WO2019073596A1 - 冷凍サイクル装置および組成調節装置 - Google Patents

冷凍サイクル装置および組成調節装置 Download PDF

Info

Publication number
WO2019073596A1
WO2019073596A1 PCT/JP2017/037192 JP2017037192W WO2019073596A1 WO 2019073596 A1 WO2019073596 A1 WO 2019073596A1 JP 2017037192 W JP2017037192 W JP 2017037192W WO 2019073596 A1 WO2019073596 A1 WO 2019073596A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
composition
main circuit
refrigeration cycle
separator
Prior art date
Application number
PCT/JP2017/037192
Other languages
English (en)
French (fr)
Inventor
悟 梁池
正紘 伊藤
亮 築山
幸二 古谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019547881A priority Critical patent/JP6877567B2/ja
Priority to CN201780095663.8A priority patent/CN111183324B/zh
Priority to PCT/JP2017/037192 priority patent/WO2019073596A1/ja
Publication of WO2019073596A1 publication Critical patent/WO2019073596A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to a refrigeration cycle apparatus and a composition adjustment apparatus.
  • JP-A-4-263745 Patent Document 1 describes a refrigeration apparatus capable of changing the composition ratio of the mixed refrigerant.
  • This refrigeration system includes a refrigerant separator having a functional film that facilitates permeation of a part of the mixed refrigerant.
  • the refrigerant separator is connected between the condenser and the evaporator.
  • This invention is made in view of the said subject,
  • the objective is to provide the refrigerating-cycle apparatus and composition adjustment apparatus which can improve the efficiency which isolate
  • the refrigeration cycle apparatus of the present invention has a compressor, a condenser, and an expansion valve, and has a first refrigerant and a second refrigerant having a density higher than that of the first refrigerant in the order of the compressor, the condenser, and the expansion valve.
  • a main circuit unit through which the mixed refrigerant flows and a composition adjustment unit connected to the main circuit unit are provided.
  • the composition adjustment unit has a composition separator, a refrigerant storage container, and a composition adjustment circuit.
  • the composition separator has a composition separation membrane that separates the mixed refrigerant in a gas state flowing from the main circuit into a first refrigerant and a second refrigerant.
  • the refrigerant storage container stores the first refrigerant separated by the composition separator.
  • the composition adjustment circuit connects the main circuit unit, the composition separator, and the refrigerant storage container.
  • the composition adjustment circuit has a switching device. The switching device causes either one of the first refrigerant and the second refrigerant separated by the composition separator to flow out of the composition adjustment circuit to the main circuit portion or the first refrigerant and the second refrigerant separated by the composition separator. It is switched whether or not both flow out of the composition adjustment circuit to the main circuit.
  • the composition separator has the composition separation membrane for separating the mixed refrigerant in the gas state flowing from the main circuit into the first refrigerant and the second refrigerant. Therefore, the efficiency of separating the composition of the mixed refrigerant can be improved.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a perspective view which shows roughly the structure of the composition separator which concerns on Embodiment 1 of this invention.
  • 1 is a functional block diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a refrigerant circuit diagram showing the flow of the refrigerant in the composition adjustment operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a refrigerant circuit diagram showing the flow of the refrigerant in the refrigeration operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a refrigerant circuit diagram showing the flow of the refrigerant in the composition recovery operation of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a diagram showing the relationship between CO 2 composition ratio between refrigerating capacity and COP of the refrigerant of the refrigeration cycle apparatus according to a first embodiment of the present invention.
  • FIG. 6 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a refrigerant circuit diagram showing the flow of the refrigerant in the composition adjustment operation (increasing the CO 2 composition ratio) of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 The configuration of the refrigeration cycle apparatus 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • the refrigeration cycle apparatus 100 according to the present embodiment is, for example, a refrigeration apparatus provided with a condensing unit and a cooling unit.
  • the refrigeration cycle apparatus 100 according to the present embodiment may be, for example, an air conditioner or the like.
  • the refrigeration cycle apparatus 100 according to the present embodiment may be used not only for refrigeration but also for cooling or heating.
  • the refrigeration cycle apparatus 100 includes a main circuit unit (refrigeration cycle circuit) 101 and a composition adjustment unit (composition adjustment device) 102 connected to the main circuit unit 101.
  • the main circuit unit 101 and the composition adjustment unit 102 constitute a refrigerant circuit.
  • the main circuit unit 101 includes a compressor 1, a condenser 2, an internal heat exchanger 3, an expansion valve 4, an evaporator 5, a control device 20, a pressure measurement device 50, and a temperature measurement device 60.
  • the composition adjustment unit 102 includes a composition separator 6, a flow path resistor 10, a refrigerant storage container 11, and a composition adjustment circuit 30.
  • the composition adjustment circuit 30 has a switching device 40.
  • the switching device 40 has a first valve 8 and a second valve 9.
  • the compressor 1, the condenser 2, the internal heat exchanger 3, the expansion valve 4, and the composition adjustment unit 102 in the main circuit unit 101 constitute a condensing unit. doing.
  • the condensing unit constitutes an outdoor unit.
  • the evaporator 5 of the main circuit portion 101 constitutes a cooling unit. This cooling unit constitutes an indoor unit.
  • the main circuit portion 101 In the main circuit portion 101, the compressor 1, the condenser 2, the internal heat exchanger 3, the expansion valve 4, and the evaporator 5 are connected by piping in this order.
  • the main circuit portion 101 has a base pipe 101a and an extension pipe 101b.
  • the base pipe 101 a is a pipe directly connected to at least one of the compressor 1, the condenser 2, the internal heat exchanger 3, the expansion valve 4, and the evaporator 5.
  • the extension pipe 101b is connected to the base pipe 101a.
  • the extension pipe 101 b is disposed between the internal heat exchanger 3 and the expansion valve 4.
  • the connection between the base pipe 101a and the extension pipe 101b is connected, for example, by flare connection or brazing.
  • the main circuit unit 101 is configured such that the mixed refrigerant flows in the order of the compressor 1, the condenser 2, the internal heat exchanger 3, the expansion valve 4, and the evaporator 5.
  • the mixed refrigerant has a first refrigerant and a second refrigerant having a density higher than that of the first refrigerant.
  • the first refrigerant in the present embodiment is a flammable refrigerant
  • the second refrigerant is a non-combustible refrigerant.
  • the first refrigerant may contain a plurality of refrigerants.
  • the second refrigerant may contain a plurality of refrigerants.
  • the second refrigerant is preferably one type of refrigerant.
  • this second refrigerant is carbon dioxide (CO 2 ). That is, the mixed refrigerant in the present embodiment is a carbon dioxide mixed refrigerant (CO 2 mixed refrigerant) containing carbon dioxide in the refrigerant composition.
  • the mixed refrigerant specifically, for example, has a composition of R32 / R125 / R134A / R1234yf / CO 2 (36/30/14/14/6 mass%).
  • the compressor 1 is configured to compress and discharge the sucked mixed refrigerant.
  • the compressor 1 is configured to have a variable capacity.
  • the compressor 1 in the present embodiment is configured to be capable of variably controlling the number of rotations. Specifically, the rotational frequency of the compressor 1 is adjusted by changing the drive frequency based on an instruction from the control device 20. Thereby, the capacity of the compressor 1 is changed.
  • the capacity of the compressor 1 is an amount for delivering the refrigerant per unit time. That is, the compressor 1 can be operated while changing the capacity. For example, in high-capacity operation, the operation is performed by increasing the flow rate of the mixed refrigerant circulating in the refrigerant circuit by increasing the driving frequency of the compressor 1. Further, in the low capacity operation, the operation is performed with the flow rate of the mixed refrigerant circulating in the refrigerant circuit reduced by lowering the driving frequency of the compressor 1.
  • the condenser 2 is configured to condense the mixed refrigerant compressed by the compressor 1.
  • the condenser 2 is an air heat exchanger composed of, for example, a pipe and a fin.
  • the internal heat exchanger 3 is disposed in the main circuit portion 101 between the condenser 2 and the expansion valve 4.
  • the internal heat exchanger 3 is configured to receive the refrigerant condensed in the condenser 2. Further, the internal heat exchanger 3 is configured to receive the mixed refrigerant separated by the composition separator 6.
  • the internal heat exchanger 3 is configured to exchange heat between the mixed refrigerant condensed by the condenser 2 and the first refrigerant separated by the composition separator 6.
  • the expansion valve 4 is configured to decompress the mixed refrigerant condensed by the condenser 2.
  • Expansion valve 4 is, for example, a solenoid valve.
  • the evaporator 5 is configured to evaporate the mixed refrigerant decompressed by the expansion valve 4.
  • the evaporator 5 is an air heat exchanger constituted of, for example, a pipe and a fin.
  • the pressure measuring device 50 is configured to measure the pressure of the mixed refrigerant.
  • the temperature measuring device 60 is configured to measure the temperature of the mixed refrigerant.
  • Each of the pressure measuring device 50 and the temperature measuring device 60 is installed on the high voltage side of the main circuit portion 101.
  • the high pressure side of the main circuit portion 101 is a portion from the discharge side of the compressor 1 to the expansion valve 4 in the main circuit portion 101.
  • the pressure measuring device 50 is installed between the compressor 1 and the condenser 2 in the main circuit portion 101.
  • the temperature measurement device 60 is installed in the condenser 2 in the main circuit unit 101. Specifically, the temperature measurement device 60 is installed at a position where the two-phase temperature of the mixed refrigerant can be measured in the condenser 2.
  • the composition adjustment unit 102 is connected to the discharge side and the suction side of the compressor 1 by piping.
  • the composition separator 6 is connected to the discharge side of the compressor 1 by piping. That is, the composition separator 6 is connected to the gas portion in which the mixed refrigerant in the gas state flows in the main circuit portion 101.
  • the composition separator 6 has a composition separation membrane 7.
  • the composition separation film 7 is configured to be capable of separating the mixed refrigerant in a gas state flowing from the main circuit portion 101 into a first refrigerant and a second refrigerant.
  • the composition separation film 7 can chemically separate the second refrigerant by the difference in molecular size between the first refrigerant and the second refrigerant or the molecular gate of the second refrigerant.
  • the composition separation film 7 can separate only the carbon dioxide.
  • the composition separation membrane 7 separates the second refrigerant by the pressure difference between the high pressure side and the low pressure side acting on the composition separation membrane 7.
  • the composition separator 6 is connected by a pipe to the flow path resistor 10 via the internal heat exchanger 3.
  • the flow path resistor 10 is configured to function as a flow path resistance of a flow path from the composition separator 6 to the refrigerant storage container 11 via the internal heat exchanger 3.
  • the flow path resistor 10 adjusts the flow rate of the first refrigerant. Thereby, the flow rate of the second refrigerant is also adjusted.
  • the flow path resistor 10 is, for example, a capillary.
  • the flow path resistor 10 is connected to the refrigerant storage container 11 by piping. That is, the composition separator 6 is connected to the refrigerant storage container 11 via the internal heat exchanger 3 and the flow path resistor 10 by piping.
  • the refrigerant storage container 11 is a container for temporarily storing the mixed refrigerant which has been condensed and liquefied by the internal heat exchanger 3.
  • the refrigerant storage container 11 is configured to store the first refrigerant separated by the composition separator 6.
  • the refrigerant storage container 11 can store the first refrigerant liquefied by heat exchange in the internal heat exchanger 3.
  • the composition adjustment circuit 30 is configured to connect the main circuit unit 101, the composition separator 6, and the refrigerant storage container 11.
  • the composition adjustment circuit 30 branches so as to connect the composition separator 6, the refrigerant storage container 11, the main circuit portion 101, and the refrigerant storage container 11. That is, the refrigerant storage container 11 is connected to the composition separator 6 and the main circuit unit 101 via the composition adjustment circuit 30.
  • the switching device 40 causes either one of the first refrigerant and the second refrigerant separated by the composition separator 6 to flow out of the composition adjustment circuit 30 to the main circuit unit 101 or the first refrigerant separated by the composition separator 6. It is configured to switch whether or not both the second refrigerant and the second refrigerant flow out of the composition adjustment circuit 30 to the main circuit unit 101.
  • the composition adjustment circuit 30 is switched by opening and closing each of the first valve 8 and the second valve 9.
  • a first valve 8 is disposed between the composition separator 6 and the refrigerant storage container 11 in the composition adjustment circuit 30. Further, the first valve 8 is disposed between the composition separator 6 and the second valve 9 in the composition adjustment circuit 30. The first valve 8 is configured to be able to open and close the composition adjustment circuit 30 between the composition separator 6, the refrigerant storage container 11, and the second valve 9.
  • the second valve 9 is disposed between the main circuit portion 101 and the refrigerant storage container 11 in the composition adjustment circuit 30.
  • the second valve 9 is disposed between the main circuit portion 101 and the first valve 8 in the composition adjustment circuit 30.
  • the second valve 9 is configured to be able to open and close the composition adjustment circuit 30 between the main circuit portion 101, the refrigerant storage container 11, and the first valve 8.
  • the composition adjustment unit 102 is connected between the compressor 1 and the condenser 2 and between the compressor 1 and the expansion valve 4 in the main circuit unit 101. That is, in the main circuit unit 101, the composition adjustment unit 102 is connected so as to straddle between the compressor 1 and the condenser 2 and between the compressor 1 and the expansion valve 4.
  • the evaporator 5 is disposed between the compressor 1 and the expansion valve 4.
  • the composition adjustment unit 102 is connected between the compressor 1 and the evaporator 5 in the main circuit unit 101. That is, the composition adjustment unit 102 is connected so as to straddle between the compressor 1 and the condenser 2 and between the compressor 1 and the evaporator 5.
  • the composition separator 6 includes a container 61, an inflow pipe 62, a first refrigerant outflow pipe 63, and a second refrigerant outflow pipe 64.
  • the container 61 is configured in a cylindrical shape.
  • the composition separation membrane 7 is disposed inside the container 61.
  • the composition separation membrane 7 is formed in a cylindrical shape.
  • the axial direction of the cylindrical shape of the composition separation membrane 7 is disposed along the axial direction of the cylindrical shape of the container 61.
  • the composition separation membrane 7 extends continuously from the upper end to the lower end inside the container 61.
  • the inflow pipe 62 is connected to a pipe that connects the main circuit portion 101 and the composition separator 6.
  • the inflow pipe 62 is connected to the side surface of the container 61 at the lower part of the container 61.
  • the inflow pipe 62 is inserted through the side surface of the container 61 into the cylindrical inner space of the composition separation membrane 7.
  • the inflow pipe 62 is configured to allow the mixed refrigerant to flow into the cylindrical inner space of the composition separation membrane 7.
  • the first refrigerant outflow pipe 63 is connected to a pipe that connects the internal heat exchanger 3 and the composition separator 6.
  • the first refrigerant outflow pipe 63 is connected to the upper surface of the container 61.
  • the first refrigerant outflow pipe 63 is in communication with the cylindrical internal space of the composition separation membrane 7 through a through hole provided on the upper surface of the container 61.
  • the second refrigerant outflow pipe 64 is connected to a pipe that connects the first valve 8 and the composition separator 6.
  • the second refrigerant outflow pipe 64 is connected to the side surface of the container 61 at the top of the container 61.
  • the second refrigerant outflow pipe 64 is in communication with the cylindrical outer space of the composition separation membrane 7 through a through hole provided on the side surface of the container 61. That is, the second refrigerant outflow pipe 64 is in communication with the space provided between the outer peripheral surface of the side surface of the composition separation membrane 7 and the inner peripheral surface of the side surface of the container 61.
  • the mixed refrigerant flowing from the inflow pipe 62 into the cylindrical inner space of the composition separation film 7 is separated by the composition separation film 7 into the first refrigerant and the second refrigerant. That is, the composition separation film 7 allows the second refrigerant to pass without passing the first refrigerant. Therefore, the first refrigerant not passing through the composition separation film 7 flows out from the first refrigerant outflow pipe 63, and the second refrigerant passing through the composition separation film 7 flows out from the second refrigerant outflow pipe 64.
  • control apparatus 20 of the refrigerating-cycle apparatus 100 based on this Embodiment is demonstrated in detail.
  • the control device 20 is configured to perform operations, instructions, and the like to control the respective units, devices, and the like of the refrigeration cycle apparatus 100.
  • the control device 20 is, in particular, electrically connected to each of the compressor 1, the expansion valve 4, the first valve 8 and the second valve 9 to control the operation thereof.
  • the control device 20 mainly includes the control unit 21, the timer 22, the compressor drive unit 23, the expansion valve drive unit 24, the switching device drive unit 25, the pressure measurement unit 26, and the temperature measurement unit 27. doing.
  • the control unit 21 controls the compressor drive unit 23, the expansion valve drive unit 24, and the switching device drive unit 25 based on signals from the timer 22, the pressure measurement unit 26, and the temperature measurement unit 27.
  • the timer 22 measures time and transmits a signal based on the time to the control unit 21.
  • the compressor drive unit 23 is for driving the compressor 1 based on a signal from the control unit 21. Specifically, the compressor drive unit 23 controls the number of rotations of the motor of the compressor 1 by controlling the frequency of the alternating current supplied to the motor (not shown) of the compressor 1.
  • the expansion valve drive unit 24 is for driving the expansion valve 4 based on a signal from the control unit 21. Specifically, the expansion valve drive unit 24 controls the valve opening degree of the expansion valve 4 by controlling a drive source such as a motor (not shown) attached to the expansion valve 4.
  • a drive source such as a motor (not shown) attached to the expansion valve 4.
  • the switching device drive unit 25 is for driving the switching device 40 based on the signal from the control unit 21. Specifically, the switching device drive unit 25 controls the first valve 8 and the second valve by controlling a drive source such as a motor (not shown) attached to each of the first valve 8 and the second valve 9. Control the opening degree of each of the nine.
  • a drive source such as a motor (not shown) attached to each of the first valve 8 and the second valve 9. Control the opening degree of each of the nine.
  • the pressure measurement unit 26 measures the pressure of the mixed refrigerant based on the signal from the pressure measurement device 50, and transmits a signal based on the pressure to the control unit 21.
  • the temperature measurement unit 27 measures the temperature of the mixed refrigerant based on the signal from the temperature measurement device 60, and transmits a signal based on the temperature to the control unit 21.
  • FIGS. 4 to 6 the flow direction of the refrigerant is indicated by an arrow. Also, in FIGS. 4 to 6, the valve shown in white is in the open state and the valve shown in black is in the closed state. The same applies to FIGS. 9 to 13 and 16 described later.
  • the mixed refrigerant flows in the order of the compressor 1, the condenser 2, the internal heat exchanger 3, the expansion valve 4, and the evaporator 5.
  • the mixed refrigerant discharged from the discharge side of the compressor 1 flows through the condenser 2, the internal heat exchanger 3, the expansion valve 4, and the evaporator 5 in this order and flows into the suction side of the compressor 1.
  • the ink is discharged from the discharge side of the In this manner, the mixed refrigerant circulates in the main circuit portion 101.
  • the mixed refrigerant flows into the composition separator 6 from the discharge side of the compressor 1.
  • the composition separator 6 separates the gaseous mixed refrigerant flowing from the main circuit unit 101 into a first refrigerant and a second refrigerant by the composition separation film 7. Therefore, the mixed refrigerant flowing into the composition separator 6 is separated into the first refrigerant and the second refrigerant.
  • the composition separation film 7 separates the first refrigerant and the CO 2 refrigerant as the second refrigerant.
  • the refrigerant storage container 11 stores the first refrigerant separated by the composition separator 6.
  • the switching device 40 is switched to cause the second refrigerant separated by the composition separator 6 to flow out of the composition adjustment circuit 30 to the main circuit unit 101.
  • each of the first valve 8 and the second valve 9 is open.
  • the first refrigerant separated by the composition separation film 7 flows into the main circuit portion 101 through the composition separator 6, the internal heat exchanger 3, the flow path resistor 10, the refrigerant storage container 11, and the second valve 9 in this order. Do. By passing through the composition separation film 7, the composition ratio of carbon dioxide in the first refrigerant decreases (CO 2 poor).
  • the first refrigerant whose composition ratio of carbon dioxide is lowered is cooled by the internal heat exchanger 3 to be in a liquid state and stored in the refrigerant storage container 11.
  • the composition ratio of carbon dioxide in the mixed refrigerant circulating in the main circuit portion 101 gradually increases (CO 2 rich ).
  • Whether or not the mixed refrigerant has reached the set composition ratio is determined from the relationship between the pressure of the mixed refrigerant and the saturation temperature. Even if the pressure of the mixed refrigerant is constant, the saturation temperature of the mixed refrigerant changes depending on the composition ratio of the mixed refrigerant. Therefore, it becomes possible to estimate the composition ratio of the mixed refrigerant by measuring the saturation temperature of the mixed refrigerant.
  • the set composition ratio of the mixed refrigerant is the composition ratio of the mixed refrigerant that can realize the necessary refrigeration capacity. Whether or not the mixed refrigerant has reached the set composition ratio is determined using the characteristic that the saturated temperature at a certain quality (dryness) changes according to the composition ratio of the mixed refrigerant.
  • the pressure of the mixed refrigerant is measured by the pressure measuring device 50.
  • the saturation temperature of the mixed refrigerant is measured by the temperature measuring device 60.
  • the saturation temperature of the mixed refrigerant is measured by measuring the two-phase temperature of the mixed refrigerant.
  • the pressure measuring device 50 and the temperature measuring device 60 are disposed at positions where the pressures of the mixed refrigerant are approximately equal. On the high pressure side of the main circuit portion 101, the pressure of the mixed refrigerant is substantially equal. Therefore, the pressure measuring device 50 and the temperature measuring device 60 are disposed on the high voltage side of the main circuit portion 101.
  • the temperature measuring device 60 is installed at a position where the quality (dryness) can be estimated.
  • the temperature measuring device 60 may measure the temperature of the saturated liquid of the mixed refrigerant. This makes it possible to reliably estimate the quality (dryness).
  • the freezing operation is performed after the composition adjustment operation.
  • the switching device 40 is switched after the second refrigerant separated by the composition separator 6 is switched to flow from the composition adjustment circuit 30 to the main circuit unit 101, It is switched so that neither the refrigerant nor the second refrigerant flows out of the composition adjustment circuit 30 to the main circuit unit 101.
  • each of the first valve 8 and the second valve 9 is closed. Therefore, the composition ratio of the mixed refrigerant circulating in the main circuit portion 101 is maintained at the composition ratio of the mixed refrigerant adjusted in the composition adjustment operation.
  • composition ratio of carbon dioxide of the mixed refrigerant circulating in the main circuit portion 101 by the composition adjustment operation is higher than the composition ratio of carbon dioxide at the time of sealing (CO 2 rich). Since the density of the mixed refrigerant is increased by the increase of the composition ratio of the carbon dioxide of the mixed refrigerant as compared with the time of sealing, the refrigerant circulation amount is increased. This improves the refrigeration capacity or the heating capacity.
  • the refrigeration capacity or the heating capacity is expressed by the following equation (1). That is, the refrigeration capacity or the heating capacity is each multiplied by the suction density, the stroke volume, the volumetric efficiency, and the heat exchanger inlet / outlet enthalpy difference.
  • the suction density is the density of the mixed refrigerant on the suction side of the compressor 1.
  • the stroke volume is the displacement of the compressor 1.
  • the volumetric efficiency is the ratio of the displacement of the compressor 1 to the actual amount of suction vapor of the compressor 1.
  • the heat exchanger inlet / outlet enthalpy difference is obtained by subtracting the enthalpy of the mixed refrigerant at the outlet of the evaporator 5 from the enthalpy of the mixed refrigerant at the inlet of the evaporator 5.
  • Freezing (heating) capacity suction density x stroke volume x volumetric efficiency x heat exchanger inlet / outlet enthalpy difference (1)
  • the mixed refrigerant in which the composition ratio of carbon dioxide circulating in the main circuit portion 101 is high passes through the composition separator 6 and the internal heat exchanger 3 and flows into the refrigerant storage container 11.
  • the mixed refrigerant in which the composition ratio of carbon dioxide flowing from the main circuit portion 101 is increased is mixed with the mixed refrigerant in which the composition ratio of carbon dioxide stored in the refrigerant storage container 11 is decreased.
  • the composition ratio of the mixed refrigerant circulating in the main circuit portion 101 gradually approaches the composition ratio of the mixed refrigerant at the time of sealing. Change. Similar to the composition adjustment operation, whether or not the mixed refrigerant has reached the set composition ratio is determined from the relationship between the pressure of the mixed refrigerant and the saturation temperature.
  • FIG. 7 shows the relationship between the composition ratio of CO 2 (CO 2 composition ratio), the refrigeration capacity and COP (Coefficient Of Performance: coefficient of performance).
  • the horizontal axis in FIG. 7 is the CO 2 composition ratio
  • the vertical axis is the ratio based on 100% of the refrigeration capacity and COP.
  • the CO 2 composition ratio increases from left to right in the figure.
  • the ratio increases from the bottom to the top of the figure. Referring to FIG. 7, as the composition ratio of CO 2 (CO 2 composition ratio) becomes higher, the refrigeration capacity becomes higher.
  • the composition separator 6 has the composition separation film 7 that separates the mixed refrigerant in the gaseous state flowing from the main circuit portion 101 into the first refrigerant and the second refrigerant. It is possible to shorten the time to separate into the set composition ratio by separating the composition of the mixed refrigerant in the gas state rather than separating the composition of the mixed refrigerant in the liquid state or the gas-liquid two phase state. Therefore, the efficiency of separating the composition of the mixed refrigerant can be improved.
  • the mixed refrigerant in a gas state flowing from the main circuit portion 101 is separated into the first refrigerant and the second refrigerant by the composition separation film 7.
  • the first refrigerant separated by the composition separator 6 is stored in the refrigerant storage container 11.
  • the switching device 40 is switched to cause the second refrigerant separated by the composition separator 6 to flow out of the composition adjustment circuit 30 to the main circuit unit 101. Therefore, the concentration of the second refrigerant of the mixed refrigerant flowing through the main circuit unit 101 can be increased by the composition adjustment unit 102. Thereby, the refrigeration capacity or heating capacity of the refrigeration cycle apparatus 100 can be improved.
  • the composition adjustment unit 102 in the main circuit unit 101 is located between the compressor 1 and the condenser 2 and between the compressor 1 and the expansion valve 4. It is connected. Therefore, the composition adjusting unit 102 can be connected to the high voltage side and the low voltage side of the main circuit unit 101. Therefore, the first refrigerant and the second refrigerant can be separated by the composition separation film 7 by the pressure difference between the high pressure side and the low pressure side of the main circuit portion 101.
  • the composition adjustment unit 102 is connected between the compressor 1 and the evaporator 5 in the main circuit unit 101. Therefore, the pressure difference between the high pressure side and the low pressure side of the main circuit unit 101 to which the composition adjustment unit 102 is connected can be maximized. Therefore, the first refrigerant and the second refrigerant can be separated by the composition separation film 7 by the maximized pressure difference between the high pressure side and the low pressure side of the main circuit portion 101.
  • the switching device 40 transmits the second refrigerant separated by the composition separator 6 from the composition adjustment circuit 30 to the main circuit portion It is switched to flow out to 101.
  • the concentration of the second refrigerant of the mixed refrigerant flowing through the main circuit portion 101 can be increased.
  • the switching device 40 transmits the second refrigerant separated by the composition separator 6 from the composition adjustment circuit 30 to the main circuit unit 101. After being switched to flow out, both the first refrigerant and the second refrigerant are switched not to flow out of the composition adjustment circuit 30 to the main circuit portion 101. Thus, the density of the mixed refrigerant circulating in the main circuit portion 101 can be increased. Therefore, the refrigerant circulation amount can be increased. Thus, the refrigeration capacity or the heating capacity can be improved.
  • the switching device 40 transfers both the first refrigerant and the second refrigerant from the composition adjustment circuit 30 to the main circuit unit 101.
  • the first refrigerant is switched so as to flow out of the composition adjustment circuit 30 to the main circuit portion 101.
  • the composition ratio of the mixed refrigerant circulating in the main circuit portion 101 can be returned to the composition ratio of the mixed refrigerant at the time of charging. Therefore, the pressure of the mixed refrigerant can be reduced. Therefore, when the outside pressure is high and the pressure exceeds the pressure resistance, the pressure of the mixed refrigerant can be reduced to maintain the pressure resistance and improve the refrigeration capacity or the heating capacity.
  • the composition separation film 7 chemically separates the second refrigerant by the molecular size difference between the first refrigerant and the second refrigerant or the molecular gate of the second refrigerant. It is possible. Therefore, only the second refrigerant can be separated by the composition separation film 7. Therefore, the separation efficiency for separating the second refrigerant from the mixed refrigerant can be improved.
  • the composition separation membrane 7 separates the second refrigerant by the pressure difference between the high pressure side and the low pressure side acting on the composition separation membrane 7. Therefore, no separate power for separating the second refrigerant in the composition separator 6 is required.
  • the pressure measurement device 50 and the temperature measurement device 60 are installed on the high pressure side of the main circuit portion 101. Therefore, the pressures of the mixed refrigerants measured by the pressure measuring device 50 and the temperature measuring device 60 become substantially equal. Thus, whether or not the mixed refrigerant has reached the set composition ratio can be accurately determined from the relationship between the pressure of the mixed refrigerant and the saturation temperature.
  • the first refrigerant is a combustible refrigerant
  • the second refrigerant is a noncombustible refrigerant.
  • the second refrigerant is carbon dioxide.
  • the composition separation film 7 a molecular gate film capable of separating existing carbon dioxide can be used.
  • the main circuit portion 101 includes the base pipe 101a and the extension pipe 101b connected to the base pipe 101a.
  • the mixed refrigerant tends to leak from the connection portion between the base pipe 101a and the extension pipe 101b. Therefore, when the mixed refrigerant leaks from the connection portion, the concentration of the second refrigerant of the mixed refrigerant flowing through the main circuit portion 101 can be increased to reduce the risk of the mixed refrigerant burning.
  • Second Embodiment The configuration of a refrigeration cycle apparatus 100 according to a second embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the first embodiment of the present invention are provided with the same reference numerals unless otherwise described, and the description thereof is repeated. Absent.
  • the composition adjustment unit 102 of the refrigeration cycle apparatus 100 includes the composition separator 6, the flow path resistor 10, the refrigerant storage container 11, the composition adjustment circuit 30, the second expansion valve 12, and the second An internal heat exchanger 13 is provided.
  • the second expansion valve 12 and the second internal heat exchanger 13 are connected between the internal heat exchanger 3 and the expansion valve 4 and between the compressor 1 and the evaporator 5.
  • the second expansion valve 12 is disposed between the internal heat exchanger 3 and the expansion valve 4 and between the second internal heat exchanger 13.
  • the second internal heat exchanger 13 is disposed between the second expansion valve 12 and between the compressor 1 and the evaporator 5.
  • the second expansion valve 12 is configured to decompress the mixed refrigerant condensed by the condenser 2.
  • the second expansion valve 12 is, for example, a solenoid valve.
  • the second internal heat exchanger 13 is configured to receive the mixed refrigerant decompressed by the second expansion valve 12.
  • the second internal heat exchanger 13 is configured to exchange heat between the mixed refrigerant decompressed by the second expansion valve 12 and the first refrigerant separated by the composition separator 6.
  • the switching device 40 includes a first valve 8, a second valve 9, a third valve 14, a fourth valve 15, a fifth valve 16, and a sixth valve 17.
  • the third valve 14 is disposed between the first valve 8 and the refrigerant storage container 11 and the second internal heat exchanger 13 in the composition adjustment circuit 30.
  • the third valve 14 is disposed between the first valve 8 and each of the second valve 9 and the fourth valve 15 in the composition adjustment circuit 30 and between the second internal heat exchanger 13.
  • the fourth valve 15 is disposed between the second valve 9 and the refrigerant storage container 11 and between the second internal heat exchanger 13 and the compressor 1. Further, the fourth valve 15 is disposed between the first valve 8 and the second valve 9 and between the second internal heat exchanger 13 and the compressor 1.
  • the fifth valve 16 is disposed between the internal heat exchanger 3 and the composition separator 6.
  • the sixth valve 17 is disposed between the compressor 1 and the condenser 2 and between the composition separator 6.
  • the second internal heat exchanger 13 has two refrigerant channels.
  • a fourth valve 15 is connected to a refrigerant circuit connected to one of the two second expansion valves 12.
  • a third valve 14 is connected to a refrigerant circuit not connected to the other second expansion valve 12 of the two.
  • the switching device drive unit 25 of the control device 20 includes a motor (not shown) attached to each of the third valve 14, the fourth valve 15, the fifth valve 16, and the sixth valve 17.
  • a motor (not shown) attached to each of the third valve 14, the fourth valve 15, the fifth valve 16, and the sixth valve 17.
  • the refrigerant storage container 11 is configured to store the first refrigerant and the second refrigerant separated by the composition separator 6. In the present embodiment, the refrigerant storage container 11 is configured to store both the first refrigerant and the second refrigerant.
  • the refrigerant storage container 11 is connected to the composition separator 6 via the first valve 8, the fourth valve 15, and the second internal heat exchanger 13.
  • the refrigeration cycle apparatus 100 includes the refrigerant leakage detection unit 70.
  • the refrigerant leakage detection unit 70 is configured to detect the leakage of the mixed refrigerant from the main circuit unit 101.
  • the refrigerant leak detection unit 70 is disposed between the internal heat exchanger 3 and the expansion valve 4 in the main circuit unit 101.
  • each operation of the refrigeration cycle apparatus 100 according to the present embodiment will be described mainly with reference to FIG. 9 to FIG.
  • Each operation of the refrigeration cycle apparatus 100 according to the present embodiment is the same as each operation of the first embodiment of the present invention described above unless specifically described, and therefore the description thereof will not be repeated.
  • the composition adjustment operation will be described with reference to FIG.
  • the composition adjustment operation is to increase the CO 2 composition ratio of the mixed refrigerant circulating in the main circuit portion 101.
  • each of the first valve 8, the second valve 9 and the fifth valve 16 is open.
  • the second expansion valve 12 is closed.
  • Each of the third valve 14, the fourth valve 15 and the sixth valve 17 is closed.
  • the first refrigerant separated by the composition separation membrane 7 flows in the order of the composition separator 6, the fifth valve 16, the internal heat exchanger 3, the flow path resistor 10, the refrigerant storage container 11, and the second valve 9, It flows into the circuit unit 101.
  • CO 2 refrigerant as a second refrigerant separated in composition separation membrane 7, the composition separator 6, the first valve 8, flows in the order of the second valve 9, and flows into the main circuit 101.
  • each of the first valve 8, the second valve 9, the third valve 14, the fourth valve 15, the fifth valve 16 and the sixth valve 17 is closed.
  • the second expansion valve 12 is closed.
  • the refrigerant compressed by the compressor 1 flows into the condenser 2 and circulates through the main circuit portion 101.
  • the refrigerant compressed by the compressor 1 does not circulate in the composition adjustment unit 102 because the above-described valves are closed.
  • the second composition adjustment operation is not in the first embodiment.
  • the composition ratio of carbon dioxide of the mixed refrigerant circulating in the main circuit portion 101 decreases. That is, in the second composition adjustment operation, the CO 2 composition ratio of the mixed refrigerant circulating in the main circuit portion 101 is reduced.
  • the second composition adjustment operation is performed after the refrigeration operation.
  • the refrigerant storage container 11 stores the second refrigerant separated by the composition separator 6.
  • the switching device 40 is switched to cause the first refrigerant separated by the composition separator 6 to flow out of the composition adjustment circuit 30 to the main circuit unit 101.
  • Each of the second valve 9 and the fifth valve 16 is closed.
  • Each of the first valve 8, the third valve 14, the fourth valve 15 and the sixth valve 17 is open.
  • the second expansion valve 12 is open.
  • the second refrigerant separated by the composition separation film 7 flows in the order of the composition separator 6, the first valve 8, the third valve 14, the second internal heat exchanger 13, and the refrigerant storage container 11.
  • the second refrigerant is cooled and liquefied in the second internal heat exchanger 13 and stored in the refrigerant storage container 11. Since the second refrigerant stored in the refrigerant storage container 11 gradually increases with the passage of time, the composition ratio of carbon dioxide as the second refrigerant in the mixed refrigerant circulating in the main circuit portion 101 gradually decreases (CO 2 poor) . Whether or not the mixed refrigerant has reached the set composition ratio is determined from the relationship between the pressure of the mixed refrigerant and the saturation temperature, as in the composition adjustment operation of the first embodiment.
  • the second refrigerant separated by the composition separation film 7 flows in the order of the composition separator 6, the first valve 8, and the fourth valve 15.
  • the first refrigerant separated by the composition separation film 7 flows through the sixth valve 17.
  • composition recovery operation is performed after the second composition adjustment operation.
  • each of the second valve 9 and the fifth valve 16 is open.
  • Each of the first valve 8, the third valve 14, the fourth valve 15 and the sixth valve 17 is closed.
  • the second expansion valve 12 is closed.
  • the composition ratio of carbon dioxide stored in the refrigerant storage container 11 is It is mixed with a low mixed refrigerant or a mixed refrigerant with a high composition ratio of carbon dioxide.
  • the composition ratio of the mixed refrigerant circulating in the main circuit unit 101 changes so as to approach the composition ratio of the mixed refrigerant at the time of sealing. .
  • the composition ratio of the mixed refrigerant circulating in the main circuit portion 101 can be returned to the composition ratio of the mixed refrigerant at the time of sealing.
  • the first refrigerant separated by the composition separation film 7 flows in the order of the composition separator 6, the fifth valve 16, the second internal heat exchanger 13, the flow path resistor 10, and the refrigerant storage container 11.
  • the refrigerant leakage operation is performed after the composition recovery operation.
  • the switching device 40 is switched to cause the second refrigerant stored in the refrigerant storage container 11 to flow out to the main circuit portion 101.
  • the fourth valve 15 is open.
  • Each of the first valve 8, the second valve 9, the third valve 14, the fifth valve 16 and the sixth valve 17 is closed.
  • the second expansion valve 12 is open.
  • the mixed refrigerant having a high composition ratio of carbon dioxide By releasing the mixed refrigerant having a high composition ratio of carbon dioxide from the refrigerant storage container 11 to the main circuit portion 101, it is possible to increase the carbon dioxide concentration of the mixed refrigerant released from the leakage point in the main circuit portion 101 become.
  • the refrigerant compressed by the compressor 1 flows into the condenser 2 and circulates through the main circuit portion 101.
  • the refrigerant compressed by the compressor 1 does not circulate in the composition adjustment unit 102 because the above-described valves are closed.
  • the second refrigerant stored in the refrigerant storage container 11 flows through the fourth valve 15 and flows out to the main circuit portion 101.
  • FIG. 14 shows the relationship between the composition ratio of carbon dioxide (CO 2 composition ratio) and the 65 ° C. saturated fluid pressure (withstand pressure).
  • the 65 ° C. saturated hydraulic pressure pressure resistance
  • the horizontal axis in FIG. 7 is the CO 2 composition ratio
  • the vertical axis is the 65 ° C. saturated fluid pressure (withstand pressure).
  • the CO 2 composition ratio increases from right to left in the figure.
  • the 65 ° C. saturated hydraulic pressure increases from the bottom to the top in the figure.
  • the 65 ° C. saturated fluid pressure increases as the composition ratio of carbon dioxide increases.
  • the switching device 40 mainly supplies the first refrigerant separated by the composition separator 6 from the composition adjustment circuit 30. It is switched to flow out to the circuit unit 101. For this reason, it is possible to lower the composition ratio of high pressure carbon dioxide among the mixed refrigerant circulating in the main circuit portion 101. Thereby, the pressure of the mixed refrigerant can be reduced. Therefore, an excessive pressure rise can be suppressed, for example, when operating at high outside air.
  • the switching device 40 switches to the refrigerant storage container 11. It is switched so that the stored second refrigerant flows out to the main circuit unit 101. For this reason, the concentration of carbon dioxide in the refrigerant that has leaked when the refrigerant leaks can be maintained high. This can reduce the risk of combustion of the leaked mixed refrigerant.
  • the switching device 40 has the seventh valve 18.
  • the seventh valve 18 is disposed between the internal heat exchanger 3 and the flow path resistor 10.
  • the switching device drive unit 25 of the control device 20 controls the valve opening degree of the seventh valve 18 by controlling a drive source such as a motor (not shown) attached to the seventh valve 18. Do.
  • the refrigeration cycle apparatus 100 includes the refrigerant leakage detection unit 70.
  • the refrigerant leakage detection unit 70 is configured to detect the leakage of the mixed refrigerant from the main circuit unit 101.
  • the refrigerant leak detection unit 70 is disposed between the internal heat exchanger 3 and the expansion valve 4 in the main circuit unit 101.
  • the refrigerant leakage operation is performed after the composition adjustment operation in the first embodiment of the present invention.
  • the switching device 40 is switched to cause the second refrigerant separated by the composition separator 6 to flow out from the composition adjustment circuit 30 to the main circuit unit 101.
  • the switching is performed so as not to cause both the first refrigerant and the second refrigerant to flow out of the composition adjustment circuit 30 to the main circuit unit 101.
  • the first valve 8, the second valve 9, and the seventh valve 18 are set in a closed state. Therefore, it is possible to confine the first refrigerant having a low composition ratio of carbon dioxide in the refrigerant storage container 11 at the time of refrigerant leakage.
  • the switching device 40 controls the first refrigerant and the first refrigerant.
  • the two refrigerants are switched so as not to flow out of the composition adjustment circuit 30 to the main circuit unit 101. Therefore, the first refrigerant having a low composition ratio of carbon dioxide can be confined in the refrigerant storage container 11 when the refrigerant leaks. For this reason, when the mixed refrigerant leaks from the main circuit portion 101, the concentration of the first refrigerant having a low composition ratio of carbon dioxide flowing through the main circuit portion 101 can be lowered. This can reduce the risk of combustion of the leaked mixed refrigerant.

Abstract

冷凍サイクル装置(100)は、圧縮機(1)、凝縮器(3)および膨張弁(4)を有し、かつ圧縮機(1)、凝縮器(3)、膨張弁(4)の順に、第1冷媒と第1冷媒よりも密度が大きい第2冷媒とを有する混合冷媒が流れる主回路部(101)と、主回路部(101)に接続された組成調節部(102)とを備えている。組成調節部(102)は、組成分離器(6)と、冷媒貯留容器(11)と、組成調節回路(30)とを有する。組成分離器(6)は、主回路部(101)から流入するガス状態の混合冷媒を第1冷媒と第2冷媒とに分離する組成分離膜(7)を有する。冷媒貯留容器(11)は、組成分離器(6)で分離された第1冷媒を貯留する。組成調節回路(30)は、主回路部(101)と、組成分離器(6)と、冷媒貯留容器(11)とを接続する。組成調節回路(30)は、切替装置(40)を有する。

Description

冷凍サイクル装置および組成調節装置
 本発明は、冷凍サイクル装置および組成調節装置に関するものである。
 従来、冷凍サイクル装置を流れる混合冷媒の組成の内、一部の組成の濃度を高めることで、冷凍サイクル装置の冷凍能力を向上させる技術がある。たとえば、特開平4-263745号公報(特許文献1)には、混合冷媒の組成比率を可変することができる冷凍装置が記載されている。この冷凍装置は、混合冷媒の内の一部の冷媒の透過を容易とする機能膜を有する冷媒分離器を備えている。冷媒分離器は、凝縮器と蒸発器との間に接続されている。
特開平4-263745号公報
 上記公報に記載された冷凍装置では、冷媒分離器が凝縮器と蒸発器との間に接続されているため、冷媒分離器には液状態または気液二相状態の混合冷媒が流入する。したがって、機能膜において混合冷媒の組成を分離する効率が悪いという問題がある。
 本発明は上記課題に鑑みてなされたものであり、その目的は、混合冷媒の組成を分離する効率を向上させることができる冷凍サイクル装置および組成調節装置を提供することである。
 本発明の冷凍サイクル装置は、圧縮機、凝縮器および膨張弁を有し、かつ圧縮機、凝縮器、膨張弁の順に、第1冷媒と第1冷媒よりも密度が大きい第2冷媒とを有する混合冷媒が流れる主回路部と、主回路部に接続された組成調節部とを備えている。組成調節部は、組成分離器と、冷媒貯留容器と、組成調節回路とを有する。組成分離器は、主回路部から流入するガス状態の混合冷媒を第1冷媒と第2冷媒とに分離する組成分離膜を有する。冷媒貯留容器は、組成分離器で分離された第1冷媒を貯留する。組成調節回路は、主回路部と、組成分離器と、冷媒貯留容器とを接続する。組成調節回路は、切替装置を有する。切替装置は、組成分離器で分離された第1冷媒および第2冷媒のいずれか一方を組成調節回路から主回路部に流出させるか、組成分離器で分離された第1冷媒および第2冷媒の両方を組成調節回路から主回路に流出させないかを切り替える。
 本発明の冷凍サイクル装置によれば、組成分離器は主回路部から流入するガス状態の混合冷媒を第1冷媒と第2冷媒とに分離する組成分離膜を有する。このため、混合冷媒の組成を分離する効率を向上させることができる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態1に係る組成分離器の構成を概略的に示す斜視図である。 本発明の実施の形態1に係る冷凍サイクル装置の機能ブロック図である。 本発明の実施の形態1に係る冷凍サイクル装置の組成調整運転における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の冷凍運転における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の組成回復運転における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置の冷媒におけるCO組成比と冷凍能力およびCOPとの関係を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の組成調整運転(CO組成比を増加させる)における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷凍運転における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の組成調整運転(CO組成比を減少させる)における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の組成回復運転における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒漏洩時運転における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒におけるCO組成比と65℃飽和液圧との関係を示す図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒漏洩時運転における冷媒の流れを示す冷媒回路図である。
 以下、本発明の実施の形態について図に基づいて説明する。
 実施の形態1.
 図1~図3を参照して、本発明の実施の形態1に係る冷凍サイクル装置100の構成について説明する。本実施の形態に係る冷凍サイクル装置100は、たとえば、コンデンシングユニットおよびクーリングユニットを備えた冷凍装置である。また、本実施の形態に係る冷凍サイクル装置100は、たとえば空気調和装置などであってもよい。また、本実施の形態に係る冷凍サイクル装置100は、冷凍だけでなく、冷房または暖房に用いられてもよい。
 本実施の形態に係る冷凍サイクル装置100は、主回路部(冷凍サイクル回路)101と、主回路部101に接続された組成調節部(組成調節装置)102とを備えている。主回路部101と、組成調節部102とは冷媒回路を構成している。主回路部101は、圧縮機1と、凝縮器2と、内部熱交換器3と、膨張弁4と、蒸発器5と、制御装置20と、圧力測定装置50と、温度測定装置60とを備えている。組成調節部102は、組成分離器6と、流路抵抗体10と、冷媒貯留容器11、組成調節回路30とを有している。組成調節回路30は、切替装置40を有している。切替装置40は、第1弁8と、第2弁9とを有している。
 本実施の形態に係る冷凍サイクル装置100では、主回路部101のうち圧縮機1、凝縮器2、内部熱交換器3と、膨張弁4と、組成調節部102とは、コンデンシングユニットを構成している。このコンデンシングユニットは室外機を構成している。主回路部101のうち蒸発器5は、クーリングユニットを構成している。このクーリングユニットは室内機を構成している。
 主回路部101においては、圧縮機1、凝縮器2、内部熱交換器3、膨張弁4、蒸発器5は、この順に配管で接続されている。主回路部101は、基礎配管101aと、延長配管101bとを有している。基礎配管101aは、圧縮機1、凝縮器2、内部熱交換器3、膨張弁4、蒸発器5の少なくともいずれかに直接接続されている配管である。延長配管101bは、基礎配管101aに接続されている。本実施の形態では、延長配管101bは、内部熱交換器3と膨張弁4との間に設置されている。基礎配管101aと延長配管101bとの接続部分は、たとえばフレア接続またはろう付けにより接続されている。
 主回路部101は、圧縮機1、凝縮器2、内部熱交換器3、膨張弁4、蒸発器5の順に混合冷媒が流れるように構成されている。この混合冷媒は、第1冷媒と、第1冷媒よりも密度が大きい第2冷媒とを有する。本実施の形態における第1冷媒は可燃冷媒であり、第2冷媒は不燃冷媒である。第1冷媒は複数種類の冷媒を含んでいてもよい。第2冷媒は複数種類の冷媒を含んでいてもよい。なお、第2冷媒は1種類の冷媒であることが好ましい。この第2冷媒は、具体的には二酸化炭素(CO)である。つまり、本実施の形態における混合冷媒は、冷媒組成中に二酸化炭素を含む二酸化炭素混合冷媒(CO混合冷媒)である。この混合冷媒は、具体的には、たとえばR32/R125/R134A/R1234yf/CO(36/30/14/14/6質量%)の組成を有している。
 圧縮機1は吸入した混合冷媒を圧縮して吐出するように構成されている。圧縮機1は容量可変に構成されている。本実施の形態における圧縮機1は回転数を可変に制御可能に構成されている。具体的には、制御装置20からの指示に基づいて駆動周波数が変更されることにより、圧縮機1の回転数が調整される。これにより、圧縮機1の容量が変化する。この圧縮機1の容量は単位時間あたりの冷媒を送り出す量である。つまり、圧縮機1は容量を変化させて運転を行うことができる。たとえば、高容量の運転では、圧縮機1の駆動周波数を高くすることにより冷媒回路を循環する混合冷媒の流量を多くして運転が行われる。また、低容量の運転では、圧縮機1の駆動周波数を低くすることにより冷媒回路を循環する混合冷媒の流量を少なくして運転が行われる。
 凝縮器2は圧縮機1により圧縮された混合冷媒を凝縮するように構成されている。凝縮器2は、たとえばパイプとフィンとで構成された空気熱交換器である。内部熱交換器3は、主回路部101において凝縮器2と膨張弁4との間に配置されている。内部熱交換器3は凝縮器2で凝縮された冷媒が流入するように構成されている。また、内部熱交換器3は組成分離器6で分離された混合冷媒が流入するように構成されている。そして、内部熱交換器3は、凝縮器2により凝縮された混合冷媒と、組成分離器6で分離された第1冷媒とを熱交換させるように構成されている。
 膨張弁4は、凝縮器2により凝縮された混合冷媒を減圧するように構成されている。膨張弁4は、たとえば電磁弁である。蒸発器5は、膨張弁4により減圧された混合冷媒を蒸発するように構成されている。蒸発器5は、たとえばパイプとフィンとで構成された空気熱交換器である。
 圧力測定装置50は混合冷媒の圧力を測定するように構成されている。温度測定装置60は混合冷媒の温度を測定するように構成されている。圧力測定装置50および温度測定装置60の各々は主回路部101の高圧側に設置されている。この主回路部101の高圧側とは、主回路部101において圧縮機1の吐出側から膨張弁4までの部分である。本実施の形態では、圧力測定装置50は、主回路部101において圧縮機1と凝縮器2との間に設置されている。また、温度測定装置60は、主回路部101において凝縮器2に設置されている。具体的には、温度測定装置60は、凝縮器2において混合冷媒の二相温度を測定可能な位置に設置されている。
 組成調節部102は、圧縮機1の吐出側および吸入側に配管で接続されている。組成分離器6は、圧縮機1の吐出側に配管で接続されている。つまり、組成分離器6は、主回路部101においてガス状態の混合冷媒が流れるガス部に接続されている。
 組成分離器6は組成分離膜7を有している。組成分離膜7は、主回路部101から流入するガス状態の混合冷媒を第1冷媒と第2冷媒とに分離可能に構成されている。組成分離膜7は、第1冷媒と第2冷媒との分子サイズの差または第2冷媒の分子ゲートにより、化学的に第2冷媒を分離可能である。本実施の形態では、組成分離膜7は二酸化酸素のみを分離可能である。組成分離膜7は、組成分離膜7に作用する高圧側と低圧側の圧力差により、第2冷媒を分離する。
 組成分離器6は、内部熱交換器3を経由して流路抵抗体10に配管で接続されている。流路抵抗体10は、組成分離器6から内部熱交換器3を経由して冷媒貯留容器11に至る流路の流路抵抗として機能するように構成されている。この流路抵抗体10により第1冷媒の流量が調整される。これにより、第2冷媒の流量も調整される。流路抵抗体10は、たとえばキャピラリである。流路抵抗体10は冷媒貯留容器11に配管で接続されている。つまり、組成分離器6は、内部熱交換器3および流路抵抗体10を介して冷媒貯留容器11に配管で接続されている。
 冷媒貯留容器11は、内部熱交換器3で凝縮されて液化した混合冷媒を一時的に貯留する容器である。冷媒貯留容器11は、組成分離器6で分離された第1冷媒を貯留するように構成されている。本実施の形態では、冷媒貯留容器11は、内部熱交換器3で熱交換されることにより液化された第1冷媒を貯留することができる。
 組成調節回路30は、主回路部101と、組成分離器6と、冷媒貯留容器11とを接続するように構成されている。組成調節回路30は、組成分離器6と冷媒貯留容器11および主回路部101と冷媒貯留容器11とを接続するように分岐している。つまり、冷媒貯留容器11は、組成調節回路30を介して組成分離器6と主回路部101とにそれぞれ接続されている。
 切替装置40は、組成分離器6で分離された第1冷媒および第2冷媒のいずれか一方を組成調節回路30から主回路部101に流出させるか、組成分離器6で分離された第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないかを切り替えるように構成されている。本実施の形態では、第1弁8および第2弁9の各々が開閉されることにより、組成調節回路30が切り替えられる。
 組成調節回路30において組成分離器6と冷媒貯留容器11との間に第1弁8が配置されている。また、第1弁8は、組成調節回路30において組成分離器6と第2弁9との間に配置されている。第1弁8は、組成分離器6と、冷媒貯留容器11と、第2弁9との間で組成調節回路30を開閉可能に構成されている。
 組成調節回路30において主回路部101と冷媒貯留容器11との間に第2弁9が配置されている。また、第2弁9は、組成調節回路30において主回路部101と第1弁8との間に配置されている。第2弁9は、主回路部101と、冷媒貯留容器11と、第1弁8との間で組成調節回路30を開閉可能に構成されている。
 組成調節部102は、主回路部101において、圧縮機1と凝縮器2との間と、圧縮機1と膨張弁4との間とに接続されている。つまり、組成調節部102は、主回路部101において、圧縮機1と凝縮器2との間と、圧縮機1と膨張弁4との間とにまたがるように接続されている。本実施の形態においては、蒸発器5は圧縮機1と膨張弁4との間に配置されている。そして、組成調節部102は、主回路部101において圧縮機1と蒸発器5との間に接続されている。つまり、組成調節部102は、圧縮機1と凝縮器2との間と、圧縮機1と蒸発器5との間とにまたがるように接続されている。
 続いて、図1および図2を参照して、本実施の形態に係る組成分離器6について詳しく説明する。組成分離器6は、容器61と、流入管62と、第1冷媒流出管63と、第2冷媒流出管64とを有している。
 容器61は円柱形状に構成されている。容器61の内部に組成分離膜7が配置されている。組成分離膜7は円筒形状に構成されている。組成分離膜7の円筒形状の軸方向は、容器61の円柱形状の軸方向に沿うように配置されている。組成分離膜7は、容器61の内部の上端から下端まで連続して延在している。
 流入管62は、主回路部101と組成分離器6とを接続する配管に接続されている。流入管62は、容器61の下部において容器61の側面に接続されている。流入管62は、容器61の側面を貫通して組成分離膜7の円筒形状の内側空間に挿入されている。流入管62は、混合冷媒を組成分離膜7の円筒形状の内側空間に流入させるように構成されている。
 第1冷媒流出管63は、内部熱交換器3と組成分離器6とを接続する配管に接続されている。第1冷媒流出管63は、容器61の上面に接続されている。第1冷媒流出管63は、容器61の上面に設けられた貫通孔を通じて組成分離膜7の円筒形状の内部空間に連通している。
 第2冷媒流出管64は、第1弁8と組成分離器6とを接続する配管に接続されている。第2冷媒流出管64は、容器61の上部において容器61の側面に接続されている。第2冷媒流出管64は、容器61の側面に設けられた貫通孔を通じて組成分離膜7の円筒形状の外側空間に連通している。つまり、第2冷媒流出管64は、組成分離膜7の側面の外周面と容器61の側面の内周面との間に設けられた空間に連通している。
 流入管62から組成分離膜7の円筒形状の内側空間に流入した混合冷媒は、組成分離膜7によって第1冷媒と第2冷媒とに分離される。つまり、組成分離膜7は第1冷媒を通過させずに第2冷媒を通過させる。このため、組成分離膜7を通過しない第1冷媒は第1冷媒流出管63から流出し、組成分離膜7を通過した第2冷媒は第2冷媒流出管64から流出する。
 続いて、図1および図3を参照して、本実施の形態に係る冷凍サイクル装置100の制御装置20について詳しく説明する。
 制御装置20は、演算、指示等を行って冷凍サイクル装置100の各手段、機器等を制御するように構成されている。制御装置20は、特に、圧縮機1、膨張弁4、第1弁8および第2弁9のそれぞれに電気的に接続されており、これらの動作を制御する。
 制御装置20は、制御部21と、タイマー22と、圧縮機駆動部23と、膨張弁駆動部24と、切替装置駆動部25と、圧力測定部26と、温度測定部27とを主に有している。
 制御部21は、タイマー22、圧力測定部26、温度測定部27からの信号に基づいて、圧縮機駆動部23、膨張弁駆動部24および切替装置駆動部25を制御するためのものである。
 タイマー22は、時間を測定し、時間に基づく信号を制御部21に送信するためのものである。圧縮機駆動部23は、制御部21からの信号に基づいて圧縮機1を駆動させるためのものである。具体的には、圧縮機駆動部23は、圧縮機1のモータ(図示せず)に流す交流電流の周波数を制御することにより圧縮機1のモータの回転数を制御する。
 膨張弁駆動部24は、制御部21からの信号に基づいて膨張弁4を駆動させるためのものである。具体的には、膨張弁駆動部24は、膨張弁4に取り付けられたモータ(図示せず)などの駆動源を制御することにより膨張弁4の弁開度を制御する。
 切替装置駆動部25は、制御部21からの信号に基づいて切替装置40を駆動させるためのものである。具体的には、切替装置駆動部25は、第1弁8および第2弁9の各々に取り付けられたモータ(図示せず)などの駆動源を制御することにより第1弁8および第2弁9の各々の弁開度を制御する。
 圧力測定部26は、圧力測定装置50からの信号に基づいて混合冷媒の圧力を測定し、圧力に基づく信号を制御部21に送信するためのものである。温度測定部27は、温度測定装置60からの信号に基づいて混合冷媒の温度を測定し、温度に基づく信号を制御部21に送信するためのものである。
 次に、主に図4~図6を参照して、本実施の形態に係る冷凍サイクル装置100の各運転について説明する。図4~図6においては、冷媒の流れる方向が矢印で示されている。また、図4~図6においては、白く示された弁は開いた状態であり、黒く示された弁は閉じた状態である。なお、これらについては、後述する図9~図13および図16も同様である。
 まず、図4を参照して、本実施の形態に係る冷凍サイクル装置100の組成調整運転について説明する。冷凍サイクル装置100の主回路部101においては、圧縮機1、凝縮器2、内部熱交換器3、膨張弁4、蒸発器5の順に混合冷媒が流れる。圧縮機1の吐出側から吐出された混合冷媒は、凝縮器2、内部熱交換器3、膨張弁4、蒸発器5を順に流れて、圧縮機1の吸入側に流入し、再び圧縮機1の吐出側から吐出される。このようにして、混合冷媒は、主回路部101を循環する。
 組成調節部102においては、圧縮機1の吐出側から組成分離器6に混合冷媒が流入する。組成分離器6は、主回路部101から流入するガス状の混合冷媒を第1冷媒と第2冷媒とに組成分離膜7で分離する。したがって、組成分離器6に流入した混合冷媒は第1冷媒と第2冷媒とに分離される。本実施の形態では、組成分離膜7で第1冷媒と、第2冷媒としてのCO冷媒とが分離される。組成調節部102においては、冷媒貯留容器11は、組成分離器6で分離された第1冷媒を貯留する。切替装置40は、組成分離器6で分離された第2冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。組成調整運転では、第1弁8および第2弁9の各々は開いている。
 組成分離膜7で分離された第1冷媒は、組成分離器6、内部熱交換器3、流路抵抗体10、冷媒貯留容器11、第2弁9の順に流れて、主回路部101に流入する。組成分離膜7を通過することにより第1冷媒における二酸化酸素の組成比は低くなる(COプア)。この二酸化炭素の組成比が低くなった第1冷媒は、内部熱交換器3で冷却されて液体状態になり、冷媒貯留容器11に貯留される。また、組成分離膜7で分離された第2冷媒としてのCO冷媒は、組成分離器6、第1弁8、第2弁9の順に流れて、主回路部101に流入する。
 組成調整運転においては、時間経過とともに冷媒貯留容器11に貯留される第1冷媒が徐々に増えるため、主回路部101を循環する混合冷媒における二酸化炭素の組成比は徐々に高くなる(COリッチ)。なお、混合冷媒が設定された組成比に達したか否かは、混合冷媒の圧力と飽和温度との関係より判断される。混合冷媒の圧力が一定であっても混合冷媒の組成比によって混合冷媒の飽和温度が変化する。そのため、混合冷媒の飽和温度を測定することによって混合冷媒の組成比を推定することが可能となる。この混合冷媒の設定された組成比は、必要な冷凍能力を実現できる混合冷媒の組成比である。混合冷媒が組成比に応じ、あるクオリティ(乾き度)での飽和温度が変化する特性を利用して、混合冷媒が設定された組成比に達したか否かが判断される。
 混合冷媒の圧力は、圧力測定装置50により測定される。混合冷媒の飽和温度は、温度測定装置60により測定される。混合冷媒の飽和温度は、混合冷媒の二相温度を測定することにより測定される。圧力測定装置50および温度測定装置60は、混合冷媒の圧力が略等しい位置に配置される。主回路部101の高圧側においては、混合冷媒の圧力は略等しくなる。そのため、圧力測定装置50および温度測定装置60は、主回路部101の高圧側に配置される。温度測定装置60は、クオリティ(乾き度)を推定可能な位置に設置される。温度測定装置60は、混合冷媒の飽和液の温度を測定してもよい。これにより、クオリティ(乾き度)を確実に推定することが可能となる。
 続いて、図5を参照して、冷凍運転について説明する。冷凍運転は組成調整運転の後に行われる。冷凍サイクル装置100の組成調節部102においては、切替装置40は、組成分離器6で分離された第2冷媒を組成調節回路30から主回路部101に流出させるように切り替えられた後に、第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないように切り替えられる。冷凍運転では、第1弁8および第2弁9の各々は閉じている。そのため、主回路部101を循環する混合冷媒の組成比は、組成調整運転で調整された混合冷媒の組成比に維持される。組成調整運転によって主回路部101を循環する混合冷媒の二酸化炭素の組成比は、封入時の二酸化炭素の組成比に対して高くなっている(COリッチ)。封入時に比べて混合冷媒の二酸化炭素の組成比が高くなることにより混合冷媒の密度が増加するため、冷媒循環量が増加する。これにより、冷凍能力または暖房能力が向上する。
 冷凍能力または暖房能力は、次の式(1)で示される。つまり、冷凍能力または暖房能力は、吸入密度、ストロークボリューム、体積効率および熱交換器出入口エンタルピ差の各々を乗じたものである。吸入密度は、圧縮機1の吸入側における混合冷媒の密度である。ストロークボリュームは、圧縮機1の押しのけ量である。体積効率は、圧縮機1の押しのけ量に対する圧縮機1の実際の吸込み蒸気量との比である。熱交換器出入口エンタルピ差は、蒸発器5の入口における混合冷媒のエンタルピから蒸発器5の出口における混合冷媒のエンタルピを減じたものである。
 冷凍(暖房)能力=吸入密度×ストロークボリューム×体積効率×熱交換器出入口エンタルピ差 (1)
 続いて、図6を参照して、組成回復運転について説明する。組成回復運転は冷凍運転の後に行われる。冷凍サイクル装置100の組成調節部102においては、切替装置40は、第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないように切り替えられた後に、第1冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。組成回復運転では、第1弁8は閉じており、第2弁9は開いている。そのため、主回路部101を循環する二酸化炭素の組成比が高くなった混合冷媒は、組成分離器6および内部熱交換器3を通過して冷媒貯留容器11に流入する。これにより、主回路部101から流入した二酸化炭素の組成比が高くなった混合冷媒は、冷媒貯留容器11に貯留された二酸化炭素の組成比が低くなった混合冷媒と混合される。この冷媒貯留容器11において混合された混合冷媒が主回路部101に流入することにより、主回路部101を循環する混合冷媒の組成比は、封入時の混合冷媒の組成比に徐々に近づくように変化する。組成調整運転と同様に、混合冷媒が設定された組成比に達したか否かは、混合冷媒の圧力と飽和温度との関係より判断される。
 次に、本実施の形態に係る冷凍サイクル装置100の作用効果について説明する。
 図7は、二酸化酸素の組成比(CO組成比)と冷凍能力およびCOP(Coefficient Of Performance:成績係数)との関係を示している。図7の横軸はCO組成比であり、縦軸は冷凍能力およびCOPの100%を基準とした比である。図7の横軸においては、図中左から右に向かってCO組成比が高くなる。図7の縦軸においては、図中下から上に向かって比が高くなる。図7を参照して、二酸化酸素の組成比(CO組成比)が高くなるにつれて冷凍能力が高くなる。
 本実施の形態に係る冷凍サイクル装置100によれば、組成分離器6は主回路部101から流入するガス状態の混合冷媒を第1冷媒と第2冷媒とに分離する組成分離膜7を有する。液状態または気液二相状態の混合冷媒の組成を分離するよりもガス状態の混合冷媒の組成を分離するほうが設定された組成比に分離するまでの時間を短くすることができる。したがって、混合冷媒の組成を分離する効率を向上させることができる。
 また、主回路部101から流入するガス状態の混合冷媒が組成分離膜7により第1冷媒と第2冷媒とに分離される。組成分離器6で分離された第1冷媒は冷媒貯留容器11に貯留される。切替装置40が組成分離器6で分離された第2冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。したがって、組成調節部102により主回路部101を流れる混合冷媒の第2冷媒の濃度を高めることができる。これにより、冷凍サイクル装置100の冷凍能力または加熱能力を向上させることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、組成調節部102は、主回路部101において、圧縮機1と凝縮器2との間と、圧縮機1と膨張弁4との間とに接続されている。このため、組成調節部102を主回路部101の高圧側と低圧側とに接続することができる。したがって、主回路部101の高圧側と低圧側との圧力差により組成分離膜7で第1冷媒と第2冷媒とを分離することができる。
 本実施の形態に係る冷凍サイクル装置100によれば、組成調節部102は、主回路部101において圧縮機1と蒸発器5との間に接続されている。このため、組成調節部102が接続される主回路部101の高圧側と低圧側との圧力差を最大化することができる。したがって、主回路部101の高圧側と低圧側との最大化された圧力差により組成分離膜7で第1冷媒と第2冷媒とを分離することができる。
 本実施の形態に係る冷凍サイクル装置100によれば、上記の組成調整運転に示されるように、切替装置40は、組成分離器6で分離された第2冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。これにより、主回路部101を流れる混合冷媒の第2冷媒の濃度を高めることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、上記の冷凍運転に示されるように、切替装置40は、組成分離器6で分離された第2冷媒を組成調節回路30から主回路部101に流出させるように切り替えられた後に、第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないように切り替えられる。これにより、主回路部101を循環する混合冷媒の密度を増加させすることができる。したがって、冷媒循環量を増加させることができる。よって、冷凍能力または暖房能力を向上させることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、上記の組成回復運転に示されるように、切替装置40は、第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないように切り替えられた後に、第1冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。これにより、主回路部101を循環する混合冷媒の組成比を封入時の混合冷媒の組成比に戻すことができる。このため、混合冷媒の圧力を下げることができる。よって、外気温が高いことにより耐圧を超えるような状況となった場合に、混合冷媒の圧力を下げて耐圧を維持しながら冷凍能力または暖房能力を向上させることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、組成分離膜7は、第1冷媒と第2冷媒との分子サイズの差または第2冷媒の分子ゲートにより、化学的に第2冷媒を分離可能である。このため、組成分離膜7により第2冷媒のみを分離することができる。したがって、混合冷媒から第2冷媒を分離する分離効率を向上させることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、組成分離膜7は、組成分離膜7に作用する高圧側と低圧側の圧力差により、第2冷媒を分離する。したがって、組成分離器6で第2冷媒を分離するための別個の動力が不要となる。
 本実施の形態に係る冷凍サイクル装置100によれば、圧力測定装置50および温度測定装置60は主回路部101の高圧側に設置されている。このため、圧力測定装置50および温度測定装置60で測定される混合冷媒の圧力が略等しくなる。これにより、混合冷媒が設定された組成比に達したか否かを混合冷媒の圧力と飽和温度との関係より精度良く判断することができる。
 本実施の形態に係る冷凍サイクル装置100によれば、第1冷媒は可燃冷媒であり、第2冷媒は不燃冷媒である。このため、主回路部101から混合冷媒が漏洩した時に、主回路部101を流れる混合冷媒の第2冷媒の濃度を高めることにより、混合冷媒が燃焼する危険を低下させることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、第2冷媒は、二酸化炭素である。このため、組成分離膜7として、既存の二酸化炭素を分離可能な分子ゲート膜を用いることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、主回路部101は、基礎配管101aと、基礎配管101aに接続された延長配管101bを有している。基礎配管101aと延長配管101bとの接続部分から混合冷媒は漏洩しやすい。そのため、当該接続部分から混合冷媒が漏洩した時に、主回路部101を流れる混合冷媒の第2冷媒の濃度を高めることにより、混合冷媒が燃焼する危険性を低下させることができる。
 実施の形態2.
 図8を参照して、本発明の実施の形態2に係る冷凍サイクル装置100の構成について説明する。本発明の実施の形態2においては、特に説明しない限り、上記の本発明の実施の形態1と同様の構成を備えているため、同一の要素については同一の符号を付し、その説明を繰り返さない。
 本実施の形態に係る冷凍サイクル装置100の組成調節部102は、組成分離器6と、流路抵抗体10と、冷媒貯留容器11、組成調節回路30と、第2膨張弁12と、第2内部熱交換器13とを備えている。第2膨張弁12および第2内部熱交換器13は、内部熱交換器3と膨張弁4との間と、圧縮機1と蒸発器5との間とに接続されている。第2膨張弁12は、内部熱交換器3と膨張弁4との間と、第2内部熱交換器13との間に配置されている。第2内部熱交換器13は、第2膨張弁12と、圧縮機1と蒸発器5との間との間に配置されている。第2膨張弁12は、凝縮器2により凝縮された混合冷媒を減圧するように構成されている。第2膨張弁12は、たとえば電磁弁である。第2内部熱交換器13は第2膨張弁12で減圧された混合冷媒が流入するように構成されている。そして、第2内部熱交換器13は、第2膨張弁12により減圧された混合冷媒と、組成分離器6で分離された第1冷媒とを熱交換させるように構成されている。
 切替装置40は、第1弁8、第2弁9、第3弁14、第4弁15、第5弁16、第6弁17を有している。第3弁14は、組成調節回路30において第1弁8と冷媒貯留容器11との間と、第2内部熱交換器13との間に配置されている。また、第3弁14は、組成調節回路30において第1弁8と第2弁9および第4弁15の各々との間と、第2内部熱交換器13との間に配置されている。第4弁15は、第2弁9と冷媒貯留容器11との間と、第2内部熱交換器13と圧縮機1との間とに配置されている。また、第4弁15は、第1弁8と第2弁9との間と、第2内部熱交換器13と圧縮機1との間に配置されている。第5弁16は、内部熱交換器3と組成分離器6との間に配置されている。第6弁17は、圧縮機1と凝縮器2との間と組成分離器6との間に配置されている。第2内部熱交換器13には、冷媒流路が2つある。2つのうち一方の第2膨張弁12につながっている冷媒回路には第4弁15がつながっている。2つのうち他方の第2膨張弁12につながっていない冷媒回路には第3弁14がつながっている。
 本実施の形態では、制御装置20の切替装置駆動部25は、第3弁14、第4弁15、第5弁16、第6弁17の各々に取り付けられたモータ(図示せず)などの駆動源を制御することにより第3弁14、第4弁15、第5弁16、第6弁17の各々の弁開度を制御する。
 冷媒貯留容器11は、組成分離器6で分離された第1冷媒および第2冷媒を貯留するように構成されている。本実施の形態では、冷媒貯留容器11は、第1冷媒および第2冷媒の両方を貯留するように構成されている。冷媒貯留容器11は、第1弁8、第4弁15、第2内部熱交換器13を経由して、組成分離器6に接続されている。
 また、本実施の形態に係る冷凍サイクル装置100は冷媒漏洩検知部70を備えている。冷媒漏洩検知部70は、混合冷媒の主回路部101からの漏洩を検知するように構成されている。本実施の形態では、冷媒漏洩検知部70は、主回路部101において、内部熱交換器3と膨張弁4との間に配置されている。
 次に、主に図9~図13を参照して、本実施の形態に係る冷凍サイクル装置100の各運転について説明する。本実施の形態に係る冷凍サイクル装置100の各運転は、特に説明しない限り、上記の本発明の実施の形態1の各運転と同様であるため、その説明を繰り返さない。
 まず、図9を参照して、組成調整運転について説明する。組成調整運転においては、主回路部101を循環する混合冷媒の二酸化炭素の組成比が増加する。つまり、組成調整運転は、主回路部101を循環する混合冷媒のCO組成比を増加させるものである。組成調整運転では、第1弁8、第2弁9および第5弁16の各々は開いている。また、第2膨張弁12は閉じている。第3弁14、第4弁15および第6弁17の各々は閉じている。組成分離膜7で分離された第1冷媒は、組成分離器6、第5弁16、内部熱交換器3、流路抵抗体10、冷媒貯留容器11、第2弁9の順に流れて、主回路部101に流入する。また、組成分離膜7で分離された第2冷媒としてのCO冷媒は、組成分離器6、第1弁8、第2弁9の順に流れて、主回路部101に流入する。
 続いて、図10を参照して、冷凍運転について説明する。冷凍運転では、第1弁8、第2弁9、第3弁14、第4弁15、第5弁16および第6弁17の各々は閉じている。また、第2膨張弁12は閉じている。圧縮機1で圧縮された冷媒は、凝縮器2に流れ込んで主回路部101を循環する。他方、圧縮機1で圧縮された冷媒は、上記各弁が閉じているため組成調節部102を循環しない。
 続いて、図11を参照して、第2組成調整運転について説明する。第2組成調整運転は、実施の形態1にはない。第2組成調整運転においては、主回路部101を循環する混合冷媒の二酸化炭素の組成比が減少する。つまり、第2組成調整運転は、主回路部101を循環する混合冷媒のCO組成比を減少させるものである。第2組成調整運転は、冷凍運転の後に行われる。組成調節部102においては、冷媒貯留容器11は、組成分離器6で分離された第2冷媒を貯留する。切替装置40は、組成分離器6で分離された第1冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。第2弁9および第5弁16の各々は閉じている。第1弁8、第3弁14、第4弁15および第6弁17の各々は開いている。また、第2膨張弁12は開いている。
 組成分離膜7で分離された第2冷媒は、組成分離器6、第1弁8、第3弁14、第2内部熱交換器13、冷媒貯留容器11の順に流れる。第2冷媒は、第2内部熱交換器13で冷却されて液化されて冷媒貯留容器11に貯留される。時間経過とともに冷媒貯留容器11に貯留される第2冷媒が徐々に増えるため、主回路部101を循環する混合冷媒における第2冷媒である二酸化炭素の組成比は徐々に低くなる(COプア)。なお、混合冷媒が設定された組成比に達したか否かは、上記の実施の形態1の組成調整運転と同様に、混合冷媒の圧力と飽和温度との関係より判断される。組成分離膜7で分離された第2冷媒は、組成分離器6、第1弁8、第4弁15の順に流れる。また組成分離膜7で分離された第1冷媒は第6弁17を流れる。
 続いて、図12を参照して、組成回復運転について説明する。組成回復運転は、第2組成調整運転の後に行われる。組成回復運転では、第2弁9および第5弁16の各々は開いている。第1弁8、第3弁14、第4弁15および第6弁17の各々は閉じている。また、第2膨張弁12は閉じている。
 主回路部101から二酸化炭素の組成比が高い混合冷媒または二酸化炭素の組成比が低い混合冷媒が冷媒貯留容器11に流入することにより、冷媒貯留容器11に貯留されている二酸化炭素の組成比が低い混合冷媒または二酸化炭素の組成比が高い混合冷媒と混合される。この混合された冷媒が冷媒貯留容器11より流出し、主回路部101に戻ることにより、主回路部101を循環する混合冷媒の組成比が封入時の混合冷媒の組成比に近づくように変化する。これにより、主回路部101を循環する混合冷媒の組成比が封入時の混合冷媒の組成比に戻すことが可能となる。組成分離膜7で分離された第1冷媒は、組成分離器6、第5弁16、第2内部熱交換器13、流路抵抗体10、冷媒貯留容器11の順に流れる。
 続いて、図13を参照して、冷媒漏洩時運転について説明する。冷媒漏洩時運転は、組成回復運転の後に行われる。冷媒漏洩検知部70が混合冷媒の漏洩を検知すると、切替装置40は、冷媒貯留容器11に貯留された第2冷媒を主回路部101に流出させるように切り替えられる。冷媒漏洩時運転では、第4弁15は開いている。第1弁8、第2弁9、第3弁14、第5弁16および第6弁17の各々は閉じている。また、第2膨張弁12は開いている。二酸化炭素の組成比が高い混合冷媒が冷媒貯留容器11から主回路部101に放出されることにより、主回路部101における漏洩箇所から放出される混合冷媒の二酸化炭素濃度を高くすることが可能となる。圧縮機1で圧縮された冷媒は、凝縮器2に流れ込んで主回路部101を循環する。他方、圧縮機1で圧縮された冷媒は、上記各弁が閉じているため組成調節部102を循環しない。冷媒貯留容器11に貯留された第2冷媒は第4弁15流れて主回路部101に流出する。
 次に、本実施の形態に係る冷凍サイクル装置100の作用効果について説明する。
 図14は、二酸化炭素の組成比(CO組成比)と65℃飽和液圧(耐圧)との関係を示している。この65℃飽和液圧(耐圧)は、混合冷媒の温度が65℃のときの飽和液の圧力である。この65℃飽和液圧が実質的な耐圧に設定される。図7の横軸はCO組成比であり、縦軸は65℃飽和液圧(耐圧)である。図7の横軸においては、図中右から左に向かってCO組成比が高くなる。図7の縦軸においては、図中下から上に向かって65℃飽和液圧(耐圧)が高くなる。図14を参照して、二酸化酸素の組成比が高くなるにつれて65℃飽和液圧(耐圧)が高くなる。
 本実施の形態に係る冷凍サイクル装置100によれば、上記の第2組成調整運転に示されるように、切替装置40は、組成分離器6で分離された第1冷媒を組成調節回路30から主回路部101に流出させるように切り替えられる。このため、主回路部101を循環する混合冷媒のうち高圧の二酸化炭素の組成比を低くすることができる。これにより、混合冷媒の圧力を低下させることができる。したがって、たとえば高外気での運転時において過度の圧力上昇を抑えることができる。
 本実施の形態に係る冷凍サイクル装置100によれば、上記の冷媒漏洩時運転に示されるように、冷媒漏洩検知部70が混合冷媒の漏洩を検知すると、切替装置40は、冷媒貯留容器11に貯留された第2冷媒を主回路部101に流出させるように切り替えられる。このため、冷媒漏洩時に漏洩した冷媒中の二酸化炭素の濃度を高く保つことができる。これにより、漏洩した混合冷媒が燃焼する危険を低下させることができる。
 実施の形態3.
 図15を参照して、本発明の実施の形態3に係る冷凍サイクル装置100の構成について説明する。本発明の実施の形態3においては、特に説明しない限り、上記の本発明の実施の形態1と同様の構成を備えているため、同一の要素については同一の符号を付し、その説明を繰り返さない。
 本実施の形態に係る冷凍サイクル装置100では、切替装置40は第7弁18を有している。第7弁18は内部熱交換器3と流路抵抗体10との間に配置されている。本実施の形態では、制御装置20の切替装置駆動部25は、第7弁18に取り付けられたモータ(図示せず)などの駆動源を制御することにより第7弁18の弁開度を制御する。
 また、本実施の形態に係る冷凍サイクル装置100は冷媒漏洩検知部70を備えている。冷媒漏洩検知部70は、混合冷媒の主回路部101からの漏洩を検知するように構成されている。本実施の形態では、冷媒漏洩検知部70は、主回路部101において、内部熱交換器3と膨張弁4との間に配置されている。
 次に、主に図16を参照して、本実施の形態に係る冷媒漏洩時運転について説明する。冷媒漏洩時運転は、本発明の実施の形態1における組成調整運転の後に行われる。冷媒漏洩検知部70が混合冷媒の漏洩を検知すると、切替装置40は、組成分離器6で分離された第2冷媒を組成調節回路30から主回路部101に流出させるように切り替えられた後に、第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないように切り替えられる。本実施の形態では、第1弁8、第2弁9、第7弁18は閉じた状態に設定されている。このため、冷媒漏洩時に二酸化炭素の組成比の低い第1冷媒を冷媒貯留容器11に閉じ込めることが可能となる。
 本実施の形態に係る冷凍サイクル装置100によれば、上記の冷媒漏洩時運転に示されるように、冷媒漏洩検知部70が混合冷媒の漏洩を検知すると、切替装置40は、第1冷媒および第2冷媒の両方を組成調節回路30から主回路部101に流出させないように切り替えられる。したがって、冷媒漏洩時に二酸化炭素の組成比の低い第1冷媒を冷媒貯留容器11に閉じ込めることができる。このため、主回路部101から混合冷媒が漏洩した時に、主回路部101を流れる二酸化炭素の組成比の低い第1冷媒の濃度を低めることができる。これにより、漏洩した混合冷媒が燃焼する危険を低下させることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 凝縮器、3 内部熱交換器、4 膨張弁、5 蒸発器、6 組成分離器、7 組成分離膜、8 第1弁、9 第2弁、10 流路抵抗体、11 冷媒貯留容器、12 第2膨張弁、13 第2内部熱交換器、14 第3弁、15 第4弁、16 第5弁、17 第6弁、18 第7弁、20 制御装置、21 制御部、22 タイマー、23 圧縮機駆動部、24 膨張弁駆動部、25 切替装置駆動部、26 圧力測定部、27 温度測定部、30 組成調節回路、40 切替装置、50 圧力測定装置、60 温度測定装置、61 容器、62 流入管、63 第1冷媒流出管、64 第2冷媒流出管、70 冷媒漏洩検知部、100 冷凍サイクル装置、101 主回路部、101a 基礎配管、101b 延長配管、102 組成調節部。

Claims (16)

  1.  圧縮機、凝縮器および膨張弁を有し、かつ前記圧縮機、前記凝縮器、前記膨張弁の順に、第1冷媒と前記第1冷媒よりも密度が大きい第2冷媒とを有する混合冷媒が流れる主回路部と、
     前記主回路部に接続された組成調節部とを備え、
     前記組成調節部は、
     前記主回路部から流入するガス状態の前記混合冷媒を前記第1冷媒と前記第2冷媒とに分離する組成分離膜を有する組成分離器と、
     前記組成分離器で分離された前記第1冷媒を貯留する冷媒貯留容器と、
     前記主回路部と、前記組成分離器と、前記冷媒貯留容器とを接続する組成調節回路とを有し、
     前記組成調節回路は、前記組成分離器で分離された前記第1冷媒および前記第2冷媒のいずれか一方を前記組成調節回路から前記主回路部に流出させるか、前記組成分離器で分離された前記第1冷媒および前記第2冷媒の両方を前記組成調節回路から前記主回路部に流出させないかを切り替える切替装置を有する、冷凍サイクル装置。
  2.  前記組成調節部は、前記主回路部において、前記圧縮機と前記凝縮器との間と、前記圧縮機と前記膨張弁との間とに接続されている、請求項1に記載の冷凍サイクル装置。
  3.  前記主回路部は、前記圧縮機と前記膨張弁との間に配置された蒸発器を有し、
     前記組成調節部は、前記主回路部において前記圧縮機と前記蒸発器との間に接続されている、請求項2に記載の冷凍サイクル装置。
  4.  前記組成分離器は、前記主回路部から流入するガス状態の前記混合冷媒を前記第1冷媒と前記第2冷媒とに前記組成分離膜で分離し、
     前記冷媒貯留容器は、前記組成分離器で分離された前記第1冷媒を貯留し、
     前記切替装置は、前記組成分離器で分離された前記第2冷媒を前記組成調節回路から前記主回路部に流出させるように切り替えられる、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  5.  前記切替装置は、前記組成分離器で分離された前記第2冷媒を前記組成調節回路から前記主回路部に流出させるように切り替えられた後に、前記第1冷媒および前記第2冷媒の両方を前記組成調節回路から前記主回路部に流出させないように切り替えられる、請求項4項に記載の冷凍サイクル装置。
  6.  前記切替装置は、前記第1冷媒および前記第2冷媒の両方を前記組成調節回路から前記主回路部に流出させないように切り替えられた後に、前記第1冷媒を前記組成調節回路から前記主回路部に流出させるように切り替えられる、請求項5に記載の冷凍サイクル装置。
  7.  前記冷媒貯留容器は、前記組成分離器で分離された前記第1冷媒および前記第2冷媒を貯留するように構成されており、
     前記組成分離器は、前記主回路部から流入するガス状態の前記混合冷媒を前記第1冷媒と前記第2冷媒とに前記組成分離膜で分離し、
     前記冷媒貯留容器は、前記組成分離器で分離された前記第2冷媒を貯留し、
     前記切替装置は、前記組成分離器で分離された前記第1冷媒を前記組成調節回路から前記主回路部に流出させるように切り替えられる、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
  8.  前記組成分離膜は、前記第1冷媒と前記第2冷媒との分子サイズの差または前記第2冷媒の分子ゲートにより、化学的に前記第2冷媒を分離可能である、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
  9.  前記組成分離膜は、前記組成分離膜に作用する高圧側と低圧側の圧力差により、前記第2冷媒を分離する、請求項1~8のいずれか1項に記載の冷凍サイクル装置。
  10.  前記混合冷媒の圧力を測定する圧力測定装置と、
     前記混合冷媒の温度を測定する温度測定装置とを備え、
     前記圧力測定装置および前記温度測定装置は前記主回路部の高圧側に設置されている、請求項1~9のいずれか1項に記載の冷凍サイクル装置。
  11.  前記第1冷媒は可燃冷媒であり、前記第2冷媒は不燃冷媒である、請求項1~10のいずれか1項に記載の冷凍サイクル装置。
  12.  前記第2冷媒は、二酸化炭素である、請求項1~11のいずれか1項に記載の冷凍サイクル装置。
  13.  前記主回路部は、基礎配管と、前記基礎配管に接続された延長配管を有している、請求項1~12のいずれか1項に記載の冷凍サイクル装置。
  14.  前記第1冷媒は、可燃冷媒であり、前記第2冷媒は不燃冷媒であり、
     前記混合冷媒の前記主回路部からの漏洩を検知する冷媒漏洩検知部を備え、
     前記冷媒漏洩検知部が前記混合冷媒の漏洩を検知すると、前記切替装置は、前記組成分離器で分離された前記第2冷媒を前記組成調節回路から前記主回路部に流出させるように切り替えられた後に、前記第1冷媒および前記第2冷媒の両方を前記組成調節回路から前記主回路部に流出させないように切り替えられる、請求項3項に記載の冷凍サイクル装置。
  15.  前記第1冷媒は、可燃冷媒であり、前記第2冷媒は不燃冷媒であり、
     前記混合冷媒の前記主回路部からの漏洩を検知する冷媒漏洩検知部を備え、
     前記冷媒漏洩検知部が前記混合冷媒の漏洩を検知すると、前記切替装置は、前記冷媒貯留容器に貯留された前記第2冷媒を前記主回路部に流出させるように切り替えられる、請求項7に記載の冷凍サイクル装置。
  16.  圧縮機、凝縮器および膨張弁を有し、かつ前記圧縮機、前記凝縮器、前記膨張弁の順に、第1冷媒と前記第1冷媒よりも密度が大きい第2冷媒とを有する混合冷媒が流れる冷凍サイクル回路に接続され、
     前記冷凍サイクル回路から流入するガス状態の前記混合冷媒を前記第1冷媒と前記第2冷媒とに分離する組成分離膜を有する組成分離器と、
     前記組成分離器で分離された前記第1冷媒を貯留する冷媒貯留容器と、
     前記冷凍サイクル回路と、前記組成分離器と、前記冷媒貯留容器とを接続する組成調節回路とを有し、
     前記組成調節回路は、前記組成分離器で分離された前記第1冷媒および前記第2冷媒のいずれか一方を前記組成調節回路から前記冷凍サイクル回路に流出させるか、前記組成分離器で分離された前記第1冷媒および前記第2冷媒の両方を前記組成調節回路から前記冷凍サイクル回路に流出させないかを切り替える切替装置を有する
    組成調節装置。
PCT/JP2017/037192 2017-10-13 2017-10-13 冷凍サイクル装置および組成調節装置 WO2019073596A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019547881A JP6877567B2 (ja) 2017-10-13 2017-10-13 冷凍サイクル装置および組成調節装置
CN201780095663.8A CN111183324B (zh) 2017-10-13 2017-10-13 制冷循环装置及组分调节装置
PCT/JP2017/037192 WO2019073596A1 (ja) 2017-10-13 2017-10-13 冷凍サイクル装置および組成調節装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037192 WO2019073596A1 (ja) 2017-10-13 2017-10-13 冷凍サイクル装置および組成調節装置

Publications (1)

Publication Number Publication Date
WO2019073596A1 true WO2019073596A1 (ja) 2019-04-18

Family

ID=66100553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037192 WO2019073596A1 (ja) 2017-10-13 2017-10-13 冷凍サイクル装置および組成調節装置

Country Status (3)

Country Link
JP (1) JP6877567B2 (ja)
CN (1) CN111183324B (ja)
WO (1) WO2019073596A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021070314A1 (ja) * 2019-10-10 2021-04-15
WO2022210398A1 (ja) * 2021-03-31 2022-10-06 ダイキン工業株式会社 冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238367A (ja) * 1987-03-25 1988-10-04 株式会社東芝 冷凍サイクル装置
JPH10332212A (ja) * 1997-06-02 1998-12-15 Toshiba Corp 空気調和装置の冷凍サイクル
JP2003139421A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 非共沸混合冷媒を用いる冷凍サイクル装置
JP2004198063A (ja) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
JP2011220624A (ja) * 2010-04-12 2011-11-04 Mitsubishi Electric Corp 空気調和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591962A (ja) * 1982-06-25 1984-01-07 株式会社日立製作所 ヒ−トポンプ装置
JP3334418B2 (ja) * 1995-04-14 2002-10-15 三菱電機株式会社 冷凍装置
JP4007307B2 (ja) * 2003-10-22 2007-11-14 ダイキン工業株式会社 冷凍装置の施工方法
CN1714916A (zh) * 2005-06-20 2006-01-04 杨伟 膜分离空气净化器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238367A (ja) * 1987-03-25 1988-10-04 株式会社東芝 冷凍サイクル装置
JPH10332212A (ja) * 1997-06-02 1998-12-15 Toshiba Corp 空気調和装置の冷凍サイクル
JP2003139421A (ja) * 2001-10-31 2003-05-14 Mitsubishi Electric Corp 非共沸混合冷媒を用いる冷凍サイクル装置
JP2004198063A (ja) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
JP2011220624A (ja) * 2010-04-12 2011-11-04 Mitsubishi Electric Corp 空気調和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021070314A1 (ja) * 2019-10-10 2021-04-15
WO2021070314A1 (ja) * 2019-10-10 2021-04-15 三菱電機株式会社 冷凍サイクル装置
JP7278399B2 (ja) 2019-10-10 2023-05-19 三菱電機株式会社 冷凍サイクル装置
WO2022210398A1 (ja) * 2021-03-31 2022-10-06 ダイキン工業株式会社 冷凍サイクル装置
JP2022157805A (ja) * 2021-03-31 2022-10-14 ダイキン工業株式会社 冷凍サイクル装置
JP7157353B1 (ja) 2021-03-31 2022-10-20 ダイキン工業株式会社 冷凍サイクル装置
US11976859B2 (en) 2021-03-31 2024-05-07 Daikin Industries, Ltd. Refrigeration cycle apparatus

Also Published As

Publication number Publication date
CN111183324B (zh) 2021-10-29
JP6877567B2 (ja) 2021-05-26
JPWO2019073596A1 (ja) 2020-10-22
CN111183324A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
JP5430667B2 (ja) ヒートポンプ装置
JP6292480B2 (ja) 冷凍装置
JP5040104B2 (ja) 冷凍装置
KR100711176B1 (ko) 냉동 장치 및 공기 조화기
JP4396771B2 (ja) 冷凍装置
EP2479519A2 (en) Refrigerant system
KR19990064122A (ko) 공기 조화기
JP5908183B1 (ja) 空気調和装置
JP4363997B2 (ja) 冷凍装置
JP4273493B2 (ja) 冷凍空調装置
JP6341326B2 (ja) 冷凍装置の熱源ユニット
WO2019073596A1 (ja) 冷凍サイクル装置および組成調節装置
JP2005214575A (ja) 冷凍装置
JP2005214444A (ja) 冷凍装置
JP4720641B2 (ja) 冷凍装置
KR20120053381A (ko) 냉동 사이클 장치
WO2017199382A1 (ja) 冷凍装置
JP6138186B2 (ja) 冷凍装置
JP2007155143A (ja) 冷凍装置
JP2015087020A (ja) 冷凍サイクル装置
JP2015014372A (ja) 空気調和機
CN111919073B (zh) 制冷装置
JP2015072161A (ja) 環境試験装置
JP5234166B2 (ja) 冷凍装置
JP5901598B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928550

Country of ref document: EP

Kind code of ref document: A1