶之一。因此,开发针对氟利昂的安全高效的吸附储存材料能在一定程度上缓解此类环境问题。
金属有机骨架材料(Metal-Organic Framework,简称MOF)是通过含氧或者氮等的多齿有机配体与金属元素配位自主装而形成的有特殊孔道结构的类沸石骨架材料。其具有高的比表面积,框架结构可设计,孔道尺寸可调节,孔道表面可修饰等特点。基于这些特点,MOF成为了某些领域的例如能源或温室气体的储存和分离,多相催化,荧光检测等的具有巨大前景的材料。
但是,现有常见的金属有机骨架材料常常存在稳定性不佳、晶体合成条件较为苛刻、对特殊气体吸附储存效果不佳等问题。
发明内容
本发明要解决的技术问题是克服上述现有金属有机骨架材料的缺陷和不足,提供一种新型的单斜晶系微孔金属有机骨架材料,具有相应的优良性能,其比表面积大,微孔吸附量大,展现出了优良的R22和R134a等氟利昂的吸附储存效果;不但具有良好的结晶度,并且由于其配体上的官能团和特殊的铜链结构,使材料具有良好的热稳定性,化学稳定性以及空气和水稳定性,适用范围广。
本发明的目的是提供一种微孔金属有机骨架材料。
本发明另一目的是提供所述微孔金属有机骨架材料的制备方法。
本发明再一目的是提供所述微孔金属有机骨架材料的应用。
本发明上述目的通过以下技术方案实现:
一种微孔金属有机骨架材料,其分子式为Cu3(C32H14F12O10),其结构式如下式(I)所示:
Figure 563285DEST_PATH_IMAGE001
该微孔金属有机骨架材料属于单斜晶系,P21/c空间群。
进一步优选地,所述微孔金属有机骨架材料的比表面积为600~700 m2/g。
优选地,所述微孔金属有机骨架材料的微孔孔容为0.20~0.30 cm3/g。
优选地,所述微孔金属有机骨架材料的微孔直径为1.0~2.0 nm。
另外,上述微孔金属有机骨架材料的制备方法,是将原料A、原料B和反应溶剂混合后,超声处理,再烘干、洗涤,得到产物;所述原料A为有机配体2, 2’-双三氟甲基-4,4’-联苯二羧酸,原料B为金属铜盐。
具体优选地,微孔金属有机骨架材料的制备方法包括如下步骤:
S1. 将原料A、原料B和反应溶剂混合后,超声5~10 min,再烘干,得到微孔金属有机骨架材料的粗产品;
S2. 将所得粗产品用N,N-二甲基甲酰胺洗涤6~9次,再用甲醇洗涤6~9次,得到终产品,蓝色块状晶体。
其中,优选地,所述金属铜盐为Cu(NO3)2•2.5H2O。
优选地,原料A和原料B的质量比为1:1~2。
优选地,步骤S1中反应溶剂为N,N-二甲基乙酰胺和水。
更优选地,原料A(mg)、原料B(mg)、N,N-二甲基乙酰胺(mL)和水(mL)的料液比为1:1~2:0.13~0.14:0.075~0.086。
优选地,所述烘干的条件为置于75~85 ℃下48~72 h。
另外,上述微孔金属有机骨架材料在气体吸附和/或气体储存中的应用,以及在氟利昂(如氟利昂R22或R134a)的吸附和/或储存中的应用,均应在本发明的保护范围之内。
本发明具有以下有益效果:
1. 本发明制备的的金属有机骨架材料可用于氟利昂R22和R134a等的吸附储存,可以实现常温常压对于氟利昂R22和R134a的高效吸附;而且可以在吸附气体后进行脱附,并保持良好晶体结构,从而可以做到多次循环利用。
2. 本发明金属有机骨架材料的制备方法简单,无毒安全。通过使用Cu(Ⅱ)金属离子和有机配体2,2’-双三氟甲基-4,4’-联苯二羧酸,基于“一锅法”在75~85 ℃烘箱中合成得到,由于有机配体特意引入的三氟甲基,联苯的刚性结构,以及较为特殊的铜链结构,使之具有较大的比表面积,足够大的孔道,一定的柔性以及与氟利昂较强的相互作用。
3. 本发明的金属有机骨架材料具有良好的热稳定性,化学稳定性,并且在空气和水的环境能长期保持良好的晶体结构,适用范围广。
附图说明
图1为本发明微孔金属有机骨架材料晶体样品图。
图2为本发明微孔金属有机骨架材料结构示意图。
图3为本发明实施例1~4中制备的微孔金属有机骨架材料粉末XRD图谱。
图4为本发明实施例4中制备的微孔金属有机骨架材料的红外图谱。
图5为实施例4所制备的微孔金属有机骨架材料在77 K、0~100 KPa条件下的氮气吸附等温线。
图6为实施例4所制备的微孔金属有机骨架材料在298 K、0~100 KPa条件下的R22和R134a吸附等温线。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
以下实施例中制备微孔金属有机骨架材料的原料为:
有机配体:2,2’-双三氟甲基-4,4’-联苯二羧酸;
金属铜盐:Cu(NO3)2•2.5H2O;
反应溶剂:N,N-二甲基乙酰胺、水。
实施例1
顺序将15mg 2,2’-双三氟甲基-4,4’-联苯二羧酸、15mg Cu(NO3)2•2.5H2O加入至10 mL玻璃瓶中,再加入1.90mL N,N-二甲基乙酰胺和1.13mL水,超声5 min,放入75 ℃烘箱,静置72 h,降至室温,得到微孔金属有机骨架材料的粗产品;粗产品用N,N-二甲基甲酰胺洗涤6次,再用甲醇洗涤6次,得到终产品,蓝色块状晶体,即为微孔金属有机骨架材料。
上述制备的微孔金属有机骨架材料晶体空间群为P21/c,晶胞参数为10.4982,29.3526,33.7985,90.0,90.0,95.212。
将晶体进行XRD粉末衍射表征,得到衍射图谱如图3中实施例1样品所示,与实施例4单晶数据模拟一致。材料在77 K,0~100 KPa条件下,N2的吸附量为154 cm3/g;在298 K,0~100 KPa下,R22和R134a的吸附量分别为32 cm3/g和27 cm3/g,其性能与实施例4样品大致相同。
实施例2
顺序称取15 mg 2,2’-双三氟甲基-4,4’-联苯二羧酸,30 mg Cu(NO3)2•2.5H2O,2.06 mL N,N-二甲基乙酰胺和1.28 mL水,超声10 min,放入85 ℃烘箱,静置48h,降至室温,得到微孔金属有机骨架材料的粗产品;粗产品用N,N-二甲基甲酰胺洗涤9次,再用甲醇洗涤9次,得到终产品,蓝色块状晶体,即为微孔金属有机骨架材料。
上述制备的微孔金属有机骨架材料晶体空间群为P21/c,晶胞参数为10.5001,29.2489,33.8134,90.0,90.0,95.310。
将晶体进行XRD粉末衍射表征,得到衍射图谱如图3中实施例2样品所示,与实施例4单晶数据模拟一致。材料在77 K,0~100 KPa条件下,N2的吸附量为149 cm3/g;在298 K,0~100 KPa下,R22和R134a的吸附量分别为30 cm3/g和26 cm3/g,其性能与实施例4样品大致相同。
实施例3
顺序称取15 mg 2,2’-双三氟甲基-4,4’-联苯二羧酸,18 mg Cu(NO3)2•2.5H2O,2.00 mL N,N-二甲基乙酰胺和1.20 mL水,超声5 min,放入80 ℃烘箱,静置48 h,降至室温,得到微孔金属有机骨架材料的粗产品;粗产品用N,N-二甲基甲酰胺洗涤7次,再用甲醇洗涤7次,得到终产品,蓝色块状晶体,即为微孔金属有机骨架材料。
上述制备的微孔金属有机骨架材料晶体的晶胞参数为其晶体空间群为P21/c,晶胞参数为10.4532,29.4582,33.9548,90.0,90.0,95.785。
将晶体进行XRD粉末衍射表征,得到衍射图谱如图3中实施例3样品所示,与实施例4单晶数据模拟一致。材料在77 K,0~100 KPa条件下,N2的吸附量为162 cm3/g;在298 K,0~100 KPa下,R22和R134a的吸附量分别为34 cm3/g和29 cm3/g,其性能与实施例4样品大致相同。
实施例4
顺序称取90 mg 2,2’-双三氟甲基-4,4’-联苯二羧酸,108 mg Cu(NO3)2•2.5H2O,12.00 mL N,N-二甲基乙酰胺和7.20 mL水,超声10 min,放入80 ℃烘箱,静置72 h,降至室温,得到微孔金属有机骨架材料的粗产品;粗产品用N,N-二甲基甲酰胺洗涤89次,再用甲醇洗涤8次,得到终产品,蓝色块状晶体,即为微孔金属有机骨架材料。
本实施例4合成了以二价铜离子为中心,含三氟甲基官能团的微孔金属有机骨架材料,该上述制备的微孔金属有机骨架材料晶体的空间群是P21/c,晶胞参数为10.5076,29.4609,33.8086,90.0,90.0,95.482。
制备的微孔金属有机骨架材料晶体样品图如图1所示,结构示意图如图2所示,红外图谱如图4所示。
将晶体进行XRD粉末衍射表征,得到衍射图谱如图3中实施例4样品所示,与单晶数据模拟一致。
77 K、0~100 KPa条件下所制备的微孔金属有机骨架材料的氮气吸附等温线如图5所示,其吸附量为158 cm3/g,比表面积为663 m2/g,微孔孔容为0.28 cm3/g,微孔直径约为1.4 nm。298 K、0~100 KPa条件下所制备的微孔金属有机骨架材料的R22和R134a吸附等温线如图6所示,吸附量分别为35 cm3/g和29 cm3/g,表明材料能在常温常压下对R22和R134a进行高效吸附。故其可作为有一定应用前景的氟利昂的工业吸附储存材料。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种微孔金属有机骨架材料,其特征在于,其结构式如下式(I)所示:
Figure FDA0002969043950000011
2.根据权利要求1所述微孔金属有机骨架材料,其特征在于,其比表面积为600~700m2/g。
3.根据权利要求1所述微孔金属有机骨架材料,其特征在于,其微孔孔容为0.20~0.30cm3/g。
4.根据权利要求1所述微孔金属有机骨架材料,其特征在于,其微孔直径为1.0~2.0nm。
5.权利要求1~4任一所述微孔金属有机骨架材料的制备方法,其特征在于,将原料A、原料B和反应溶剂混合后,超声处理,再烘干、洗涤,得到产物;所述原料A为2,2’-双三氟甲基-4,4’-联苯二羧酸,原料B为金属铜盐。
6.根据权利要求5所述的制备方法,其特征在于,包括如下步骤:
S1.将原料A、原料B和反应溶剂混合后,超声5~10min,再烘干,得到微孔金属有机骨架材料的粗产品;
S2.将所得粗产品用N,N-二甲基甲酰胺洗涤6~9次,再用甲醇洗涤6~9次,得到终产品。
7.根据权利要求5所述的制备方法,其特征在于,所述金属铜盐为Cu(NO3)2·2.5H2O。
8.根据权利要求5或6所述的制备方法,其特征在于,原料A和原料B的质量比为1:1~2。
9.权利要求1~4任一所述微孔金属有机骨架材料在气体吸附中的应用,其特征在于,所述气体为N2、氟利昂R22或氟利昂R134a。
CN201811058118.4A 2018-09-11 2018-09-11 一种微孔金属有机骨架材料及其制备方法与应用 Active CN109232226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811058118.4A CN109232226B (zh) 2018-09-11 2018-09-11 一种微孔金属有机骨架材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811058118.4A CN109232226B (zh) 2018-09-11 2018-09-11 一种微孔金属有机骨架材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109232226A CN109232226A (zh) 2019-01-18
CN109232226B true CN109232226B (zh) 2021-05-07

Family

ID=65060805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811058118.4A Active CN109232226B (zh) 2018-09-11 2018-09-11 一种微孔金属有机骨架材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109232226B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452943A (zh) * 2022-02-15 2022-05-10 中国船舶重工集团公司第七一九研究所 一种用于R134a气体去除的MOF复合材料吸附剂及其制备方法
CN114621456B (zh) * 2022-03-15 2023-03-24 广州市食品检验所(广州市酒类检测中心) 金属有机骨架纳米材料、方法、应用和检测利血平的方法
CN115160586B (zh) * 2022-08-02 2023-09-22 中山大学 一种介孔金属有机骨架材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362688A (zh) * 2008-10-09 2009-02-11 南京工业大学 2,2'-二烷氧基-4,4'-联苯二甲酸及其合成方法
CN103301813A (zh) * 2013-06-19 2013-09-18 中国科学院合肥物质科学研究院 一种基于金属有机骨架结构的除氟剂及其制备方法
CN106928464A (zh) * 2017-02-27 2017-07-07 中山大学 一种金属有机骨架材料lifm‑28的功能化及去功能化方法及其功能化产物和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290151A (ja) * 1996-04-26 1997-11-11 Osaka Gas Co Ltd 化学物質吸着材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362688A (zh) * 2008-10-09 2009-02-11 南京工业大学 2,2'-二烷氧基-4,4'-联苯二甲酸及其合成方法
CN103301813A (zh) * 2013-06-19 2013-09-18 中国科学院合肥物质科学研究院 一种基于金属有机骨架结构的除氟剂及其制备方法
CN106928464A (zh) * 2017-02-27 2017-07-07 中山大学 一种金属有机骨架材料lifm‑28的功能化及去功能化方法及其功能化产物和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A copper based metal-organic framework: Synthesis, modification and VOCs adsorption;Xu Wei-qin,et al.;《Inorganic Chemistry Communications》;20180328;第92卷(第2018期);第1-4页 *
Precise Modulation of the Breathing Behavior and Pore Surface in Zr- MOFs by Reversible Post-Synthetic Variable-Spacer Installation to Fine-Tune the Expansion Magnitude and Sorption Properties;Chen Cheng-xia,et al.;《Angewandte Chemie International Edition》;20160712;第55卷(第1期);第9932-9936页 *
Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks;Wang hao,et al.;《Chemical Society Reviews》;20180707;第47卷(第13期);第4667-5100页 *
Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification;Chen cheng-xia,et al.;《Chemical Communications》;20171025;第53卷(第83期);第11403-11406页 *

Also Published As

Publication number Publication date
CN109232226A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Liu et al. Improvement of hydrothermal stability of zeolitic imidazolate frameworks
Pan et al. ZIF-derived in situ nitrogen decorated porous carbons for CO 2 capture
CN108751189B (zh) 高比表面积的铝基mof多孔碳材料的制备与应用
CN109232226B (zh) 一种微孔金属有机骨架材料及其制备方法与应用
CN108404868B (zh) 基于碱金属阳离子掺杂NH2-MIL-125(Ti)材料及制备方法
CN112679731A (zh) 一类含有磺酸基团的共价有机框架材料及其制备和应用
CN103435620B (zh) 用于co2吸附与分离的多孔铜金属有机骨架材料及其制备方法
Xie et al. Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas
Zhu et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis
CN106861634A (zh) 金属‑有机骨架化合物@介孔材料复合材料及其制备方法与应用
WO2016041317A1 (zh) 一种吸附CO2的金属-有机框架材料Bi-BTC的制备与改性方法
CN101816925B (zh) 一种用于co2吸附的有机无机杂化材料及其制备方法
CN111375385A (zh) 一种双金属有机骨架吸附剂的制备方法及其应用
Jia et al. (CH3) 2NH‐assisted synthesis of high‐purity Ni‐HKUST‐1 for the adsorption of CO2, CH4, and N2
CN112827470A (zh) 一种具有高稳定性的选择性空气吸水MOFs材料及其制备方法
Xue et al. Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems
Peng et al. Hierarchically Porous Mg-MOF-74/Sodium Alginate Composite Aerogel for CO2 Capture
Li et al. Round-the-clock water harvesting from dry air using a metal− organic framework
CN105237554A (zh) 水稳定的锌-铜金属有机框架材料及其制备方法与应用
CN105713018A (zh) 一种金属有机骨架材料及其制备方法
CN115558120B (zh) 用于痕量btex吸附的金属有机框架材料及其制备方法
CN107022087B (zh) 一种高孔隙孔性配位聚合物、制备方法、应用及其膜的制备方法
CN116284063A (zh) 一种含氮羧酸过渡金属配合物及其制备方法与应用
CN114314584A (zh) 一种性能可重复型孔道多极化纳米碳材料的制备方法和应用
Wei et al. Ultra‐microporous MAF stu‐1 modified by ammonia for efficient CO2 capture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant