WO2022210398A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2022210398A1 WO2022210398A1 PCT/JP2022/014557 JP2022014557W WO2022210398A1 WO 2022210398 A1 WO2022210398 A1 WO 2022210398A1 JP 2022014557 W JP2022014557 W JP 2022014557W WO 2022210398 A1 WO2022210398 A1 WO 2022210398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- refrigeration cycle
- valve
- heat exchanger
- heat source
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 297
- 239000003507 refrigerant Substances 0.000 claims abstract description 632
- 238000001179 sorption measurement Methods 0.000 claims abstract description 164
- 239000003463 adsorbent Substances 0.000 claims abstract description 136
- 239000000203 mixture Substances 0.000 claims abstract description 86
- 230000007246 mechanism Effects 0.000 claims abstract description 76
- 238000010438 heat treatment Methods 0.000 claims description 96
- 238000001514 detection method Methods 0.000 claims description 42
- 230000015572 biosynthetic process Effects 0.000 claims description 36
- 229910021536 Zeolite Inorganic materials 0.000 claims description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 8
- 239000010457 zeolite Substances 0.000 claims description 8
- 239000012621 metal-organic framework Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 abstract description 6
- 239000002250 absorbent Substances 0.000 abstract 1
- 230000002745 absorbent Effects 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 68
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 63
- 229910002092 carbon dioxide Inorganic materials 0.000 description 31
- 239000007788 liquid Substances 0.000 description 30
- 230000006870 function Effects 0.000 description 29
- 238000003795 desorption Methods 0.000 description 28
- 230000001629 suppression Effects 0.000 description 19
- 238000005259 measurement Methods 0.000 description 17
- 238000010257 thawing Methods 0.000 description 13
- 238000013021 overheating Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 239000002826 coolant Substances 0.000 description 5
- 239000012267 brine Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000013310 covalent-organic framework Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- WFLOTYSKFUPZQB-OWOJBTEDSA-N (e)-1,2-difluoroethene Chemical group F\C=C\F WFLOTYSKFUPZQB-OWOJBTEDSA-N 0.000 description 1
- CDOOAUSHHFGWSA-UPHRSURJSA-N (z)-1,3,3,3-tetrafluoroprop-1-ene Chemical compound F\C=C/C(F)(F)F CDOOAUSHHFGWSA-UPHRSURJSA-N 0.000 description 1
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- FQELOCOACCYGLL-UHFFFAOYSA-N 1,2,3,5,6,8-hexachloronaphthalene Chemical compound ClC1=CC(Cl)=C2C(Cl)=C(Cl)C(Cl)=CC2=C1Cl FQELOCOACCYGLL-UHFFFAOYSA-N 0.000 description 1
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- 239000013489 COF-102 Substances 0.000 description 1
- 239000013362 DUT-9 Substances 0.000 description 1
- 239000013177 MIL-101 Substances 0.000 description 1
- 239000013236 Zn4O(BTB)2 Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/08—Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
Definitions
- Patent Document 1 Japanese Patent Laid-Open No. 62-80452
- a certain type of refrigerant is used as an adsorbent according to desired operating performance.
- Refrigerating cycle devices are known in which the composition ratio of the refrigerant used in the refrigerating cycle is changed by adsorbing a certain type of refrigerant on an adsorbent or by desorbing a certain type of refrigerant from an adsorbent.
- Patent Document 1 Japanese Patent Laid-Open No. 62-80452
- Japanese Patent Laid-Open No. 62-80452 Japanese Patent Laid-Open No. 62-80452
- a refrigeration cycle device includes a refrigeration cycle, an adsorption section, and a first bypass flow path.
- a refrigeration cycle includes a compressor, a radiator, an expansion mechanism, and an evaporator.
- the refrigeration cycle uses a non-azeotropic refrigerant mixture containing a first refrigerant and a second refrigerant.
- the adsorption part includes an adsorbent. The adsorbent adsorbs the first refrigerant. The adsorbent does not adsorb the second refrigerant, or its adsorption performance for the second refrigerant is lower than that for the first refrigerant.
- the adsorption part stores the first refrigerant adsorbed by the adsorbent.
- the first bypass flow path connects the first end, which is the high pressure section of the refrigeration cycle, and the second end, which is the low pressure section of the refrigeration cycle.
- An adsorption part and a valve are arranged in the first bypass channel.
- pressure can be used to adsorb and desorb the first refrigerant to and from the adsorbent, so the composition ratio of the refrigerant can be changed in a relatively short time.
- the first refrigerant can be desorbed from the adsorbent while operating normally, and the time during which normal operation cannot be performed due to a change in the composition ratio of the refrigerant can be shortened.
- the refrigeration cycle device is the refrigeration cycle device according to the first aspect, and the second end is between the expansion mechanism and the evaporator of the refrigeration cycle.
- a refrigeration cycle device is the refrigeration cycle device according to the first or second aspect, and the first end is between the radiator and the expansion mechanism of the refrigeration cycle.
- Adsorption heat is generated when the refrigerant is adsorbed by the adsorbent. Therefore, when the temperature of the first refrigerant is high, the first refrigerant is less likely to be adsorbed by the adsorbent.
- the first refrigerant adsorbs to the adsorbent compared to the case where the refrigerant immediately after being discharged from the compressor flows into the adsorbent.
- a refrigerating cycle device is the refrigerating cycle device according to any one of the first aspect to the third aspect, and the refrigerating cycle includes a utilization heat exchanger.
- the utilization heat exchanger cools the temperature control target when functioning as an evaporator, and heats the temperature control target when functioning as a radiator.
- the valve of the first bypass flow path is opened and the adsorbent adsorbs the first refrigerant.
- the utilization heat exchanger is used as a radiator, the valve of the first bypass flow path is opened and the adsorbent desorbs the first refrigerant.
- refrigerants with suitable compositions can be used when the heat exchanger used functions as an evaporator and when it functions as a radiator.
- a refrigeration cycle device is the refrigeration cycle device according to any one of the first to fourth aspects, wherein the valves include a first valve and a second valve.
- a first valve is disposed between the first end and the adsorption portion.
- a second valve is disposed between the adsorption portion and the second end.
- valves are provided between the first end and the adsorption section and between the adsorption section and the second end, respectively, so that the adsorption of the first refrigerant to the adsorbent, Desorption of the first refrigerant from the adsorbent can be appropriately controlled, and the composition ratio of the refrigerant can be changed in a short period of time.
- a refrigeration cycle device is the refrigeration cycle device according to the fifth aspect, wherein the first valve and the second valve are opened and the first valve The opening degrees of the first valve and the second valve are adjusted so that the flow area of is larger than the flow area of the second valve.
- the first valve and the second valve are opened, and the first valve is opened so that the flow area of the second valve is larger than the flow area of the first valve. and the opening degree of the second valve is adjusted.
- the passage area of the first valve is opened to be larger than the passage area of the second valve, so the pressure in the adsorption section becomes relatively high. Therefore, the pressure can be used to efficiently adsorb the first refrigerant on the adsorbent.
- the passage area of the second valve is opened to be larger than the passage area of the first valve, so the pressure in the adsorption section is relatively low. Therefore, the first refrigerant can be efficiently desorbed from the adsorbent.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to sixth aspects, and further includes a second bypass flow path.
- the second bypass channel connects the third end and the fourth end.
- the third end is between the compressor and radiator of the refrigeration cycle.
- the fourth end is the low pressure section of the refrigeration cycle.
- the second bypass flow path heats the adsorption section with the flowing refrigerant.
- a third valve is arranged in the second bypass flow path. The third valve controls the flow of refrigerant in the second bypass flow path. The third valve is opened when the first refrigerant is desorbed from the adsorbent.
- the high-temperature refrigerant discharged from the compressor can be used to heat the adsorbent in the adsorbent, thereby promoting desorption of the first refrigerant from the adsorbent.
- the refrigeration cycle device of the eighth aspect is the refrigeration cycle device of any one of the first to seventh aspects, and the first refrigerant is CO2.
- CO2 is stored in the adsorbent, so unlike the case where CO2 is liquefied and stored in a storage tank, there is no need for a CO2 storage tank or cooling equipment for liquefying CO2. is.
- the refrigerating cycle device of the ninth aspect is the refrigerating cycle device of the eighth aspect, in which CO2 as the first refrigerant is not adsorbed on the adsorbent, and the first refrigerant contained in the non-azeotropic refrigerant mixture is The concentration of CO2 is 20 wt% or less.
- the composition ratio of the refrigerant can be changed according to the operating conditions while suppressing the enlargement of the refrigeration cycle device.
- the refrigeration cycle device of the tenth aspect is the refrigeration cycle device of the eighth or ninth aspect, and the adsorbent is a metal-organic structure or zeolite with high CO2 adsorption performance.
- a refrigeration cycle device is the refrigeration cycle device according to any one of the first to tenth aspects, and the second refrigerant is an HFO refrigerant.
- the refrigerating cycle device of the eleventh aspect it is possible to realize a refrigerating cycle device with a low environmental load by using HFO refrigerant with a low global warming potential.
- a refrigeration cycle device of a twelfth aspect is the refrigeration cycle device of any one of the first to eleventh aspects, wherein the refrigeration cycle includes a heat source heat exchanger that functions as an evaporator.
- the refrigeration cycle device further includes a first medium circuit through which a medium flows, and a first detector.
- the first medium circuit has a first heat exchange section and a second heat exchange section. In the first heat exchange section, the medium is heated by the adsorption section.
- the second heat exchange section heats the heat source heat exchanger with the medium.
- the first detector detects frost formation on the heat source heat exchanger.
- the medium circulates through the first medium circuit when the first detection unit detects frost formation on the heat source heat exchanger.
- the refrigeration cycle device of the twelfth aspect it is possible to effectively utilize the heat of adsorption when the first refrigerant is adsorbed by the adsorbent, thereby suppressing and defrosting the heat source heat exchanger.
- the heat of adsorption is stored in the adsorption part, this heat can be used for defrosting. Further, if the first refrigerant is adsorbed on the adsorbent in the adsorbent while the medium is circulated, the heat of adsorption generated by the adsorbent can be used for defrosting.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to eleventh aspects, and further includes a second medium circuit through which a medium flows.
- the second medium circuit has a first heat exchange section and a second heat exchange section. In the first heat exchange section, the medium is heated by the adsorption section. In the second heat exchange section, the medium heats the refrigerant flowing into the compressor.
- heat of adsorption when the first refrigerant is adsorbed by the adsorbent can be effectively used to heat the refrigerant sucked into the compressor.
- a refrigeration cycle apparatus is the refrigeration cycle apparatus according to any one of the first to thirteenth aspects, and further includes a second detector.
- the second detector detects the composition ratio of the refrigerant circulating in the refrigeration cycle.
- the valve of the first bypass flow path is controlled so that the composition ratio of the refrigerant detected by the second detector becomes the target composition ratio.
- the refrigeration cycle device can be operated using a refrigerant with an optimum composition ratio.
- FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment
- FIG. FIG. 2 is an example of a flow chart of adsorption control in the refrigeration cycle apparatus of FIG. 1.
- FIG. 2 is an example of a flow chart of desorption control in the refrigeration cycle apparatus of FIG. 1;
- FIG. 3 is a schematic configuration diagram of a refrigeration cycle apparatus according to another example; It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on 2nd Embodiment.
- 6 is an example of a flowchart of frost suppression operation of the refrigeration cycle apparatus of FIG. 5; 6 is another example of the flowchart of the frost suppression operation of the refrigeration cycle apparatus of FIG. 5.
- FIG. 6 is an example of a flow chart of defrost operation of the refrigeration cycle apparatus of FIG. 5.
- FIG. It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on 3rd Embodiment.
- FIG. 9 is an example of a flow chart of superheat degree control of the refrigeration cycle apparatus of FIG. 8.
- FIG. It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on 4th Embodiment.
- a refrigeration cycle device is a device that uses a vapor compression refrigeration cycle to perform at least one of cooling of a temperature-adjusted object and heating of a temperature-adjusted object.
- the refrigeration cycle device of the present disclosure uses a non-azeotropic mixed refrigerant as a refrigerant.
- the refrigeration cycle device of the present disclosure changes the composition ratio of the refrigerant flowing through the refrigeration cycle according to conditions, as described later.
- FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus 100. As shown in FIG. 1
- the refrigeration cycle device 100 is an air conditioner that cools and heats the air whose temperature is to be adjusted.
- the refrigeration cycle device 100 is not limited to this, and may be a device that cools and heats a liquid (for example, water) whose temperature is to be adjusted.
- the refrigeration cycle device 100 includes a main refrigerant circuit 50 as an example of a refrigeration cycle, an adsorption section 70, a first bypass flow path 80, a second bypass flow path 90, a controller 110, Mainly provide
- the refrigerant circuit 200 includes the main refrigerant circuit 50 , the first bypass flow path 80 , and the second bypass flow path 90 .
- a refrigerant circuit 200 including the main refrigerant circuit 50 is filled with a non-azeotropic refrigerant mixture.
- a non-azeotropic refrigerant mixture is a mixture of at least two refrigerants.
- the refrigerant circuit 200 of the refrigeration cycle apparatus 100 of the first embodiment is filled with a non-azeotropic mixed refrigerant containing only two types of refrigerants (first refrigerant and second refrigerant).
- first refrigerant and second refrigerant first refrigerant and second refrigerant
- the non-azeotropic refrigerant mixture may be a mixture of three or more refrigerants.
- the first refrigerant is CO2 (carbon dioxide) and the second refrigerant is HFO (hydrofluoroolefin).
- HFO is a refrigerant with a very low global warming potential.
- a specific non-limiting example of HFO for use as the second refrigerant is R1234Ze (cis-1,3,3,3-tetrafluoropropene).
- R1234yf (2,3,3,3-tetrafluoropropene) may be used as HFO of the second refrigerant.
- CO2 is a refrigerant with a relatively low boiling point
- R1234Ze and R1234yf are refrigerants with a relatively high boiling point.
- the first refrigerant may be called a low boiling point refrigerant
- the second refrigerant may be called a high boiling point refrigerant.
- the concentration of CO2 as the first refrigerant contained in the non-azeotropic mixed refrigerant filled in the refrigerant circuit 200 is in a state where the CO2 as the first refrigerant is not adsorbed by the adsorbent 72a of the adsorption unit 70, which will be described later. is preferably 20 wt % or less.
- the ratio of the total weight of the first refrigerant filled in the refrigerant circuit 200 to the total weight of all refrigerants filled in the refrigerant circuit 200 is preferably 20 wt% or less.
- the main refrigerant circuit 50, the adsorption section 70, the first bypass flow path 80, the second bypass flow path 90, and the controller 110 will be outlined.
- the main refrigerant circuit 50 mainly includes a compressor 10, a flow path switching mechanism 15, a heat source heat exchanger 20, an expansion mechanism 30, and a utilization heat exchanger 40, as shown in FIG.
- the compressor 10, the flow path switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, and the utilization heat exchanger 40 are connected by refrigerant pipes 52a to 52e, which will be described later, to form a main refrigerant circuit 50. (See Figure 1).
- the refrigeration cycle device 100 circulates the refrigerant in the main refrigerant circuit 50 to cool and heat the air whose temperature is to be adjusted.
- the first bypass channel 80 is a coolant channel that connects the heat source side end A of the main refrigerant circuit 50 and the user side end B of the main refrigerant circuit 50 as shown in FIG.
- the adsorption section 70 is arranged in the first bypass flow path 80 .
- the adsorption section 70 is used to change the composition ratio of the refrigerant flowing through the main refrigerant circuit 50 .
- the second bypass channel 90 is a coolant channel that connects the high-pressure end C of the main refrigerant circuit 50 and the low-pressure end D of the main refrigerant circuit 50, as shown in FIG.
- the second bypass flow path 90 is used to heat the adsorbent 72a of the adsorption section 70 with the refrigerant flowing inside.
- the refrigeration cycle apparatus 100 has a heat source unit 2 having a casing (not shown) and a utilization unit connected to the heat source unit 2 via a refrigerant pipe. 4 and .
- the heat source unit 2 is installed, for example, on the roof of the building in which the refrigerating cycle device 100 is installed, in a machine room, or around the building in which the refrigerating cycle device 100 is installed.
- the usage unit 4 is arranged in a space to be air-conditioned or in a space near the space to be air-conditioned (for example, in the ceiling or in a machine room).
- the casing of the heat source unit 2 includes the compressor 10 of the main refrigerant circuit 50, the passage switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, the first bypass passage 80, the second 2 bypass passages 90 are mainly accommodated.
- the casing of the utilization unit 4 mainly accommodates the utilization heat exchanger 40 of the main refrigerant circuit 50 .
- the controller 110 controls operations of various components of the refrigeration cycle apparatus 100 .
- the main refrigerant circuit 50 includes, as shown in FIG. and a utilization heat exchanger 40 .
- the main refrigerant circuit 50 includes a suction pipe 52a as shown in FIG. , a discharge pipe 52b, a first gas refrigerant pipe 52c, a liquid refrigerant pipe 52d, and a second gas refrigerant pipe 52e (see FIG. 1).
- the suction pipe 52 a connects the suction port 10 b of the compressor 10 and the channel switching mechanism 15 .
- the discharge pipe 52b connects the discharge port 10c of the compressor 10 and the channel switching mechanism 15 .
- the first gas refrigerant pipe 52 c connects the flow path switching mechanism 15 and the gas end of the heat source heat exchanger 20 .
- the liquid refrigerant pipe 52 d connects the liquid end of the heat source heat exchanger 20 and the liquid end of the heat utilization heat exchanger 40 .
- An expansion mechanism 30 is provided in the liquid refrigerant pipe 52d.
- the second gas refrigerant pipe 52 e connects the gas end of the heat utilization heat exchanger 40 and the channel switching mechanism 15 .
- (2-1-1) Compressor The compressor 10 sucks low-pressure refrigerant in the refrigeration cycle from the suction port 10b, compresses the refrigerant in a compression mechanism (not shown), and releases high-pressure refrigerant in the refrigeration cycle from the discharge port 10c. Dispense. Although only one compressor 10 is depicted in FIG. 1, the main refrigerant circuit 50 may have multiple compressors 10 connected in series or in parallel.
- the compressor 10 is, for example, a scroll compressor.
- the compressor 10 is not limited to this, and may be a compressor of a type other than a scroll compressor, such as a rotary compressor.
- the type of compressor 10 may be selected as appropriate.
- the compressor 10 is, but not limited to, an inverter-controlled compressor in which the rotation speed of the motor 10a is variable.
- a later-described controller 110 that controls the operation of the compressor 10 controls the rotation speed of the motor 10a of the compressor 10 according to, for example, the air conditioning load.
- the channel switching mechanism 15 is a mechanism that switches the flow direction of the refrigerant in the main refrigerant circuit 50 according to the operation mode (cooling operation mode/heating operation mode) of the refrigeration cycle device 100.
- the cooling operation mode is an operation mode of the refrigeration cycle apparatus 100 that causes the heat source heat exchanger 20 to function as a radiator and the utilization heat exchanger 40 to function as an evaporator.
- the heating operation mode is an operation mode of the refrigeration cycle apparatus 100 in which the utilization heat exchanger 40 functions as a radiator and the heat source heat exchanger 20 functions as an evaporator.
- the flow path switching mechanism 15 switches the flow direction of the refrigerant in the main refrigerant circuit 50 so that the refrigerant discharged from the compressor 10 is sent to the heat source heat exchanger 20 .
- the channel switching mechanism 15 communicates the suction pipe 52a with the second gas refrigerant pipe 52e and communicates the discharge pipe 52b with the first gas refrigerant pipe 52c (solid line in FIG. 1). reference).
- the flow path switching mechanism 15 switches the flow direction of the refrigerant in the main refrigerant circuit 50 so that the refrigerant discharged from the compressor 10 is sent to the utilization heat exchanger 40 .
- the channel switching mechanism 15 communicates the suction pipe 52a with the first gas refrigerant pipe 52c, and communicates the discharge pipe 52b with the second gas refrigerant pipe 52e (broken line in FIG. 1). reference).
- the channel switching mechanism 15 is, for example, a four-way switching valve. However, the channel switching mechanism 15 may be realized by means other than the four-way switching valve. For example, the channel switching mechanism 15 may be configured by combining a plurality of solenoid valves and pipes so as to switch the flow direction of the refrigerant.
- the heat source heat exchanger 20 functions as a refrigerant radiator when the refrigeration cycle device 100 is operated in the cooling operation mode, and functions as a refrigerant radiator when the refrigeration cycle device 100 is in the heating operation mode. When operated, it functions as an evaporator of refrigerant. Although only one heat source heat exchanger 20 is illustrated in FIG. 1, the main refrigerant circuit 50 may have a plurality of heat source heat exchangers 20 arranged in parallel.
- the heat source heat exchanger 20 is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and a plurality of heat transfer fins.
- a first gas refrigerant pipe 52c is connected to one end of the heat source heat exchanger 20 as shown in FIG.
- a liquid refrigerant pipe 52d is connected to the other end of the heat source heat exchanger 20 as shown in FIG.
- refrigerant flows into the heat source heat exchanger 20 from the first gas refrigerant pipe 52c.
- the refrigerant that has flowed into the heat source heat exchanger 20 from the first gas refrigerant pipe 52c exchanges heat with air supplied by a fan (not shown) to radiate heat, and at least a portion of the refrigerant is condensed.
- the refrigerant that has dissipated heat in the heat source heat exchanger 20 flows out to the liquid refrigerant pipe 52d.
- refrigerant flows into the heat source heat exchanger 20 from the liquid refrigerant pipe 52d.
- the refrigerant that has flowed into the heat source heat exchanger 20 from the liquid refrigerant pipe 52d absorbs heat and evaporates by exchanging heat with air supplied by a fan (not shown) in the heat source heat exchanger 20 .
- the refrigerant that has absorbed heat (heated) in the heat source heat exchanger 20 flows out to the first gas refrigerant pipe 52c.
- heat is exchanged between the refrigerant flowing inside and the air as the heat source supplied to the heat source heat exchanger 20. It is not limited to a heat exchanger that exchanges heat between and a refrigerant.
- the heat source heat exchanger 20 may be a heat exchanger that exchanges heat between a refrigerant flowing inside and a liquid as a heat source supplied to the heat source heat exchanger 20 .
- the expansion mechanism 30 is a mechanism for decompressing the refrigerant and adjusting the flow rate of the refrigerant.
- the expansion mechanism 30 is an electronic expansion valve whose opening is adjustable. The degree of opening of the expansion mechanism 30 is appropriately adjusted according to the operating conditions.
- the expansion mechanism 30 is not limited to an electronic expansion valve, and may be a thermostatic expansion valve or a capillary tube.
- the utilization heat exchanger 40 functions as a refrigerant evaporator when the refrigeration cycle device 100 is operated in the cooling operation mode, and functions as a refrigerant evaporator when the refrigeration cycle device 100 is operated in the heating operation mode. It functions as a heat radiator for the refrigerant when it is operated.
- the utilization heat exchanger 40 cools the object of temperature adjustment (air in this embodiment).
- the utilization heat exchanger 40 heats a temperature-adjusted object (air in this embodiment) when functioning as a radiator.
- the refrigeration cycle device 100 has only one utilization heat exchanger 40 .
- the main refrigerant circuit 50 of the refrigeration cycle device 100 may have a plurality of utilization heat exchangers 40 arranged in parallel.
- each utilization unit 4 may have an expansion mechanism (not shown) (for example, an electronic expansion valve with adjustable opening) arranged on the liquid side of the utilization heat exchanger 40 .
- the utilization heat exchanger 40 is, for example, a fin-and-tube heat exchanger having a plurality of heat transfer tubes and a plurality of heat transfer fins.
- a liquid refrigerant pipe 52d is connected to one end of the utilization heat exchanger 40 as shown in FIG.
- a second gas refrigerant pipe 52e is connected to the other end of the utilization heat exchanger 40 as shown in FIG.
- refrigerant flows into the utilization heat exchanger 40 from the liquid refrigerant pipe 52d.
- the refrigerant flowing into the utilization heat exchanger 40 from the liquid refrigerant pipe 52d exchanges heat with air supplied by a fan (not shown) in the utilization heat exchanger 40, absorbs heat, and evaporates.
- the refrigerant that has absorbed heat (heated) in the heat utilization heat exchanger 40 flows out to the second gas refrigerant pipe 52e.
- the air cooled by the heat exchanger 40 and the temperature of which is to be adjusted is blown out into the air-conditioned space.
- refrigerant flows into the utilization heat exchanger 40 from the second gas refrigerant pipe 52e.
- the refrigerant flowing into the utilization heat exchanger 40 from the second gas refrigerant pipe 52e radiates heat by exchanging heat with air supplied by a fan (not shown), and is at least partially condensed.
- the refrigerant that has dissipated heat in the utilization heat exchanger 40 flows out to the liquid refrigerant pipe 52d. Note that the air heated by the heat exchanger 40 to be temperature-controlled is blown out into the air-conditioned space.
- the first bypass flow path 80 is a pipe that connects the heat source side end A of the main refrigerant circuit 50 and the user side end B of the main refrigerant circuit 50 .
- the heat source side end A is the portion of the liquid refrigerant pipe 52d of the main refrigerant circuit 50 between the heat source heat exchanger 20 and the expansion mechanism 30 .
- the utilization side end B is a portion of the liquid refrigerant pipe 52 d of the main refrigerant circuit 50 between the utilization heat exchanger 40 and the expansion mechanism 30 .
- the heat source side end A of the main refrigerant circuit 50 becomes the high pressure portion of the main refrigerant circuit 50, and the use side end B of the main refrigerant circuit 50 becomes the main refrigerant circuit 50.
- a low pressure section When the refrigeration cycle device 100 is operated in the heating mode, the heat source side end A of the main refrigerant circuit 50 becomes the low pressure portion of the main refrigerant circuit 50, and the use side end B of the main refrigerant circuit 50 becomes the main refrigerant circuit 50.
- the heat source side end A is the first end in the claims
- the utilization side end B is the second end in the claims.
- the heat source side end A is the second end in the claims
- the utilization side end B is the first end in the claims.
- the high-pressure portion of the main refrigerant circuit 50 means the portion from the discharge port 10c of the compressor 10 of the main refrigerant circuit 50 to the expansion mechanism 30 in the refrigerant flow direction.
- the low-pressure portion of the main refrigerant circuit 50 means the portion from the expansion mechanism 30 of the main refrigerant circuit 50 to the suction port 10b of the compressor 10 in the refrigerant flow direction.
- the position where the first bypass channel 80 is connected is not limited to the position drawn in FIG.
- the first bypass flow path 80 has an end A' provided in the discharge pipe 52b of the main refrigerant circuit 50 and an end B provided in the suction pipe 52a of the main refrigerant circuit 50. ' and may be connected to .
- the end A' becomes the high pressure portion of the main refrigerant circuit 50
- the end B' becomes the low pressure portion of the main refrigerant circuit 50.
- the end A' is an example of a first end in the claims
- the end B' is an example of a second end in the claims.
- one end of the first bypass flow path 80 is preferably connected to the heat source side end A of the portion between the heat source heat exchanger 20 and the expansion mechanism 30 of the liquid refrigerant pipe 52d as shown in FIG. .
- the other end of the first bypass flow path 80 is preferably connected to the utilization side end B of the portion between the expansion mechanism 30 and the utilization heat exchanger 40 of the liquid refrigerant pipe 52d.
- one end of the first bypass flow path 80 is located between the radiator (the heat source heat exchanger 20 in the cooling operation mode and the utilization heat exchanger 40 in the heating operation mode) of the main refrigerant circuit 50 and the expansion mechanism 30.
- the other end of the first bypass flow path 80 is between the evaporator (utilizing heat exchanger 40 in the cooling operation mode, heat source heat exchanger 20 in the heating operation mode) and the expansion mechanism 30 of the main refrigerant circuit 50. is preferably connected to
- the adsorption part 70 is arranged in the first bypass flow path 80 as shown in FIG.
- the suction unit 70 will be described later.
- a valve 82 is arranged in the first bypass flow path 80 .
- the valve 82 is a valve that controls the flow of refrigerant in the first bypass channel 80 .
- the valve 82 includes a heat source side valve 82a and a utilization side valve 82b.
- the heat source side valve 82 a is arranged between the heat source side end A and the adsorption section 70 .
- the usage side valve 82 b is arranged between the usage side end B and the adsorption section 70 .
- the heat source side valve 82a and the utilization side valve 82b are, for example, electronic expansion valves whose opening is adjustable.
- the heat source side valve 82a is arranged between the heat source side end A functioning as the first end in the claims and the adsorption section 70. It functions as the first valve in the claims.
- the utilization side valve 82b is arranged between the utilization side end B functioning as the second end in the claims and the adsorption section 70. , function as the second valve in the claims.
- the heat source side valve 82a is arranged between the heat source side end A functioning as the second end in the claims and the adsorption section 70. It functions as the second valve in the claims.
- the usage side valve 82b is arranged between the usage side end B functioning as the first end in the claims and the adsorption section 70. , functions as the first valve in the claims.
- valve 82 When adsorbing the first refrigerant to the adsorbent 72a of the adsorbing unit 70, which will be described later, or when desorbing the first coolant from the adsorbent 72a of the adsorbing unit 70, the valve 82 is opened and the first bypass flow path 80 is opened. Refrigerant is flowed. The control of the heat source side valve 82a and the utilization side valve 82b during adsorption and desorption of the first refrigerant will be described later.
- the adsorption part 70 mainly includes an adsorbent 72a and a container 72 filled with the adsorbent 72a.
- One end of the container 72 is connected to the heat source side end A via a refrigerant pipe.
- the other end of the container 72 is connected to the user end B via a refrigerant pipe.
- the adsorbent 72a has the property of adsorbing the first refrigerant.
- the adsorbent 72a has the property of adsorbing CO2.
- the adsorption unit 70 stores the first refrigerant adsorbed by the adsorbent 72a. In other words, the adsorption unit 70 does not have a separate container for storing the first refrigerant, and stores the first refrigerant in the container 72 containing the adsorbent 72a.
- the adsorbent 72a has a property of not adsorbing the second refrigerant.
- the adsorbent 72a of the refrigeration cycle apparatus 100 of the first embodiment does not adsorb R1234Ze or R1234yf used as the second refrigerant.
- the adsorbent 72a may adsorb the second refrigerant in addition to the first refrigerant, but may have a characteristic that the adsorption performance of the second refrigerant is lower than that of the first refrigerant.
- the adsorbent 72a mainly adsorbs CO2 as the first refrigerant and is used as the second refrigerant when the adsorption unit 70 is caused to adsorb a non-azeotropic mixed refrigerant containing the first refrigerant and the second refrigerant.
- R1234Ze and R1234yf have the property of being hardly adsorbed.
- the refrigerant that flows out of the container 72 through the adsorbent 72a is the second refrigerant alone that does not contain CO2, or has a low concentration of CO2. It is a mixed refrigerant.
- the adsorbent 72a is, for example, zeolite with high CO2 adsorption performance.
- the zeolite is more specifically, for example, zeolite EMC-2, zeolite 13X, or zeolite SSZ-13.
- the adsorbent 72a may be a metal-organic framework (MOF) having high CO2 adsorption performance.
- the metal-organic framework may more specifically include, for example, MOF-177, Zn 4 O(BTB) 2 , MIL-101, NU-100, PCN-68, DUT-9, DUT -49, MAF-66, ZJU-35, ZJU-36, NU-111.
- adsorbent 72a is limited to the above adsorbents as long as they adsorb the first refrigerant and do not adsorb the second refrigerant, or if the adsorption performance of the second refrigerant is lower than the adsorption performance of the first refrigerant. not.
- the adsorbent 72a may be porous carbon, graphene, mesoporous silica (MCM-41, MCM-48, SBA-15, MBS-1, MBS-2), covalent organic framework COF (COF-102, COF -103), intrinsic microporous polymer (PIM), and the like.
- the second bypass channel 90 is a coolant channel used to heat the adsorbent 72a of the adsorber 70 with the coolant flowing therein.
- the second bypass channel 90 is a pipe that connects the high pressure end C of the main refrigerant circuit 50 and the low pressure end D of the main refrigerant circuit 50 .
- the high pressure end C is provided in the discharge pipe 52b connecting the discharge port 10c of the compressor 10 and the flow path switching mechanism 15.
- the low-pressure end D is the portion between the heat source heat exchanger 20 and the expansion mechanism 30 of the liquid refrigerant pipe 52d.
- the high pressure end C is an example of the third end between the discharge port 10c of the compressor 10 and the radiator (the heat source heat exchanger 20 in the cooling operation mode and the heat utilization heat exchanger 40 in the heating operation mode).
- the second bypass flow path 90 is used when the refrigeration cycle device 100 is in the heating operation mode, as will be described later.
- the low-pressure end D is arranged in the portion of the main refrigerant circuit 50 from the expansion mechanism 30 to the suction port 10b of the compressor 10 in the refrigerant flow direction. . Therefore, the low-pressure end D is an example of a fourth end that is a low-pressure portion of the main refrigerant circuit 50 .
- the position of the main refrigerant circuit 50 to which the second bypass flow path 90 is connected is not limited to the position depicted in FIG.
- the high-pressure end C of the second bypass flow path 90 is connected to the discharge port 10c of the compressor 10. It may be provided in the second gas refrigerant pipe 52e arranged between the utilization heat exchanger 40 functioning as a radiator.
- the low-pressure end D of the second bypass flow path 90 may be provided in the suction pipe 52 a that connects the flow path switching mechanism 15 and the suction port 10 b of the compressor 10 .
- the second bypass flow path 90 has a heating portion 94 that heats the adsorbent 72a of the adsorption portion 70 with the refrigerant flowing inside.
- the heating unit 94 is arranged, for example, inside the container 72 of the adsorption unit 70 .
- the heating section 94 is a coil-type heat exchanger in which a heat transfer tube is wound in a coil shape, with the ends (inlet and outlet of the refrigerant) being arranged outside the container 72 . Piping of the second bypass flow path 90 is connected to both ends of the heating section 94 .
- the heating unit 94 does not have to be arranged inside the container 72 .
- the heating unit 94 may be a coil-type heat exchanger arranged to surround the container 72 as long as the adsorbent 72a can be heated.
- a valve 92 is arranged in the second bypass flow path 90 .
- the valve 92 is an example of a third valve in the claims.
- a valve 92 controls the flow of refrigerant in the second bypass flow path 90 .
- the valve 92 includes a high pressure side valve 92a and a low pressure side valve 92b.
- the high pressure side valve 92 a is arranged between the high pressure end C and the heating section 94 .
- the low-pressure side valve 92 b is arranged between the low-pressure end D and the heating section 94 .
- the high-pressure side valve 92a and the low-pressure side valve 92b are, for example, electronic expansion valves whose opening is adjustable. The control of the high-pressure side valve 92a and the low-pressure side valve 92b during desorption of the first refrigerant will be described later.
- the controller 110 is a control unit for controlling the operation of various devices of the refrigeration cycle apparatus 100 .
- the controller 110 mainly includes, for example, a microcontroller unit (MCU) and various electric circuits and electronic circuits (not shown).
- the MCU includes a CPU, memory, I/O interfaces, and the like.
- Various programs for the CPU of the MCU to execute are stored in the memory of the MCU.
- an FPGA or an ASIC may be used for the controller 110 .
- the various functions of the controller 110 do not need to be implemented by software, and may be implemented by hardware or through cooperation between hardware and software.
- the controller 110 may be a device independent of the heat source unit 2 and the utilization unit 4. Further, the controller 110 is not a device independent of the heat source unit 2 and the usage unit 4. For example, a controller (not shown) mounted on the heat source unit 2, a controller (not shown) mounted on the utilization unit 4, may function as the controller 110 by working together.
- the controller 110 is electrically connected to the compressor 10, the flow path switching mechanism 15, and the expansion mechanism 30 of the main refrigerant circuit 50, and controls the operations of the compressor 10, the flow path switching mechanism 15, and the expansion mechanism 30. (See Figure 1). Further, the controller 110 controls the operation of a fan (not shown) that supplies air to the heat source heat exchanger 20 of the heat source unit 2 and a fan (not shown) that supplies air to the utilization heat exchanger 40 of the utilization unit 4. These fans are electrically connected.
- the controller 110 is also electrically connected to the heat source side valve 82a and the usage side valve 82b of the first bypass channel 80, and controls the operation of the heat source side valve 82a and the usage side valve 82b (see FIG. 1).
- the controller 110 is electrically connected to the high-pressure side valve 92a and the low-pressure side valve 92b of the second bypass passage 90, and controls the operations of the high-pressure side valve 92a and the low-pressure side valve 92b. Further, the controller 110 is communicably connected to a remote controller (not shown) used by the user of the refrigeration cycle apparatus 100 to instruct the operation of the refrigeration cycle apparatus 100 by wire or wirelessly. In addition, the controller 110 is electrically connected to sensors (not shown) arranged at various locations in the refrigeration cycle apparatus 100, and can acquire measurement values of these sensors.
- the sensors of the refrigeration cycle device 100 include, but are not limited to, sensors that measure the temperature and pressure of the refrigerant, and sensors that measure the temperature of the space to be air-conditioned and the heat source air.
- the controller 110 executes various controls by, for example, the CPU executing programs stored in the memory.
- the controller 110 controls operations of various devices of the refrigeration cycle device 100 when the refrigeration cycle device 100 performs cooling operation or heating operation.
- controller 110 The control of the operation of various devices of the refrigeration cycle apparatus by the controller 110 without consideration of the adsorption control and desorption control of the first refrigerant will be described below, and then the adsorption control and desorption control of the first refrigerant executed by the controller 110 will be described. explain.
- the controller 110 performs the cooling operation when an instruction to perform the cooling operation is given from a remote controller (not shown) or when it is determined that the cooling operation needs to be performed in view of the temperature of the air-conditioned space. to run.
- the controller 110 controls the operation of the flow path switching mechanism 15 so that the heat source heat exchanger 20 functions as a refrigerant radiator and the utilization heat exchanger 40 functions as a refrigerant evaporator.
- the controller 110 also starts the operation of the compressor 10 and the fans mounted in the heat source unit 2 and the utilization unit 4 (not shown).
- the controller 110 controls the rotation speed of the motor 10a of the compressor 10, the heat source unit 2 and the utilization unit 4 based on the measurement values of various sensors of the refrigeration cycle apparatus 100, the target temperature of the air-conditioned space set by the user, and the like. The number of rotations of the fan mounted on the , and the opening degree of the electronic expansion valve as the expansion mechanism 30 are adjusted.
- the controller 110 performs the heating operation when an instruction to perform the heating operation is given from a remote controller (not shown) or when it is determined that the heating operation needs to be performed in view of the temperature of the air-conditioned space. to run.
- the controller 110 controls the operation of the flow path switching mechanism 15 so that the heat source heat exchanger 20 functions as a refrigerant evaporator and the utilization heat exchanger 40 functions as a refrigerant radiator.
- the controller 110 also starts the operation of the compressor 10 and the fans mounted in the heat source unit 2 and the utilization unit 4 (not shown).
- the controller 110 controls the rotation speed of the motor 10a of the compressor 10, the heat source unit 2 and the utilization unit 4 based on the measurement values of various sensors of the refrigeration cycle apparatus 100, the target temperature of the air-conditioned space set by the user, and the like. The number of rotations of the fan mounted on the , and the opening degree of the electronic expansion valve as the expansion mechanism 30 are adjusted.
- the controller 110 interrupts the heating operation, controls the operation of the flow path switching mechanism 15, and controls the flow direction of the refrigerant in the main refrigerant circuit 50. is switched in the same direction as during cooling operation to perform defrost operation (reverse cycle defrost operation).
- the defrost operation is an operation for removing frost adhering to the heat source heat exchanger 20 . Since the defrost operation of the refrigeration cycle device is generally known, the detailed description of the defrost operation will be omitted.
- Adsorption control is control for causing the first refrigerant to be adsorbed by the adsorbent 72 a of the adsorption section 70 to reduce the concentration of the first refrigerant in the non-azeotropic mixed refrigerant flowing through the main refrigerant circuit 50 .
- the desorption control is control for desorbing the first refrigerant adsorbed by the adsorbent 72 a to increase the concentration of the first refrigerant in the non-azeotropic mixed refrigerant flowing through the main refrigerant circuit 50 .
- the second refrigerant is substantially independently circulated in the main refrigerant circuit 50 during cooling operation.
- the second refrigerant is circulated through the main refrigerant circuit 50 substantially alone.
- To circulate the second refrigerant substantially alone in the main refrigerant circuit 50 means to circulate a refrigerant that does not contain the first refrigerant in the main refrigerant circuit 50, and in addition to a non-azeotropic refrigerant with a low concentration of the first refrigerant. Including the case where the mixed refrigerant is circulated.
- the non-azeotropic mixed refrigerant having a low first refrigerant concentration is, for example, a non-azeotropic mixed refrigerant having a first refrigerant concentration of 5 wt % or less.
- the non-azeotropic mixed refrigerant having a low first refrigerant concentration is a non-azeotropic mixed refrigerant having a first refrigerant concentration of 2 wt % or less.
- the refrigeration cycle device 100 circulates a non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant in the main refrigerant circuit 50 during heating operation.
- the main refrigerant circuit 50 is circulated with a non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant.
- the refrigeration cycle device 100 desorbs, for example, all or substantially all of the first refrigerant adsorbed on the adsorbent 72a.
- the concentration of the first refrigerant in the non-azeotropic refrigerant mixture flowing through the main refrigerant circuit 50 when the refrigeration cycle device 100 performs the heating operation is, but not limited to, 15 wt %.
- the concentration of the first refrigerant in the non-azeotropic mixed refrigerant flowing through the main refrigerant circuit 50 when the refrigeration cycle device 100 performs heating operation may be lower than 15 wt% or higher than 15 wt%.
- the concentration of the first refrigerant in the non-azeotropic refrigerant mixture flowing through the main refrigerant circuit 50 is preferably 20 wt % or less.
- the refrigeration cycle device 100 can be operated with relatively high efficiency.
- a second refrigerant refrigerant with a high boiling point
- a high boiling point refrigerant is used, there is a possibility of insufficient performance during heating operation at low outside temperatures.
- a non-azeotropic mixed refrigerant in which a high boiling point refrigerant is mixed with a first refrigerant (low boiling point refrigerant) such as CO2
- the lack of capacity can be compensated for.
- the efficiency is lower than in the case of using the second refrigerant alone.
- the refrigeration cycle device 100 changes the composition ratio of the refrigerant flowing through the main refrigerant circuit 50 during the cooling operation and during the heating operation so as to be suitable for each operation. Therefore, the refrigeration cycle device 100 can operate with high efficiency during the cooling operation while ensuring the capacity during the heating operation.
- the adsorption control is executed when the refrigeration cycle device 100 has been performing heating operation until then and the operation mode of the refrigeration cycle device 100 is switched from the heating operation mode to the cooling operation mode.
- the refrigeration cycle apparatus 100 is in a state of being in a heating operation or being stopped (without performing a cooling operation) after the heating operation.
- step S1 the controller 110 determines whether or not a remote controller (not shown) has instructed execution of the cooling operation. Further, in step S1, the controller 110 may determine by itself whether it is necessary to perform the cooling operation based on the temperature of the air-conditioned space and the set temperature, regardless of the instruction from the remote controller. When the controller 110 determines that the execution of the cooling operation has been instructed from the remote control or that the execution of the cooling operation is necessary, the process proceeds to step S2. Step S1 is repeated until the controller 110 determines that the execution of the cooling operation is instructed from the remote control or until it determines that the execution of the cooling operation is necessary.
- the controller 110 controls the operation of various devices of the refrigeration cycle device 100 so that the refrigeration cycle device 100 starts cooling operation. Since the controller 110 controls the operation of the various devices of the refrigeration cycle apparatus 100 during the cooling operation has already been described, the description will be omitted here.
- the controller 110 opens the heat source side valve 82a in step S3, and opens the utilization side valve 82b in step S4. Note that the order of performing steps S3 and S4 may be reversed, and steps S3 and S4 may be performed simultaneously.
- the controller 110 controls the heat source side valve 82 a and The opening degree of the utilization side valve 82b is adjusted. For example, when the heat source side valve 82a and the usage side valve 82b are valves with the same specifications, the controller 110 adjusts the opening degree of the heat source side valve 82a to be larger than the opening degree of the usage side valve 82b.
- the controller 110 may adjust the opening degrees of the heat source side valve 82a and the usage side valve 82b so that both the heat source side valve 82a and the usage side valve 82b are fully opened.
- the reason why the flow path area of the heat source side valve 82a is made larger than the flow path area of the user side valve 82b is to increase the pressure in the container 72 of the adsorption unit 70, thereby increasing the adsorption of the first refrigerant to the adsorption material 72a. This is to facilitate
- step S5 it is determined whether a predetermined time has passed since the heat source side valve 82a and the use side valve 82b were opened in steps S3 and S4.
- the main refrigerant circuit 50 changes from a state in which a non-azeotropic mixed refrigerant containing a predetermined concentration of the first refrigerant flows to a state in which the second refrigerant substantially flows alone in the main refrigerant circuit 50. is used.
- the predetermined time may be determined by conducting experiments in advance, or may be theoretically obtained, for example.
- step S5 When it is determined in step S5 that the predetermined time has passed since the heat source side valve 82a and the utilization side valve 82b were opened in steps S3 and S4, the controller 110 closes the heat source side valve 82a in step S6, and then closes the heat source side valve 82a in step S7. to close the utilization side valve 82b. Note that the order of steps S6 and S7 may be reversed, and steps S6 and S7 may be performed simultaneously.
- the refrigerant flows in the main refrigerant circuit 50 in the same direction as in the cooling operation even in the defrosting operation that is performed by interrupting the heating operation.
- the controller 110 may perform adsorption control for changing the composition ratio of the refrigerant by the method described above even during the defrost operation. Also, the controller 110 does not have to perform adsorption control during the defrost operation. Note that when the controller 110 performs adsorption control during the defrost operation, the controller 110 performs desorption control, which will be described later, when the heating operation is restarted after the defrost operation ends.
- (B) Desorption Control During heating operation, control of various devices of the refrigeration cycle device 100 executed by the controller 110 to circulate the non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant in the main refrigerant circuit 50 (desorption control).
- desorption control control of various devices of the refrigeration cycle device 100 executed by the controller 110 to circulate the non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant in the main refrigerant circuit 50 (desorption control).
- the desorption control is performed when the refrigeration cycle device 100 has been performing cooling operation until then and the operation mode of the refrigeration cycle device 100 is switched from the cooling operation mode to the heating operation mode.
- the refrigeration cycle apparatus 100 is in a cooling operation or stopped after the cooling operation (without performing the heating operation).
- step S11 the controller 110 determines whether or not a remote controller (not shown) has instructed execution of the heating operation. Further, in step S11, the controller 110 may determine by itself whether or not the heating operation needs to be performed based on the temperature of the air-conditioned space and the set temperature, regardless of the instruction from the remote controller. When the controller 110 determines that the execution of the heating operation has been instructed from the remote control or that the execution of the heating operation is necessary, the process proceeds to step S12. Step S11 is repeated until the controller 110 determines that the execution of the heating operation has been instructed from the remote controller, or until it determines that the execution of the heating operation is necessary.
- the controller 110 controls the operation of various devices of the refrigeration cycle device 100 so that the refrigeration cycle device 100 starts heating operation. Since the controller 110 controls the operation of the various devices of the refrigeration cycle apparatus 100 during the heating operation has already been described, the description is omitted here.
- the controller 110 opens the utilization side valve 82b in step S13, and opens the heat source side valve 82a in step S14. Note that the order of executing steps S13 and S14 may be reversed, and steps S13 and S14 may be executed simultaneously.
- the controller 110 controls the heat source side valve 82a so that the passage area of the heat source side valve 82a, which is an example of the second valve, is larger than the passage area of the user side valve 82b, which is an example of the first valve. 82a and the opening degree of the utilization side valve 82b is adjusted.
- the controller 110 adjusts the opening degree of the heat source side valve 82a to be larger than the opening degree of the usage side valve 82b. Further, for example, when the size of the heat source side valve 82a (valve flow area when fully opened) is larger than the size of the user side valve 82b (valve flow area when fully opened), The controller 110 may adjust the opening degrees of the heat source side valve 82a and the usage side valve 82b so that both the heat source side valve 82a and the usage side valve 82b are fully opened.
- the flow area of the heat source side valve 82a is made larger than the flow area of the user side valve 82b here because the pressure in the container 72 of the adsorption unit 70 is lowered and the first refrigerant is desorbed from the adsorption material 72a. to promote
- the controller 110 opens the high-pressure side valve 92a in step S15, and opens the low-pressure side valve 92b in step S16. Note that the order of executing steps S15 and S16 may be reversed, and steps S15 and S16 may be executed simultaneously.
- the high-pressure side valve 92a and the low-pressure side valve 92b the high-temperature refrigerant discharged from the compressor 10 flows through the second bypass passage 90 from the high-pressure end C toward the low-pressure end D.
- the heat of the refrigerant flowing through the heating portion 94 heats the adsorbent 72 a of the adsorption portion 70 . As a result, desorption of the first refrigerant from the adsorbent 72a is promoted.
- the refrigerant containing the first refrigerant at a higher concentration than the refrigerant flowing into the adsorption portion 70 flows from the heat source side end A into the liquid refrigerant pipe 52d (low pressure portion of the refrigeration cycle).
- the concentration of the first refrigerant in the refrigerant flowing through the main refrigerant circuit 50 increases over time.
- step S17 it is determined whether a predetermined time has passed since the heat source side valve 82a and the use side valve 82b were opened in steps S13 and S14.
- the main refrigerant circuit 50 changes from a state in which the second refrigerant substantially alone flows to a state in which a non-azeotropic mixed refrigerant containing the first refrigerant having a predetermined concentration flows in the main refrigerant circuit 50.
- the time required for The predetermined time may be determined by conducting experiments in advance, or may be theoretically obtained, for example.
- step S17 When it is determined in step S17 that the predetermined time has elapsed since the heat source side valve 82a and the utilization side valve 82b were opened in steps S13 and S14, the controller 110 closes the high pressure side valve 92a in step S18, and closes the high pressure side valve 92a in step S19. closes the low pressure side valve 92b, closes the utilization side valve 82b in step S20, and closes the heat source side valve 82a in step S21.
- the order of closing the valves 92a, 92b, 82a, 82b may be changed as appropriate, and at least some of the valves 92a, 92b, 82a, 82b may be closed simultaneously.
- the attachment/detachment control ends. Note that the heating operation continues even after the adsorption control ends until an instruction to stop the heating operation is given or the heating operation becomes unnecessary.
- the refrigeration cycle device 100 includes a main refrigerant circuit 50 as an example of a refrigeration cycle, an adsorption section 70 and a first bypass flow path 80 .
- the main refrigerant circuit 50 includes a compressor 10, a radiator, an expansion mechanism 30, and an evaporator.
- the main refrigerant circuit 50 uses a non-azeotropic refrigerant mixture containing a first refrigerant and a second refrigerant.
- the adsorption unit 70 includes an adsorbent 72a.
- the adsorbent 72a adsorbs the first refrigerant.
- the adsorbent 72a does not adsorb the second refrigerant, or its adsorption performance for the second refrigerant is lower than that for the first refrigerant.
- the adsorption unit 70 stores the first refrigerant adsorbed by the adsorbent 72a.
- the first bypass channel 80 connects the first end, which is the high pressure section of the main refrigerant circuit 50 , and the second end, which is the low pressure section of the main refrigerant circuit 50 .
- An adsorption unit 70 and a valve 82 are arranged in the first bypass flow path 80 .
- the heat source heat exchanger 20 When the refrigeration cycle apparatus 100 performs cooling operation, the heat source heat exchanger 20 is a radiator, the heat utilization heat exchanger 40 is an evaporator, the heat source side end A is the first end, and the heat source side end A is the first end. Side end B is the second end. Further, when the refrigeration cycle device 100 performs the heating operation, the heat source heat exchanger 20 is an evaporator, the utilization heat exchanger 40 is a radiator, the heat source side end A is the second end, and the utilization Side end B is the first end.
- pressure can be used to adsorb and desorb the first refrigerant on the adsorbent 72a, so the composition ratio of the refrigerant can be changed in a relatively short time.
- the first refrigerant can be desorbed from the adsorbent 72a during normal operation, and the time during which normal operation cannot be performed due to changes in the composition ratio of the refrigerant can be shortened.
- the first refrigerant is stored in the adsorbent 72a (pores of the adsorbent 72a, etc.). Also, equipment or the like for liquefying the first refrigerant is not required.
- the adsorbent 72a is used to adjust the composition ratio of the non-azeotropic mixed refrigerant, so the apparatus has a simpler configuration than when the composition ratio adjustment is realized by distillation or gas-liquid separation. can be realized, and the composition ratio of the non-azeotropic refrigerant mixture can be adjusted with high accuracy.
- the second end of the first bypass flow path 80 is between the expansion mechanism 30 of the main refrigerant circuit 50 and the evaporator.
- the utilization side end B functioning as the second end of the first bypass flow path 80 is connected to the expansion mechanism 30 and the evaporator of the main refrigerant circuit 50. and a utilization heat exchanger 40 that functions as a Further, when the refrigeration cycle device 100 performs the heating operation, the heat source side end A functioning as the second end of the first bypass flow path 80 functions as the expansion mechanism 30 and the evaporator of the main refrigerant circuit 50. and the heat source heat exchanger 20 .
- first end of first bypass flow path 80 is between the radiator of main refrigerant circuit 50 and expansion mechanism 30 .
- the heat source side end A functioning as the first end of the first bypass flow path 80 is the heat source heat source functioning as a radiator of the main refrigerant circuit 50. It is arranged between the exchanger 20 and the expansion mechanism 30 . Further, when the refrigeration cycle device 100 performs the heating operation, the utilization side end B functioning as the first end of the first bypass flow path 80 is connected to the utilization heat exchanger 40 functioning as a condenser of the main refrigerant circuit 50. , and the expansion mechanism 30 .
- Adsorption heat is generated when the refrigerant is adsorbed on the adsorbent 72a. Therefore, when the temperature of the first refrigerant is high, the first refrigerant is less likely to be adsorbed by the adsorbent 72a.
- the refrigerant after being cooled by the radiator flows into the adsorbent 72a. easy to be
- main refrigerant circuit 50 includes utilization heat exchanger 40 .
- the utilization heat exchanger 40 cools the temperature adjustment target when functioning as an evaporator, and heats the temperature adjustment target when functioning as a radiator.
- the valve 82 of the first bypass flow path 80 is opened and the adsorbent 72a adsorbs the first refrigerant.
- the valve 82 of the first bypass flow path 80 is opened, and the adsorbent 72a desorbs the first refrigerant.
- refrigerants with suitable compositions can be used when the heat exchanger 40 to be used functions as an evaporator and when it functions as a radiator.
- the valve 82 of the first bypass flow path 80 is arranged between the first valve arranged between the first end and the adsorption section 70 and the adsorption section 70 and the second end. and a second valve.
- the heat source side valve 82a arranged between the heat source side end A and the adsorption section 70 is the first valve, and the adsorption section 70 and the usage side end B are connected.
- the user side valve 82b arranged in between is the second valve.
- the utilization side valve 82b arranged between the utilization side end B and the adsorption section 70 is the first valve, and the adsorption section 70 and the heat source side end A are connected.
- the heat source side valve 82a arranged in between is the second valve.
- valves are provided between the first end and the adsorption section 70 and between the adsorption section 70 and the second end, respectively, so that the adsorption of the first refrigerant to the adsorbent 72a, Desorption of the first refrigerant from the adsorbent 72a can be appropriately controlled, and the composition ratio of the refrigerant can be changed in a short period of time.
- the heat source side valve 82a and the utilization side valve 82b are opened, and the flow passage area of the heat source side valve 82a is utilized.
- the opening degrees of the heat source side valve 82a and the utilization side valve 82b are adjusted so as to be larger than the passage area of the side valve 82b.
- the heat source side valve 82a and the usage side valve 82b have the same specifications, the heat source side valve 82a and the usage side valve 82b are adjusted so that the opening degree of the heat source side valve 82a is larger than the opening degree of the usage side valve 82b. The opening is adjusted.
- the heat source side valve 82a and the usage side valve 82b are opened, and the flow passage area of the heat source side valve 82a is reduced to the usage side valve 82b.
- the opening degrees of the heat source side valve 82a and the utilization side valve 82b are adjusted so as to be larger than the passage area of . For example, if the heat source side valve 82a and the usage side valve 82b have the same specifications, the heat source side valve 82a and the usage side valve 82b are adjusted so that the opening degree of the heat source side valve 82a is larger than the opening degree of the usage side valve 82b. The opening is adjusted.
- the flow passage area of the first valve is opened larger than the flow passage area of the second valve, so the pressure of the adsorption section 70 becomes relatively high. Therefore, pressure can be used to efficiently adsorb the first refrigerant to the adsorbent 72a.
- the passage area of the second valve is opened larger than the passage area of the first valve, so the pressure in the adsorption section 70 is relatively low. Therefore, the first refrigerant can be efficiently desorbed from the adsorbent 72a.
- the refrigeration cycle device 100 has a second bypass flow path 90 .
- the second bypass channel 90 connects a high pressure end C, which is an example of a third end, and a low pressure end D, which is an example of a fourth end.
- the high pressure end C is between the compressor 10 and the radiator of the main refrigerant circuit 50 .
- the high pressure end C is the discharge pipe 52b portion of the main refrigerant circuit 50 .
- a low-pressure end D is a low-pressure portion of the main refrigerant circuit 50 .
- the low pressure end D is between the expansion mechanism 30 and the suction port 10 b of the compressor 10 in the main refrigerant circuit 50 .
- the second bypass flow path 90 heats the adsorption section 70 with the flowing refrigerant.
- a valve 92 as an example of a third valve is arranged in the second bypass flow path 90 .
- a valve 92 controls the flow of refrigerant in the second bypass flow path 90 .
- the valve 92 is opened.
- the high-temperature refrigerant discharged from the compressor 10 is used to heat the adsorbent 72a of the adsorption section 70, thereby promoting desorption of the first refrigerant from the adsorbent 72a.
- the first refrigerant is CO2.
- CO2 is stored in the adsorbent 72a, so unlike the case where CO2 is liquefied and stored in a storage tank, there is no need for a CO2 storage tank or cooling equipment for liquefying CO2.
- the concentration of CO2 as the first refrigerant contained in the non-azeotropic refrigerant mixture is 20 wt % or less when CO2 as the first refrigerant is not adsorbed on the adsorbent 72a.
- the composition ratio of the refrigerant can be changed according to the operating conditions while suppressing the enlargement of the refrigeration cycle device 100 .
- the adsorbent 72a is a metal organic framework (MOF) or zeolite, which has high CO2 adsorption performance.
- the second refrigerant is HFO refrigerant.
- an HFO refrigerant with a low global warming potential can be used to realize a refrigeration cycle device 100 with a low environmental load.
- FIG. 5 is a schematic diagram of the refrigeration cycle apparatus 100A.
- the same reference numerals are used for the same configurations as in the refrigeration cycle apparatus 100 of the first embodiment.
- the illustration of the second bypass flow path 90 is omitted in FIG.
- the main difference between the refrigerating cycle device 100A and the refrigerating cycle device 100 of the first embodiment is that the refrigerating cycle device 100A has a defrost medium circuit 120 and a first detector 130.
- the refrigerating cycle device 100A and the refrigerating cycle device 100 have many points in common.
- the defrosting medium circuit 120 and the first detection unit 130 which are different from the refrigeration cycle apparatus 100, will be mainly described, and the common points with the refrigeration cycle apparatus 100 will be basically described. omitted.
- the refrigeration cycle apparatus 100A includes a main refrigerant circuit 50 as an example of a refrigeration cycle, an adsorption section 70, a first bypass flow path 80, and a second bypass flow path (illustration is omitted in FIG. 5). ), a defrost medium circuit 120, a first detection unit 130, and a controller 110A.
- the main refrigerant circuit 50, the adsorption section 70, the first bypass flow path 80, and the second bypass flow path are the same as in the first embodiment, so descriptions thereof are omitted here.
- the defrost medium circuit 120 the heat of adsorption generated when the adsorbent 72 a absorbs heat from the first refrigerant is used to suppress frost formation on the heat source heat exchanger 20 and defrost the heat source heat exchanger 20 .
- the defrost medium circuit 120 is housed in a casing (not shown) of the heat source unit 2 .
- the first detection unit 130 detects frost formation on the heat source heat exchanger 20 .
- the controller 110A has the same physical configuration as the controller 110 of the first embodiment.
- the controller 110A controls the operation of various devices of the refrigeration cycle apparatus 100A described in the first embodiment, and also controls the operation of a pump 122 and a medium circuit valve 124 provided in the defrost medium circuit 120 as described later.
- the defrost media circuit 120 is a path through which media flow.
- the medium here is, for example, brine.
- the type of medium that is passed through the defrosting medium circuit 120 is not limited to brine, and may be selected as appropriate.
- the defrost medium circuit 120 has a pump 122 , a medium circuit valve 124 , a first heat exchange section 126 and a second heat exchange section 128 .
- the defrost medium circuit 120 is formed by connecting the pump 122, the medium circuit valve 124, the first heat exchange section 126, and the second heat exchange section 128 by piping.
- a pump 122 is used to circulate the medium within the defrost medium circuit 120 .
- the pump 122 is, for example, an inverter-type pump capable of controlling the rotation speed of the motor.
- the pump 122 is not limited to a pump whose rotational speed is controllable, and may be a pump whose rotational speed is constant.
- the medium circuit valve 124 is used for adjusting the amount of medium flowing through the defrost medium circuit 120, and the like.
- the medium circuit valve 124 is, for example, an electrically operated valve whose opening is adjustable.
- the first heat exchange section 126 is arranged inside the container 72 of the adsorption section 70, for example.
- the type is not limited, for example, the first heat exchanging part 126 is a coil-type heat transfer tube whose ends (inlet and outlet of the refrigerant) are arranged outside the container 72.
- a heat exchanger. Pipes of the defrost medium circuit 120 are connected to both ends of the first heat exchange section 126 .
- the first heat exchange section 126 does not have to be arranged inside the container 72 .
- the first heat exchange section 126 may be a coil-type heat exchanger arranged to surround the container 72 .
- a medium flows through the first heat exchange section 126 .
- the medium flowing through the first heat exchange section 126 is heated by the adsorption section 70 .
- the medium flowing through the first heat exchange section 126 is heated by the heat of adsorption of the adsorbent 72 a inside the container 72 .
- the second heat exchange section 128 is arranged close to the heat source heat exchanger 20 .
- the second heat exchange section 128 is arranged near a portion of the heat source heat exchanger 20 that is particularly susceptible to frost formation when functioning as an evaporator.
- the second heat exchange section 128 is a finned tube, although the type is not limited.
- the second heat exchange section 128 at least partially heats the heat source heat exchanger 20 with the medium flowing inside.
- the first detection section 130 detects frost formation on the heat source heat exchanger 20 when the refrigeration cycle device 100 performs heating operation.
- the first detection unit 130 is attached to the heat source heat exchanger 20, for example, and has a temperature sensor 132 that measures the temperature of the refrigerant flowing through the heat source heat exchanger 20, and a temperature sensor 134 that measures the temperature of the heat source air. .
- Temperature sensor 132 and temperature sensor 134 are, for example, thermistors. For example, when the temperature of the refrigerant flowing through the temperature sensor 132 remains at or below a predetermined value for a predetermined period of time, or when the temperature of the heat source air remains at or below a predetermined value for a predetermined period of time. , detects that the heat source heat exchanger 20 is frosted. Further, the first detection unit 130 may detect that the heat source heat exchanger 20 is frosted, for example, based on the value of the difference between the temperature of the refrigerant flowing through the temperature sensor 132 and the temperature of the heat source air.
- the controller 110A may function as part of the first detection unit 130 and detect frost formation on the heat source heat exchanger 20 based on the measurement results of the temperature sensor 132 or the temperature sensor 134.
- the first detection unit 130 is a device independent of the controller 110A, detects frost formation on the heat source heat exchanger 20 based on the measurement result of the temperature sensor 132 or the temperature sensor 134, and sends the detection result to the controller 110A. You may send.
- the controller 110A functions as part of the first detection unit 130 and detects frost formation on the heat source heat exchanger 20 based on the measurement result of the temperature sensor 132 or the temperature sensor 134. .
- the first detection unit 130 does not have to detect frost formation on the heat source heat exchanger 20 based on the measurement results of the temperature sensors 132 and 134 .
- the first detection unit 130 may detect (determine) that the heat source heat exchanger 20 is frosted when the duration of the heating operation reaches a predetermined time instead of the measurement result of the temperature sensor.
- the controller 110A controls operations of various devices of the refrigeration cycle apparatus 100A, like the controller 110 of the first embodiment. Since the controller 110A has many points in common with the controller 110, the differences from the controller 110 will be mainly described here, and the explanation of the common points will basically be omitted.
- the controller 110A is electrically connected to the pump 122 and the medium circuit valve 124 of the defrosting medium circuit 120 in addition to the various devices of the refrigeration cycle apparatus 100 described in the first embodiment, and controls the operation of the pump 122 and the medium circuit valve 124. Control.
- the controller 110A is electrically connected to the temperature sensors 132 and 134 and can acquire the measured values of the temperature sensors 132 and 134 .
- the controller 110A is also electrically connected to sensors (not shown) arranged at various locations in the refrigeration cycle apparatus 100 other than the temperature sensors 132 and 134, and can acquire measurement values of these sensors.
- the controller 110A controls the operation of various devices of the refrigeration cycle apparatus 100 during cooling operation and heating operation. Further, the controller 110A performs adsorption control and desorption control, like the controller 110 of the first embodiment. In order to avoid duplication of description, the description of the control contents executed by the controller 110A during the cooling operation, the heating operation, the adsorption control, and the desorption control is omitted here.
- the controller 110A further performs frost suppression operation and defrost operation. Frost suppression operation and defrost operation will be described. Note that the controller 110A may perform both the frost suppression operation and the defrost operation, or may perform only one of the frost suppression operation and the defrost operation.
- FIG. 6A is an example of a flowchart of the frost suppression operation of the refrigeration cycle apparatus 100A.
- the controller 110A controls various devices of the refrigerating cycle device 100 so that the refrigerating cycle device 100 performs heating operation.
- the controller 110A executes control after step S32. Specifically, the controller 110A controls the heat source heat exchanger 20 based on the temperature measured by the temperature sensor 132, the temperature measured by the temperature sensor 134, or the temperature measured by the temperature sensors 132 and 134. When frost formation is detected, the control after step S32 is executed. The determination in step S31 is repeatedly executed until it is determined as Yes in step S31.
- the controller 110A opens the utilization side valve 82b that was closed in step S32, and opens the heat source side valve 82a that was closed in step S33.
- the reason for opening the heat source side valve 82a and the utilization side valve 82b here is to utilize the heat of adsorption of the adsorbent 72a, and the direct purpose is not to change the composition of the refrigerant flowing through the main refrigerant circuit 50.
- the opening degrees of both the valve 82a and the user-side valve 82b are controlled to be relatively small.
- the controller 110A opens the closed medium circuit valve 124, adjusts it to a predetermined degree of opening (step S34), and operates the stopped pump 122 at a predetermined number of revolutions (step S35).
- steps S32 to S35 may be changed as appropriate within a consistent range. Also, some or all of steps S32 to S35 may be executed simultaneously.
- the medium heated by the heat of adsorption of the adsorbent 72a of the adsorption unit 70 in the first heat exchange unit 126 flows to the second heat exchange unit 128 to generate heat source heat. heat exchanger 20; As a result, frost formation on the heat source heat exchanger 20 is suppressed or eliminated.
- step S36 the controller 110A determines whether frost formation on the heat source heat exchanger 20 has been eliminated. For example, the controller 110A determines whether the heat source heat exchanger 20 is frosted based on the temperature measured by the temperature sensor 132, the temperature measured by the temperature sensor 134, or the temperature measured by the temperature sensors 132 and 134. Determine if it has been cancelled. Note that controller 110A may determine whether frost formation on heat source heat exchanger 20 has been eliminated based on the measurement results of sensors other than temperature sensors 132 and 134 . Further, the controller 110A may determine that the frost formation on the heat source heat exchanger 20 has been resolved when a predetermined time has elapsed since the frost suppression operation was started.
- step S36 the determination in step S36 is repeated until it is determined that the frost formation has been resolved, but the present invention is not limited to this.
- the controller 110A may interrupt the heating operation of the refrigeration cycle device 100 and cause the refrigeration cycle device 100 to perform the defrost operation.
- the defrost of the heat source heat exchanger 20 may also be performed using the defrost medium circuit 120 .
- the defrost medium circuit 120 may not be used when the refrigeration cycle device 100 performs the defrost operation.
- step S36 the controller 110A executes the control of steps S37 to S40.
- Controller 110A stops pump 122 in step S37 and closes media circuit valve 124 in step S38. Further, the controller 110A closes the utilization side valve 82b in step S39, and closes the heat source side valve 82a in step S40. Note that the order of executing steps S37 to S40 may be changed as appropriate within a consistent range. Also, some or all of steps S37 to S40 may be executed simultaneously.
- step S36 the controller 110A causes the adsorbent 72a to adsorb during the frost suppression operation before executing the control in steps S39 and S40.
- the first refrigerant may be desorbed.
- the control of steps S39 and S40 may be executed.
- the controller 110A operates the heat source side valve 82a and the usage side valve 82b.
- the present invention is not limited to this, and the controller 110A does not have to operate the heat source side valve 82a and the utilization side valve 82b during the frost suppression operation, as shown in FIG. 6B.
- the heat source side valve 82a and the utilization side valve 82b may always be closed. Even when configured in this way, if the heat of adsorption of the adsorbent 72a is stored in the container 72, this can be used to suppress frost formation on the heat source heat exchanger 20 and heat source heat exchange. Frost adhering to the vessel 20 can be removed.
- a temperature sensor (not shown) is provided in the container 72, and when the temperature in the container 72 is lower than a predetermined temperature, the controller 110A operates according to the flowchart in FIG. If the temperature is higher than the predetermined temperature, the operation may be performed according to the flowchart of FIG. 6B.
- the defrost operation will be described by taking as an example a case where the controller 110A performs the defrost operation without performing the frost suppression operation when the first detection unit 130 detects frost formation on the heat source heat exchanger 20. do.
- FIG. 7 is an example of a flowchart of the defrost operation of the refrigeration cycle device 100A.
- the controller 110A controls various devices of the refrigerating cycle device 100 so that the refrigerating cycle device 100 performs the heating operation.
- step S51 When the first detection unit 130 detects frost formation on the heat source heat exchanger (Yes in step S51), the controller 110A executes control after step S52. The determination in step S51 is repeatedly executed until it is determined as Yes in step S51.
- step S52 the controller 110A interrupts the heating operation, controls the flow path switching mechanism 15, changes the flow direction of the refrigerant in the same manner as during the cooling operation, and starts defrosting operation.
- the controller 110A opens the heat source side valve 82a in step S53, and opens the utilization side valve 82b in step S54. At this time, the controller 110A controls the heat source side valve 82a and You may adjust the opening degree of the utilization side valve 82b. Alternatively, the controller 110A may control the opening degrees of both the heat source side valve 82a and the usage side valve 82b to be relatively small. Further, the controller 110A opens the closed medium circuit valve 124, adjusts it to a predetermined degree of opening (step S55), and operates the stopped pump 122 at a predetermined number of revolutions (step S56). Note that the order in which steps S53 to S56 are executed may be changed as appropriate within a consistent range. Also, some or all of steps S53 to S56 may be executed simultaneously.
- step S57 the controller 110A determines whether frost formation on the heat source heat exchanger 20 has been eliminated. For example, the controller 110A determines whether the heat source heat exchanger 20 is frosted based on the temperature measured by the temperature sensor 132, the temperature measured by the temperature sensor 134, or the temperature measured by the temperature sensors 132 and 134. Determine if it has been cancelled. Note that controller 110A may determine whether frost formation on heat source heat exchanger 20 has been eliminated based on the measurement results of sensors other than temperature sensors 132 and 134 . Further, the controller 110A may determine that the frost formation on the heat source heat exchanger 20 has been resolved when a predetermined time has elapsed since the frost suppression operation was started. The determination in step S57 is repeated until it is determined that the frost formation has been resolved.
- step S57 When it is determined that the frost formation on the heat source heat exchanger 20 has been eliminated (Yes in step S57), the controller 110A closes the utilization side valve 82b in step S58 and closes the heat source side valve 82a in step S59. Further, the controller 110A ends the defrost operation, controls the flow path switching mechanism 15, switches the refrigerant flow direction to the refrigerant flow direction during the heating operation, and restarts the heating operation (step S60). The controller 110A also stops the pump 122 in step S61 and closes the medium circuit valve 124 in step S62. Note that the order in which steps S58 to S62 are executed may be changed as appropriate within a consistent range. Also, some or all of steps S58 to S62 may be executed simultaneously.
- step S60 when the heating operation is restarted in step S60, the first refrigerant adsorbed by the adsorbent 72a during the defrost operation is desorbed, and the refrigerant flowing through the main refrigerant circuit 50 is desorbed.
- Desorption control may be performed to increase the concentration of the first refrigerant therein.
- the controller 110A operates the heat source side valve 82a and the utilization side valve 82b. can be used for defrosting, the heat source side valve 82a and the utilization side valve 82b do not have to be operated.
- the refrigeration cycle device 100A has the following features in addition to the features of the refrigeration cycle device 100 of the first embodiment.
- the refrigeration cycle apparatus 100A further includes a defrost medium circuit 120 through which the medium flows, and a first detector 130 .
- the defrost media circuit 120 is an example of a first media circuit.
- the defrost medium circuit 120 has a first heat exchange section 126 and a second heat exchange section 128 .
- the medium is heated by the adsorption section 70 .
- the second heat exchange section 128 heats the heat source heat exchanger 20 with a medium.
- the first detection unit 130 detects frost formation on the heat source heat exchanger 20 .
- the medium circulates through the defrost medium circuit 120 when the first detection unit 130 detects frost formation on the heat source heat exchanger 20 .
- the refrigeration cycle device 100A it is possible to effectively utilize the heat of adsorption when the first refrigerant is adsorbed by the adsorbent 72a, thereby suppressing and defrosting the heat source heat exchanger 20 from frosting.
- this heat can be used for defrosting.
- the adsorbent 72a adsorbs the first refrigerant to the adsorbent 72a in the adsorbent 70 while the medium is circulated, the heat of adsorption generated by the adsorbent 72a can be used for defrosting.
- FIG. 8 is a schematic configuration diagram of the refrigeration cycle device 100B.
- the same reference numerals are used for the same configurations as in the refrigeration cycle apparatus 100 of the first embodiment.
- the illustration of the second bypass flow path 90 is omitted in FIG.
- the refrigeration cycle apparatus 100B may further include a defrost medium circuit 120 and a first detection section 130, as in the second embodiment.
- the refrigerating cycle device 100B includes the refrigerating cycle device 100 of the first embodiment, and the main refrigerant circuit 50 includes the compressor 10, the flow path switching mechanism 15, the heat source heat exchanger 20, the expansion mechanism 30, and the utilization heat exchanger 40, In addition, it is different in that it has a superheat heat exchanger 148 . Moreover, the refrigerating cycle device 100B differs from the refrigerating cycle device 100 of the first embodiment in that it has a superheating medium circuit 140 .
- the refrigeration cycle device 100B and the refrigeration cycle device 100 have many points in common.
- the superheating heat exchanger 148 and the superheating medium circuit 140 which are the differences from the refrigeration cycle apparatus 100, will be mainly explained, and the common points with the refrigeration cycle apparatus 100 will be basically explained. omitted.
- the refrigeration cycle apparatus 100B includes a main refrigerant circuit 50 as an example of a refrigeration cycle, an adsorption section 70, a first bypass flow path 80, and a second bypass flow path (illustration is omitted in FIG. 5). ), a superheating medium circuit 140, and a controller 110B.
- the configuration of the main refrigerant circuit 50 other than the overheating heat exchanger 148, the adsorption section 70, the first bypass flow path 80, and the second bypass flow path are the same as those in the first embodiment, so description thereof will be omitted here. .
- the overheating heat exchanger 148 is housed in a casing (not shown) of the heat source unit 2.
- the superheat heat exchanger 148 is arranged between the utilization heat exchanger 40 and the flow path switching mechanism 15 in the main refrigerant circuit 50 .
- the superheat heat exchanger 148 forms part of the main refrigerant circuit 50 and also forms part of the superheating medium circuit 140 .
- the type of heat exchanger is not limited, the superheat heat exchanger 148 is, for example, a plate heat exchanger. In the superheat heat exchanger 148, heat is exchanged between the refrigerant flowing inside and the medium flowing inside.
- the flow path for the refrigerant and the flow path for the medium are sealed so that the refrigerant and the medium do not mix.
- the superheat heat exchanger 148 is used to adjust the degree of superheat of the refrigerant sucked into the compressor 10 during cooling operation.
- the superheating heat exchanger 148 heats the refrigerant flowing through the superheating heat exchanger 148 with the medium flowing through the superheating medium circuit 140 .
- the superheating medium circuit 140 is used to heat the refrigerant flowing through the superheating heat exchanger 148 and adjust the degree of superheat of the refrigerant sucked into the compressor 10 during cooling operation.
- the defrost medium circuit 120 is housed in a casing (not shown) of the heat source unit 2 .
- the controller 110B has the same physical configuration as the controller 110 of the first embodiment.
- the controller 110B controls the operation of various devices of the refrigeration cycle apparatus 100B described in the first embodiment, and also controls the operation of a pump 142 and a medium circuit valve 144 provided in the superheating medium circuit 140 as described later.
- the superheating medium circuit 140 is a path through which a medium flows.
- the medium here is, for example, brine.
- the type of medium that flows through the overheating medium circuit 140 is not limited to brine, and may be selected as appropriate.
- the superheating medium circuit 140 has a pump 142, a medium circuit valve 144, a first heat exchanging section 146, and a superheating heat exchanger 148 as an example of a second heat exchanging section.
- a superheating medium circuit 140 is formed by connecting the pump 142, the medium circuit valve 144, the first heat exchange section 146, and the superheating heat exchanger 148 by piping.
- a pump 142 is used to circulate the medium within the superheating medium circuit 140 .
- the pump 142 is, for example, an inverter-type pump capable of controlling the rotation speed of the motor.
- the pump 142 is not limited to a pump whose rotational speed is controllable, and may be a pump with a constant rotational speed.
- the medium circuit valve 144 is used for adjusting the amount of medium flowing through the superheating medium circuit 140, and the like.
- the medium circuit valve 144 is, for example, an electrically operated valve whose opening is adjustable.
- the first heat exchange section 146 is arranged inside the container 72 of the adsorption section 70, for example.
- the type is not limited, for example, the first heat exchanging part 146 is a coiled heat transfer tube whose ends (inlet and outlet of the refrigerant) are arranged outside the container 72.
- a heat exchanger. Pipes of the superheating medium circuit 140 are connected to both ends of the first heat exchange section 146 .
- the first heat exchange section 146 does not have to be arranged inside the container 72 .
- the first heat exchange section 146 may be a coil-type heat exchanger arranged to surround the container 72 .
- a medium flows through the first heat exchange section 146 .
- the medium flowing through the first heat exchange section 146 is heated by the adsorption section 70 .
- the medium flowing through the first heat exchange section 146 is heated by the heat of adsorption of the adsorbent 72 a inside the container 72 .
- the controller 110B controls operations of various devices of the refrigeration cycle apparatus 100B, like the controller 110 of the first embodiment. Since the controller 110B has many points in common with the controller 110, the differences from the controller 110 will be mainly described here, and the explanation of the common points will basically be omitted.
- the controller 110B controls the operation of the pump 142 and the medium circuit valve 144 of the superheating medium circuit 140 in addition to the various devices of the refrigeration cycle apparatus 100 described in the first embodiment. properly connected.
- the controller 110B controls the operation of various devices of the refrigeration cycle apparatus 100 during cooling operation and heating operation. Also, the controller 110B performs adsorption control and desorption control, like the controller 110 of the first embodiment. Descriptions of the control contents executed by the controller 110B during the cooling operation, the heating operation, the adsorption control, and the desorption control are omitted here.
- the controller 110B performs frost suppression operation and defrost operation. , the operation of various devices of the refrigeration cycle apparatus 100B is controlled as described in the second embodiment.
- the controller 110B further performs superheat control. A description will be given of the degree of superheat control.
- the controller 110B controls the degree of superheat of the refrigerant sucked into the compressor 10 using the heat of adsorption of the adsorbent 72a to a target degree of superheat when performing the cooling operation. .
- the degree-of-superheat control by the controller 110B is control executed in combination with the already-described adsorption control.
- FIG. 9 is an example of a flowchart of superheat degree control by the controller 110B.
- the refrigeration cycle device 100 has been performing heating operation, and the superheat control including the adsorption control is executed when the operation mode of the refrigeration cycle device 100 is switched from the heating operation mode to the cooling operation mode.
- the refrigeration cycle apparatus 100 is in a state of being in a heating operation or being stopped (without performing a cooling operation) after the heating operation.
- step S71 to step S74 is the same as the control from step S1 to step S4 of the adsorption control described with reference to FIG. 2, so the description is omitted.
- the controller 110B further opens the closed medium circuit valve 144 (step S75), and operates the stopped pump 142 at a predetermined number of revolutions (step S76). Note that the order of executing steps S72 to S76 may be changed as appropriate within a consistent range. Moreover, some or all of steps S72 to S76 may be executed simultaneously.
- the medium heated by the heat of adsorption of the adsorbent 72a of the adsorption unit 70 in the first heat exchange unit 146 flows to the overheating heat exchanger 148, and is superheated. It exchanges heat with the refrigerant flowing through the main refrigerant circuit 50 in the exchanger 148 .
- the controller 110B adjusts the degree of opening of the medium circuit valve 144 so that the degree of superheat of the refrigerant sucked into the compressor 10 measured by various sensors (not shown) reaches the target degree of superheat. In this manner, the heat of adsorption of the adsorbent 72a is used to ensure the degree of suction superheat of the refrigerant.
- the heat of adsorption of the adsorbent 72a is used to heat the refrigerant, the temperature rise of the adsorbent 72a due to the heat of adsorption is easily suppressed. It is less likely to be disturbed by the temperature rise of 72a.
- step S77 it is determined whether a predetermined time has passed since the heat source side valve 82a and the use side valve 82b were opened in steps S73 and S74.
- the main refrigerant circuit 50 changes from a state in which a non-azeotropic mixed refrigerant containing a predetermined concentration of the first refrigerant flows to a state in which the second refrigerant substantially flows alone in the main refrigerant circuit 50. is used.
- the predetermined time may be determined by conducting experiments in advance, or may be theoretically obtained, for example.
- step S77 When it is determined in step S77 that the predetermined time has passed since the heat source side valve 82a and the usage side valve 82b were opened in steps S73 and S74, the controller 110B closes the usage side valve 82b in step S78, and then closes the usage side valve 82b in step S79. to close the heat source side valve 82a.
- the order of steps S78 and S79 may be reversed, and steps S78 and S79 may be executed simultaneously.
- a predetermined time elapses. It is determined whether it has passed.
- the predetermined time here is the time until the amount of heat stored in the adsorbent 72a of the adsorption unit 70 decreases and it becomes difficult to use the heat for overheating the refrigerant.
- the predetermined time may be determined by conducting experiments in advance, or may be theoretically obtained, for example.
- step S80 When it is determined in step S80 that the predetermined time has passed (Yes in step S80), the controller 110B executes the control of steps S81 to S82.
- the controller 110B stops the pump 142 in step S81 and closes the medium circuit valve 144 in step S82.
- the order of executing steps S81 and S82 may be reversed if possible, and steps S81 and S82 may be executed simultaneously.
- the superheat degree may be adjusted by controlling the expansion mechanism 30, for example.
- step S80 the time after opening the heat source side valve 82a and the usage side valve 82b in steps S73 and S74, or in steps S78 and S79, the heat source side valve 82a and the usage side valve
- the execution timings of steps S81 and S82 are controlled based on the time after closing 82b.
- the controller 110B is not limited to this, and the controller 110B executes the control of steps S81 and S82 based on the measurement results of the temperature sensors provided in the container 72 of the adsorption unit 70 and the piping of the superheating medium circuit 140. You can decide when to
- the refrigerating cycle device 100B has the following features in addition to the features of the refrigerating cycle device 100 of the first embodiment.
- the refrigerating cycle device 100B includes a superheating medium circuit 140 through which a medium flows.
- the overheating medium circuit 140 is an example of a second medium circuit.
- the superheating medium circuit 140 has a first heat exchanging section 146 and a superheating heat exchanger 148 as an example of a second heat exchanging section.
- the medium In the first heat exchange section 146 , the medium is heated by the adsorption section 70 .
- superheat heat exchanger 148 the medium heats the refrigerant entering compressor 10 .
- the heat of adsorption when the first refrigerant is adsorbed by the adsorbent 72a can be effectively used to heat the refrigerant sucked into the compressor 10.
- FIG. 10 is a schematic configuration diagram of a refrigeration cycle device 100C.
- the same reference numerals are used for the same configurations as in the refrigeration cycle apparatus 100 of the first embodiment.
- illustration of the second bypass flow path 90 is omitted in FIG. 10 .
- the refrigeration cycle apparatus 100C may further include the defrost medium circuit 120 and the first detector 130 of the second embodiment, and the superheating medium circuit 140 of the third embodiment.
- the refrigerating cycle device 100C differs from the refrigerating cycle device 100 of the first embodiment in that it has a second detector 150 .
- the refrigeration cycle device 100C and the refrigeration cycle device 100 have many points in common.
- the second detection unit 150 which is different from the refrigeration cycle apparatus 100, will be mainly described, and description of common points with the refrigeration cycle apparatus 100 will be basically omitted.
- the refrigeration cycle device 100C includes a main refrigerant circuit 50 as an example of a refrigeration cycle, an adsorption section 70, a first bypass flow path 80, and a second bypass flow path (illustration is omitted in FIG. 5). ), a second detector 150, and a controller 110C.
- the main refrigerant circuit 50, the adsorption section 70, the first bypass flow path 80, and the second bypass flow path are the same as in the first embodiment, so descriptions thereof are omitted here.
- the second detection unit 150 detects the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
- the second detector 150 is housed in a casing (not shown) of the heat source unit 2 .
- the controller 110C has the same physical configuration as the controller 110 of the first embodiment.
- the controller 110C is mainly similar to the controller of the first embodiment in that it controls the valve 82 of the first bypass flow path 80 using the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 detected by the second detection unit 150. 110 is different.
- the second detector 150 detects the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
- the second detection unit 150 includes a pipe 151 that connects between the heat source heat exchanger 20 and the expansion mechanism 30 and between the utilization heat exchanger 40 and the expansion mechanism 30 of the main refrigerant circuit 50 .
- the pipe 151 is used for detecting the composition of the refrigerant flowing through the main refrigerant circuit 50, and is not directly necessary for the vapor compression refrigeration cycle.
- the pipe 151 is a pipe having a smaller diameter than the liquid refrigerant pipe 52d, and a very small amount of refrigerant flows therethrough.
- the second detection unit 150 includes a refrigerant container 152 and a valve 154 arranged in the pipe 151 .
- Valve 154 includes a first valve 154a and a second valve 154b.
- the first valve 154 a is arranged between the connecting portion of the pipe 151 to the liquid refrigerant pipe 52 d between the heat source heat exchanger 20 and the expansion mechanism 30 and the refrigerant container 152 .
- the second valve 154 b is arranged between the connecting portion of the pipe 151 to the liquid refrigerant pipe 52 d between the utilization heat exchanger 40 and the expansion mechanism 30 and the refrigerant container 152 .
- the first valve 154a and the second valve 154b are, for example, electronic expansion valves with variable opening.
- the second detection unit 150 also has a pressure sensor 156 that measures the pressure of the refrigerant inside the refrigerant container 152 and a temperature sensor 158 that measures the temperature of the refrigerant inside the refrigerant container 152 .
- the controller 110C opens the first valve 154a and the second valve 154b as necessary so that two-phase (liquid-phase and gas-phase) refrigerant exists in the refrigerant container 152.
- the first valve 154a and the second valve 154b are controlled to a predetermined degree of opening.
- the controller 110C opens the first valve 154a and the second valve 154b so that two-phase refrigerant is stored in the refrigerant container 152.
- the valve 154b is controlled to a predetermined degree of opening.
- the composition ratio can be calculated if the type of refrigerant used in the non-azeotropic refrigerant mixture and the pressure and temperature of the two-phase refrigerant are known. Therefore, the second detection unit 150 detects the composition ratio of the refrigerant in the refrigerant container 152, in other words, based on the pressure of the two-phase refrigerant measured by the pressure sensor 156 and the temperature of the two-phase refrigerant measured by the temperature sensor 158. , the composition of the refrigerant flowing through the liquid refrigerant pipe 52d of the main refrigerant circuit 50 can be detected.
- the composition ratio of the refrigerant is determined by the controller 110C functioning as a part of the second detection unit 150, and based on the measurement results of the pressure sensor 156 and the temperature sensor 158, the composition ratio of the refrigerant circulating in the main refrigerant circuit 50. may be detected (calculated).
- the second detection unit 150 may be a device independent of the controller 110C and detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158 .
- the controller 110C detects the composition ratio of the refrigerant circulating through the main refrigerant circuit 50 based on the measurement results of the pressure sensor 156 and the temperature sensor 158. Specifically, data representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture (for example, tables and relational expressions) are stored. The controller 110C is based on data representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture, and the measurement results of the pressure sensor 156 and the temperature sensor 158, which are stored in the memory. to detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
- data representing the relationship between the pressure and temperature of the two-phase refrigerant and the composition ratio of the non-azeotropic refrigerant mixture for example, tables and relational expressions
- the controller 110C is based on data representing the relationship between the pressure and temperature
- the method for detecting the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 is not necessarily limited to the method exemplified here, and the second detection unit 150 uses another method or a method different from the above method.
- a device may be used to detect the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 .
- the controller 110C controls operations of various devices of the refrigeration cycle apparatus 100C, like the controller 110 of the first embodiment. Since the controller 110C has many points in common with the controller 110, the differences from the controller 110 will be mainly explained here, and the explanation of the common points will basically be omitted.
- the controller 110C controls the operation of the first valve 154a and the second valve 154b of the second detection unit 150 in addition to the various devices of the refrigeration cycle apparatus 100 described in the first embodiment. It is electrically connected to the second valve 154b. Also, the controller 110C is electrically connected to the pressure sensor 156 and the temperature sensor 158, and can acquire the measured values of the pressure sensor 156 and the temperature sensor 158. FIG. The controller 110C is also electrically connected to sensors (not shown) arranged at various locations in the refrigeration cycle apparatus 100 other than the pressure sensor 156 and the temperature sensor 158, and can acquire measurement values of these sensors.
- the controller 110C controls the operation of various devices of the refrigeration cycle apparatus 100 during cooling operation and heating operation.
- controller 110C performs adsorption control and desorption control in the same manner as the controller 110 of the first embodiment. However, the adsorption control and desorption control performed by the controller 110C differ from the adsorption control and desorption control performed by the controller 110 of the first embodiment in the following points.
- the heat source side valve 82a and the usage side valve 82b are adjusted based on the elapsed time after opening the heat source side valve 82a and the usage side valve 82b. It determines the timing of closing 82b. Moreover, in the first embodiment, as described with reference to FIG. It determines the timing of closing the side valve 82b.
- the controller 110C controls the heat source side valve 82a and the utilization Close the side valve 82b.
- the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 can be controlled with high accuracy.
- the refrigeration cycle device 100C has the following features in addition to the features of the refrigeration cycle device 100 of the first embodiment.
- the refrigeration cycle device 100C includes a second detector 150. As shown in FIG. The second detector 150 detects the composition ratio of the refrigerant circulating in the main refrigerant circuit 50 . The valve 82 of the first bypass channel 80 is controlled so that the composition ratio of the refrigerant detected by the second detector 150 becomes the target composition ratio.
- the refrigeration cycle device 100C can be operated using a refrigerant with an optimum composition ratio.
- the refrigeration cycle apparatus using a non-azeotropic refrigerant mixture in which the first refrigerant is CO2 and the second refrigerant is HFO refrigerant R1234Ze or R1234yf has been described.
- the types of the first refrigerant and the second refrigerant are not limited to the illustrated refrigerants.
- the first refrigerant may be the HFO refrigerant R1132(E) (trans-1,2-difluoroethylene) or R1123 (trifluoroethylene).
- the adsorbent 72a adsorbs R1132 as the first refrigerant and does not adsorb R1234Ze or R1234yf as the second refrigerant, or the adsorption performance of R1234Ze or R1234yf is lower than the adsorption performance of R1132.
- the material should be selected.
- the adsorbent 72a may be selected from any of the types of adsorbents exemplified in the first embodiment.
- the refrigeration cycle apparatus of the present disclosure has been described by taking refrigeration cycle apparatuses 100, 100A, 100B, and 100C installed in buildings or the like as examples.
- the refrigeration cycle apparatus of the present disclosure is not limited to those installed in buildings.
- the refrigeration cycle device of the present disclosure may be, for example, a device mounted on a vehicle such as an automobile.
- the refrigeration cycle device of the present disclosure is exemplified by the case where the refrigeration cycle devices 100, 100A, 100B, and 100C include the heat source unit 2 and the utilization unit 4 connected to the heat source unit 2 by refrigerant piping. explains.
- the refrigeration cycle device of the present disclosure is not limited to such devices.
- the refrigeration cycle apparatus of the present disclosure may be an integrated apparatus in which all devices are mounted in one casing.
- the second refrigerant is used substantially alone during the cooling operation, and the non-azeotropic mixed refrigerant of the first refrigerant and the second refrigerant is used during the heating operation.
- the second refrigerant is substantially A non-azeotropic mixed refrigerant of the first refrigerant and the second refrigerant may be used only during heating operation and under conditions where insufficient capacity is a problem.
- the refrigeration cycle device may be a device that only performs an operation for heating the object to be temperature-adjusted.
- a non-azeotropic refrigerant mixture of the first refrigerant and the second refrigerant may be used if the condition is such that insufficient capacity is a problem.
- the refrigeration cycle device may be a device that performs only the operation of cooling the temperature adjustment target.
- composition ratio of the first refrigerant and the second refrigerant of the non-azeotropic mixed refrigerant used during heating operation is uniform has been described as an example, but the non-azeotropic mixed refrigerant used during heating operation
- the composition ratio of the first refrigerant and the second refrigerant may be changed according to operating conditions.
- the weight concentration of the first refrigerant in the non-azeotropic refrigerant mixture is increased, and under conditions where capacity shortage is relatively unlikely to occur
- the weight concentration of the first refrigerant in the non-azeotropic refrigerant mixture may be reduced.
- control may be realized by changing the predetermined time in step S17 of FIG. 3 according to the operating conditions.
- the composition ratio of the non-azeotropic refrigerant mixture flowing through the main refrigerant circuit 50 can be accurately controlled according to the operating conditions. It is possible.
- the heat of the refrigerant is used when desorbing the first refrigerant from the adsorbent 72a, but the present invention is not limited to this.
- the refrigeration cycle device of the present disclosure may utilize heat generated by a device such as an electric heater when desorbing the first refrigerant from the adsorbent 72a.
- a heat source for desorbing the first refrigerant from the adsorbent 72a may not be provided.
- the present disclosure is widely applicable and useful to refrigeration cycle devices.
- compressor 20 heat source heat exchanger (radiator, evaporator) 30 Expansion mechanism 40 Use heat exchanger (evaporator, radiator) 50 main refrigerant circuit (refrigeration cycle) 70 adsorption part 72a adsorbent 80 first bypass channel 82 valve 82a heat source side valve (first valve, second valve) 82b user side valve (second valve, first valve) 90 Second bypass flow path 92 Valve (third valve) 100, 100A, 100B, 100C Refrigeration cycle device 120 Defrost medium circuit (first medium circuit) 126 First heat exchange section 128 Second heat exchange section 130 First detection section 140 Overheating medium circuit (second medium circuit) 146 first heat exchange section 148 overheating heat exchanger (second heat exchange section) 150 Second detection part A Heat source side end (first end, second end) B Usage side end (second end, first end) C High voltage end (third end) D Low voltage end (4th end)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
吸着材を用いて冷凍サイクルで使用する冷媒の組成比を変化させる冷凍サイクル装置であって、組成比の変更に要する時間の長期化を抑制する。冷凍サイクル装置(100)は、冷凍サイクル(50)と、吸着部(70)と、第1バイパス流路(80)と、を備える。冷凍サイクルは、圧縮機(10)と、放熱器と、膨張機構(30)と、蒸発器と、を含み、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用する。吸着部は、吸着材(72a)を含み、吸着材が吸着した第1冷媒を貯留する。吸着材は、第1冷媒を吸着し、かつ、第2冷媒を吸着しない又は第2冷媒の吸着性能が第1冷媒の吸着性能より低い。第1バイパス流路は、冷凍サイクルの高圧部である第1端と、冷凍サイクルの低圧部である第2端と、を接続する。第1バイパス流路には、吸着部と弁(82)とが配置される。
Description
冷凍サイクル装置に関する。
従来、特許文献1(昭62-80452号公報)のように、複数種類の冷媒を含む非共沸混合冷媒を利用する冷凍サイクルにおいて、所望の運転性能等に応じ、ある種類の冷媒を吸着材に吸着させて、又は、ある種類の冷媒を吸着材から脱着させて、冷凍サイクルで使用する冷媒の組成比を変化させる冷凍サイクル装置が知られている。
しかし、特許文献1(昭62-80452号公報)のように、冷凍サイクルの低圧部に吸着材を配置した構成では、組成比の変更に長時間を要し、適切な組成比の冷媒で冷凍サイクルを運転するまでに要する時間が長くなるという課題がある。
第1観点に係る冷凍サイクル装置は、冷凍サイクルと、吸着部と、第1バイパス流路と、を備える。冷凍サイクルは、圧縮機と、放熱器と、膨張機構と、蒸発器と、を含む。冷凍サイクルは、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用する。吸着部は、吸着材を含む。吸着材は、第1冷媒を吸着する。吸着材は、第2冷媒を吸着しない、又は、第2冷媒の吸着性能が第1冷媒の吸着性能より低い。吸着部は、吸着材が吸着した第1冷媒を貯留する。第1バイパス流路は、冷凍サイクルの高圧部である第1端と、冷凍サイクルの低圧部である第2端と、を接続する。第1バイパス流路には、吸着部と弁とが配置される。
第1観点の冷凍サイクル装置では、圧力を利用して、第1冷媒を吸着材に吸着及び脱着させることができるため、比較的短時間で、冷媒の組成比を変更できる。
また、第1観点の冷凍サイクル装置では、通常運転をしながら、吸着材から第1冷媒を脱着でき、冷媒の組成比変更のために通常運転をできない時間を短縮できる。
第2観点に係る冷凍サイクル装置は、第1観点の冷凍サイクル装置であって、第2端は、冷凍サイクルの膨張機構と蒸発器との間である。
第3観点に係る冷凍サイクル装置は、第1観点又は第2観点の冷凍サイクル装置であって、第1端は、冷凍サイクルの放熱器と膨張機構との間である。
冷媒を吸着材に吸着させる際には吸着熱が発生する。そのため、第1冷媒の温度が高い場合には、第1冷媒は吸着材に吸着されにくい。
第3観点に係る冷凍サイクル装置では、放熱器による冷却後の冷媒が吸着材に流れるので、圧縮機から吐出された直後の冷媒を吸着材に流す場合に比べ、第1冷媒が吸着材に吸着されやすい。
第4観点に係る冷凍サイクル装置は、第1観点から第3観点のいずれかの冷凍サイクル装置であって、冷凍サイクルは、利用熱交換器を含む。利用熱交換器は、蒸発器として機能する際に温度調整対象を冷却し、放熱器として機能する際に温度調整対象を加熱する。利用熱交換器を蒸発器として利用する際には、第1バイパス流路の弁が開かれ、吸着材は第1冷媒を吸着する。利用熱交換器を放熱器として利用する際には、第1バイパス流路の弁が開かれ、吸着材は第1冷媒を脱着する。
第4観点の冷凍サイクル装置では、利用熱交換器が蒸発器として機能する際と、放熱器として機能する際とで、それぞれに適した組成の冷媒を利用できる。
第5観点に係る冷凍サイクル装置は、第1観点から第4観点のいずれかの冷凍サイクル装置であって、弁は、第1弁と、第2弁と、を含む。第1弁は、第1端と吸着部との間に配置される。第2弁は、吸着部と第2端との間に配置される。
第5観点の冷凍サイクル装置では、第1端と吸着部との間と、吸着部と第2端との間と、にそれぞれ弁を設けることで、吸着材への第1冷媒の吸着と、吸着材からの第1冷媒の脱着とを、適切に制御し、短時間で冷媒の組成比を変更できる。
第6観点に係る冷凍サイクル装置は、第5観点の冷凍サイクル装置であって、吸着材に第1冷媒を吸着させる際には、第1弁及び第2弁が開かれ、かつ、第1弁の流路面積が第2弁の流路面積より大きくなるように、第1弁及び第2弁の開度が調節される。吸着材から第1冷媒を脱着させる際には、第1弁及び第2弁が開かれ、かつ、第2弁の流路面積が第1弁の流路面積より大きくなるように、第1弁及び第2弁の開度が調節される。
第6観点の冷凍サイクル装置では、第1冷媒の吸着時には、第1弁の流路面積が第2弁の流路面積より大きく開かれるので、吸着部の圧力が比較的高くなる。そのため、圧力を利用して、第1冷媒を吸着材に効率よく吸着させることができる。
一方、第6観点の冷凍サイクル装置では、第1冷媒の脱着時には、第2弁の流路面積が第1弁の流路面積より大きく開かれるので、吸着部の圧力は比較的低くなる。そのため、吸着材から第1冷媒を効率よく脱着させることができる。
第7観点の冷凍サイクル装置は、第1観点から第6観点のいずれかの冷凍サイクル装置であって、第2バイパス流路を更に備える。第2バイパス流路は、第3端と、第4端と、を接続する。第3端は、冷凍サイクルの圧縮機と放熱器との間である。第4端は、冷凍サイクルの低圧部である。第2バイパス流路は、流れる冷媒により吸着部を加熱する。第2バイパス流路には、第3弁が配置される。第3弁は、第2バイパス流路における冷媒の流れを制御する。吸着材から第1冷媒を脱着させる際には、第3弁が開かれる。
第7観点の冷凍サイクル装置では、圧縮機が吐出する高温の冷媒を用いて吸着部の吸着材を加熱し、吸着材からの第1冷媒の脱着を促進できる。
第8観点の冷凍サイクル装置は、第1観点から第7観点のいずれかの冷凍サイクル装置であって、第1冷媒はCO2である。
第8観点の冷凍サイクル装置では、CO2が吸着材に貯留されるので、CO2を液化して貯留タンクに貯留する場合とは異なり、CO2の貯留タンクや、CO2を液化するための冷却設備が不要である。
第9観点の冷凍サイクル装置は、第8観点の冷凍サイクル装置であって、吸着材に第1冷媒としてのCO2が吸着されていない状態で、非共沸混合冷媒に含まれる第1冷媒としてのCO2の濃度は、20wt%以下である。
第9観点の冷凍サイクル装置では、CO2の濃度を20wt%以下とすることで、吸着部の大型化を抑制しつつ、全てのCO2を吸着材に吸着できる。そのため、冷凍サイクル装置の大型化は抑制しつつ、運転条件に合わせて冷媒の組成比を変更できる。
第10観点の冷凍サイクル装置は、第8観点又は第9観点の冷凍サイクル装置であって、吸着材は、CO2の吸着性能が高い、金属有機構造体又はゼオライトである。
第11観点の冷凍サイクル装置は、第1観点から第10観点のいずれかの冷凍サイクル装置であって、第2冷媒はHFO冷媒である。
第11観点の冷凍サイクル装置では、地球温暖化係数の低いHFO冷媒を用いて、環境負荷の低い冷凍サイクル装置を実現できる。
第12観点の冷凍サイクル装置は、第1観点から第11観点のいずれかの冷凍サイクル装置であって、冷凍サイクルは、蒸発器として機能する熱源熱交換器を含む。冷凍サイクル装置は、媒体が流れる第1媒体回路と、第1検知部と、を更に備える。第1媒体回路は、第1熱交換部と、第2熱交換部と、を有する。第1熱交換部では、吸着部により媒体が加熱される。第2熱交換部は、媒体で熱源熱交換器を加熱する。第1検知部は、熱源熱交換器の着霜を検知する。第1検知部が熱源熱交換器の着霜を検知した際に、媒体は、第1媒体回路を循環する。
第12観点の冷凍サイクル装置では、第1冷媒が吸着材に吸着される際の吸着熱を有効に活用して、熱源熱交換器の着霜の抑制や除霜を行うことができる。
例えば、吸着部に吸着熱を蓄熱しておけば、この熱をデフロストに利用できる。また、媒体を循環させながら、吸着部において第1冷媒を吸着材に吸着させれば、吸着材が発生する吸着熱を除霜に利用できる。
第13観点の冷凍サイクル装置は、第1観点から第11観点のいずれかの冷凍サイクル装置であって、媒体が流れる第2媒体回路を更に備える。第2媒体回路は、第1熱交換部と、第2熱交換部と、を有する。第1熱交換部では、吸着部により媒体が加熱される。第2熱交換部では、媒体が圧縮機に流入する冷媒を加熱する。
第13観点の冷凍サイクル装置では、第1冷媒が吸着材に吸着される際の吸着熱を有効に活用して、圧縮機に吸入される冷媒を加熱できる。
第14観点の冷凍サイクル装置は、第1観点から第13観点のいずれかの冷凍サイクル装置であって、第2検知部を更に備える。第2検知部は、冷凍サイクル内を循環する冷媒の組成比を検知する。第1バイパス流路の弁は、第2検知部が検知する冷媒の組成比が目標組成比になるように制御される。
第14観点の冷凍サイクル装置では、最適な組成比の冷媒を用いて冷凍サイクル装置を運転できる。
以下に、図面を参照して、本開示の冷凍サイクル装置の実施形態を説明する。
冷凍サイクル装置は、蒸気圧縮式の冷凍サイクルを利用して、温度調整対象の冷却及び温度調整対象の加熱の少なくとも一方を行う装置である。本開示の冷凍サイクル装置は、冷媒として、非共沸混合冷媒を使用する。本開示の冷凍サイクル装置は、後述のように、条件に応じ、冷凍サイクルを流れる冷媒の組成比を変更する。
<第1実施形態>
(1)全体概要
図1を参照して、第1実施形態に係る冷凍サイクル装置100を説明する。図1は、冷凍サイクル装置100の概略構成図である。
(1)全体概要
図1を参照して、第1実施形態に係る冷凍サイクル装置100を説明する。図1は、冷凍サイクル装置100の概略構成図である。
ここでは、冷凍サイクル装置100は、温度調整対象である空気の冷却及び加熱を行う空調装置である。ただし、これに限定されるものではなく、冷凍サイクル装置100は、温度調整対象の液体(例えば水)の冷却及び加熱を行う装置でもよい。
冷凍サイクル装置100は、図1に示すように、冷凍サイクルの一例としての主冷媒回路50と、吸着部70と、第1バイパス流路80と、第2バイパス流路90と、コントローラ110と、を主に備える。主冷媒回路50、第1バイパス流路80、及び第2バイパス流路90を含めて、冷媒回路200と呼ぶ。
主冷媒回路50を含む冷媒回路200には、非共沸混合冷媒が充填されている。非共沸混合冷媒は、少なくとも2種類の冷媒の混合物である。第1実施形態の冷凍サイクル装置100の冷媒回路200には、2種類の冷媒(第1冷媒及び第2冷媒)だけを含む非共沸混合冷媒が充填される。ただし、これに限定されるものではなく、非共沸混合冷媒は、3種類以上の冷媒の混合物であってもよい。
限定するものではないが、具体的には、第1冷媒は、CO2(二酸化炭素)であり、第2冷媒は、HFO(ハイドロフルオロオレフィン)である。HFOは、温暖化係数が極めて低い冷媒である。限定するものではないが、第2冷媒として用いられるHFOの具体例は、R1234Ze(シス-1,3,3,3-テトラフルオロプロペン)である。また、例えば、R1234Zeに代えて、R1234yf(2,3,3,3-テトラフルオロプロペン)が、第2冷媒のHFOとして用いられてもよい。CO2は沸点の比較的低い冷媒であり、R1234ZeやR1234yfは沸点の比較的高い冷媒である。以下では、第1冷媒を低沸点冷媒と呼び、第2冷媒を高沸点冷媒と呼ぶ場合がある。
なお、後述する吸着部70の吸着材72aに第1冷媒としてのCO2が吸着されていない状態で、冷媒回路200に充填されている非共沸混合冷媒に含まれる第1冷媒としてのCO2の濃度は、20wt%以下であることが好ましい。言い換えれば、冷媒回路200に充填されている全冷媒の総重量に対する、冷媒回路200に充填されている第1冷媒の総重量の割合は、20wt%以下であることが好ましい。
主冷媒回路50、吸着部70、第1バイパス流路80、第2バイパス流路90、及びコントローラ110について概説する。
主冷媒回路50は、図1に示すように、圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40と、を主に含む。圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40とは、後述する冷媒配管52a~52eにより接続されて主冷媒回路50を構成する(図1参照)。冷凍サイクル装置100は、冷媒を主冷媒回路50において循環させることで、温度調整対象の空気の冷却及び加熱を行う。
第1バイパス流路80は、図1のように、主冷媒回路50の熱源側端Aと、主冷媒回路50の利用側端Bと、を接続する冷媒の流路である。第1バイパス流路80には、図1に示すように、吸着部70が配置される。吸着部70は、主冷媒回路50を流れる冷媒の組成比を変更するために用いられる。
第2バイパス流路90は、図1のように、主冷媒回路50の高圧端Cと、主冷媒回路50の低圧端Dと、を接続する冷媒の流路である。第2バイパス流路90は、内部を流れる冷媒により吸着部70の吸着材72aを加熱するために用いられる。
なお、冷凍サイクル装置100は、図1に二点鎖線で示すように、図示しないケーシングを有する熱源ユニット2と、図示しないケーシングを有し、熱源ユニット2と冷媒配管を介して接続される利用ユニット4と、を備える。熱源ユニット2は、例えば、冷凍サイクル装置100の設置される建物の屋上又は機械室や、冷凍サイクル装置100の設置される建物の周囲等に設置される。利用ユニット4は、空調対象空間内や、空調対象空間の近傍の空間(例えば天井裏や機械室等)に配置される。限定するものではないが、熱源ユニット2のケーシングには、主冷媒回路50の圧縮機10、流路切換機構15、熱源熱交換器20及び膨張機構30と、第1バイパス流路80と、第2バイパス流路90と、が主に収容される。利用ユニット4のケーシングには、主冷媒回路50の利用熱交換器40が主に収容される。
コントローラ110は、冷凍サイクル装置100の各種構成の動作を制御する。
(2)詳細構成
(2-1)主冷媒回路
主冷媒回路50は、図1に示すように、圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40と、を主に含む。
(2-1)主冷媒回路
主冷媒回路50は、図1に示すように、圧縮機10と、流路切換機構15と、熱源熱交換器20と、膨張機構30と、利用熱交換器40と、を主に含む。
主冷媒回路50は、圧縮機10、流路切換機構15、熱源熱交換器20、膨張機構30、及び利用熱交換器40を接続するための配管として、図1に示すように、吸入管52aと、吐出管52bと、第1ガス冷媒管52cと、液冷媒管52dと、第2ガス冷媒管52eと、を有する(図1参照)。吸入管52aは、圧縮機10の吸入口10bと、流路切換機構15と、を接続している。吐出管52bは、圧縮機10の吐出口10cと、流路切換機構15と、を接続している。第1ガス冷媒管52cは、流路切換機構15と、熱源熱交換器20のガス端と、を接続している。液冷媒管52dは、熱源熱交換器20の液端と、利用熱交換器40の液端と、を接続している。液冷媒管52dには、膨張機構30が設けられている。第2ガス冷媒管52eは、利用熱交換器40のガス端と、流路切換機構15と、を接続している。
(2-1-1)圧縮機
圧縮機10は、吸入口10bから冷凍サイクルにおける低圧の冷媒を吸入して、図示しない圧縮機構において冷媒を圧縮し、冷凍サイクルにおける高圧の冷媒を吐出口10cから吐出する。図1では、圧縮機10は1台だけ描画されているが、主冷媒回路50は、直列又は並列に接続された複数の圧縮機10を有してもよい。
圧縮機10は、吸入口10bから冷凍サイクルにおける低圧の冷媒を吸入して、図示しない圧縮機構において冷媒を圧縮し、冷凍サイクルにおける高圧の冷媒を吐出口10cから吐出する。図1では、圧縮機10は1台だけ描画されているが、主冷媒回路50は、直列又は並列に接続された複数の圧縮機10を有してもよい。
圧縮機10は、例えばスクロール圧縮機である。ただし、これに限定されるものではなく、圧縮機10は、ロータリ圧縮機等、スクロール圧縮機以外のタイプの圧縮機でもよい。圧縮機10の種類は、適宜選択されればよい。
圧縮機10は、限定するものではないが、モータ10aの回転数が可変の、インバータ制御方式の圧縮機である。圧縮機10の動作を制御する後述のコントローラ110は、例えば空調負荷に応じ、圧縮機10のモータ10aの回転数を制御する。
(2-1-2)流路切換機構
流路切換機構15は、冷凍サイクル装置100の運転モード(冷房運転モード/暖房運転モード)に応じ、主冷媒回路50における冷媒の流れ方向を切り換える機構である。冷房運転モードは、熱源熱交換器20を放熱器として機能させ、利用熱交換器40を蒸発器として機能させる冷凍サイクル装置100の運転モードである。暖房運転モードは、利用熱交換器40を放熱器として機能させ、熱源熱交換器20を蒸発器として機能させる冷凍サイクル装置100の運転モードである。
流路切換機構15は、冷凍サイクル装置100の運転モード(冷房運転モード/暖房運転モード)に応じ、主冷媒回路50における冷媒の流れ方向を切り換える機構である。冷房運転モードは、熱源熱交換器20を放熱器として機能させ、利用熱交換器40を蒸発器として機能させる冷凍サイクル装置100の運転モードである。暖房運転モードは、利用熱交換器40を放熱器として機能させ、熱源熱交換器20を蒸発器として機能させる冷凍サイクル装置100の運転モードである。
冷房運転モードでは、流路切換機構15は、圧縮機10が吐出する冷媒が熱源熱交換器20に送られるように、主冷媒回路50における冷媒の流向を切り換える。具体的には、冷房運転モードでは、流路切換機構15は、吸入管52aを第2ガス冷媒管52eと連通させ、吐出管52bを第1ガス冷媒管52cと連通させる(図1中の実線参照)。
暖房運転モードでは、流路切換機構15は、圧縮機10が吐出する冷媒が利用熱交換器40に送られるように、主冷媒回路50における冷媒の流向を切り換える。具体的には、暖房運転モードでは、流路切換機構15は、吸入管52aを第1ガス冷媒管52cと連通させ、吐出管52bを第2ガス冷媒管52eと連通させる(図1中の破線参照)。
流路切換機構15は、例えば四路切換弁である。ただし、流路切換機構15は、四路切換弁以外で実現されてもよい。例えば、流路切換機構15は、上記の冷媒の流れ方向の切り換えを実現できるように、複数の電磁弁と配管とを組み合わせて構成されてもよい。
(2-1-3)熱源熱交換器
熱源熱交換器20は、冷凍サイクル装置100が冷房運転モードで運転される際には冷媒の放熱器として機能し、冷凍サイクル装置100が暖房運転モードで運転される際には冷媒の蒸発器として機能する。図1では、熱源熱交換器20は1台だけ描画されているが、主冷媒回路50は、複数の並列に配置された熱源熱交換器20を有してもよい。
熱源熱交換器20は、冷凍サイクル装置100が冷房運転モードで運転される際には冷媒の放熱器として機能し、冷凍サイクル装置100が暖房運転モードで運転される際には冷媒の蒸発器として機能する。図1では、熱源熱交換器20は1台だけ描画されているが、主冷媒回路50は、複数の並列に配置された熱源熱交換器20を有してもよい。
限定するものではないが、熱源熱交換器20は、例えば、複数の伝熱管及び複数の伝熱フィンを有するフィンアンドチューブ型の熱交換器である。
熱源熱交換器20の一端には、図1に示すように第1ガス冷媒管52cが接続される。熱源熱交換器20の他端には、図1に示すように液冷媒管52dが接続される。
冷凍サイクル装置100が冷房運転モードで運転される際には、第1ガス冷媒管52cから熱源熱交換器20に冷媒が流入する。第1ガス冷媒管52cから熱源熱交換器20に流入した冷媒は、図示しないファンにより供給される空気と熱交換することで放熱し、少なくとも一部が凝縮する。熱源熱交換器20で放熱した冷媒は、液冷媒管52dに流出する。
冷凍サイクル装置100が暖房運転モードで運転される際には、液冷媒管52dから熱源熱交換器20に冷媒が流入する。液冷媒管52dから熱源熱交換器20に流入した冷媒は、熱源熱交換器20で、図示しないファンにより供給される空気と熱交換することで吸熱し、蒸発する。熱源熱交換器20で吸熱した(加熱された)冷媒は、第1ガス冷媒管52cへと流出する。
なお、本実施形態では、熱源熱交換器20では、内部を流れる冷媒と、熱源熱交換器20に供給される熱源としての空気の間で熱交換が行われるが、熱源熱交換器20は空気と冷媒との間で熱交換を行う熱交換器に限定されない。例えば、熱源熱交換器20は、内部を流れる冷媒と、熱源熱交換器20に供給される熱源としての液体との間で熱交換を行う熱交換器であってもよい。
(2-1-4)膨張機構
膨張機構30は、冷媒の減圧や、冷媒の流量調節を行う機構である。本実施形態では、膨張機構30は、開度調節可能な電子膨張弁である。膨張機構30の開度は、運転状況に応じて適宜調節される。なお、膨張機構30は、電子膨張弁に限定されるものではなく、温度自動膨張弁や、キャピラリチューブであってもよい。
膨張機構30は、冷媒の減圧や、冷媒の流量調節を行う機構である。本実施形態では、膨張機構30は、開度調節可能な電子膨張弁である。膨張機構30の開度は、運転状況に応じて適宜調節される。なお、膨張機構30は、電子膨張弁に限定されるものではなく、温度自動膨張弁や、キャピラリチューブであってもよい。
(2-1-5)利用熱交換器
利用熱交換器40は、冷凍サイクル装置100が冷房運転モードで運転される際には冷媒の蒸発器として機能し、冷凍サイクル装置100が暖房運転モードで運転される際には冷媒の放熱器として機能する。利用熱交換器40は、蒸発器として機能する際には、温度調整対象(本実施形態では空気)を冷却する。利用熱交換器40は、放熱器として機能する際には、温度調整対象(本実施形態では空気)を加熱する。
利用熱交換器40は、冷凍サイクル装置100が冷房運転モードで運転される際には冷媒の蒸発器として機能し、冷凍サイクル装置100が暖房運転モードで運転される際には冷媒の放熱器として機能する。利用熱交換器40は、蒸発器として機能する際には、温度調整対象(本実施形態では空気)を冷却する。利用熱交換器40は、放熱器として機能する際には、温度調整対象(本実施形態では空気)を加熱する。
なお、図1に示した例では、冷凍サイクル装置100は、利用熱交換器40を1台だけ有する。ただし、これに限定されるものではない。冷凍サイクル装置100の主冷媒回路50は、並列に配置された複数の利用熱交換器40を有してもよい。そして、各利用ユニット4は、利用熱交換器40の液側に配置される、図示しない膨張機構(例えば開度調整可能な電子膨張弁)を有してもよい。
限定するものではないが、利用熱交換器40は、例えば、複数の伝熱管及び複数の伝熱フィンを有するフィンアンドチューブ型の熱交換器である。
利用熱交換器40の一端には、図1に示すように液冷媒管52dが接続される。利用熱交換器40の他端には、図1に示すように第2ガス冷媒管52eが接続される。
冷凍サイクル装置100が冷房運転モードで運転される際には、液冷媒管52dから利用熱交換器40に冷媒が流入する。液冷媒管52dから利用熱交換器40に流入した冷媒は、利用熱交換器40で、図示しないファンにより供給される空気と熱交換して吸熱し、蒸発する。利用熱交換器40で吸熱した(加熱された)冷媒は、第2ガス冷媒管52eへと流出する。なお、利用熱交換器40で冷却された温度調整対象としての空気は、空調対象空間へと吹き出す。
冷凍サイクル装置100が暖房運転モードで運転される際には、第2ガス冷媒管52eから利用熱交換器40に冷媒が流入する。第2ガス冷媒管52eから利用熱交換器40に流入した冷媒は、図示しないファンにより供給される空気と熱交換することで放熱し、少なくとも一部が凝縮する。利用熱交換器40で放熱した冷媒は、液冷媒管52dに流出する。なお、利用熱交換器40で加熱された温度調整対象としての空気は、空調対象空間へと吹き出す。
(2-2)第1バイパス流路
第1バイパス流路80は、主冷媒回路50の熱源側端Aと、主冷媒回路50の利用側端Bと、を接続する配管である。図1に示す冷凍サイクル装置100では、熱源側端Aは、主冷媒回路50の液冷媒管52dの、熱源熱交換器20と膨張機構30との間の部分である。また、図1に示す冷凍サイクル装置100では、利用側端Bは、主冷媒回路50の液冷媒管52dの、利用熱交換器40と膨張機構30との間の部分である。
第1バイパス流路80は、主冷媒回路50の熱源側端Aと、主冷媒回路50の利用側端Bと、を接続する配管である。図1に示す冷凍サイクル装置100では、熱源側端Aは、主冷媒回路50の液冷媒管52dの、熱源熱交換器20と膨張機構30との間の部分である。また、図1に示す冷凍サイクル装置100では、利用側端Bは、主冷媒回路50の液冷媒管52dの、利用熱交換器40と膨張機構30との間の部分である。
冷凍サイクル装置100が冷房モードで運転される際には、主冷媒回路50の熱源側端Aは主冷媒回路50の高圧部になり、主冷媒回路50の利用側端Bは主冷媒回路50の低圧部になる。冷凍サイクル装置100が暖房モードで運転される際には、主冷媒回路50の熱源側端Aは主冷媒回路50の低圧部になり、主冷媒回路50の利用側端Bは主冷媒回路50の高圧部になる。要するに、冷凍サイクル装置100が冷房モードで運転される際には、熱源側端Aは特許請求の範囲における第1端となり、利用側端Bは特許請求の範囲における第2端となる。また、冷凍サイクル装置100が暖房モードで運転される際には、熱源側端Aは特許請求の範囲における第2端となり、利用側端Bは特許請求の範囲における第1端となる。
なお、ここでは、主冷媒回路50の高圧部は、冷媒の流れ方向における、主冷媒回路50の圧縮機10の吐出口10cから膨張機構30までの部分を意味する。主冷媒回路50の低圧部は、冷媒の流れ方向における、主冷媒回路50の膨張機構30から圧縮機10の吸入口10bまでの部分を意味する。
なお、第1バイパス流路80が接続される位置は、図1に描画された位置に限定されるものではない。例えば、第1バイパス流路80は、図4に示すように、主冷媒回路50の吐出管52bに設けられた端部A’と、主冷媒回路50の吸入管52aに設けられた端部B’と、に接続されてもよい。この場合には、運転モードによらず、端部A’は主冷媒回路50の高圧部になり、端部B’は主冷媒回路50の低圧部になる。言い換えれば、端部A’は特許請求の範囲における第1端の一例であり、端部B’は特許請求の範囲における第2端の一例である。
ただし、第1バイパス流路80の一端は、図1のように、液冷媒管52dの、熱源熱交換器20と膨張機構30との間の部分の熱源側端Aに接続されることが好ましい。また、第1バイパス流路80の他端は、液冷媒管52dの、膨張機構30と利用熱交換器40との間の部分の利用側端Bに接続されることが好ましい。言い換えれば、第1バイパス流路80の一端は、主冷媒回路50の、放熱器(冷房運転モードでは熱源熱交換器20、暖房運転モードでは利用熱交換器40)と、膨張機構30との間に接続されることが好ましい。また、第1バイパス流路80の他端は、主冷媒回路50の、蒸発器(冷房運転モードでは利用熱交換器40、暖房運転モードでは熱源熱交換器20)と、膨張機構30との間に接続されることが好ましい。
第1バイパス流路80には、図1に示すように吸着部70が配置される。吸着部70については後述する。
第1バイパス流路80には、弁82が配置される。弁82は、第1バイパス流路80における冷媒の流れを制御する弁である。弁82には、熱源側弁82aと、利用側弁82bと、を含む。熱源側弁82aは、熱源側端Aと吸着部70との間に配置される。利用側弁82bは、利用側端Bと吸着部70との間に配置される。熱源側弁82a及び利用側弁82bは、例えば、開度調整可能な電子膨張弁である。
冷凍サイクル装置100が冷房モードで運転される際には、熱源側弁82aは、特許請求の範囲における第1端として機能する熱源側端Aと吸着部70との間に配置されるため、特許請求の範囲における第1弁として機能する。また、冷凍サイクル装置100が冷房モードで運転される際には、利用側弁82bは、特許請求の範囲における第2端として機能する利用側端Bと吸着部70との間に配置されるため、特許請求の範囲における第2弁として機能する。
冷凍サイクル装置100が暖房モードで運転される際には、熱源側弁82aは、特許請求の範囲における第2端として機能する熱源側端Aと吸着部70との間に配置されるため、特許請求の範囲における第2弁として機能する。また、冷凍サイクル装置100が暖房モードで運転される際には、利用側弁82bは、特許請求の範囲における第1端として機能する利用側端Bと吸着部70との間に配置されるため、特許請求の範囲における第1弁として機能する。
後述する吸着部70の吸着材72aに第1冷媒を吸着させる際や、吸着部70の吸着材72aから第1冷媒を脱着させる際には、弁82が開かれ、第1バイパス流路80に冷媒が流される。第1冷媒の吸着時及び脱着時の熱源側弁82a及び利用側弁82bの制御については後述する。
(2-3)吸着部
吸着部70は、主に、吸着材72aと、吸着材72aが内部に充填されている容器72とを含む。容器72の一端は、冷媒配管を介して、熱源側端Aに接続される。容器72の他端は、冷媒配管を介して、利用側端Bに接続される。
吸着部70は、主に、吸着材72aと、吸着材72aが内部に充填されている容器72とを含む。容器72の一端は、冷媒配管を介して、熱源側端Aに接続される。容器72の他端は、冷媒配管を介して、利用側端Bに接続される。
吸着材72aは、第1冷媒を吸着する特性を有する。要するに、第1実施形態の冷凍サイクル装置100では、吸着材72aは、CO2を吸着する特性を有する。吸着部70は、吸着材72aが吸着した第1冷媒を貯留する。言い換えれば、吸着部70は、第1冷媒を貯留するための別置きの容器は有さず、吸着材72aの収容されている容器72内に第1冷媒を貯留する。
また、吸着材72aは、第2冷媒を吸着しない特性を有する。要するに、第1実施形態の冷凍サイクル装置100の吸着材72aは、第2冷媒として使用されるR1234ZeやR1234yfを吸着しない。
あるいは、吸着材72aは、第1冷媒に加えて第2冷媒も吸着するものの、第2冷媒の吸着性能が第1冷媒の吸着性能より低い特性を有するものでもよい。例えば、吸着材72aは、吸着部70に第1冷媒及び第2冷媒を含む非共沸混合冷媒を吸着させる場合に、主に第1冷媒としてのCO2を吸着し、第2冷媒として使用されるR1234ZeやR1234yfはほとんど吸着しない特性を有する。このような吸着材72aに非共沸混合冷媒を吸着させる場合、吸着材72aを通過して容器72から流出する冷媒は、CO2を含まない第2冷媒単独の冷媒、又は、CO2の濃度が低い混合冷媒である。
吸着材72aは、例えばCO2の吸着性能が高いゼオライトである。限定するものではないが、ゼオライトは、より具体的には、例えば、zeoliteEMC-2,zeolite13X,又はzeoliteSSZ-13である。また、吸着材72aは、CO2の吸着性能が高い金属有機構造体(MOF)であってもよい。限定するものではないが、金属有機構造体は、より具体的には、例えば、MOF-177,Zn4O(BTB)2,MIL-101,NU-100,PCN-68,DUT-9,DUT-49,MAF-66,ZJU-35,ZJU-36,NU-111である。なお、吸着材72aの種類は、第1冷媒を吸着し、かつ、第2冷媒を吸着しない又は第2冷媒の吸着性能が第1冷媒の吸着性能より低いものであれば上記の吸着材に限定されない。例えば、吸着材72aは、多孔性炭素、グラフェン、メソポーラスシリカ(MCM-41,MCM-48,SBA-15,MBS-1,MBS-2)、共有結合性有機構造体COF(COF-102,COF-103)、固有微多孔性高分子(PIM)等であってもよい。
(2-4)第2バイパス流路
第2バイパス流路90は、内部を流れる冷媒により吸着部70の吸着材72aを加熱するために用いられる冷媒の流路である。
第2バイパス流路90は、内部を流れる冷媒により吸着部70の吸着材72aを加熱するために用いられる冷媒の流路である。
第2バイパス流路90は、主冷媒回路50の高圧端Cと、主冷媒回路50の低圧端Dと、を接続する配管である。図1に示す冷凍サイクル装置100では、高圧端Cは、圧縮機10の吐出口10cと流路切換機構15とを接続する吐出管52bに設けられる。また、図1に示す冷凍サイクル装置100では、低圧端Dは、液冷媒管52dの、熱源熱交換器20と膨張機構30との間の部分である。
高圧端Cは、圧縮機10の吐出口10cと放熱器(冷房運転モードでは熱源熱交換器20、暖房運転モードでは利用熱交換器40)との間の第3端の一例である。
第2バイパス流路90は、後述するように冷凍サイクル装置100が暖房運転モードの際に用いられる。冷凍サイクル装置100が暖房運転モードである時には、低圧端Dは、冷媒の流れ方向における、主冷媒回路50の、膨張機構30から圧縮機10の吸入口10bまでの部分に配置されることになる。したがって、低圧端Dは、主冷媒回路50の低圧部である第4端の一例である。
なお、第2バイパス流路90が接続される主冷媒回路50の位置は、図1に描画された位置に限定されない。例えば、第2バイパス流路90は、後述するように冷凍サイクル装置100が暖房運転モードの際に用いられることから、第2バイパス流路90の高圧端Cは、圧縮機10の吐出口10cと放熱器として機能する利用熱交換器40との間に配置される第2ガス冷媒管52eに設けられてもよい。また、第2バイパス流路90の低圧端Dは、流路切換機構15と圧縮機10の吸入口10bとを接続する吸入管52aに設けられてもよい。
第2バイパス流路90は、内部を流れる冷媒により吸着部70の吸着材72aを加熱する加熱部94を有する。加熱部94は、例えば、吸着部70の容器72の内部に配置される。例えば、加熱部94は、端部(冷媒の入口及び出口)が容器72の外部に配置される、伝熱管がコイル状に巻かれたコイル式の熱交換器である。加熱部94の両端には、第2バイパス流路90の配管が接続されている。なお、加熱部94は、容器72の内部に配置されなくてもよい。例えば、吸着材72aを加熱可能であれば、加熱部94は、容器72を囲むように配置されるコイル式の熱交換器であってもよい。
第2バイパス流路90には、弁92が配置される。弁92は、特許請求の範囲の第3弁の一例である。弁92は、第2バイパス流路90における冷媒の流れを制御する。弁92には、高圧側弁92aと、低圧側弁92bと、を含む。高圧側弁92aは、高圧端Cと加熱部94との間に配置される。低圧側弁92bは、低圧端Dと加熱部94との間に配置される。高圧側弁92a及び低圧側弁92bは、例えば、開度調整可能な電子膨張弁である。第1冷媒の脱着時の高圧側弁92a及び低圧側弁92bの制御については後述する。
(2-5)コントローラ
コントローラ110は、冷凍サイクル装置100の各種機器の動作を制御するための制御部である。
コントローラ110は、冷凍サイクル装置100の各種機器の動作を制御するための制御部である。
コントローラ110は、例えば、マイクロコントローラユニット(MCU)や各種の電気回路や電子回路を主に含む(図示省略)。MCUは、CPU、メモリ、I/Oインタフェース等を含む。MCUのメモリには、MCUのCPUが実行するための各種プログラムが記憶されている。また、コントローラ110には、FPGAやASICが利用されてもよい。なお、コントローラ110の各種機能は、ソフトウェアで実現される必要はなく、ハードウェアで実現されても、ハードウェアとソフトウェアとが協働することで実現されてもよい。
コントローラ110は、熱源ユニット2及び利用ユニット4とは独立した装置であってもよい。また、コントローラ110は、熱源ユニット2及び利用ユニット4と独立した装置ではなく、例えば、熱源ユニット2に搭載されている図示しない制御部と、利用ユニット4に搭載されている図示しない制御部と、が協働することで、コントローラ110として機能してもよい。
コントローラ110は、主冷媒回路50の、圧縮機10、流路切換機構15、及び膨張機構30と電気的に接続され、圧縮機10、流路切換機構15、及び膨張機構30の動作を制御する(図1参照)。また、コントローラ110は、熱源ユニット2の熱源熱交換器20に空気を供給する図示しないファンや、利用ユニット4の利用熱交換器40に空気を供給する図示しないファンの動作を制御できるように、これらのファンと電気的に接続されている。また、コントローラ110は、第1バイパス流路80の熱源側弁82a及び利用側弁82bと電気的に接続され、熱源側弁82a及び利用側弁82bの動作を制御する(図1参照)。また、コントローラ110は、第2バイパス流路90の高圧側弁92a及び低圧側弁92bと電気的に接続され、高圧側弁92a及び低圧側弁92bの動作を制御する。また、コントローラ110は、冷凍サイクル装置100のユーザが冷凍サイクル装置100の動作を指示するために用いる図示しないリモコンと、有線又は無線により通信可能に接続されている。また、コントローラ110は、冷凍サイクル装置100の様々な場所に配置される図示しないセンサと電気的に接続され、これらのセンサの計測値を取得可能である。限定するものではないが、冷凍サイクル装置100のセンサには、冷媒の温度や圧力を計測するセンサや、空調対象空間や熱源空気の温度を計測するセンサを含む。
コントローラ110は、例えば、CPUが、メモリに記憶されているプログラムを実行することで、各種の制御を実行する。例えば、コントローラ110は、冷凍サイクル装置100が冷房運転や暖房運転を行う際に、冷凍サイクル装置100の各種機器の動作を制御する。
以下に、第1冷媒の吸着制御及び脱着制御を考慮しないコントローラ110による冷凍サイクル装置の各種機器の動作の制御について説明し、その後に、コントローラ110が実行する第1冷媒の吸着制御及び脱着制御について説明する。
(2-5-1)冷房運転
コントローラ110は、図示しないリモコンから冷房運転の実行が指示された時や、空調対象空間の温度から見て冷房運転の実行が必要と判断される時に、冷房運転を実行する。
コントローラ110は、図示しないリモコンから冷房運転の実行が指示された時や、空調対象空間の温度から見て冷房運転の実行が必要と判断される時に、冷房運転を実行する。
冷房運転時には、コントローラ110は、熱源熱交換器20が冷媒の放熱器として機能し、利用熱交換器40が冷媒の蒸発器として機能するように、流路切換機構15の動作を制御する。また、コントローラ110は、圧縮機10や、図示しない熱源ユニット2及び利用ユニット4に搭載されているファンの運転を開始する。また、コントローラ110は、冷凍サイクル装置100の各種センサの計測値や、ユーザが設定する空調対象空間の目標温度等に基づき、圧縮機10のモータ10aの回転数や、熱源ユニット2及び利用ユニット4に搭載されているファンの回転数や、膨張機構30としての電子膨張弁の開度を調節する。
(2-5-2)暖房運転
コントローラ110は、図示しないリモコンから暖房運転の実行が指示された時や、空調対象空間の温度から見て暖房運転の実行が必要と判断される時に、暖房運転を実行する。
コントローラ110は、図示しないリモコンから暖房運転の実行が指示された時や、空調対象空間の温度から見て暖房運転の実行が必要と判断される時に、暖房運転を実行する。
暖房運転時には、コントローラ110は、熱源熱交換器20が冷媒の蒸発器として機能し、利用熱交換器40が冷媒の放熱器として機能するように、流路切換機構15の動作を制御する。また、コントローラ110は、圧縮機10や、図示しない熱源ユニット2及び利用ユニット4に搭載されているファンの運転を開始する。また、コントローラ110は、冷凍サイクル装置100の各種センサの計測値や、ユーザが設定する空調対象空間の目標温度等に基づき、圧縮機10のモータ10aの回転数や、熱源ユニット2及び利用ユニット4に搭載されているファンの回転数や、膨張機構30としての電子膨張弁の開度を調節する。
なお、コントローラ110は、暖房運転時に熱源熱交換器20への着霜が検知されると、暖房運転を中断し、流路切換機構15の動作を制御し、主冷媒回路50における冷媒の流れ方向を冷房運転時と同方向に切り換えて、デフロスト運転(逆サイクルデフロスト運転)を行う。デフロスト運転は、熱源熱交換器20に付着した霜を除去するための運転である。冷凍サイクル装置のデフロスト運転については、一般に知られているため、デフロスト運転の詳細については説明を省略する。
(2-5-3)吸着制御及び脱着制御
吸着制御及び脱着制御について説明する。
吸着制御及び脱着制御について説明する。
吸着制御は、第1冷媒を吸着部70の吸着材72aに吸着させて、主冷媒回路50を流れる非共沸混合冷媒中の第1冷媒の濃度を低減する制御である。脱着制御は、吸着材72aに吸着されている第1冷媒を脱着させて、主冷媒回路50を流れる非共沸混合冷媒中の第1冷媒の濃度を増加させる制御である。
以下の説明の前提として、第1実施形態の冷凍サイクル装置100では、冷房運転を行う際には、主冷媒回路50に、第2冷媒を実質的に単独で循環させる。言い換えれば、冷凍サイクル装置100では、利用熱交換器40を蒸発器として利用する際には、主冷媒回路50に、第2冷媒を実質的に単独で循環させる。主冷媒回路50に第2冷媒を実質的に単独で循環させるとは、主冷媒回路50に、第1冷媒が含まれない冷媒を循環させる場合に加え、第1冷媒の濃度が低い非共沸混合冷媒を循環させる場合を含む。なお、第1冷媒の濃度が低い非共沸混合冷媒とは、例えば、第1冷媒の濃度が5wt%以下の非共沸混合冷媒である。好ましくは、第1冷媒の濃度が低い非共沸混合冷媒は、第1冷媒の濃度が2wt%以下の非共沸混合冷媒である。冷凍サイクル装置100は、吸着材72aを利用することで、主冷媒回路50を流れる冷媒から第1冷媒の大部分を除去し、実質的に単独の第2冷媒を主冷媒回路50に流すことができる。
一方、冷凍サイクル装置100では、暖房運転を行う際には、主冷媒回路50に、第1冷媒と第2冷媒との非共沸混合冷媒を循環させる。言い換えれば、冷凍サイクル装置100では、利用熱交換器40を放熱器として利用する際には、主冷媒回路50に、第1冷媒と第2冷媒との非共沸混合冷媒を循環させる。暖房運転時には、冷凍サイクル装置100は、例えば、吸着材72aに吸着されている第1冷媒を、全て又は概ね全て脱着させる。例えば、冷凍サイクル装置100が暖房運転を行う際に主冷媒回路50を流れる非共沸混合冷媒中の第1冷媒の濃度は、限定するものではないが15wt%である。なお、冷凍サイクル装置100が暖房運転を行う際に主冷媒回路50を流れる非共沸混合冷媒中の第1冷媒の濃度は、15wt%より低くてもよいし、15wt%より高くてもよい。ただし、主冷媒回路50を流れる非共沸混合冷媒中の第1冷媒の濃度は、20wt%以下であることが好ましい。
冷凍サイクル装置100における吸着制御及び脱着制御を説明する前に、主冷媒回路50に第2冷媒を実質単独で循環させる運転と、主冷媒回路50に第1冷媒と第2冷媒との非共沸混合冷媒を循環させる運転と、を切り換えて行う理由について説明する。
R1234ZeやR1234yfのような第2冷媒(高沸点冷媒)を用いる場合、冷凍サイクル装置100の比較的効率の良い運転が可能である。しかし、高沸点冷媒を利用すると、低外気温時に暖房運転を行う際に能力不足が生じる可能性がある。これに対し、高沸点冷媒に、CO2のような第1冷媒(低沸点冷媒)を混合した非共沸混合冷媒を用いることで、能力不足を補うことができる。ただし、第2冷媒に第1冷媒を混合した非共沸混合冷媒を用いる場合には、第2冷媒を単独で使用する場合に比べ効率が低下するという課題がある。
そこで、ここでは、冷房運転時には、主冷媒回路50に第2冷媒を実質単独で循環させ、暖房運転時には、主冷媒回路50に第1冷媒と第2冷媒との非共沸混合冷媒を循環させている。言い換えれば、冷凍サイクル装置100は、冷房運転時と暖房運転時とに、主冷媒回路50に流す冷媒の組成比をそれぞれの運転に適したものに変更している。そのため、冷凍サイクル装置100は、暖房運転時の能力を確保しつつ、冷房運転時には高効率な運転が可能である。
(A)吸着制御
冷房運転時に、主冷媒回路50に第2冷媒を実質単独で循環させるためにコントローラ110が実行する冷凍サイクル装置100の各種機器の制御(吸着制御)について、図2の吸着制御のフローチャートの例を参照して説明する。
冷房運転時に、主冷媒回路50に第2冷媒を実質単独で循環させるためにコントローラ110が実行する冷凍サイクル装置100の各種機器の制御(吸着制御)について、図2の吸着制御のフローチャートの例を参照して説明する。
吸着制御は、冷凍サイクル装置100がそれまで暖房運転を行っており、冷凍サイクル装置100の運転モードが暖房運転モードから冷房運転モードに切り換えられる際に実行される。言い換えれば、図2のフローチャートのステップS1の実行時点では、冷凍サイクル装置100は、暖房運転中か、暖房運転後に(冷房運転を行うことなく)停止されている状態である。
ステップS1では、コントローラ110は、図示しないリモコンから冷房運転の実行が指示されたか否かを判断する。また、ステップS1では、コントローラ110は、リモコンからの指示によらず、空調対象空間の温度と設定温度とに基づいて、冷房運転の実行が必要か否かを自ら判断してもよい。コントローラ110が、冷房運転の実行がリモコンから指示されていると判断するか、冷房運転の実行が必要であると判断すると、処理はステップS2に進む。ステップS1は、コントローラ110が、冷房運転の実行がリモコンから指示されていると判断するか、冷房運転の実行が必要であると判断するまで繰り返し行われる。
ステップS2では、コントローラ110は、冷凍サイクル装置100が冷房運転を開始するよう冷凍サイクル装置100の各種機器の動作を制御する。コントローラ110による冷房運転時の冷凍サイクル装置100の各種機器の動作の制御については、既に説明したため、ここでは説明を省略する。
次に、コントローラ110は、ステップS3で熱源側弁82aを開き、ステップS4で利用側弁82bを開く。なお、ステップS3及びステップS4を実行する順序は逆でもよく、ステップS3とステップS4とは同時に実行されてもよい。なお、この際、コントローラ110は、第1弁として機能する熱源側弁82aの流路面積が、第2弁として機能する利用側弁82bの流路面積より大きくなるように、熱源側弁82a及び利用側弁82bの開度を調節する。例えば、熱源側弁82aと利用側弁82bとが同一の仕様の弁である場合には、コントローラ110は、熱源側弁82aの開度を、利用側弁82bの開度より大きく調節する。また、例えば、熱源側弁82aのサイズ(全開とした時の弁体の流路面積)が、利用側弁82bのサイズ(全開とした時の弁体の流路面積)より大きい場合には、コントローラ110は、熱源側弁82a及び利用側弁82bの両方が全開となるよう、熱源側弁82a及び利用側弁82bの開度を調節してもよい。なお、ここで熱源側弁82aの流路面積を利用側弁82bの流路面積より大きくするのは、吸着部70の容器72内の圧力を高め、第1冷媒の吸着材72aへの吸着を促進するためである。
ステップS3及びステップS4で熱源側弁82a及び利用側弁82bが開かれると、液冷媒管52d(冷凍サイクルの高圧部)を流れる冷媒の一部が熱源側端Aから第1バイパス流路80に流入し、吸着部70へと流入する。吸着部70では、吸着部70に流入した第1冷媒及び第2冷媒の混合冷媒から第1冷媒の少なくとも一部が除去され、高濃度の第2冷媒が、利用側端Bから液冷媒管52d(冷凍サイクルの低圧部)に流入する。この結果、時間の経過とともに、主冷媒回路50を流れる冷媒中の第2冷媒の濃度は上昇していく。
ステップS5では、ステップS3及びステップS4で熱源側弁82a及び利用側弁82bを開いてから、所定時間が経過したかが判断される。ここでの所定時間には、主冷媒回路50に所定濃度の第1冷媒が含まれる非共沸混合冷媒が流れる状態から、主冷媒回路50に実質的に第2冷媒が単独で流れる状態になるまでに要する時間が用いられる。所定時間は、例えば、事前に実験を行って決定されてもよいし、理論的に求められてもよい。
ステップS5で、ステップS3及びステップS4で熱源側弁82a及び利用側弁82bを開いてから所定時間が経過したと判断されると、コントローラ110は、ステップS6で熱源側弁82aを閉じ、ステップS7で利用側弁82bを閉じる。なお、ステップS6及びステップS7の順番は逆でもよく、ステップS6及びステップS7は同時に実行されてもよい。
以上で、吸着制御は終了となる。なお、冷房運転は、吸着制御の終了後も、冷房運転の停止が指示されるか、冷房運転が不要な状態となるまで継続される。
なお、暖房運転を中断して行われるデフロスト運転でも、主冷媒回路50内を、冷房運転と同様の向きに冷媒が流れる。コントローラ110は、デフロスト運転の際にも、上記の方法で、冷媒の組成比を変更するための吸着制御を行ってもよい。また、コントローラ110は、デフロスト運転の際には、吸着制御を行われなくてもよい。なお、コントローラ110がデフロスト運転の際に吸着制御を行う場合には、コントローラ110はデフロスト運転の終了後に暖房運転が再開される際に後述する脱着制御を行う。
(B)脱着制御
暖房運転時に、主冷媒回路50に第1冷媒及び第2冷媒の非共沸混合冷媒を循環させるためにコントローラ110が実行する冷凍サイクル装置100の各種機器の制御(脱着制御)について、図3の脱着制御のフローチャートの例を参照して説明する。
暖房運転時に、主冷媒回路50に第1冷媒及び第2冷媒の非共沸混合冷媒を循環させるためにコントローラ110が実行する冷凍サイクル装置100の各種機器の制御(脱着制御)について、図3の脱着制御のフローチャートの例を参照して説明する。
脱着制御は、冷凍サイクル装置100がそれまで冷房運転を行っており、冷凍サイクル装置100の運転モードが冷房運転モードから暖房運転モードに切り換える際に実行される。言い換えれば、図3のフローチャートのステップS11の実行時点では、冷凍サイクル装置100は、冷房運転中か、冷房運転後に(暖房運転を行うことなく)停止されている状態である。
ステップS11では、コントローラ110は、図示しないリモコンから暖房運転の実行が指示されたか否かを判断する。また、ステップS11では、コントローラ110は、リモコンからの指示によらず、空調対象空間の温度と設定温度とに基づいて、暖房運転の実行が必要か否かを自ら判断してもよい。コントローラ110が、暖房運転の実行がリモコンから指示されていると判断するか、暖房運転の実行が必要であると判断すると、処理はステップS12に進む。ステップS11は、コントローラ110が、暖房運転の実行がリモコンから指示されていると判断するか、暖房運転の実行が必要であると判断するまで繰り返し行われる。
ステップS12では、コントローラ110は、冷凍サイクル装置100が暖房運転を開始するよう冷凍サイクル装置100の各種機器の動作を制御する。コントローラ110による暖房運転時の冷凍サイクル装置100の各種機器の動作の制御については、既に説明したため、ここでは説明を省略する。
次に、コントローラ110は、ステップS13で利用側弁82bを開き、ステップS14で熱源側弁82aを開く。なお、ステップS13及びステップS14を実行する順序は逆でもよく、ステップS13とステップS14とは同時に実行されてもよい。なお、この際、コントローラ110は、第2弁の例である熱源側弁82aの流路面積が、第1弁の例である利用側弁82bの流路面積より大きくなるように、熱源側弁82a及び利用側弁82bの開度を調節する。例えば、熱源側弁82aと利用側弁82bとが同一の仕様の弁である場合には、コントローラ110は、熱源側弁82aの開度を、利用側弁82bの開度より大きく調節する。また、例えば、熱源側弁82aのサイズ(全開とした時の弁体の流路面積)が、利用側弁82bのサイズ(全開とした時の弁体の流路面積)より大きい場合には、コントローラ110は、熱源側弁82a及び利用側弁82bの両方が全開となるよう、熱源側弁82a及び利用側弁82bの開度を調節してもよい。なお、ここで熱源側弁82aの流路面積を利用側弁82bの流路面積より大きくするのは、吸着部70の容器72内の圧力を低くし、第1冷媒の吸着材72aからの脱着を促進するためである。
さらに、コントローラ110は、ステップS15で高圧側弁92aを開き、ステップS16で低圧側弁92bを開く。なお、ステップS15及びステップS16を実行する順序は逆でもよく、ステップS15とステップS16とは同時に実行されてもよい。高圧側弁92a及び低圧側弁92bが開かれる結果、第2バイパス流路90を、高圧端Cから低圧端Dに向かって、圧縮機10の吐出する高温の冷媒が流れる。第2バイパス流路90を冷媒が流れる結果、加熱部94を流れる冷媒の熱により、吸着部70の吸着材72aが加熱される。その結果、第1冷媒の吸着材72aからの脱着が促進される。
ステップS13及びステップS14で熱源側弁82a及び利用側弁82bが開かれると、液冷媒管52d(冷凍サイクルの高圧部)を流れる冷媒の一部が利用側端Bから第1バイパス流路80に流入し、吸着部70に流入する。吸着部70では、吸着部70に流入した冷媒に、吸着材72aから脱着された第1冷媒が混ざる。その結果、吸着部70に流入する冷媒よりも、第1冷媒を高濃度に含む冷媒が、熱源側端Aから液冷媒管52d(冷凍サイクルの低圧部)に流入する。この結果、時間の経過とともに、主冷媒回路50を流れる冷媒中の第1冷媒の濃度が上昇していく。
ステップS17では、ステップS13及びステップS14で熱源側弁82a及び利用側弁82bを開いてから、所定時間が経過したかが判断される。ここでの所定時間には、主冷媒回路50に実質的に第2冷媒が単独で流れる状態から、主冷媒回路50に所定の濃度の第1冷媒が含まれる非共沸混合冷媒が流れる状態になるまでに要する時間が用いられる。所定時間は、例えば、事前に実験を行って決定されてもよいし、理論的に求められてもよい。
ステップS17で、ステップS13及びステップS14で熱源側弁82a及び利用側弁82bを開いてから所定時間が経過したと判断されると、コントローラ110は、ステップS18で高圧側弁92aを閉じ、ステップS19で低圧側弁92bを閉じ、ステップS20で利用側弁82bを閉じ、ステップS21で熱源側弁82aを閉じる。なお、弁92a,92b,82a,82bを閉じる順番は適宜変更されてもよく、弁92a,92b,82a,82bの少なくとも一部は、同時に閉じられてもよい。
以上で、脱着制御は終了となる。なお、暖房運転は、吸着制御の終了後も、暖房運転の停止が指示されるか、暖房運転が不要な状態となるまで継続される。
(3)特徴
(3-1)
冷凍サイクル装置100は、冷凍サイクルの一例としての主冷媒回路50と、吸着部70と、第1バイパス流路80と、を備える。主冷媒回路50は、圧縮機10と、放熱器と、膨張機構30と、蒸発器と、を含む。主冷媒回路50は、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用する。吸着部70は、吸着材72aを含む。吸着材72aは、第1冷媒を吸着する。吸着材72aは、第2冷媒を吸着しない、又は、第2冷媒の吸着性能が第1冷媒の吸着性能より低い。吸着部70は、吸着材72aが吸着した第1冷媒を貯留する。第1バイパス流路80は、主冷媒回路50の高圧部である第1端と、主冷媒回路50の低圧部である第2端と、を接続する。第1バイパス流路80には、吸着部70と弁82とが配置される。
(3-1)
冷凍サイクル装置100は、冷凍サイクルの一例としての主冷媒回路50と、吸着部70と、第1バイパス流路80と、を備える。主冷媒回路50は、圧縮機10と、放熱器と、膨張機構30と、蒸発器と、を含む。主冷媒回路50は、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用する。吸着部70は、吸着材72aを含む。吸着材72aは、第1冷媒を吸着する。吸着材72aは、第2冷媒を吸着しない、又は、第2冷媒の吸着性能が第1冷媒の吸着性能より低い。吸着部70は、吸着材72aが吸着した第1冷媒を貯留する。第1バイパス流路80は、主冷媒回路50の高圧部である第1端と、主冷媒回路50の低圧部である第2端と、を接続する。第1バイパス流路80には、吸着部70と弁82とが配置される。
なお、冷凍サイクル装置100が冷房運転を実行する際には、熱源熱交換器20が放熱器であり、利用熱交換器40が蒸発器であり、熱源側端Aが第1端であり、利用側端Bが第2端である。また、冷凍サイクル装置100が暖房運転を実行する際には、熱源熱交換器20が蒸発器であり、利用熱交換器40が放熱器であり、熱源側端Aが第2端であり、利用側端Bが第1端である。
冷凍サイクル装置100では、圧力を利用して、第1冷媒を吸着材72aに吸着及び脱着させることができるため、比較的短時間で、冷媒の組成比を変更できる。
また、冷凍サイクル装置100では、通常運転をしながら、吸着材72aから第1冷媒を脱着でき、冷媒の組成比変更のために通常運転をできない時間を短縮できる。
さらに、冷凍サイクル装置100では、第1冷媒は吸着材72a(吸着材72aの細孔等)に貯留されるため、容器72とは別の第1冷媒を液化して貯留しておくための容器や、第1冷媒を液化するための設備等を要しない。
また、本開示の冷凍サイクル装置では、非共沸混合冷媒の組成比調整に吸着材72aを利用するので、組成比調整を蒸留や気液分離により実現する場合に比べて、シンプルな構成で装置を実現可能で、かつ、精度の良い非共沸混合冷媒の組成比調整が可能である。
(3-2)
冷凍サイクル装置100では、第1バイパス流路80の第2端は、主冷媒回路50の膨張機構30と蒸発器との間である。
冷凍サイクル装置100では、第1バイパス流路80の第2端は、主冷媒回路50の膨張機構30と蒸発器との間である。
具体的には、冷凍サイクル装置100が冷房運転を実行する際に、第1バイパス流路80の第2端として機能する利用側端Bは、主冷媒回路50の、膨張機構30と、蒸発器として機能する利用熱交換器40と、の間に配置される。また、冷凍サイクル装置100が暖房運転を実行する際に、第1バイパス流路80の第2端として機能する熱源側端Aは、主冷媒回路50の、膨張機構30と、蒸発器として機能する熱源熱交換器20と、の間に配置される。
(3-3)
冷凍サイクル装置100では、第1バイパス流路80の第1端は、主冷媒回路50の放熱器と膨張機構30との間である。
冷凍サイクル装置100では、第1バイパス流路80の第1端は、主冷媒回路50の放熱器と膨張機構30との間である。
具体的には、冷凍サイクル装置100が冷房運転を実行する際に、第1バイパス流路80の第1端として機能する熱源側端Aは、主冷媒回路50の、放熱器として機能する熱源熱交換器20と、膨張機構30と、の間に配置される。また、冷凍サイクル装置100が暖房運転を実行する際に、第1バイパス流路80の第1端として機能する利用側端Bは、主冷媒回路50の、凝縮器として機能する利用熱交換器40と、膨張機構30と、の間に配置される。
冷媒を吸着材72aに吸着させる際には吸着熱が発生する。そのため、第1冷媒の温度が高い場合には、第1冷媒は吸着材72aに吸着されにくい。
冷凍サイクル装置100では、放熱器による冷却後の冷媒が吸着材72aに流れるので、圧縮機10から吐出された直後の冷媒を吸着材72aに流す場合に比べ、第1冷媒が吸着材72aに吸着されやすい。
(3-4)
冷凍サイクル装置100では、主冷媒回路50は、利用熱交換器40を含む。利用熱交換器40は、蒸発器として機能する際に温度調整対象を冷却し、放熱器として機能する際に温度調整対象を加熱する。利用熱交換器40を蒸発器として利用する際には、第1バイパス流路80の弁82が開かれ、吸着材72aは第1冷媒を吸着する。利用熱交換器40を放熱器として利用する際には、第1バイパス流路80の弁82が開かれ、吸着材72aは第1冷媒を脱着する。
冷凍サイクル装置100では、主冷媒回路50は、利用熱交換器40を含む。利用熱交換器40は、蒸発器として機能する際に温度調整対象を冷却し、放熱器として機能する際に温度調整対象を加熱する。利用熱交換器40を蒸発器として利用する際には、第1バイパス流路80の弁82が開かれ、吸着材72aは第1冷媒を吸着する。利用熱交換器40を放熱器として利用する際には、第1バイパス流路80の弁82が開かれ、吸着材72aは第1冷媒を脱着する。
冷凍サイクル装置100では、利用熱交換器40が蒸発器として機能する際と、放熱器として機能する際とで、それぞれに適した組成の冷媒を利用できる。
(3-5)
冷凍サイクル装置100では、第1バイパス流路80の弁82は、第1端と吸着部70との間に配置される第1弁と、吸着部70と第2端との間に配置される第2弁と、を含む。冷凍サイクル装置100が冷房運転を実行する際には、熱源側端Aと吸着部70との間に配置される熱源側弁82aが第1弁であり、吸着部70と利用側端Bとの間に配置される利用側弁82bが第2弁である。冷凍サイクル装置100が暖房運転を実行する際には、利用側端Bと吸着部70との間に配置される利用側弁82bが第1弁であり、吸着部70と熱源側端Aとの間に配置される熱源側弁82aが第2弁である。
冷凍サイクル装置100では、第1バイパス流路80の弁82は、第1端と吸着部70との間に配置される第1弁と、吸着部70と第2端との間に配置される第2弁と、を含む。冷凍サイクル装置100が冷房運転を実行する際には、熱源側端Aと吸着部70との間に配置される熱源側弁82aが第1弁であり、吸着部70と利用側端Bとの間に配置される利用側弁82bが第2弁である。冷凍サイクル装置100が暖房運転を実行する際には、利用側端Bと吸着部70との間に配置される利用側弁82bが第1弁であり、吸着部70と熱源側端Aとの間に配置される熱源側弁82aが第2弁である。
冷凍サイクル装置100では、第1端と吸着部70との間と、吸着部70と第2端との間と、にそれぞれ弁を設けることで、吸着材72aへの第1冷媒の吸着と、吸着材72aからの第1冷媒の脱着とを、適切に制御し、短時間で冷媒の組成比を変更できる。
(3-6)
冷凍サイクル装置100では、吸着材72aに第1冷媒を吸着させる際には、第1弁及び第2弁が開かれ、かつ、第1弁の流路面積が第2弁の流路面積より大きくなるように、第1弁及び第2弁の開度が調節される。吸着材72aから第1冷媒を脱着させる際には、第1弁及び第2弁が開かれ、かつ、第2弁の流路面積が第1弁の流路面積より大きくなるように、第1弁及び第2弁の開度が調節される。
冷凍サイクル装置100では、吸着材72aに第1冷媒を吸着させる際には、第1弁及び第2弁が開かれ、かつ、第1弁の流路面積が第2弁の流路面積より大きくなるように、第1弁及び第2弁の開度が調節される。吸着材72aから第1冷媒を脱着させる際には、第1弁及び第2弁が開かれ、かつ、第2弁の流路面積が第1弁の流路面積より大きくなるように、第1弁及び第2弁の開度が調節される。
具体的には、冷凍サイクル装置100では、吸着材72aに第1冷媒を吸着させる際には、熱源側弁82a及び利用側弁82bが開かれ、かつ、熱源側弁82aの流路面積が利用側弁82bの流路面積より大きくなるように、熱源側弁82a及び利用側弁82bの開度が調節される。例えば、熱源側弁82a及び利用側弁82bが同一の仕様であれば、熱源側弁82aの開度が利用側弁82bの開度より大きくなるように、熱源側弁82a及び利用側弁82bの開度が調節される。
また、冷凍サイクル装置100では、吸着材72aに第1冷媒を脱着させる際には、熱源側弁82a及び利用側弁82bが開かれ、かつ、熱源側弁82aの流路面積が利用側弁82bの流路面積より大きくなるように、熱源側弁82a及び利用側弁82bの開度が調節される。例えば、熱源側弁82a及び利用側弁82bが同一の仕様であれば、熱源側弁82aの開度が利用側弁82bの開度より大きくなるように、熱源側弁82a及び利用側弁82bの開度が調節される。
冷凍サイクル装置100では、第1冷媒の吸着時には、第1弁の流路面積が第2弁の流路面積より大きく開かれるので、吸着部70の圧力が比較的高くなる。そのため、圧力を利用して、第1冷媒を吸着材72aに効率よく吸着させることができる。
また、冷凍サイクル装置100では、第1冷媒の脱着時には、第2弁の流路面積が第1弁の流路面積より大きく開かれるので、吸着部70の圧力は比較的低くなる。そのため、吸着材72aから第1冷媒を効率よく脱着させることができる。
(3-7)
冷凍サイクル装置100は、第2バイパス流路90を備える。第2バイパス流路90は、第3端の一例である高圧端Cと、第4端の一例である低圧端Dと、を接続する。高圧端Cは、主冷媒回路50の圧縮機10と放熱器との間である。本実施形態では、高圧端Cは、主冷媒回路50の吐出管52bの部分である。低圧端Dは、主冷媒回路50の低圧部である。本実施形態では、低圧端Dは、主冷媒回路50の、膨張機構30と圧縮機10の吸入口10bとの間である。第2バイパス流路90は、流れる冷媒により吸着部70を加熱する。第2バイパス流路90には、第3弁の一例としての弁92が配置される。弁92は、第2バイパス流路90における冷媒の流れを制御する。吸着材72aから第1冷媒を脱着させる際には、弁92が開かれる。
冷凍サイクル装置100は、第2バイパス流路90を備える。第2バイパス流路90は、第3端の一例である高圧端Cと、第4端の一例である低圧端Dと、を接続する。高圧端Cは、主冷媒回路50の圧縮機10と放熱器との間である。本実施形態では、高圧端Cは、主冷媒回路50の吐出管52bの部分である。低圧端Dは、主冷媒回路50の低圧部である。本実施形態では、低圧端Dは、主冷媒回路50の、膨張機構30と圧縮機10の吸入口10bとの間である。第2バイパス流路90は、流れる冷媒により吸着部70を加熱する。第2バイパス流路90には、第3弁の一例としての弁92が配置される。弁92は、第2バイパス流路90における冷媒の流れを制御する。吸着材72aから第1冷媒を脱着させる際には、弁92が開かれる。
冷凍サイクル装置100では、圧縮機10が吐出する高温の冷媒を用いて吸着部70の吸着材72aを加熱し、吸着材72aからの第1冷媒の脱着を促進できる。
(3-8)
冷凍サイクル装置100では、第1冷媒はCO2である。
冷凍サイクル装置100では、第1冷媒はCO2である。
冷凍サイクル装置100では、CO2が吸着材72aに貯留されるので、CO2を液化として貯留タンクに貯留する場合とは異なり、CO2の貯留タンクや、CO2を液化するための冷却設備が不要である。
(3-9)
冷凍サイクル装置100では、吸着材72aに第1冷媒としてのCO2が吸着されていない状態で、非共沸混合冷媒に含まれる第1冷媒としてのCO2の濃度は、20wt%以下である。
冷凍サイクル装置100では、吸着材72aに第1冷媒としてのCO2が吸着されていない状態で、非共沸混合冷媒に含まれる第1冷媒としてのCO2の濃度は、20wt%以下である。
冷凍サイクル装置100では、CO2の濃度を20wt%以下とすることで、吸着部70の大型化を抑制しつつ、全てのCO2を吸着材72aに吸着できる。そのため、冷凍サイクル装置100の大型化は抑制しつつ、運転条件に合わせて冷媒の組成比を変更できる。
(3-10)
冷凍サイクル装置100では、吸着材72aは、CO2の吸着性能が高い、金属有機構造体(MOF)又はゼオライトである。
冷凍サイクル装置100では、吸着材72aは、CO2の吸着性能が高い、金属有機構造体(MOF)又はゼオライトである。
(3-11)
冷凍サイクル装置100では、第2冷媒はHFO冷媒である。
冷凍サイクル装置100では、第2冷媒はHFO冷媒である。
第11観点の冷凍サイクル装置100では、地球温暖化係数の低いHFO冷媒を用いて、環境負荷の低い冷凍サイクル装置100を実現できる。
<第2実施形態>
(1)全体概要
図5を参照して、第2実施形態に係る冷凍サイクル装置100Aを説明する。図5は、冷凍サイクル装置100Aの概略構成図である。図5では、第1実施形態の冷凍サイクル装置100における構成と同様の構成には、同じ符号を用いている。なお、図面が煩雑になるのを避けるため、図5では、第2バイパス流路90の図示は省略している。
(1)全体概要
図5を参照して、第2実施形態に係る冷凍サイクル装置100Aを説明する。図5は、冷凍サイクル装置100Aの概略構成図である。図5では、第1実施形態の冷凍サイクル装置100における構成と同様の構成には、同じ符号を用いている。なお、図面が煩雑になるのを避けるため、図5では、第2バイパス流路90の図示は省略している。
冷凍サイクル装置100Aと第1実施形態の冷凍サイクル装置100との主な違いは、冷凍サイクル装置100Aがデフロスト媒体回路120と、第1検知部130と、を有する点にある。その他の点では、冷凍サイクル装置100Aと冷凍サイクル装置100とは多くの点で共通する。ここでは、説明の重複を避けるため、冷凍サイクル装置100との相違点であるデフロスト媒体回路120及び第1検知部130を中心に説明し、冷凍サイクル装置100との共通点については基本的に説明を省略する。
冷凍サイクル装置100Aは、図5に示すように、冷凍サイクルの一例としての主冷媒回路50と、吸着部70と、第1バイパス流路80と、第2バイパス流路(図5では描画を省略)と、デフロスト媒体回路120と、第1検知部130と、コントローラ110Aと、を主に備える。
主冷媒回路50、吸着部70、第1バイパス流路80、及び第2バイパス流路は、第1実施形態と同様であるため、ここでは説明を省略する。
デフロスト媒体回路120では、吸着材72aが第1冷媒を吸熱する際に発する吸着熱が、熱源熱交換器20への着霜の抑制や、熱源熱交換器20の除霜に用いられる。デフロスト媒体回路120は、熱源ユニット2の図示しないケーシングに収容される。
第1検知部130は、熱源熱交換器20への着霜を検知する。
コントローラ110Aは、第1実施形態のコントローラ110と同様の物理的構成を有する。コントローラ110Aは、第1実施形態で説明した冷凍サイクル装置100Aの各種機器の動作の制御に加え、後述するようにデフロスト媒体回路120に設けられるポンプ122や媒体回路弁124の動作の制御を行う。
(2)詳細構成
(2-1)デフロスト媒体回路
デフロスト媒体回路120は、媒体が流れる経路である。ここでの媒体は、例えばブラインである。ただし、デフロスト媒体回路120に流す媒体の種類は、ブラインに限定されるものではなく、適宜選択されればよい。
(2-1)デフロスト媒体回路
デフロスト媒体回路120は、媒体が流れる経路である。ここでの媒体は、例えばブラインである。ただし、デフロスト媒体回路120に流す媒体の種類は、ブラインに限定されるものではなく、適宜選択されればよい。
デフロスト媒体回路120は、ポンプ122と、媒体回路弁124と、第1熱交換部126と、第2熱交換部128と、を有する。ポンプ122、媒体回路弁124、第1熱交換部126、及び第2熱交換部128が配管により接続されることでデフロスト媒体回路120が形成される。
ポンプ122は、媒体をデフロスト媒体回路120内で循環させるために用いられる。ポンプ122は、例えば、モータの回転数制御が可能なインバータ式のポンプである。ただし、ポンプ122は、回転数制御可能なポンプに限定されず、回転数一定のポンプであってもよい。
媒体回路弁124は、デフロスト媒体回路120を流れる媒体の量の調節等に用いられる。媒体回路弁124は、例えば開度調整可能な電動弁である。
第1熱交換部126は、例えば吸着部70の容器72の内部に配置される。タイプを限定するものではないが、例えば、第1熱交換部126は、端部(冷媒の入口及び出口)が容器72の外部に配置される、伝熱管がコイル状に巻かれたコイル式の熱交換器である。第1熱交換部126の両端には、デフロスト媒体回路120の配管が接続されている。なお、第1熱交換部126は、容器72の内部に配置されなくてもよい。例えば、第1熱交換部126は、容器72を囲むように配置されるコイル式の熱交換器であってもよい。第1熱交換部126には、媒体が流れる。第1熱交換部126を流れる媒体は、吸着部70により加熱される。具体的には、第1熱交換部126を流れる媒体は、容器72の内部の吸着材72aの吸着熱により加熱される。
第2熱交換部128は、熱源熱交換器20に近接して配置される。例えば、第2熱交換部128は、蒸発器として機能する際に、特に着霜しやすい熱源熱交換器20の部位の近傍に配置される。タイプを限定するものではないが、例えば、第2熱交換部128は、フィンチューブである。第2熱交換部128は、内部を流れる媒体により熱源熱交換器20を少なくとも部分的に加熱する。
(2-2)第1検知部
第1検知部130は、冷凍サイクル装置100が暖房運転を行う際に、熱源熱交換器20の着霜を検知する。
第1検知部130は、冷凍サイクル装置100が暖房運転を行う際に、熱源熱交換器20の着霜を検知する。
第1検知部130は、例えば、熱源熱交換器20に取り付けられ、熱源熱交換器20を流れる冷媒の温度を測定する温度センサ132と、熱源空気の温度を測定する温度センサ134と、を有する。温度センサ132及び温度センサ134は、例えばサーミスタである。第1検知部130は、例えば、温度センサ132を流れる冷媒の温度が所定の値以下となる状態が所定時間継続すると、又は、熱源空気の温度が所定の値以下となる状態が所定時間継続すると、熱源熱交換器20に着霜があると検知する。また、第1検知部130は、例えば、温度センサ132を流れる冷媒の温度と熱源空気の温度との差の値に基づいて、熱源熱交換器20に着霜があると検知してもよい。
なお、コントローラ110Aは、第1検知部130の一部として機能し、温度センサ132又は温度センサ134の計測結果に基づいて、熱源熱交換器20への着霜を検知してもよい。あるいは、第1検知部130は、コントローラ110Aとは独立した装置で、温度センサ132又は温度センサ134の計測結果に基づいて熱源熱交換器20への着霜を検知し、検知結果をコントローラ110Aに送信してもよい。ここでは、コントローラ110Aが、第1検知部130の一部として機能して、温度センサ132又は温度センサ134の計測結果に基づいて、熱源熱交換器20への着霜を検知するものとして説明する。
なお、第1検知部130は、温度センサ132及び温度センサ134の計測結果に基づいて熱源熱交換器20への着霜を検知するものではなくてもよい。例えば、第1検知部130は、温度センサの計測結果ではなく、暖房運転の継続時間が所定時間に達すると、熱源熱交換器20に着霜していると検知(判断)してもよい。
(2-3)コントローラ
コントローラ110Aは、第1実施形態のコントローラ110と同様に、冷凍サイクル装置100Aの各種機器の動作を制御する。コントローラ110Aは、コントローラ110と共通する点が多いため、ここでは、コントローラ110との相違点について主に説明し、共通点についての説明は基本的に省略する。
コントローラ110Aは、第1実施形態のコントローラ110と同様に、冷凍サイクル装置100Aの各種機器の動作を制御する。コントローラ110Aは、コントローラ110と共通する点が多いため、ここでは、コントローラ110との相違点について主に説明し、共通点についての説明は基本的に省略する。
コントローラ110Aは、第1実施形態で説明した冷凍サイクル装置100の各種機器以外に、デフロスト媒体回路120のポンプ122及び媒体回路弁124と電気的に接続され、ポンプ122及び媒体回路弁124の動作を制御する。また、コントローラ110Aは、温度センサ132及び温度センサ134と電気的に接続され、温度センサ132及び温度センサ134の計測値を取得可能である。なお、コントローラ110Aは、温度センサ132,134以外の冷凍サイクル装置100の様々な場所に配置される図示しないセンサとも電気的に接続され、これらのセンサの計測値を取得可能である。
コントローラ110Aは、第1実施形態のコントローラ110と同様に、冷房運転時及び暖房運転時に、冷凍サイクル装置100の各種機器の動作を制御する。また、コントローラ110Aは、第1実施形態のコントローラ110と同様に、吸着制御及び脱着制御を行う。冷房運転時、暖房運転時、吸着制御時、及び脱着制御時にコントローラ110Aが実行する制御内容については、説明の重複を避けるため、ここでは説明を省略する。
コントローラ110Aは、更に、フロスト抑制運転、及び、デフロスト運転を行う。フロスト抑制運転、及び、デフロスト運転について説明する。なお、コントローラ110Aは、フロスト抑制運転及びデフロスト運転の両方を実行しても、フロスト抑制運転及びデフロスト運転の一方だけを実行してもよい。
(2-3-1)フロスト抑制運転
コントローラ110Aは、第1検知部130が熱源熱交換器20への着霜を検知した場合に、暖房運転は継続しながら、熱源熱交換器20に対する着霜を抑制するためのフロスト抑制運転を実行する。
コントローラ110Aは、第1検知部130が熱源熱交換器20への着霜を検知した場合に、暖房運転は継続しながら、熱源熱交換器20に対する着霜を抑制するためのフロスト抑制運転を実行する。
以下に、コントローラ110Aによるフロスト抑制運転について、図6Aのフローチャートを参照しながら説明する。図6Aは、冷凍サイクル装置100Aのフロスト抑制運転のフローチャートの一例である。なお、説明の前提として、コントローラ110Aは、冷凍サイクル装置100が暖房運転を行うように、冷凍サイクル装置100の各種機器を制御しているものとする。
コントローラ110Aは、第1検知部130が、熱源熱交換器の着霜を検知した場合に(ステップS31でYes)、ステップS32以降の制御を実行する。具体的には、コントローラ110Aは、温度センサ132の計測する温度、又は、温度センサ134の計測する温度、又は、温度センサ132及び温度センサ134の計測する温度に基づいて、熱源熱交換器20の着霜を検知すると、ステップS32以降の制御を実行する。ステップS31の判断は、ステップS31でYesと判断されるまで繰り返し実行される。
コントローラ110Aは、ステップS32で閉じられていた利用側弁82bを開き、ステップS33で閉じられていた熱源側弁82aを開く。ここで熱源側弁82a及び利用側弁82bを開く理由は、吸着材72aの吸着熱の利用であり、主冷媒回路50を流れる冷媒の組成を変更することが直接の目的ではないので、熱源側弁82a及び利用側弁82bの開度は、共に、比較的小さく制御される。また、コントローラ110Aは、閉じられていた媒体回路弁124を開けて、所定の開度に調節し(ステップS34)、停止していたポンプ122を所定の回転数で運転する(ステップS35)。なお、ステップS32~ステップS35を実行する順番は、矛盾の無い範囲で適宜変更されてもよい。また、ステップS32~ステップS35の一部又は全部は同時に実行されてもよい。ステップS32~ステップS35の制御が実行されることで、第1熱交換部126において吸着部70の吸着材72aの吸着熱により加熱された媒体が、第2熱交換部128へと流れて熱源熱交換器20を加熱する。この結果、熱源熱交換器20の着霜が抑制又は解消される。
ステップS36では、コントローラ110Aは、熱源熱交換器20の着霜が解消されたかを判断する。例えば、コントローラ110Aは、温度センサ132の計測する温度、又は、温度センサ134の計測する温度、又は、温度センサ132及び温度センサ134の計測する温度に基づいて、熱源熱交換器20の着霜が解消されたかを判断する。なお、コントローラ110Aは、温度センサ132,134以外のセンサの計測結果に基づいて熱源熱交換器20の着霜が解消されたかを判断してもよい。また、コントローラ110Aは、フロスト抑制運転の開始から所定時間が経過した時に、熱源熱交換器20の着霜が解消したと判断してもよい。
なお、図6Aでは、ステップS36の判断が着霜が解消したと判断されるまで繰り返されているが、これに限定されるものではない。例えば、所定時間が経過しても着霜が解消されない場合には、コントローラ110Aは、冷凍サイクル装置100の暖房運転を中断し、冷凍サイクル装置100にデフロスト運転をさせてもよい。その際、後述するように、デフロスト媒体回路120も利用して、熱源熱交換器20のデフロストを行ってもよい。また、他の例では、冷凍サイクル装置100がデフロスト運転を行う際には、デフロスト媒体回路120は利用されなくてもよい。
熱源熱交換器20の着霜が解消されたと判断された場合には(ステップS36でYes)、コントローラ110Aは、ステップS37~ステップS40の制御を実行する。コントローラ110Aは、ステップS37でポンプ122を停止し、ステップS38で媒体回路弁124を閉じる。また、コントローラ110Aは、ステップS39で利用側弁82bを閉じ、ステップS40で熱源側弁82aを閉じる。なお、ステップS37~ステップS40を実行する順番は、矛盾の無い範囲で適宜変更されてもよい。また、ステップS37~ステップS40の一部又は全部は同時に実行されてもよい。
なお、ここでは図示及び詳細な説明は省略するが、ステップS36でYesの場合、コントローラ110Aは、ステップS39及びステップS40の制御を実行する前に、フロスト抑制運転中に吸着材72aに吸着させた第1冷媒を脱着させてもよい。そして、吸着材72aから第1冷媒を脱着させた後に、ステップS39及びステップS40の制御を実行してもよい。
なお、図6Aの例では、コントローラ110Aは、熱源側弁82a及び利用側弁82bを操作している。ただし、これに限定されるものではなく、コントローラ110Aは、図6Bに示すように、フロスト抑制運転の際には熱源側弁82a及び利用側弁82bを操作しなくてもよい。言い換えれば、フロスト抑制運転の際、熱源側弁82a及び利用側弁82bは常に閉じられていてもよい。このように構成される場合にも、容器72に吸着材72aの吸着熱が蓄熱されている場合には、これを利用して、熱源熱交換器20に対する着霜を抑制したり、熱源熱交換器20に付着した霜を除去したりできる。また、例えば、容器72に温度センサ(図示省略)を設け、コントローラ110Aは、容器72内の温度が所定温度より低い場合には図6Aのフローチャートに則った運転を行い、容器72内の温度が所定温度より高い場合には図6Bのフローチャートに則った運転を行ってもよい。
(2-3-2)デフロスト運転
コントローラ110Aは、第1検知部130が熱源熱交換器20への着霜を検知した場合に、フロスト抑制運転は実行せず、暖房運転を中断して、以下に説明するような態様で、熱源熱交換器20に付着した霜を除去するためのデフロスト運転を実行してもよい。あるいは、コントローラ110Aは、フロスト抑制運転を実行しても熱源熱交換器20の着霜が解消されない場合に、以下に説明するような態様でデフロスト運転を行ってもよい。
コントローラ110Aは、第1検知部130が熱源熱交換器20への着霜を検知した場合に、フロスト抑制運転は実行せず、暖房運転を中断して、以下に説明するような態様で、熱源熱交換器20に付着した霜を除去するためのデフロスト運転を実行してもよい。あるいは、コントローラ110Aは、フロスト抑制運転を実行しても熱源熱交換器20の着霜が解消されない場合に、以下に説明するような態様でデフロスト運転を行ってもよい。
ここでは、第1検知部130が熱源熱交換器20への着霜を検知した場合に、コントローラ110Aが、フロスト抑制運転は実行せずにデフロスト運転を実行する場合を例に、デフロスト運転について説明する。
以下に、コントローラ110Aによるデフロスト運転について、図7のフローチャートを参照しながら説明する。図7は、冷凍サイクル装置100Aのデフロスト運転のフローチャートの一例である。なお、説明の前提として、ステップS51の時点では、コントローラ110Aは、冷凍サイクル装置100が暖房運転を行うように、冷凍サイクル装置100の各種機器を制御しているものとする。
コントローラ110Aは、第1検知部130が、熱源熱交換器の着霜を検知した場合に(ステップS51でYes)、ステップS52以降の制御を実行する。ステップS51の判断は、ステップS51でYesと判断されるまで繰り返し実行される。
ステップS52では、コントローラ110Aは、暖房運転を中断し、流路切換機構15を制御し、冷媒の流れ方向を冷房運転時と同様に変更してデフロスト運転を開始する。
次にコントローラ110Aは、ステップS53で熱源側弁82aを開き、ステップS54で利用側弁82bを開く。この際、コントローラ110Aは、第1弁の例である熱源側弁82aの流路面積が、第2弁の例である利用側弁82bの流路面積より大きくなるように、熱源側弁82a及び利用側弁82bの開度を調節してもよい。あるいは、コントローラ110Aは、熱源側弁82a及び利用側弁82bの開度を、共に、比較的小さく制御してもよい。また、コントローラ110Aは、閉じられていた媒体回路弁124を開けて、所定の開度に調節し(ステップS55)、停止していたポンプ122を所定の回転数で運転する(ステップS56)。なお、ステップS53~ステップS56を実行する順番は、矛盾の無い範囲で適宜変更されてもよい。また、ステップS53~ステップS56の一部又は全部は同時に実行されてもよい。
ステップS53~ステップS56の制御が実行されることで、第1熱交換部126において吸着部70の吸着材72aの吸着熱により加熱された媒体が、第2熱交換部128へと流れて熱源熱交換器20を加熱する。この結果、熱源熱交換器20に付着した霜の除去が促進される。
ステップS57では、コントローラ110Aは、熱源熱交換器20の着霜が解消されたかを判断する。例えば、コントローラ110Aは、温度センサ132の計測する温度、又は、温度センサ134の計測する温度、又は、温度センサ132及び温度センサ134の計測する温度に基づいて、熱源熱交換器20の着霜が解消されたかを判断する。なお、コントローラ110Aは、温度センサ132,134以外のセンサの計測結果に基づいて熱源熱交換器20の着霜が解消されたかを判断してもよい。また、コントローラ110Aは、フロスト抑制運転の開始から所定時間が経過した時に、熱源熱交換器20の着霜が解消したと判断してもよい。ステップS57の判断は、着霜が解消したと判断されるまで繰り返される。
熱源熱交換器20の着霜が解消されたと判断された場合には(ステップS57でYes)、コントローラ110Aは、ステップS58で利用側弁82bを閉じ、ステップS59で熱源側弁82aを閉じる。また、コントローラ110Aは、デフロスト運転を終了し、流路切換機構15を制御し、冷媒の流れ方向を暖房運転時の冷媒の流れ方向に切り換え、暖房運転を再開する(ステップS60)。また、コントローラ110Aは、ステップS61でポンプ122を停止し、ステップS62で媒体回路弁124を閉じる。なお、ステップS58~ステップS62を実行する順番は、矛盾の無い範囲で適宜変更されてもよい。また、ステップS58~ステップS62の一部又は全部は同時に実行されてもよい。
なお、ここでは、詳細な説明は省略するが、ステップS60で暖房運転を再開する際には、デフロスト運転中に吸着材72aに吸着された第1冷媒を脱着し、主冷媒回路50を流れる冷媒中の第1冷媒の濃度を上昇させるため、脱着制御が行われてもよい。
また、図7の例では、コントローラ110Aは、熱源側弁82a及び利用側弁82bを操作しているが、これに限定されるものではなく、容器72に蓄熱されている吸着材72aの吸着熱を除霜に利用可能であれば、熱源側弁82a及び利用側弁82bは操作されなくてもよい。
(3)特徴
冷凍サイクル装置100Aは、第1実施形態の冷凍サイクル装置100の特徴に加え、以下の特徴を有する。
冷凍サイクル装置100Aは、第1実施形態の冷凍サイクル装置100の特徴に加え、以下の特徴を有する。
(3-1)
冷凍サイクル装置100Aは、媒体が流れるデフロスト媒体回路120と、第1検知部130と、を更に備える。デフロスト媒体回路120は、第1媒体回路の一例である。デフロスト媒体回路120は、第1熱交換部126と、第2熱交換部128と、を有する。第1熱交換部126では、吸着部70により媒体が加熱される。第2熱交換部128は、媒体で熱源熱交換器20を加熱する。第1検知部130は、熱源熱交換器20の着霜を検知する。第1検知部130が熱源熱交換器20の着霜を検知した際に、媒体は、デフロスト媒体回路120を循環する。
冷凍サイクル装置100Aは、媒体が流れるデフロスト媒体回路120と、第1検知部130と、を更に備える。デフロスト媒体回路120は、第1媒体回路の一例である。デフロスト媒体回路120は、第1熱交換部126と、第2熱交換部128と、を有する。第1熱交換部126では、吸着部70により媒体が加熱される。第2熱交換部128は、媒体で熱源熱交換器20を加熱する。第1検知部130は、熱源熱交換器20の着霜を検知する。第1検知部130が熱源熱交換器20の着霜を検知した際に、媒体は、デフロスト媒体回路120を循環する。
冷凍サイクル装置100Aでは、第1冷媒が吸着材72aに吸着される際の吸着熱を有効に活用して、熱源熱交換器20の着霜の抑制や除霜を行うことができる。
例えば、吸着部70に吸着熱を蓄熱しておくことで、この熱をデフロストに利用できる。また、媒体を循環させながら、吸着部70で第1冷媒を吸着材72aに吸着させれば、吸着材72aが発生する吸着熱を除霜に利用できる。
<第3実施形態>
(1)全体概要
図8を参照して、本開示の冷凍サイクル装置の第3実施形態に係る冷凍サイクル装置100Bを説明する。図8は、冷凍サイクル装置100Bの概略構成図である。図8では、第1実施形態の冷凍サイクル装置100における構成と同様の構成には、同じ符号を用いる。なお、図面が煩雑になるのを避けるため、図8では、第2バイパス流路90の図示は省略している。また、冷凍サイクル装置100Bは、第2実施形態と同様に、デフロスト媒体回路120及び第1検知部130を更に有してもよい。
(1)全体概要
図8を参照して、本開示の冷凍サイクル装置の第3実施形態に係る冷凍サイクル装置100Bを説明する。図8は、冷凍サイクル装置100Bの概略構成図である。図8では、第1実施形態の冷凍サイクル装置100における構成と同様の構成には、同じ符号を用いる。なお、図面が煩雑になるのを避けるため、図8では、第2バイパス流路90の図示は省略している。また、冷凍サイクル装置100Bは、第2実施形態と同様に、デフロスト媒体回路120及び第1検知部130を更に有してもよい。
冷凍サイクル装置100Bは、第1実施形態の冷凍サイクル装置100と、主冷媒回路50が、圧縮機10、流路切換機構15、熱源熱交換器20、膨張機構30、及び利用熱交換器40、に加え、過熱熱交換器148を有する点で相違する。また、冷凍サイクル装置100Bは、第1実施形態の冷凍サイクル装置100と、過熱媒体回路140を有する点で相違する。
その他の点では、冷凍サイクル装置100Bと冷凍サイクル装置100とは多くの点で共通する。ここでは、説明の重複を避けるため、冷凍サイクル装置100との相違点である過熱熱交換器148及び過熱媒体回路140を中心に説明し、冷凍サイクル装置100との共通点については基本的に説明を省略する。
冷凍サイクル装置100Bは、図8に示すように、冷凍サイクルの一例としての主冷媒回路50と、吸着部70と、第1バイパス流路80と、第2バイパス流路(図5では描画を省略)と、過熱媒体回路140と、コントローラ110Bと、を主に備える。
主冷媒回路50の過熱熱交換器148以外の構成と、吸着部70、第1バイパス流路80、及び第2バイパス流路は、第1実施形態と同様であるため、ここでは説明を省略する。
過熱熱交換器148は、熱源ユニット2の図示しないケーシングに収容される。過熱熱交換器148は、主冷媒回路50の、利用熱交換器40と流路切換機構15との間に配置されている。過熱熱交換器148は、主冷媒回路50の一部を構成するほか、過熱媒体回路140の一部も構成する。熱交換器の種類を限定するものではないが、過熱熱交換器148は、例えばプレート式熱交換器である。過熱熱交換器148では、内部を流れる冷媒と、内部を流れる媒体と、の間で熱交換が行われる。なお、過熱熱交換器148の、冷媒が流れる流路と媒体が流れる流路とは、冷媒と媒体とが混じり合うことがないようシールされている。過熱熱交換器148は、冷房運転時に、圧縮機10に吸入される冷媒の過熱度を調節するために使用される。過熱熱交換器148は、過熱媒体回路140を流れる媒体により、過熱熱交換器148を流れる冷媒を加熱する。
過熱媒体回路140は、冷房運転時に、過熱熱交換器148を流れる冷媒を加熱し、圧縮機10に吸入される冷媒の過熱度を調節するために用いられる。デフロスト媒体回路120は、熱源ユニット2の図示しないケーシングに収容される。
コントローラ110Bは、第1実施形態のコントローラ110と同様の物理的構成を有する。コントローラ110Bは、第1実施形態で説明した冷凍サイクル装置100Bの各種機器の動作の制御に加え、後述するように過熱媒体回路140に設けられるポンプ142や媒体回路弁144の動作の制御を行う。
(2)詳細構成
(2-1)過熱媒体回路
過熱媒体回路140は、媒体が流れる経路である。ここでの媒体は、例えばブラインである。ただし、過熱媒体回路140に流す媒体の種類は、ブラインに限定されるものではなく、適宜選択されればよい。
(2-1)過熱媒体回路
過熱媒体回路140は、媒体が流れる経路である。ここでの媒体は、例えばブラインである。ただし、過熱媒体回路140に流す媒体の種類は、ブラインに限定されるものではなく、適宜選択されればよい。
過熱媒体回路140は、ポンプ142と、媒体回路弁144と、第1熱交換部146と、第2熱交換部の一例としての過熱熱交換器148と、を有する。ポンプ142、媒体回路弁144、第1熱交換部146、及び過熱熱交換器148が配管により接続されることで過熱媒体回路140が形成される。
ポンプ142は、媒体を過熱媒体回路140内で循環させるために用いられる。ポンプ142は、例えば、モータの回転数制御が可能なインバータ式のポンプである。ただし、ポンプ142は、回転数制御が可能なポンプに限定されず、回転数一定のポンプであってもよい。
媒体回路弁144は、過熱媒体回路140を流れる媒体の量の調節等に用いられる。媒体回路弁144は、例えば開度調整可能な電動弁である。
第1熱交換部146は、例えば吸着部70の容器72の内部に配置される。タイプを限定するものではないが、例えば、第1熱交換部146は、端部(冷媒の入口及び出口)が容器72の外部に配置される、伝熱管がコイル状に巻かれたコイル式の熱交換器である。第1熱交換部146の両端には、過熱媒体回路140の配管が接続されている。なお、第1熱交換部146は、容器72の内部に配置されなくてもよい。例えば、第1熱交換部146は、容器72を囲むように配置されるコイル式の熱交換器であってもよい。第1熱交換部146には、媒体が流れる。第1熱交換部146を流れる媒体は、吸着部70により加熱される。具体的には、第1熱交換部146を流れる媒体は、容器72の内部の吸着材72aの吸着熱により加熱される。
第2熱交換部の一例である過熱熱交換器148については全て説明したので、説明の重複を避けるため再度の説明は省略する。
(2-2)コントローラ
コントローラ110Bは、第1実施形態のコントローラ110と同様に、冷凍サイクル装置100Bの各種機器の動作を制御する。コントローラ110Bは、コントローラ110と共通する点が多いため、ここでは、コントローラ110との相違点について主に説明し、共通点についての説明は基本的に省略する。
コントローラ110Bは、第1実施形態のコントローラ110と同様に、冷凍サイクル装置100Bの各種機器の動作を制御する。コントローラ110Bは、コントローラ110と共通する点が多いため、ここでは、コントローラ110との相違点について主に説明し、共通点についての説明は基本的に省略する。
コントローラ110Bは、第1実施形態で説明した冷凍サイクル装置100の各種機器以外に、過熱媒体回路140のポンプ142及び媒体回路弁144の動作を制御できるように、ポンプ142及び媒体回路弁144と電気的に接続されている。
コントローラ110Bは、第1実施形態のコントローラ110と同様に、冷房運転時及び暖房運転時に、冷凍サイクル装置100の各種機器の動作を制御する。また、コントローラ110Bは、第1実施形態のコントローラ110と同様に、吸着制御及び脱着制御を行う。冷房運転時、暖房運転時、吸着制御時、及び脱着制御時にコントローラ110Bが実行する制御内容については、ここでは説明を省略する。
また、冷凍サイクル装置100Bが、第2実施形態の冷凍サイクル装置100Aと同様にデフロスト媒体回路120及び第1検知部130を更に有している場合には、コントローラ110Bは、フロスト抑制運転やデフロスト運転を実行する際に、第2実施形態で説明したように、冷凍サイクル装置100Bの各種機器の動作を制御する。
コントローラ110Bは、更に、過熱度制御を行う。過熱度制御について説明する。
(2-3-1)過熱度制御
コントローラ110Bは、冷房運転を行う際に、吸着材72aの吸着熱を利用して圧縮機10に吸入される冷媒の過熱度を、目標過熱度に制御する。コントローラ110Bによる過熱度制御は、既に説明した吸着制御と組み合わせて実行される制御である。
コントローラ110Bは、冷房運転を行う際に、吸着材72aの吸着熱を利用して圧縮機10に吸入される冷媒の過熱度を、目標過熱度に制御する。コントローラ110Bによる過熱度制御は、既に説明した吸着制御と組み合わせて実行される制御である。
以下に、コントローラ110Bによる吸着制御を含む過熱度制御について、図9のフローチャートを参照しながら説明する。図9は、コントローラ110Bによる過熱度制御のフローチャートの一例である。
吸着制御を含む過熱度制御は、冷凍サイクル装置100がそれまで暖房運転を行っており、冷凍サイクル装置100の運転モードを暖房運転モードから冷房運転モードに切り換える際に実行される。言い換えれば、図9のフローチャートのステップS71の実行時点では、冷凍サイクル装置100は、暖房運転中か、暖房運転後に(冷房運転を行うことなく)停止されている状態である。
ステップS71~ステップS74までの制御は、図2を参照して説明した吸着制御のステップS1からステップS4までの制御と同様であるため説明は省略する。
コントローラ110Bは、更に、閉じられていた媒体回路弁144を開き(ステップS75)、停止していたポンプ142を所定の回転数で運転する(ステップS76)。なお、ステップS72~ステップS76を実行する順番は、矛盾の無い範囲で適宜変更されてもよい。また、ステップS72~ステップS76の一部又は全部は同時に実行されてもよい。
ステップS73~ステップS76の制御が実行されることで、第1熱交換部146において吸着部70の吸着材72aの吸着熱により加熱された媒体が、過熱熱交換器148へと流れて、過熱熱交換器148において主冷媒回路50を流れる冷媒と熱交換する。なお、コントローラ110Bは、媒体回路弁144の開度を、図示しない各種センサにより計測される圧縮機10に吸入される冷媒の過熱度が目標過熱度になるように調節する。このようにして、吸着材72aの吸着熱が、冷媒の吸入過熱度の確保に利用される。
また、ここでは、吸着材72aの吸着熱が冷媒の加熱に使用されることで、吸着熱による吸着材72aの温度上昇が抑制されやすいため、吸着材72aの第1冷媒の吸着が、吸着材72aの温度上昇によって阻害されにくい。
次に、ステップS77では、ステップS73及びステップS74で熱源側弁82a及び利用側弁82bを開いてから、所定時間が経過したかが判断される。ここでの所定時間には、主冷媒回路50に所定濃度の第1冷媒が含まれる非共沸混合冷媒が流れる状態から、主冷媒回路50に実質的に第2冷媒が単独で流れる状態になるまでに要する時間が用いられる。所定時間は、例えば、事前に実験を行って決定されてもよいし、理論的に求められてもよい。
ステップS77で、ステップS73及びステップS74で熱源側弁82a及び利用側弁82bを開いてから所定時間が経過したと判断されると、コントローラ110Bは、ステップS78で利用側弁82bを閉じ、ステップS79で熱源側弁82aを閉じる。なお、ステップS78及びステップS79の順番は逆でもよく、ステップS78及びステップS79は同時に実行されてもよい。
さらにステップS80では、ステップS73及びステップS74で熱源側弁82a及び利用側弁82bを開いてから、又は、ステップS78及びステップS79で熱源側弁82a及び利用側弁82bを閉じてから、所定時間が経過したかが判断される。ここでの所定時間には、吸着部70の吸着材72aの蓄熱量が減少し、冷媒の過熱に利用することが困難になるまでの時間が使用される。所定時間は、例えば、事前に実験を行って決定されてもよいし、理論的に求められてもよい。
ステップS80で所定時間が経過したと判断されると(ステップS80でYes)、コントローラ110Bは、ステップS81~ステップS82の制御を実行する。コントローラ110Bは、ステップS81でポンプ142を停止し、ステップS82で媒体回路弁144を閉じる。なお、ステップS81,ステップS82を実行する順番は、可能であれば逆であってもよく、ステップS81とステップS82とは同時に実行されてもよい。
なお、媒体による吸入過熱度の制御の終了後も吸入過熱度を制御する場合には、例えば、膨張機構30の制御等により過熱度の調節が行われればよい。
なお、図9のフローチャートでは、ステップS80において、ステップS73及びステップS74で熱源側弁82a及び利用側弁82bを開いてからの時間、又は、ステップS78及びステップS79で熱源側弁82a及び利用側弁82bを閉じてからの時間に基づいてステップS81及びステップS82の実行タイミングが制御される。ただし、これに限定されるものではなく、コントローラ110Bは、吸着部70の容器72や過熱媒体回路140の配管に設けられる、温度センサの計測結果に基づいて、ステップS81及びステップS82の制御を実行するタイミングを決定してもよい。
(3)特徴
冷凍サイクル装置100Bは、第1実施形態の冷凍サイクル装置100の特徴に加え、以下の特徴を有する。
冷凍サイクル装置100Bは、第1実施形態の冷凍サイクル装置100の特徴に加え、以下の特徴を有する。
(3-1)
冷凍サイクル装置100Bは、媒体が流れる過熱媒体回路140を備える。過熱媒体回路140は、第2媒体回路の一例である。過熱媒体回路140は、第1熱交換部146と、第2熱交換部の一例としての過熱熱交換器148と、を有する。第1熱交換部146では、吸着部70により媒体が加熱される。過熱熱交換器148では、媒体が圧縮機10に流入する冷媒を加熱する。
冷凍サイクル装置100Bは、媒体が流れる過熱媒体回路140を備える。過熱媒体回路140は、第2媒体回路の一例である。過熱媒体回路140は、第1熱交換部146と、第2熱交換部の一例としての過熱熱交換器148と、を有する。第1熱交換部146では、吸着部70により媒体が加熱される。過熱熱交換器148では、媒体が圧縮機10に流入する冷媒を加熱する。
冷凍サイクル装置100Bでは、第1冷媒が吸着材72aに吸着される際の吸着熱を有効に活用して、圧縮機10に吸入される冷媒を加熱できる。
<第4実施形態>
(1)全体概要
図10を参照して、本開示の冷凍サイクル装置の第4実施形態に係る冷凍サイクル装置100Cを説明する。図10は、冷凍サイクル装置100Cの概略構成図である。図10では、第1実施形態の冷凍サイクル装置100における構成と同様の構成には、同じ符号を用いる。なお、図面が煩雑になるのを避けるため、図10では、第2バイパス流路90の図示は省略している。また、冷凍サイクル装置100Cは、第2実施形態のデフロスト媒体回路120及び第1検知部130や、第3実施形態の過熱媒体回路140を更に有してもよい。
(1)全体概要
図10を参照して、本開示の冷凍サイクル装置の第4実施形態に係る冷凍サイクル装置100Cを説明する。図10は、冷凍サイクル装置100Cの概略構成図である。図10では、第1実施形態の冷凍サイクル装置100における構成と同様の構成には、同じ符号を用いる。なお、図面が煩雑になるのを避けるため、図10では、第2バイパス流路90の図示は省略している。また、冷凍サイクル装置100Cは、第2実施形態のデフロスト媒体回路120及び第1検知部130や、第3実施形態の過熱媒体回路140を更に有してもよい。
冷凍サイクル装置100Cは、第1実施形態の冷凍サイクル装置100と、第2検知部150を有する点で相違する。
その他の点では、冷凍サイクル装置100Cと冷凍サイクル装置100とは多くの点で共通する。ここでは、説明の重複を避けるため、冷凍サイクル装置100との相違点である第2検知部150を中心に説明し、冷凍サイクル装置100との共通点については基本的に説明を省略する。
冷凍サイクル装置100Cは、図10に示すように、冷凍サイクルの一例としての主冷媒回路50と、吸着部70と、第1バイパス流路80と、第2バイパス流路(図5では描画を省略)と、第2検知部150と、コントローラ110Cと、を主に備える。
主冷媒回路50、吸着部70、第1バイパス流路80、及び第2バイパス流路は、第1実施形態と同様であるため、ここでは説明を省略する。
第2検知部150は、主冷媒回路50内を循環する冷媒の組成比を検知する。第2検知部150は、熱源ユニット2の図示しないケーシングに収容される。
コントローラ110Cは、第1実施形態のコントローラ110と同様の物理的構成を有する。コントローラ110Cは、第2検知部150による主冷媒回路50内を循環する冷媒の組成比を用いて第1バイパス流路80の弁82の制御を行う点で、主に、第1実施形態のコントローラ110と相違する。
(2)詳細構成
(2-1)第2検知部
第2検知部150は、主冷媒回路50内を循環する冷媒の組成比を検知する。
(2-1)第2検知部
第2検知部150は、主冷媒回路50内を循環する冷媒の組成比を検知する。
第2検知部150は、主冷媒回路50の、熱源熱交換器20と膨張機構30との間と利用熱交換器40と膨張機構30との間と、を接続する配管151を含む。なお、配管151は、主冷媒回路50を流れる冷媒の組成の検知に用いられるものであり、蒸気圧縮式冷凍サイクルには直接的には不要な配管である。配管151は、液冷媒管52dに比べて細径の配管であり、ごく少量の冷媒が流れる。
第2検知部150は、配管151に配置される、冷媒容器152と、弁154と、を含む。弁154は、第1弁154aと、第2弁154bと、を含む。第1弁154aは、配管151の、熱源熱交換器20と膨張機構30との間における液冷媒管52dとの接続部と、冷媒容器152と、の間に配置される。第2弁154bは、配管151の、利用熱交換器40と膨張機構30との間における液冷媒管52dとの接続部と、冷媒容器152と、の間に配置される。第1弁154a及び第2弁154bは、例えば開度可変の電子膨張弁である。ただし、これに限定されるものではなく、第1弁154a及び第2弁154bは、例えばキャピラリチューブであってもよい。また、第2検知部150は、冷媒容器152内の冷媒の圧力を計測する圧力センサ156と、冷媒容器152内の冷媒の温度を計測する温度センサ158と、を有する。
コントローラ110Cは、冷房運転時や暖房運転時に、必要に応じ、第1弁154a及び第2弁154bを開き、冷媒容器152内に二相の(液相及び気相の)冷媒が存在するように、第1弁154a及び第2弁154bを所定の開度に制御する。例えば、コントローラ110Cは、吸着制御及び脱着制御を行う際に、第1弁154a及び第2弁154bを開き、冷媒容器152に二相の冷媒が貯留されるように、第1弁154a及び第2弁154bを所定の開度に制御する。
非共沸混合冷媒では、非共沸混合冷媒に用いられている冷媒の種類と、二相冷媒の圧力及び温度が分かれば、その組成比が算出可能である。そのため、第2検知部150は、圧力センサ156の計測する二相冷媒の圧力と、温度センサ158の計測する二相冷媒の温度と、に基づいて、冷媒容器152内の冷媒の組成比、言い換えれば主冷媒回路50の液冷媒管52dを流れる冷媒の組成を検知できる。
なお、冷媒の組成比は、コントローラ110Cが、第2検知部150の一部として機能して、圧力センサ156及び温度センサ158の計測結果に基づいて、主冷媒回路50を循環する冷媒の組成比を検知(算出)してもよい。あるいは、第2検知部150は、コントローラ110Cとは独立した装置で、圧力センサ156及び温度センサ158の計測結果に基づいて主冷媒回路50を循環する冷媒の組成比を検知してもよい。
本実施形態では、コントローラ110Cが、圧力センサ156及び温度センサ158の計測結果に基づいて、主冷媒回路50を循環する冷媒の組成比を検知するものとして説明する。具体的には、コントローラ110Cのメモリ(記憶部)には、使用する非共沸混合冷媒について、二相冷媒の圧力及び温度と、非共沸混合冷媒の組成比の関係を表すデータ(例えば、テーブルや関係式)が記憶されている。コントローラ110Cは、メモリに記憶されている、二相冷媒の圧力及び温度と、非共沸混合冷媒の組成比との関係を表すデータと、圧力センサ156及び温度センサ158の計測結果と、に基づいて、主冷媒回路50を循環する冷媒の組成比を検知する。
なお、主冷媒回路50を循環する冷媒の組成比の検知方法は、ここで例示した方法に限定される必要はなく、第2検知部150は、他の方法で、又、上記方法とは異なる機器を用いて、主冷媒回路50を循環する冷媒の組成比を検知してもよい。
(2-2)コントローラ
コントローラ110Cは、第1実施形態のコントローラ110と同様に、冷凍サイクル装置100Cの各種機器の動作を制御する。コントローラ110Cは、コントローラ110と共通する点が多いため、ここでは、コントローラ110との相違点について主に説明し、共通点については基本的に説明を省略する。
コントローラ110Cは、第1実施形態のコントローラ110と同様に、冷凍サイクル装置100Cの各種機器の動作を制御する。コントローラ110Cは、コントローラ110と共通する点が多いため、ここでは、コントローラ110との相違点について主に説明し、共通点については基本的に説明を省略する。
コントローラ110Cは、第1実施形態で説明した冷凍サイクル装置100の各種機器以外に、第2検知部150の第1弁154a及び第2弁154bの動作を制御できるように、第1弁154a及び第2弁154bと電気的に接続されている。また、コントローラ110Cは、圧力センサ156及び温度センサ158と電気的に接続され、圧力センサ156及び温度センサ158の計測値を取得可能である。なお、コントローラ110Cは、圧力センサ156及び温度センサ158以外の冷凍サイクル装置100の様々な場所に配置される図示しないセンサとも電気的に接続され、これらのセンサの計測値を取得可能である。
コントローラ110Cは、第1実施形態のコントローラ110と同様に、冷房運転時及び暖房運転時に、冷凍サイクル装置100の各種機器の動作を制御する。
また、コントローラ110Cは、第1実施形態のコントローラ110と同様に、吸着制御及び脱着制御を行う。ただし、コントローラ110Cの実行する吸着制御及び脱着制御は、以下の点で、第1実施形態のコントローラ110の実行する吸着制御及び脱着制御と異なる。
第1実施形態では、図2を参照しながら説明したように、吸着制御の際、熱源側弁82a及び利用側弁82bを開いてからの経過時間に基づいて、熱源側弁82a及び利用側弁82bを閉じるタイミングを決定している。また、第1実施形態では、図3を参照しながら説明したように、脱着制御の際、熱源側弁82a及び利用側弁82bを開いてからの経過時間に基づいて、熱源側弁82a及び利用側弁82bを閉じるタイミングを決定している。
これに対し、コントローラ110Cは、吸着制御及び脱着制御において、第2検知部150を用いて検知する主冷媒回路50を循環する冷媒の組成比が、目標組成比になると、熱源側弁82a及び利用側弁82bを閉じる。このような方法で熱源側弁82a及び利用側弁82bを閉じるタイミングが決定される結果、主冷媒回路50を循環する冷媒の組成比を精度良く制御できる。
(3)特徴
冷凍サイクル装置100Cは、第1実施形態の冷凍サイクル装置100の特徴に加え、以下の特徴を有する。
冷凍サイクル装置100Cは、第1実施形態の冷凍サイクル装置100の特徴に加え、以下の特徴を有する。
(3-1)
冷凍サイクル装置100Cは、第2検知部150を備える。第2検知部150は、主冷媒回路50内を循環する冷媒の組成比を検知する。第1バイパス流路80の弁82は、第2検知部150が検知する冷媒の組成比が目標組成比になるように制御される。
冷凍サイクル装置100Cは、第2検知部150を備える。第2検知部150は、主冷媒回路50内を循環する冷媒の組成比を検知する。第1バイパス流路80の弁82は、第2検知部150が検知する冷媒の組成比が目標組成比になるように制御される。
冷凍サイクル装置100Cでは、最適な組成比の冷媒を用いて冷凍サイクル装置100Cを運転できる。
<変形例>
上記の第1実施形態~第4実施形態の構成の一部又は全部は、互いに矛盾しない範囲で適宜組み合わせられてもよい。
上記の第1実施形態~第4実施形態の構成の一部又は全部は、互いに矛盾しない範囲で適宜組み合わせられてもよい。
以下に、上記実施形態の変形例を説明する。なお、以下の変形例は、互いに矛盾しない範囲で適宜組み合わせられてもよい。
(1)変形例A
上記実施形態では、第1冷媒はCO2であり、第2冷媒はHFO冷媒のR1234Ze又はR1234yfである非共沸混合冷媒を用いる冷凍サイクル装置について説明を行った。ただし、第1冷媒及び第2冷媒の種類は例示の冷媒に限定されるものではない。例えば、第1冷媒は、HFO冷媒のR1132(E)(トランス-1,2?ジフルオロエチレン)又はR1123(トリフルオロエチレン)であってもよい。このような冷媒の組合せでも、第2冷媒を実質的に単独で用いることで高効率の運転を実現しつつ、第2冷媒を単独で用いる場合には能力が不足する場合には、第1冷媒と第2冷媒との非共沸混合冷媒を用いることで能力不足を補うことができる。
上記実施形態では、第1冷媒はCO2であり、第2冷媒はHFO冷媒のR1234Ze又はR1234yfである非共沸混合冷媒を用いる冷凍サイクル装置について説明を行った。ただし、第1冷媒及び第2冷媒の種類は例示の冷媒に限定されるものではない。例えば、第1冷媒は、HFO冷媒のR1132(E)(トランス-1,2?ジフルオロエチレン)又はR1123(トリフルオロエチレン)であってもよい。このような冷媒の組合せでも、第2冷媒を実質的に単独で用いることで高効率の運転を実現しつつ、第2冷媒を単独で用いる場合には能力が不足する場合には、第1冷媒と第2冷媒との非共沸混合冷媒を用いることで能力不足を補うことができる。
なお、この際には、吸着材72aとして、第1冷媒としてのR1132を吸着し、第2冷媒としてのR1234ZeやR1234yfを吸着しない、又は、R1234ZeやR1234yfの吸着性能がR1132の吸着性能より低い吸着材が選定されればよい。例えば、吸着材72aは、第1実施形態の中で例示した種類の吸着材のいずれかが選択されてもよい。
(2)変形例B
上記実施形態では、建物等に設置される冷凍サイクル装置100,100A,100B,100Cを例に、本開示の冷凍サイクル装置を説明している。しかし、本開示の冷凍サイクル装置は、建物に設置されるものに限定されない。本開示の冷凍サイクル装置は、例えば、自動車等の乗物に搭載される装置であってもよい。
上記実施形態では、建物等に設置される冷凍サイクル装置100,100A,100B,100Cを例に、本開示の冷凍サイクル装置を説明している。しかし、本開示の冷凍サイクル装置は、建物に設置されるものに限定されない。本開示の冷凍サイクル装置は、例えば、自動車等の乗物に搭載される装置であってもよい。
(3)変形例C
上記実施形態では、冷凍サイクル装置100,100A,100B,100Cが、熱源ユニット2と、熱源ユニット2に冷媒配管により接続される利用ユニット4と、を有する場合を例に、本開示の冷凍サイクル装置を説明している。しかし、本開示の冷凍サイクル装置は、このような装置に限定されるものではない。例えば、本開示の冷凍サイクル装置は、全ての機器が1つのケーシングに搭載される一体式の装置であってもよい。
上記実施形態では、冷凍サイクル装置100,100A,100B,100Cが、熱源ユニット2と、熱源ユニット2に冷媒配管により接続される利用ユニット4と、を有する場合を例に、本開示の冷凍サイクル装置を説明している。しかし、本開示の冷凍サイクル装置は、このような装置に限定されるものではない。例えば、本開示の冷凍サイクル装置は、全ての機器が1つのケーシングに搭載される一体式の装置であってもよい。
(4)変形例D
上記実施形態では、冷房運転時には第2冷媒が実質単独で使用され、暖房運転時には第1冷媒と第2冷媒との非共沸混合冷媒が使用される。
上記実施形態では、冷房運転時には第2冷媒が実質単独で使用され、暖房運転時には第1冷媒と第2冷媒との非共沸混合冷媒が使用される。
ただし、このような態様に限定されるものではなく、例えば、暖房運転時であっても、能力不足が特に問題とならない条件(例えば熱源空気の温度が比較的高い条件)では第2冷媒が実質単独で使用され、暖房運転時でかつ能力不足が問題となる条件でのみ第1冷媒と第2冷媒との非共沸混合冷媒が使用されてもよい。この場合、冷凍サイクル装置は、温度調整対象を加熱する運転だけを行う装置であってもよい。
また、例えば、冷房運転時であっても、能力不足が問題となる条件であれば、第1冷媒と第2冷媒との非共沸混合冷媒が使用されてもよい。この場合、冷凍サイクル装置は、温度調整対象を冷却する運転だけを行う装置であってもよい。
(5)変形例E
上記実施形態では、暖房運転時に使用する非共沸混合冷媒の第1冷媒と第2冷媒との組成比が一様である場合を例に説明したが、暖房運転時に使用する非共沸混合冷媒の第1冷媒と第2冷媒との組成比は、運転条件に応じて変更されてもよい。
上記実施形態では、暖房運転時に使用する非共沸混合冷媒の第1冷媒と第2冷媒との組成比が一様である場合を例に説明したが、暖房運転時に使用する非共沸混合冷媒の第1冷媒と第2冷媒との組成比は、運転条件に応じて変更されてもよい。
具体的には、能力不足が発生しやすい条件(例えば熱源の温度が低い場合)では、非共沸混合冷媒中の第1冷媒の重量濃度が増やされ、能力不足が比較的発生しにくい条件では非共沸混合冷媒中の第1冷媒の重量濃度が減らされてもよい。このような制御は、例えば、第1実施形態の冷凍サイクル装置100であれば、運転条件に応じて、図3のステップS17の所定時間を変更することで実現されればよい。また、第4実施形態の冷凍サイクル装置100Cであれば、第2検知部150を用いることで、運転条件に応じて、主冷媒回路50を流れる非共沸混合冷媒の組成比を精度良く制御することが可能である。
(6)変形例F
上記実施形態では、吸着材72aから第1冷媒を脱着させる際に冷媒の熱を利用するが、これに限定されるものではない。本開示の冷凍サイクル装置は、吸着材72aから第1冷媒を脱着させる際に、電気ヒータ等の機器が発する熱を利用してもよい。
上記実施形態では、吸着材72aから第1冷媒を脱着させる際に冷媒の熱を利用するが、これに限定されるものではない。本開示の冷凍サイクル装置は、吸着材72aから第1冷媒を脱着させる際に、電気ヒータ等の機器が発する熱を利用してもよい。
また、圧力差だけで第1冷媒の脱着が可能であれば、吸着材72aから第1冷媒を脱着させるための熱源は特に設けられなくてもよい。
<付記>
以上、本開示の実施形態及び変形例を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
以上、本開示の実施形態及び変形例を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
本開示は、冷凍サイクル装置に広く適用でき有用である。
10 圧縮機
20 熱源熱交換器(放熱器,蒸発器)
30 膨張機構
40 利用熱交換器(蒸発器,放熱器)
50 主冷媒回路(冷凍サイクル)
70 吸着部
72a 吸着材
80 第1バイパス流路
82 弁
82a 熱源側弁(第1弁,第2弁)
82b 利用側弁(第2弁,第1弁)
90 第2バイパス流路
92 弁(第3弁)
100,100A,100B,100C 冷凍サイクル装置
120 デフロスト媒体回路(第1媒体回路)
126 第1熱交換部
128 第2熱交換部
130 第1検知部
140 過熱媒体回路(第2媒体回路)
146 第1熱交換部
148 過熱熱交換器(第2熱交換部)
150 第2検知部
A 熱源側端(第1端,第2端)
B 利用側端(第2端,第1端)
C 高圧端(第3端)
D 低圧端(第4端)
20 熱源熱交換器(放熱器,蒸発器)
30 膨張機構
40 利用熱交換器(蒸発器,放熱器)
50 主冷媒回路(冷凍サイクル)
70 吸着部
72a 吸着材
80 第1バイパス流路
82 弁
82a 熱源側弁(第1弁,第2弁)
82b 利用側弁(第2弁,第1弁)
90 第2バイパス流路
92 弁(第3弁)
100,100A,100B,100C 冷凍サイクル装置
120 デフロスト媒体回路(第1媒体回路)
126 第1熱交換部
128 第2熱交換部
130 第1検知部
140 過熱媒体回路(第2媒体回路)
146 第1熱交換部
148 過熱熱交換器(第2熱交換部)
150 第2検知部
A 熱源側端(第1端,第2端)
B 利用側端(第2端,第1端)
C 高圧端(第3端)
D 低圧端(第4端)
Claims (14)
- 圧縮機(10)と、放熱器(20,40)と、膨張機構(30)と、蒸発器(40,20)と、を含み、第1冷媒と第2冷媒とを含む非共沸混合冷媒を使用する冷凍サイクル(50)と、
前記第1冷媒を吸着し、かつ、前記第2冷媒を吸着しない又は前記第2冷媒の吸着性能が前記第1冷媒の吸着性能より低い、吸着材(72a)を含み、前記吸着材が吸着した前記第1冷媒を貯留する吸着部(70)と、
前記冷凍サイクルの高圧部である第1端(A,B)と、前記冷凍サイクルの低圧部である第2端(B,A)と、を接続し、前記吸着部と弁(82)とが配置される第1バイパス流路(80)と、
を備える、冷凍サイクル装置(100,100A,100B,100C)。 - 前記第2端は、前記冷凍サイクルの前記膨張機構と前記蒸発器との間である、
請求項1に記載の冷凍サイクル装置。 - 前記第1端は、前記冷凍サイクルの前記放熱器と前記膨張機構との間である、
請求項1又は2に記載の冷凍サイクル装置。 - 前記冷凍サイクルは、前記蒸発器として機能する際に温度調整対象を冷却し、前記放熱器として機能する際に前記温度調整対象を加熱する、利用熱交換器(40)を含み、
前記利用熱交換器を前記蒸発器として利用する際には、前記第1バイパス流路の前記弁が開かれ、前記吸着材は前記第1冷媒を吸着し、
前記利用熱交換器を前記放熱器として利用する際には、前記第1バイパス流路の前記弁が開かれ、前記吸着材は前記第1冷媒を脱着する、
請求項1から3のいずれか1項に記載の冷凍サイクル装置。 - 前記弁は、前記第1端と前記吸着部との間に配置される第1弁(82a,82b)と、前記吸着部と前記第2端との間に配置される第2弁(82b,82a)と、を含む、
請求項1から4のいずれか1項に記載の冷凍サイクル装置。 - 前記吸着材に前記第1冷媒を吸着させる際には、前記第1弁及び前記第2弁が開かれ、かつ、前記第1弁の流路面積が前記第2弁の流路面積より大きくなるように、前記第1弁及び前記第2弁の開度が調節され、
前記吸着材から前記第1冷媒を脱着させる際には、前記第1弁及び前記第2弁が開かれ、かつ、前記第2弁の流路面積が前記第1弁の流路面積より大きくなるように、前記第1弁及び前記第2弁の開度が調節される、
請求項5に記載の冷凍サイクル装置。 - 前記冷凍サイクルの前記圧縮機と前記放熱器との間の第3端(C)と、前記冷凍サイクルの低圧部である第4端(D)と、を接続し、流れる冷媒により前記吸着部を加熱する、第2バイパス流路(90)を更に備え、
前記第2バイパス流路には、前記第2バイパス流路における冷媒の流れを制御する第3弁(92)が配置され、
前記吸着材から前記第1冷媒を脱着させる際には、前記第3弁が開かれる、
請求項1から6のいずれか1項に記載の冷凍サイクル装置。 - 前記第1冷媒はCO2である、
請求項1から7のいずれか1項に記載の冷凍サイクル装置。 - 前記吸着材に前記第1冷媒としてのCO2が吸着されていない状態で、前記非共沸混合冷媒に含まれる前記第1冷媒としてのCO2の濃度は、20wt%以下である、
請求項8に記載の冷凍サイクル装置。 - 前記吸着材は、CO2の吸着性能が高い、金属有機構造体又はゼオライトである、
請求項8又は9のいずれか1項に記載の冷凍サイクル装置。 - 前記第2冷媒はHFO冷媒である、
請求項1から10のいずれか1項に記載の冷凍サイクル装置。 - 前記冷凍サイクルは、前記蒸発器として機能する熱源熱交換器(20)を含み、
前記冷凍サイクル装置は、
媒体が流れ、前記吸着部により前記媒体が加熱される第1熱交換部(126)と、前記媒体で前記熱源熱交換器を加熱する第2熱交換部(128)と、を有する、第1媒体回路(120)と、
前記熱源熱交換器の着霜を検知する第1検知部(130)と、
を更に備え、
前記第1検知部が前記熱源熱交換器の着霜を検知した際に、前記媒体は、前記第1媒体回路を循環する、
請求項1から11のいずれか1項に記載の冷凍サイクル装置(100A)。 - 媒体が流れ、前記吸着部により前記媒体が加熱される第1熱交換部(146)と、前記媒体で前記圧縮機に流入する冷媒を加熱する第2熱交換部(148)と、を有する、第2媒体回路(140)を更に備える、
請求項1から11のいずれか1項に記載の冷凍サイクル装置(100B)。 - 前記冷凍サイクル内を循環する冷媒の組成比を検知する第2検知部(150)、を更に備え、
前記第1バイパス流路の前記弁は、前記第2検知部が検知する冷媒の組成比が目標組成比になるように制御される、
請求項1から13のいずれか1項に記載の冷凍サイクル装置(100C)。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280026141.3A CN117136288B (zh) | 2021-03-31 | 2022-03-25 | 冷冻循环装置 |
EP22780611.4A EP4317839A4 (en) | 2021-03-31 | 2022-03-25 | REFRIGERATION CYCLE DEVICE |
US18/374,904 US11976859B2 (en) | 2021-03-31 | 2023-09-29 | Refrigeration cycle apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-062242 | 2021-03-31 | ||
JP2021062242A JP7157353B1 (ja) | 2021-03-31 | 2021-03-31 | 冷凍サイクル装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/374,904 Continuation US11976859B2 (en) | 2021-03-31 | 2023-09-29 | Refrigeration cycle apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022210398A1 true WO2022210398A1 (ja) | 2022-10-06 |
Family
ID=83456156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/014557 WO2022210398A1 (ja) | 2021-03-31 | 2022-03-25 | 冷凍サイクル装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11976859B2 (ja) |
EP (1) | EP4317839A4 (ja) |
JP (1) | JP7157353B1 (ja) |
CN (1) | CN117136288B (ja) |
WO (1) | WO2022210398A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288455A (ja) * | 1986-06-05 | 1987-12-15 | 松下電器産業株式会社 | 空気調和機 |
JPH0798161A (ja) * | 1993-09-29 | 1995-04-11 | Toshiba Corp | 混合冷媒を用いた冷凍装置 |
JPH09119721A (ja) * | 1995-10-27 | 1997-05-06 | Hitachi Ltd | 空気調和機 |
JPH1123078A (ja) * | 1997-06-27 | 1999-01-26 | Sanyo Electric Co Ltd | 冷凍装置 |
JP2000074511A (ja) * | 1998-08-31 | 2000-03-14 | Sanyo Electric Co Ltd | 冷凍回路中の冷媒の制御装置および冷凍回路中の冷媒の制御方法 |
JP2002333227A (ja) * | 2001-05-09 | 2002-11-22 | Mitsubishi Electric Corp | 蓄熱式空気調和装置 |
JP2007085586A (ja) * | 2005-09-20 | 2007-04-05 | Sanden Corp | 冷凍システム |
WO2019073596A1 (ja) * | 2017-10-13 | 2019-04-18 | 三菱電機株式会社 | 冷凍サイクル装置および組成調節装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280452A (ja) | 1985-10-02 | 1987-04-13 | 株式会社日立製作所 | 冷凍サイクル |
JPH0749893B2 (ja) * | 1987-10-20 | 1995-05-31 | 松下電器産業株式会社 | ヒートポンプ式空気調和機 |
JPH02263057A (ja) * | 1989-03-31 | 1990-10-25 | Matsushita Electric Ind Co Ltd | ヒートポンプ装置 |
JP2878085B2 (ja) | 1993-09-30 | 1999-04-05 | 株式会社クボタ | 乾燥機 |
KR100564869B1 (ko) | 1998-06-11 | 2006-03-28 | 산요덴키가부시키가이샤 | 냉매 회수 장치, 냉매 회수 방법, 냉매 회수 장치를 갖춘냉동 장치, 냉매 회로내의 냉매의 제어 방법 또는 냉매회수 장치의 재생 장치 및 재생 방법 |
JP3749092B2 (ja) * | 2000-07-25 | 2006-02-22 | 三菱電機株式会社 | 冷媒封入方法および空気調和機 |
JP2002106982A (ja) * | 2000-09-28 | 2002-04-10 | Hitachi Ltd | 空気調和機 |
EP2482003B1 (en) * | 2009-09-24 | 2020-04-15 | Mitsubishi Electric Corporation | Refrigeration cycle device |
JP5421717B2 (ja) * | 2009-10-05 | 2014-02-19 | パナソニック株式会社 | 冷凍サイクル装置および温水暖房装置 |
JP2014105891A (ja) * | 2012-11-26 | 2014-06-09 | Panasonic Corp | 冷凍サイクル装置及びそれを備えた温水生成装置 |
JP6515784B2 (ja) * | 2015-10-23 | 2019-05-22 | トヨタ自動車株式会社 | 車両用冷房装置 |
CN109556311B (zh) * | 2018-10-09 | 2021-03-30 | 宁波工程学院 | 多级吸附制冷方法 |
CN109631405A (zh) * | 2018-12-27 | 2019-04-16 | 同济大学 | 一种带冷却循环的增压型热化学吸附热泵循环系统 |
CN109737624B (zh) * | 2018-12-28 | 2020-03-31 | 西安交通大学 | 一种双温制冷系统及其控制方法 |
-
2021
- 2021-03-31 JP JP2021062242A patent/JP7157353B1/ja active Active
-
2022
- 2022-03-25 WO PCT/JP2022/014557 patent/WO2022210398A1/ja active Application Filing
- 2022-03-25 EP EP22780611.4A patent/EP4317839A4/en active Pending
- 2022-03-25 CN CN202280026141.3A patent/CN117136288B/zh active Active
-
2023
- 2023-09-29 US US18/374,904 patent/US11976859B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288455A (ja) * | 1986-06-05 | 1987-12-15 | 松下電器産業株式会社 | 空気調和機 |
JPH0798161A (ja) * | 1993-09-29 | 1995-04-11 | Toshiba Corp | 混合冷媒を用いた冷凍装置 |
JPH09119721A (ja) * | 1995-10-27 | 1997-05-06 | Hitachi Ltd | 空気調和機 |
JPH1123078A (ja) * | 1997-06-27 | 1999-01-26 | Sanyo Electric Co Ltd | 冷凍装置 |
JP2000074511A (ja) * | 1998-08-31 | 2000-03-14 | Sanyo Electric Co Ltd | 冷凍回路中の冷媒の制御装置および冷凍回路中の冷媒の制御方法 |
JP2002333227A (ja) * | 2001-05-09 | 2002-11-22 | Mitsubishi Electric Corp | 蓄熱式空気調和装置 |
JP2007085586A (ja) * | 2005-09-20 | 2007-04-05 | Sanden Corp | 冷凍システム |
WO2019073596A1 (ja) * | 2017-10-13 | 2019-04-18 | 三菱電機株式会社 | 冷凍サイクル装置および組成調節装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4317839A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP7157353B1 (ja) | 2022-10-20 |
JP2022157805A (ja) | 2022-10-14 |
US20240019181A1 (en) | 2024-01-18 |
CN117136288B (zh) | 2024-07-26 |
US11976859B2 (en) | 2024-05-07 |
EP4317839A1 (en) | 2024-02-07 |
CN117136288A (zh) | 2023-11-28 |
EP4317839A4 (en) | 2024-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2008230367B2 (en) | Heat exchanger and refrigeration cycle apparatus | |
US10393393B2 (en) | Dehumidifier | |
JP2001235251A (ja) | 吸着式冷凍機 | |
JP5908183B1 (ja) | 空気調和装置 | |
JPWO2013061377A1 (ja) | 冷凍空調装置及び調湿装置 | |
WO2014174622A1 (ja) | 除湿装置 | |
JP6138336B2 (ja) | 空気調和装置、及び、空気調和装置の制御方法 | |
JP2012021744A (ja) | 冷凍装置 | |
JP7157353B1 (ja) | 冷凍サイクル装置 | |
JP2007309585A (ja) | 冷凍装置 | |
JP6141508B2 (ja) | 空気調和装置、及び、空気調和装置の制御方法 | |
JP2008096072A (ja) | 冷凍サイクル装置 | |
JP7216308B2 (ja) | 冷凍サイクル装置 | |
JP4066485B2 (ja) | 冷凍装置 | |
WO2013088734A1 (ja) | 空気調和機 | |
JPWO2020217341A1 (ja) | 空気調和装置 | |
JP7233538B2 (ja) | 空気調和装置 | |
JP6372518B2 (ja) | 調湿装置 | |
CN114198829A (zh) | 一种湿度调节系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780611 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022780611 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022780611 Country of ref document: EP Effective date: 20231031 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |