WO2022246892A1 - 一种ptfe复合粉体、制备方法及含有该粉体的复合材料 - Google Patents

一种ptfe复合粉体、制备方法及含有该粉体的复合材料 Download PDF

Info

Publication number
WO2022246892A1
WO2022246892A1 PCT/CN2021/098245 CN2021098245W WO2022246892A1 WO 2022246892 A1 WO2022246892 A1 WO 2022246892A1 CN 2021098245 W CN2021098245 W CN 2021098245W WO 2022246892 A1 WO2022246892 A1 WO 2022246892A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptfe
powder
inorganic
composite powder
ptfe composite
Prior art date
Application number
PCT/CN2021/098245
Other languages
English (en)
French (fr)
Inventor
王韶晖
龚雪冰
秦永法
蒋学鑫
Original Assignee
蚌埠壹石通聚合物复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蚌埠壹石通聚合物复合材料有限公司 filed Critical 蚌埠壹石通聚合物复合材料有限公司
Priority to JP2022541238A priority Critical patent/JP7418048B2/ja
Priority to KR1020227018176A priority patent/KR20220161253A/ko
Priority to US17/793,945 priority patent/US20240174820A1/en
Priority to EP21908074.4A priority patent/EP4116375A4/en
Publication of WO2022246892A1 publication Critical patent/WO2022246892A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/013Additives applied to the surface of polymers or polymer particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the invention belongs to the technical field of PTFE powder, and in particular relates to a PTFE composite powder, a preparation method thereof, and a composite material containing the powder.
  • Polytetrafluoroethylene (Teflon or PTFE), commonly known as “Plastic King", is a polymer compound made of tetrafluoroethylene, which has excellent chemical stability, corrosion resistance, sealing, stain resistance, and high Lubricant and non-stick, electrical insulation and excellent heat and weather aging resistance, wear resistance, high toughness and strength, can be made into PTFE tubes, rods, strips, plates, films, etc. In addition to being processed into a specific shape and directly applied, PTFE can also be made into powder and filled in other materials to prepare composite materials to improve the properties of other materials.
  • PTFE has excellent dielectric properties, and its dielectric constant (2.1) and dielectric loss (0.0003) are lower than most polymers, which is very suitable for 5G high-frequency high-speed communication materials, such as high-frequency high-speed copper clad laminates and the manufacture of printed circuit boards.
  • dielectric constant (3.6) and dielectric loss (0.025) of epoxy resin are relatively high, and its dielectric constant and dielectric loss need to be further reduced when used in 5G materials.
  • the main methods used for surface modification of PTFE include sodium-naphthalene solution chemical treatment, plasma treatment, high-energy ray or ultraviolet irradiation grafting, and excimer laser treatment.
  • PTFE is easy to change color after treatment, and the treatment effect is easy to lose after long-term exposure to the air, and a large amount of waste liquid needs to be treated, which is not conducive to environmental protection and is more dangerous.
  • the first object of the present invention is to provide a PTFE composite powder, which solves the problem of weak interfacial bonding and poor compatibility between PTFE powder and other polymers due to the low surface energy of PTFE powder.
  • the treatment effect of the powder can remain stable for a long time, and can achieve good compatibility with various polymers by adjusting the composition.
  • a PTFE composite powder comprising the following components: PTFE powder, inorganic powder, surface treatment agent, the inorganic powder is coated on the surface of the PTFE powder to form an inorganic powder layer, the surface treatment agent is coated on on the inorganic powder layer.
  • the mass ratio of the PTFE powder, the inorganic powder and the surface treatment agent is 100:1-50:0.01-10.
  • the particle diameter of the PTFE powder is 0.2 ⁇ m ⁇ 40 ⁇ m.
  • the PTFE powder also includes other low surface energy fluoroplastic powders.
  • the inorganic powder includes at least one of oxides, hydroxides, carbides, borides, sulfides, and nitrides, and has a particle size of 1 nm-0.4 ⁇ m. It is sufficient to select the above-mentioned inorganic powder that is insoluble in water and does not undergo a chemical reaction.
  • the surface treatment agent includes one or more of silane coupling agent, titanate coupling agent, aluminate coupling agent, stearic acid and stearate.
  • the second object of the present invention is to provide a preparation method of PTFE composite powder, in which naphthalene sodium treatment solution is not used.
  • a preparation method of PTFE composite powder comprising the following steps:
  • Step (1) adding the dispersant and PTFE powder into a solvent composed of at least one of water and an organic solvent to obtain a PTFE dispersion;
  • Step (2) Stir the inorganic powder precursor and the PTFE dispersion in step (1) evenly, and adjust the pH value to alkaline, so that the precursor is uniformly reacted and deposited on the surface of the PTFE powder, and then filtered, washed, and dried Dry to obtain inorganic coated hydrophilic PTFE powder;
  • Step (3) Treat the inorganic-coated hydrophilic PTFE powder obtained in step (2) with a surface treatment agent to obtain an organic-coated hydrophobic PTFE composite powder.
  • the dispersant in step (1) is one or more of anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. When the system does not conflict, different types of surfactants can be selected.
  • the anionic surfactants include higher fatty acid soaps, alkyl sulfates, alkyl sulfonates, alkyl phosphates, and alkylamide betaine anionic surfactants, but are not limited thereto.
  • the cationic surfactants include quaternary ammonium salts, pyridine halides, imidazoline compounds, and alkyl phosphate substituted amine cationic surfactants, but are not limited thereto.
  • amphoteric surfactants include amino acid type and betaine type amphoteric surfactants, but are not limited thereto.
  • the nonionic surfactants include polyoxyethylene ethers and polyalcohol nonionic surfactants, but are not limited thereto.
  • the dispersant described in step (1) is preferably a nonionic surfactant. Because of its electrical neutrality, low critical micelle concentration and low surface tension, it can make the PTFE emulsion have good dispersion and increase the solid content of the emulsion.
  • the organic solvent described in the step (1) includes methanol, ethanol, acetone, ethylene glycol, isopropanol, dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, One or more of tetrahydrofuran and dioxane, but not limited thereto.
  • step (1) the dispersant is first added to the solvent, and then the PTFE powder is added for dispersion.
  • the PTFE dispersion is ball milled or ground.
  • the inorganic powder precursor includes aluminum nitrate, ethyl orthosilicate, methyl orthosilicate, tert-butyl silicate, silica sol, aluminum sol, sodium silicate, aluminum sulfate, sodium aluminate, aluminum chloride, Trimethylaluminum, triethylaluminum, aluminum sec-butoxide, aluminum isopropoxide, but not limited thereto, other raw materials that can be reacted to obtain inorganic powders can also be used as precursors.
  • the inorganic powder precursor is tetraethyl orthosilicate
  • the pH value is alkaline
  • stir evenly and then add acid for catalysis.
  • the acid is preferably hydrofluoric acid.
  • step (2) at least one of inorganic powder, inorganic powder dispersion, and inorganic powder sol can also be added to coat together with the inorganic powder precursor.
  • the stirring equipment in step (2) includes one or both of magnetic stirring, electric stirring, ultrasonic dispersion, and ball milling; filtering includes vacuum suction filtration, centrifugation, and press filtration.
  • the water washing in the step (2) is re-distributed evenly in deionized water and then filtered again, and the operation is repeated 1-5 times, or the ion cleaning method is used for continuous cleaning for 4-15 hours.
  • the drying equipment in the step (2) includes a blast drying oven, a vacuum oven, a muffle furnace, an atmosphere furnace, etc., and the temperature is 50-350° C. for 2-8 hours.
  • the third object of the present invention is to provide a composite material containing the above-mentioned PTFE composite powder.
  • the composite material has low dielectric constant and dielectric loss.
  • the matrix polymer of the composite material includes at least one of epoxy resin, hydrocarbon resin, polyphenylene ether, and liquid crystal polymer, but is not limited thereto.
  • the dispersant since the dispersant has an lipophilic group at one end and a hydrophilic group at one end, the lipophilic group of the dispersant is combined with the PTFE powder during the preparation process, and the inorganic powder precursor precipitates and combines with the hydrophilic group Combined to realize the coating of inorganic powder on PTFE powder, obtain inorganic coating hydrophilic PTFE powder, and then use surface treatment agent to treat the inorganic coating layer, and then realize good compatibility between PTFE powder and polymer, And different surface treatment agents can be selected according to the type of polymer, and compared with the prior art, the applicable range is wider.
  • the present invention transforms the direct contact between PTFE powder and polymer interface into inorganic powder with good compatibility through the transition of surface hydrophobic treated inorganic powder layer
  • the body is in contact with the polymer, so the PTFE composite powder obtained in the present invention has good compatibility with the polymer.
  • Fig. 1 is the scanning electron micrograph of raw material PTFE powder
  • Fig. 2-Fig. 10 is the scanning electron micrograph of the PTFE composite powder that embodiment 1-9 prepares successively;
  • Figure 11 and Figure 12 are the dispersion diagrams of PTFE powder and PTFE composite powder in epoxy resin respectively.
  • the raw material that the present invention adopts is as follows:
  • CTAB cetyltrimethylammonium bromide
  • polyethylene glycol octylphenyl ether polyoxyethylene octylphenol ether
  • Step (1) Add 1.5g of cetyltrimethylammonium bromide and 100g of PTFE powder into 100g of water and disperse evenly to obtain a PTFE dispersion.
  • Step (2) Add 36.76g Al(NO 3 ) 3 ⁇ 9H 2 O to the PTFE dispersion in step (1) and stir evenly, add ammonia water to adjust the pH value to 8-9, stir for 0.5h, vacuum filter, ion cleaning The machine was washed continuously for 6 hours, and dried at 200°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder.
  • Step (3) re-stir the inorganic-coated hydrophilic PTFE powder obtained in step (2), and ultrasonically disperse it in 200g of water, then add 1g of ethanol, 1g of KH-560, and 0.25g of water, and adjust the pH to 3 with pure acetic acid -4, magnetic stirring, stirring at 25°C for 30min, stirring at room temperature for 2h, vacuum filtration, drying at 120°C for 10h, to obtain PTFE composite powder.
  • the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:5:1.
  • Step (2) Add 294.12g Al(NO 3 ) 3 ⁇ 9H 2 O to the PTFE dispersion in step (1) and stir evenly, add ammonia water to adjust the pH value to 8-9, stir mechanically at 25°C for 0.5h, and vacuum filter , The ion cleaning machine was continuously cleaned for 6 hours, and dried at 200 ° C for 5 hours to obtain inorganic-coated hydrophilic PTFE composite powder.
  • Step (3) Re-stir the inorganic-coated hydrophilic PTFE powder obtained in step (2), and ultrasonically disperse it in 200g of water, then add 5g of ethanol, 5g of KH-560, and 1.25g of water, and adjust the pH to 3 with pure acetic acid -4, magnetic stirring, stirring at 25°C for 30min, stirring at room temperature for 2h, vacuum filtration, drying at 120°C for 10h, to obtain PTFE composite powder.
  • the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:40:5.
  • Step (1) Add 2g of cetyltrimethylammonium bromide and 100g of PTFE powder into 150g of water and disperse evenly to obtain a PTFE dispersion.
  • Step (2) Add 73.53g Al(NO 3 ) 3 ⁇ 9H 2 O to the PTFE dispersion in step (1) and stir evenly, add ammonia water to adjust the pH value to 8-9, stir mechanically at 25°C for 0.5h, and vacuum filter , The ion cleaning machine was continuously cleaned for 6 hours, and dried at 200 ° C for 5 hours to obtain inorganic-coated hydrophilic PTFE composite powder.
  • Step (3) Re-stir the inorganic-coated hydrophilic PTFE powder obtained in step (2), and ultrasonically disperse it in 200g of water, then add 3g of ethanol, 3g of KH-560, and 0.75g of water, and adjust the pH to 3 with pure acetic acid -4, magnetic stirring, stirring at 25°C for 30min, stirring at room temperature for 2h, vacuum filtration, drying at 120°C for 10h, to obtain PTFE composite powder.
  • the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:10:3.
  • Step (1) 2g cetyltrimethylammonium bromide, 100g PTFE powder are added in 150g ethanol and disperse evenly by ball milling, obtain PTFE dispersion liquid.
  • Step (2) Add 147.06g Al(NO 3 ) 3 ⁇ 9H 2 O to the PTFE dispersion in step (1) and stir evenly, add ammonia water to adjust the pH value to 8-9, mechanically stir at 25°C for 0.5h, and vacuum pump Filtration, redispersion evenly in deionized water, suction filtration again, repeat the operation 3 times, and dry at 200°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder.
  • Step (1) Add 1.5g cetyltrimethylammonium bromide and 100g PTFE powder into a solvent composed of 100g water and 100g ethanol to disperse evenly to obtain a PTFE dispersion.
  • Step (2) Add 73.53g Al(NO 3 ) 3 ⁇ 9H 2 O to the PTFE dispersion in step (1) and stir evenly, add ammonia water to adjust the pH value to 8-9, mechanically stir at 25°C for 0.5h, and vacuum pump Filtration, redispersion evenly in deionized water, suction filtration again, repeat the operation 3 times, and dry at 200°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder.
  • Step (3) Re-stir the inorganic-coated hydrophilic PTFE powder obtained in step (2), and ultrasonically disperse it in 200g of water, then add 3g of ethanol, 3g of KH-560, and 0.75g of water, and adjust the pH to 3 with pure acetic acid -4, magnetic stirring, stirring at 25°C for 30min, stirring at room temperature for 2h, vacuum filtration, drying at 120°C for 10h, to obtain PTFE composite powder.
  • the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:10:3.
  • Step (1) Add 2g of polyethylene glycol octylphenyl ether and 100g of PTFE powder into 200g of water to disperse evenly, and adjust the pH value of the system to 9-10 with 10% sodium hydroxide to obtain a PTFE dispersion.
  • Step (2) Stir and mix 24.79g water, 13.6g ethanol and 35.71g TEOS, add the PTFE dispersion in step (1) and stir evenly, stir magnetically at 25°C for 1 hour, then adjust the pH of the system to 5 with 10% HNO3 -6, heat up to 85°C and react for 20 hours, vacuum filter, continuously wash with ion cleaner for 6 hours, and dry at 130°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder.
  • Step (3) Re-stir the inorganic-coated hydrophilic PTFE powder obtained in step (2), and ultrasonically disperse it in 200g of water, then add 3g of ethanol, 3g of KH-560, and 0.75g of water, and adjust the pH to 3 with pure acetic acid -4, magnetic stirring, stirring at 25°C for 30min, stirring at room temperature for 2h, vacuum filtration, drying at 120°C for 10h, to obtain PTFE composite powder. , by weight, the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:10:3.
  • Step (1) Add 2g of polyethylene glycol octylphenyl ether and 100g of PTFE powder into 200g of water to disperse evenly, adjust the pH value to 9-10 with 10% sodium hydroxide to obtain a PTFE dispersion.
  • Step (2) After stirring and mixing 12.4g of water, 6.8g of ethanol and 17.86g of TEOS, add the PTFE dispersion of step (1) and stir evenly, stir magnetically at 25°C for 1h, and then adjust the pH of the system to 5 with 10% HCl solution -6, heat up to 85°C and react for 20 hours, vacuum filter, continuously wash with an ion cleaner for 6 hours, and dry at 130°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder.
  • Step (3) re-stir the inorganic-coated hydrophilic PTFE powder obtained in step (2), and ultrasonically disperse it in 200g of water, then add 3g of ethanol, 3g of KH-560, and 0.75g of water, and use pure acetic acid to adjust the pH to 3- 4. Magnetic stirring, stirring at 25°C for 30 minutes, stirring at room temperature for 2 hours, vacuum filtration, and drying at 120°C for 10 hours to obtain PTFE composite powder. By weight, the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:5:3.
  • Step (1) Add 2g of polyethylene glycol octylphenyl ether and 100g of PTFE powder into 200g of water to disperse evenly, adjust the pH value to 9-10 with 10% sodium hydroxide to obtain a PTFE dispersion.
  • Step (2) After stirring and mixing 49.58g of water, 27.2g of ethanol and 71.43g of TEOS, add the PTFE dispersion in step (1) and stir evenly, stir magnetically at 25°C for 1h, and then adjust the pH of the system to 5 with 10% HF solution -6, heat up to 85°C and react for 20 hours, vacuum filter, continuously wash with an ion cleaner for 6 hours, and dry at 130°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder.
  • Step (3) Add 3g of A-137 to the inorganic-coated hydrophilic PTFE powder high-speed mixer obtained in step (2), stir at a high speed of 500r/min for 20min, and heat it in an oven at 120°C for 30min after discharging to obtain PTFE composite powder.
  • the ratio of PTFE powder, inorganic powder and surface treatment agent in PTFE composite powder is 100:20:3.
  • Step (1) Add 2g of polyethylene glycol octylphenyl ether and 100g of PTFE powder into a solvent consisting of 80g of water and 20g of N,N-dimethylformamide to disperse evenly, and adjust the pH with 10% sodium hydroxide Value to 9-10, obtain PTFE dispersion liquid;
  • Step (2) After stirring and mixing 49.58g of water, 27.2g of ethanol and 71.43g of TEOS, add the PTFE dispersion in step (1) and stir evenly, stir magnetically at 25°C for 1h, and then adjust the pH of the system to 5 with 10% HF solution -6, heat up to 85°C and react for 20 hours, vacuum filtration, continuous cleaning with an ion cleaner for 6 hours, and drying at 130°C for 5 hours to obtain inorganic-coated hydrophilic PTFE powder;
  • Example 3 3.74 0.008
  • Example 4 3.89 0.008
  • Example 5 3.74 0.007
  • Example 6 3.61 0.006
  • Example 7 3.58 0.006
  • Example 8 3.66 0.007
  • Example 9 3.66 0.006 comparative example 3.55 0.017
  • the measured light transmittance of the aqueous solution is 100%; for the PTFE powder treated with KH560 in the comparative example, the PTFE powder is still hydrophobic and floating because the coupling agent cannot be connected to the surface of the PTFE On the water surface; after inorganic coating, the PTFE powder can be uniformly dispersed in water to form a suspension, and the light transmittance of the solution is significantly reduced; after the inorganic coating hydrophilic PTFE powder is treated with a surface treatment agent, it changes from hydrophilic to hydrophobic and floats On the water surface, the light transmittance of the solution becomes larger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种PTFE复合粉体及其制备方法,以及含有该粉体的复合材料,涉及PTFE粉体技术领域,所述PTFE复合粉体包括以下组分:PTFE粉体、无机粉体、表面处理剂,所述无机粉体包覆在PTFE粉体表面形成无机粉体层,所述表面处理剂包覆在无机粉体层上。本发明得到的复合材料中,由于PTFE复合粉体与基体聚合物的相容性与现有技术相比更好,因此添加量更大,复合材料的介电常数和介电损耗更小,适用作5G材料。

Description

一种PTFE复合粉体、制备方法及含有该粉体的复合材料 技术领域
本发明属于PTFE粉体技术领域,具体涉及一种PTFE复合粉体及其制备方法,以及含有该粉体的复合材料。
背景技术
聚四氟乙烯(Teflon或PTFE),俗称“塑料王”,是由四氟乙烯经聚合而成的高分子化合物,具有优良的化学稳定性、耐腐蚀性、密封性、耐污性好、高润滑不粘性、电绝缘性和优良的耐热和天候老化性、耐磨、韧性和强度高,可制成聚四氟乙烯管、棒、带、板、薄膜等。PTFE除了自身可以加工成特定形状直接得到应用外,还可以做成粉状填充于其它材料中制备成复合材料,起到改善其它材料性能的目的。
然而由于PTFE的结晶度高、表面能很低,导致PTFE表面虽然疏水,但与其它聚合物的相容性较差。这使得当PTFE粉体与其它聚合物形成复合材料时,材料间的界面结合较弱,互粘性较差。
另外,PTFE具有优良的介电性能,其介电常数(2.1)和介电损耗(0.0003)比大多数聚合物都低,非常适合应用于5G高频高速通信材料中,如高频高速覆铜板和印刷线路板的制造。但是,PTFE直接用于覆铜板基材使用时,由于硬度较低等原因,加工性能存在不足,因此传统的覆铜板大多选用环氧树脂作为基体。但是环氧树脂的介电常数(3.6)和介电损耗(0.025)相对较高,用在5G材料中需要进一步降低其介电常数和介电损耗。如果能够将低介电常数和介电损耗PTFE粉体经过适当方法改性后,使其与其他聚合物的相容性提高,那么PTFE粉体就可以作为环氧树脂及其它基体聚合物,如碳氢树脂、聚苯醚(PPO)、液晶聚合物(LCP)等的介电性能改性剂,起到进一步降低其介电常数和介电损耗的目的,从而使5G的高频高速技术能在材料端得以实现。同时,也避免了PTFE材料单独使用时加工性能差的缺点。
为了解决上述问题,目前PTFE表面改性主要采用的方法包括钠-萘溶液化学处理法、等离子体处理法、高能射线或紫外线辐照接枝法、准分子激光处理法。其中钠-萘溶液化学处理法的处理效果好,该方法通过脱除表面部分氟原子,引入C=C、C=O、COOH等极性基团,提高了表面亲水性。但是处理后PTFE容易变色、长期暴露在空气中处理效果容易丧失、而且需要处理大量的废液,不利于环保且较危险。此外由于处理后PTFE表面形成的特定的极性基团,只能与具有相似结构的物质较好相容,限制了PTFE粉末与其它物质的结合。其它方法虽然相对环保,但大多适用于具有固定形状的PTFE产品表面,难以对粉末状的PTFE有效、充分处理。而且等离子体处理、高能射线或紫外线辐照接枝、准分子激光处理这些方法采用的设备昂贵、生产效率低、难以大规模工业化生产,改性效果同样难以长时间保持。
发明内容
本发明的第一目的在于提供一种PTFE复合粉体,解决因PTFE粉体表面能低,导致PTFE粉体与其它聚合物界面结合较弱,相容性较差的问题。该粉体的处理效果能够长时间保持稳定,并且能够通过调整组成与多种聚合物实现良好的相容。该目的采用以下的技术方案来实现:
一种PTFE复合粉体,包括以下组分:PTFE粉体、无机粉体、表面处理剂,所述无机粉体包覆在PTFE粉体表面形成无机粉体层,所述表面处理剂包覆在无机粉体层上。
所述PTFE粉体、无机粉体、表面处理剂的质量比为100:1~50:0.01~10。
所述PTFE粉体的粒径为0.2μm~40μm。
所述PTFE粉体还包括其它低表面能的氟塑料粉体。
所述无机粉体包括氧化物,氢氧化物,碳化物,硼化物,硫化物,氮化物中的至少一种,粒径为1nm-0.4μm。选择不溶于水、不会发生化学反应的上述形式的无机物粉体即可。
所述表面处理剂包括硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、硬脂酸及硬脂酸盐中的一种或多种。
为了最终实现PTFE粉体与目标聚合物的良好相容,改善PTFE粉体在聚 合物中的分散,增强与目标聚合物之间的界面结合,改善复合材料的性能,可以选取与终端应用聚合物具有良好相容性的表面处理剂。
本发明第二目的在于提供一种PTFE复合粉体的制备方法,该方法中未使用萘钠处理液。
一种PTFE复合粉体的制备方法,包括以下步骤:
步骤(1):将分散剂、PTFE粉体加入由水、有机溶剂中的至少一种组成的溶剂中,得到PTFE分散液;
步骤(2):将无机粉体前驱体与步骤(1)的PTFE分散液搅拌均匀,并调节pH值至碱性,使前驱体均匀地在PTFE粉体表面反应沉积,经过滤、水洗、烘干,得到无机包覆亲水PTFE粉体;
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体采用表面处理剂进行处理,得到有机包覆疏水PTFE复合粉体。
步骤(1)中所述分散剂为阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂、非离子表面活性剂中的一种或多种。体系不冲突时可以选用不同种类的表面活性剂。
所述阴离子表面活性剂包括高级脂肪酸皂类、烷基硫酸盐类、烷基磺酸盐类、烷基磷酸酯类、烷基酰胺甜菜碱类阴离子表面活性剂,但不限于此。
所述阳离子表面活性剂包括季铵盐类、吡啶卤化物类、咪唑啉化合物类、烷基磷酸酯取代胺类阳离子表面活性剂,但不限于此。
所述两性表面活性剂包括氨基酸型、甜菜碱型两性表面活性剂,但不限于此。
所述非离子表面活性剂包括聚氧乙烯醚类、多元醇类非离子表面活性剂,但不限于此。
步骤(1)中所述分散剂优选非离子表面活性剂。因其具有电中性,较低的临界胶束浓度和较低的表面张力,能够使PTFE乳液具有良好的分散性且提高乳液的固含量。
步骤(1)中所述有机溶剂包括甲醇、乙醇、丙酮、乙二醇、异丙醇、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃、二恶烷中的一种或多种,但不限于此。
为达到更好的分散效果,优选地,步骤(1)先将分散剂加入溶剂中,再加入PTFE粉体进行分散。
为了进一步提高分散效果,将PTFE分散液进行球磨或研磨。
所述无机粉体前驱体包括硝酸铝、正硅酸乙酯、正硅酸甲酯、硅酸叔丁酯、硅溶胶、铝溶胶、硅酸钠、硫酸铝、铝酸钠、氯化铝、三甲基铝、三乙基铝、仲丁醇铝、异丙醇铝,但不限于此,其它能够反应得到无机粉体的原料也可作为前驱体。
当无机粉体前驱体为正硅酸乙酯时,为了达到均匀包覆的效果,在调节pH值为碱性后,搅拌均匀,然后加入酸进行催化。所述酸优选氢氟酸。
步骤(2)中还可以加入无机粉体、无机粉体分散液、无机粉体溶胶中的至少一种,与无机粉体前驱体共同进行包覆。
步骤(2)中所述搅拌的设备包括磁力搅拌、电动搅拌、超声波分散、球磨中的一种或两种;过滤包括真空抽滤、离心、压滤等。
步骤(2)中所述水洗采用重新均匀分散于去离子水中后再次过滤,重复操作1~5次,或采用离子清洗方式连续清洗4-15h。
步骤(2)中所述烘干的设备包括鼓风干燥箱、真空烘箱、马弗炉、气氛炉等,温度50~350℃保温2~8h。
本发明的第三目的是提供一种含有上述PTFE复合粉体的复合材料。该复合材料的介电常数和介电损耗低。
所述复合材料的基体聚合物包括环氧树脂、碳氢树脂、聚苯醚、液晶聚合物中的至少一种,但不限于此。
本发明的有益效果:
1、在本发明中,由于分散剂一端具有亲油基团、一端具有亲水基团,制备过程中分散剂亲油基团与PTFE粉体结合,无机粉体前驱体沉淀并与亲水基团结合,实现无机物粉体对PTFE粉体的包覆,得到无机包覆亲水PTFE粉体,然后采用表面处理剂处理无机包覆层,进而实现PTFE粉体与聚合物的良好相容,并且可以根据聚合物种类选择不同的表面处理剂,与现有技术相比,适用范围更广。
与现有的PTFE粉体与聚合物直接界面接触相比,本发明通过表面疏水处 理的无机粉体层过渡,将PTFE粉体与聚合物界面的直接接触变成相容性好的无机物粉体与聚合物接触,因此本发明得到的PTFE复合粉体与聚合物具有良好的相容性。
2、由于本发明PTFE复合粉体表面的无机、有机包覆层性能较为稳定,因此改性效果能够长久保持。
3、由于本发明制备方法中未使用萘钠处理液等原料,危险性小,采用的设备较为简单,因此适于工业化生产。
4、本发明得到的复合材料中,由于PTFE复合粉体与基体聚合物的相容性与现有技术相比更好,因此添加量更大,复合材料的介电常数和介电损耗更小,适用作5G材料。
附图说明
图1为原料PTFE粉体的扫描电镜图;
图2-图10依次为实施例1-9制备的PTFE复合粉体的扫描电镜图;
图11、图12分别为PTFE粉体、PTFE复合粉体在环氧树脂中的分散图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例和图示,进一步阐述本发明。
本发明所采用的原料如下:
分散剂:十六烷基三甲基溴化铵(CTAB)、聚乙二醇辛基苯基醚、聚氧乙烯辛基苯酚醚
硅烷偶联剂;KH560、A-137、A-171
实施例1
步骤(1):将1.5g十六烷基三甲基溴化铵、100g PTFE粉体加入100g水中分散均匀,得到PTFE分散液。
步骤(2):将36.76g Al(NO 3) 3·9H 2O加入步骤(1)的PTFE分散液搅拌均匀,加入氨水调节PH值至8~9,搅拌0.5h,真空抽滤,离子清洗机连续清洗6h,200℃、5h烘干,得到无机包覆亲水PTFE粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入1g乙醇、1g KH-560、0.25g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:5:1。
实施例2
步骤(1):将5g十六烷基三甲基溴化铵、100g PTFE粉体加入50g水中分散均匀,得到PTFE分散液。
步骤(2):将294.12g Al(NO 3) 3·9H 2O加入步骤(1)的PTFE分散液搅拌均匀,加入氨水调节pH值至8~9,25℃机械搅拌0.5h,真空抽滤,离子清洗机连续清洗6h,200℃、5h烘干,得到无机包覆亲水PTFE复合粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入5g乙醇、5g KH-560、1.25g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:40:5。
实施例3
步骤(1):将2g十六烷基三甲基溴化铵、100g PTFE粉体加入150g水中分散均匀,得到PTFE分散液。
步骤(2):将73.53g Al(NO 3) 3·9H 2O加入步骤(1)的PTFE分散液搅拌均匀,加入氨水调节pH值至8~9,25℃机械搅拌0.5h,真空抽滤,离子清洗机连续清洗6h,200℃、5h烘干,得到无机包覆亲水PTFE复合粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入3g乙醇、3g KH-560、0.75g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:10:3。
实施例4
步骤(1):将2g十六烷基三甲基溴化铵、100g PTFE粉体加入150g乙醇中通 过球磨分散均匀,得到PTFE分散液。
步骤(2):将147.06g Al(NO 3) 3·9H 2O加入步骤(1)的PTFE分散液搅拌均匀,加入氨水调节pH值至8~9,25℃机械搅拌0.5h,经真空抽滤、重新均匀分散于去离子水中后再次抽滤,重复操作3次,200℃、5h烘干,得无机包覆亲水PTFE粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入3g乙醇、3g KH-560、0.75g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:20:3。
实施例5
步骤(1):将1.5g十六烷基三甲基溴化铵、100g PTFE粉体加入由100g水、100g乙醇组成的溶剂中分散均匀,得到PTFE分散液。
步骤(2):将73.53g Al(NO 3) 3·9H 2O加入步骤(1)的PTFE分散液搅拌均匀,加入氨水调节pH值至8~9,25℃机械搅拌0.5h,经真空抽滤、重新均匀分散于去离子水中后再次抽滤,重复操作3次,200℃、5h烘干,得无机包覆亲水PTFE粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入3g乙醇、3g KH-560、0.75g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:10:3。
实施例6
步骤(1):将2g聚乙二醇辛基苯基醚、100g PTFE粉体加入200g水中分散均匀,用10%氢氧化钠调节体系pH值至9-10,得到PTFE分散液。
步骤(2):将24.79g水、13.6g乙醇及35.71g TEOS搅拌混合后,加入步骤(1)的PTFE分散液搅拌均匀,25℃磁力搅拌1h,然后用10%HNO 3调节体系pH为5-6,升温至85℃反应20h,经真空抽滤,离子清洗机连续清洗6h,130℃、5h烘干,得无机包覆亲水PTFE粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入3g乙醇、3g KH-560、0.75g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。,按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:10:3。
实施例7
步骤(1):将2g聚乙二醇辛基苯基醚、100g PTFE粉体加入200g水中分散均匀,用10%氢氧化钠调节pH值至9-10,得到PTFE分散液。
步骤(2):将12.4g水、6.8g乙醇及17.86g TEOS搅拌混合后,加入步骤(1)的PTFE分散液搅拌均匀,25℃磁力搅拌1h,然后用10%HCl溶液调节体系pH为5-6,升温至85℃反应20h,经真空抽滤,离子清洗机连续清洗6h,130℃、5h烘干,得无机包覆亲水PTFE粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入3g乙醇、3gKH-560、0.75g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:5:3。
实施例8
步骤(1):将2g聚乙二醇辛基苯基醚、100g PTFE粉体加入200g水中分散均匀,用10%氢氧化钠调节pH值至9-10,得到PTFE分散液。
步骤(2):将49.58g水、27.2g乙醇及71.43g TEOS搅拌混合后,加入步骤(1)的PTFE分散液搅拌均匀,25℃磁力搅拌1h,然后用10%HF溶液调节体系pH为5-6,升温至85℃反应20h,经真空抽滤,离子清洗机连续清洗6h,130℃、5h烘干,得无机包覆亲水PTFE粉体。
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体高速混料机中加入3g A-137,500r/min高速搅拌20min,出料后于烘箱中120℃加热30min,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:20:3。
实施例9
步骤(1):将2g聚乙二醇辛基苯基醚、100gPTFE粉体加入由80g水与20g N,N-二甲基甲酰胺组成的溶剂中分散均匀,用10%氢氧化钠调节PH值至9-10,得到PTFE分散液;
步骤(2):将49.58g水、27.2g乙醇及71.43g TEOS搅拌混合后,加入步骤(1)的PTFE分散液搅拌均匀,25℃磁力搅拌1h,然后用10%HF溶液调节体系pH为5-6,升温至85℃反应20h,经真空抽滤,离子清洗机连续清洗6h,130℃、5h烘干,得无机包覆亲水PTFE粉体;
步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体重新搅拌、超声分散于200g水中,再加入3g乙醇、3g KH-560、0.75g水,用纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到PTFE复合粉体。按重量计,PTFE复合粉体中PTFE粉体、无机粉体、表面处理剂的比例为100:20:3。
对比例
将100gPTFE粉体加入80g水中,搅拌,然后加入3g KH-560、0.75g水,加入纯醋酸调节pH为3-4,磁力搅拌,25℃搅拌30min,室温搅拌2h,真空抽滤,120℃、10h烘干,得到硅烷偶联剂处理的PTFE粉末。
不同粉体于环氧体系介电性能对比
分别将100份PTFE原粉、实施例1-9所得PTFE复合粉体加入100份双酚A型环氧树脂中,并加入5份1,2-二甲基咪唑作为固化剂,混合分散均匀;将所得混合物置于真空装置中脱除内部空气,熟化8h待用;将获得的粘稠物缓慢倒入提前预热好的模具中,随后梯度升温固化,获得粉体填充的环氧树脂复合材料。
采用宽频介电谱分析仪对所得环氧树脂复合材料的介电常数和介电损耗进行测试,数据列于表1。
表1 环氧树脂复合材料的介电常数和介电损耗
组分 介电常数(1GHz) 介电损耗(1GHz)
PTFE粉体 3.55 0.016
实施例1 3.64 0.006
实施例2 4.14 0.011
实施例3 3.74 0.008
实施例4 3.89 0.008
实施例5 3.74 0.007
实施例6 3.61 0.006
实施例7 3.58 0.006
实施例8 3.66 0.007
实施例9 3.66 0.006
对比例 3.55 0.017
由表1的数据可以看出,本发明制得的PTFE复合粉体用于环氧树脂中,与单纯的PTFE粉体相比,能够在介电常数稳定的情况下,介电损耗明显降低。
对比例虽然采用硅烷偶联剂处理后与未处理数据基本一致
将实施例1-9中原料PTFE粉体、制备的无机包覆亲水PTFE粉体、制备的PTFE复合粉体以及对比例的处理后的PTFE粉体四种粉体分别称取2g,加入100ml水中超声5min,采用可见分光光度计测定于456nm处的透光率,表征亲水、疏水性,数据列于表2。
表2 不同粉体在水中的透光率
Figure PCTCN2021098245-appb-000001
由于PTFE粉体完全疏水,漂浮在水面上,测得水溶液的透光率为100%; 对比例采用KH560处理的PTFE粉体,由于偶联剂无法连接在PTFE表面,PTFE粉体仍然疏水、漂浮在水面上;无机包覆后PTFE粉体能够均匀分散在水中形成悬浮液,溶液透光率明显降低;无机包覆亲水PTFE粉体采用表面处理剂处理后,由亲水变为疏水,漂浮在水面上,溶液透光率变大。由于超声分散后的无机包覆亲水PTFE复合粉体能够稳定形成悬浮液,说明PTFE粉体未与无机物粉体剥离,可以看出无机物粉体能够牢固包覆在PTFE粉体表面。
将实施例的PTFE复合粉体、对实施例的比例中偶联剂处理的PTFE粉体分别加入相同量的双酚A型环氧树脂中,搅拌后放置,实施例未分层,对比例混合溶液逐渐分层,说明硅烷偶联剂处理未有效改善PTFE粉体在有机物中的相容性。
由图2-10与图1的对比可以看出,无机粉体在PTFE粉体表面形成了包覆层。
由图11可以看出,PTFE粉体在环氧树脂中产生团聚。
由图12可以看出,本发明制备的PTFE复合粉体在环氧树脂中分散均匀。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (12)

  1. 一种PTFE复合粉体,其特征在于:包括以下组分:PTFE粉体、无机粉体、表面处理剂,所述无机粉体包覆在PTFE粉体表面形成无机粉体层,所述表面处理剂包覆在无机粉体层上。
  2. 根据权利要求1所述的PTFE复合粉体,其特征在于:所述PTFE粉体、无机粉体、表面处理剂的质量比为100:1~50:0.01~10;PTFE粉体的粒径为0.2μm~40μm。
  3. 根据权利要求1所述的PTFE复合粉体,其特征在于:所述无机粉体包括氧化物,氢氧化物,碳化物,硼化物,硫化物,氮化物中的至少一种,粒径为1nm-0.4μm。
  4. 根据权利要求1所述的PTFE复合粉体,其特征在于:所述表面处理剂包括硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、硬脂酸及硬脂酸盐中的一种或多种。
  5. 权利要求1-4任一项所述的PTFE复合粉体的制备方法,其特征在于,包括以下步骤:
    步骤(1):将分散剂、PTFE粉体加入由水、有机溶剂中的至少一种组成的溶剂中,得到PTFE分散液;
    步骤(2):将无机粉体前驱体与步骤(1)的PTFE分散液搅拌均匀,并调节pH值至碱性,使前驱体均匀地在PTFE粉体表面反应沉积,经过滤、水洗、烘干,得到无机包覆亲水PTFE粉体;
    步骤(3):将步骤(2)得到的无机包覆亲水PTFE粉体采用表面处理剂进行处理,得到有机包覆疏水PTFE复合粉体。
  6. 根据权利要求5所述的PTFE复合粉体的制备方法,其特征在于:步骤(1)中所述分散剂为阴离子表面活性剂、阳离子表面活性剂、两性表面活性剂、非离子表面活性剂中的一种或多种。
  7. 根据权利要求6所述的PTFE复合粉体的制备方法,其特征在于:所述阴离子表面活性剂包括高级脂肪酸皂类、烷基硫酸盐类、烷基磺酸盐类、烷基磷酸酯类、烷基酰胺甜菜碱类阴离子表面活性剂;所述阳离子表面活性剂包括季铵盐类、吡啶卤化物类、咪唑啉化合物类、烷基磷酸酯取代胺类阳 离子表面活性剂;所述两性表面活性剂包括氨基酸型、甜菜碱型两性表面活性剂;所述非离子表面活性剂包括聚氧乙烯醚类、多元醇类非离子表面活性剂。
  8. 根据权利要求5所述的PTFE复合粉体的制备方法,其特征在于:步骤(1)中所述有机溶剂包括甲醇、乙醇、丙酮、乙二醇、异丙醇、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃、二恶烷中的一种或多种。
  9. 根据权利要求5所述的PTFE复合粉体的制备方法,其特征在于:所述无机粉体前驱体包括硝酸铝、正硅酸乙酯、正硅酸甲酯、硅酸叔丁酯、硅溶胶、铝溶胶、硅酸钠、硫酸铝、铝酸钠、氯化铝、三甲基铝、三乙基铝、仲丁醇铝、异丙醇铝。
  10. 根据权利要求5所述的PTFE复合粉体的制备方法,其特征在于:步骤(2)中可以加入无机粉体、无机粉体分散液、无机粉体溶胶中的至少一种,与无机粉体前驱体共同进行包覆。
  11. 一种含有权利要求1-4任一项所述的PTFE复合粉体或者权利要求6-10任一项制备的PTFE复合粉体的复合材料。
  12. 根据权利要求11所述的复合材料,其特征在于:所述复合材料的基体聚合物包括环氧树脂、碳氢树脂、聚苯醚、液晶聚合物中的至少一种。
PCT/CN2021/098245 2021-05-28 2021-06-04 一种ptfe复合粉体、制备方法及含有该粉体的复合材料 WO2022246892A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022541238A JP7418048B2 (ja) 2021-05-28 2021-06-04 Ptfe複合粉末及びその調製方法並びに当該粉末を含む複合材料
KR1020227018176A KR20220161253A (ko) 2021-05-28 2021-06-04 Ptfe 복합분말체 및 이의 제조방법 및 이 분말체를 포함하는 복합재료
US17/793,945 US20240174820A1 (en) 2021-05-28 2021-06-04 Ptfe composite powder, preparation method thereof, and composite material containing the same
EP21908074.4A EP4116375A4 (en) 2021-05-28 2021-06-04 PTFE COMPOSITE POWDER, METHOD FOR PREPARING AND COMPOSITE MATERIAL CONTAINING PTFE COMPOSITE POWDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110594664.5A CN113337057B (zh) 2021-05-28 2021-05-28 一种ptfe复合粉体、制备方法及含有该粉体的复合材料
CN202110594664.5 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022246892A1 true WO2022246892A1 (zh) 2022-12-01

Family

ID=77472039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098245 WO2022246892A1 (zh) 2021-05-28 2021-06-04 一种ptfe复合粉体、制备方法及含有该粉体的复合材料

Country Status (7)

Country Link
US (1) US20240174820A1 (zh)
EP (1) EP4116375A4 (zh)
JP (1) JP7418048B2 (zh)
KR (1) KR20220161253A (zh)
CN (1) CN113337057B (zh)
TW (1) TWI810943B (zh)
WO (1) WO2022246892A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116395920A (zh) * 2023-06-09 2023-07-07 成都硕特科技股份有限公司 一种煤化工废水除油装置及除油方法
CN116535788A (zh) * 2023-07-03 2023-08-04 山东森荣新材料股份有限公司 一种ptfe复合介质材料及其制备方法与应用
CN117447798A (zh) * 2023-12-21 2024-01-26 季华实验室 一种ptfe复合材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368709B (zh) * 2022-09-26 2023-05-09 衡阳华瑞电气有限公司 一种磁悬浮列车驱动电机绝缘树脂及其制备方法
CN115610045B (zh) * 2022-12-20 2023-05-23 中国电子科技集团公司第四十六研究所 一种含核壳结构粉体的低损耗和低吸水率覆铜板制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096991A (ja) * 2004-08-31 2006-04-13 Kurabe Ind Co Ltd Ptfe樹脂成型体、ptfe樹脂成型体を用いた一体化構造、及び、それらの製造方法
CN103467829A (zh) * 2013-09-25 2013-12-25 南京天诗新材料科技有限公司 负载纳米二氧化硅的蜡水性分散体及其制备方法和用途
CN106009428A (zh) * 2016-05-13 2016-10-12 电子科技大学 一种二氧化硅填充ptfe复合材料及其制备方法
CN106221082A (zh) * 2016-07-25 2016-12-14 武汉工程大学 一种Gemini表面活性剂改性碳酸钙填充聚四氟乙烯的复合材料及其制备方法
CN110396221A (zh) * 2019-08-15 2019-11-01 安徽壹石通材料科技股份有限公司 一种ptfe包覆二氧化硅填料的制备方法
CN110484024A (zh) * 2019-08-15 2019-11-22 安徽壹石通材料科技股份有限公司 一种制备ptfe改性无机粉体复合填料的方法
CN112062979A (zh) * 2020-09-07 2020-12-11 清华大学 一种有机-无机核壳结构自润滑复合材料及其制备方法
CN112111176A (zh) * 2020-09-28 2020-12-22 常州中英科技股份有限公司 一种氮化硼包覆聚四氟乙烯复合填料及其制备的半固化片和高导热型碳氢覆铜板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298987A (ja) * 1993-04-09 1994-10-25 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜の製造法
JP3552612B2 (ja) 1998-10-29 2004-08-11 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液組成物、配合組成液および塗膜の製造方法
JP4797347B2 (ja) * 2004-08-25 2011-10-19 旭硝子株式会社 低分子量ポリテトラフルオロエチレン水性分散液の製造方法
CN102731941A (zh) * 2012-06-13 2012-10-17 浙江大学 聚四氟乙烯复合材料的制备方法
AU2015363139B2 (en) * 2014-12-19 2018-03-01 W.L. Gore & Associates Gmbh Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
JP6442281B2 (ja) 2014-12-26 2018-12-19 株式会社アドマテックス シリカ被覆有機物粒子およびその製造方法並びに樹脂組成物
CN105176143A (zh) * 2015-08-18 2015-12-23 苏州润佳工程塑料股份有限公司 一种热塑性塑料用无机粉体的表面修饰方法
WO2018211626A1 (ja) 2017-05-17 2018-11-22 株式会社アドマテックス 複合粒子材料及びその製造方法
JP7435441B2 (ja) * 2018-06-27 2024-02-21 Agc株式会社 パウダー分散液、積層体、膜及び含浸織布
CN110818919A (zh) * 2018-08-09 2020-02-21 臻鼎科技股份有限公司 改质聚四氟乙烯颗粒、其制备方法及组合物
CN109294282A (zh) * 2018-09-30 2019-02-01 滁州市开金绢云母有限公司 一种新型纳米化绢云母粉体的制备方法
JP2021004316A (ja) * 2019-06-26 2021-01-14 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、プリプレグの製造方法、積層板及びプリント配線板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096991A (ja) * 2004-08-31 2006-04-13 Kurabe Ind Co Ltd Ptfe樹脂成型体、ptfe樹脂成型体を用いた一体化構造、及び、それらの製造方法
CN103467829A (zh) * 2013-09-25 2013-12-25 南京天诗新材料科技有限公司 负载纳米二氧化硅的蜡水性分散体及其制备方法和用途
CN106009428A (zh) * 2016-05-13 2016-10-12 电子科技大学 一种二氧化硅填充ptfe复合材料及其制备方法
CN106221082A (zh) * 2016-07-25 2016-12-14 武汉工程大学 一种Gemini表面活性剂改性碳酸钙填充聚四氟乙烯的复合材料及其制备方法
CN110396221A (zh) * 2019-08-15 2019-11-01 安徽壹石通材料科技股份有限公司 一种ptfe包覆二氧化硅填料的制备方法
CN110484024A (zh) * 2019-08-15 2019-11-22 安徽壹石通材料科技股份有限公司 一种制备ptfe改性无机粉体复合填料的方法
CN112062979A (zh) * 2020-09-07 2020-12-11 清华大学 一种有机-无机核壳结构自润滑复合材料及其制备方法
CN112111176A (zh) * 2020-09-28 2020-12-22 常州中英科技股份有限公司 一种氮化硼包覆聚四氟乙烯复合填料及其制备的半固化片和高导热型碳氢覆铜板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN JIANQIANG, CHEN QING, CHEN XIAOHONG, CHEN XIANGQIAN, HAN BO: "Surface Modification of Silicon Micropowder and Application thereof in Epoxy Resin Castings", ZHEJIANG CHEMICAL INDUSTRY, ZHEJIANG SHENG HUAGONG YANJIUYUAN, CN, vol. 35, no. 08, 31 December 2004 (2004-12-31), CN , pages 6 - 7, XP009539222, ISSN: 1006-4184 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116395920A (zh) * 2023-06-09 2023-07-07 成都硕特科技股份有限公司 一种煤化工废水除油装置及除油方法
CN116395920B (zh) * 2023-06-09 2023-09-05 成都硕特科技股份有限公司 一种煤化工废水除油装置及除油方法
CN116535788A (zh) * 2023-07-03 2023-08-04 山东森荣新材料股份有限公司 一种ptfe复合介质材料及其制备方法与应用
CN116535788B (zh) * 2023-07-03 2023-09-08 山东森荣新材料股份有限公司 一种ptfe复合介质材料及其制备方法与应用
CN117447798A (zh) * 2023-12-21 2024-01-26 季华实验室 一种ptfe复合材料及其制备方法和应用
CN117447798B (zh) * 2023-12-21 2024-03-19 季华实验室 一种ptfe复合材料及其制备方法和应用

Also Published As

Publication number Publication date
TW202246408A (zh) 2022-12-01
CN113337057A (zh) 2021-09-03
JP7418048B2 (ja) 2024-01-19
CN113337057B (zh) 2022-11-04
TWI810943B (zh) 2023-08-01
EP4116375A1 (en) 2023-01-11
KR20220161253A (ko) 2022-12-06
EP4116375A4 (en) 2023-08-09
JP2023530792A (ja) 2023-07-20
US20240174820A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
WO2022246892A1 (zh) 一种ptfe复合粉体、制备方法及含有该粉体的复合材料
CN107353773B (zh) 一种含有石墨烯的水性环氧防腐涂料及其制备方法及应用
CN111068997B (zh) 一种实现冷凝换热管超疏水的涂层的制备方法及冷凝换热管
CN112876983A (zh) 无氟超疏水的改性二氧化硅复合树脂涂层及其制备方法
CN108659457B (zh) 一种氮化硼包覆磺化石墨烯-环氧树脂复合材料及其制备方法
CN111635699A (zh) 一种超疏水易清洁涂料及其制备方法
CN111040527A (zh) 热反射超疏水pvdf涂料及其制备方法
CN112300648A (zh) 一种透明超疏水涂层及其制备方法
CN113174067B (zh) 一种有机无机复合包覆ptfe粉体的制备方法
CN115746701A (zh) 一种rtv防污闪涂料及其制备方法和应用
TWI712560B (zh) 矽烷處理鎂橄欖石微粒子及其製造方法、以及矽烷處理鎂橄欖石微粒子之有機溶劑分散液及其製造方法
CN108485133B (zh) 一种高储能密度复合材料及其制备方法
Yang et al. Ultra-high dielectric constant and thermal conductivity SrTiO3@ VTMS/PB composite for microwave substrate application
CN113527964B (zh) 一种水性丙烯酸防护涂料
CN110386761B (zh) 一种具有高透光率的超疏水减反射涂层的制备方法
CN113150672A (zh) 一种制备LDHs/GO-MA自修复防腐蚀涂层的方法
CN114716885A (zh) 一种石墨烯复合涂料及制备方法、散热装置
CN109486354B (zh) 一种导电超疏水涂料及其制备方法
CN116731456A (zh) 一种低介电常数低损耗的聚四氟乙烯覆铜板的制备方法
CN114292495B (zh) 环氧树脂复合材料及其制备方法与应用
CN106128543B (zh) 一种防沉降效果好的导电银浆及其制备方法
CN116199905B (zh) 一种聚四氟乙烯浓缩分散液
Feng et al. Novel Lignin‐Functionalized Waterborne Epoxy Composite Coatings with Excellent Anti‐Aging, UV Resistance, and Interfacial Anti‐Corrosion Performance
CN107603316A (zh) 一种防雾自洁纳米材料的制备方法
CN115339172B (zh) 一种抗菌铝箔材料的制备方法、抗菌铝箔、铝箔餐盒

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022541238

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021908074

Country of ref document: EP

Effective date: 20220627

WWE Wipo information: entry into national phase

Ref document number: 17793945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE