WO2022202781A1 - 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ - Google Patents

熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ Download PDF

Info

Publication number
WO2022202781A1
WO2022202781A1 PCT/JP2022/013057 JP2022013057W WO2022202781A1 WO 2022202781 A1 WO2022202781 A1 WO 2022202781A1 JP 2022013057 W JP2022013057 W JP 2022013057W WO 2022202781 A1 WO2022202781 A1 WO 2022202781A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
group
active ester
titanate
Prior art date
Application number
PCT/JP2022/013057
Other languages
English (en)
French (fr)
Inventor
俊次 木村
剛志 田中
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2023509181A priority Critical patent/JP7396534B2/ja
Priority to KR1020237036073A priority patent/KR20230160869A/ko
Priority to CN202280024604.2A priority patent/CN117120504A/zh
Publication of WO2022202781A1 publication Critical patent/WO2022202781A1/ja
Priority to JP2023192059A priority patent/JP2024014929A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium

Definitions

  • the present invention relates to thermosetting resin compositions, high frequency devices, dielectric substrates, and microstrip antennas.
  • Communication equipment can be made even more compact by increasing the dielectric constant of the antenna material (dielectric substrate) incorporated inside the communication equipment. Further, when the dielectric loss tangent of the dielectric substrate becomes small, the loss becomes low, which is advantageous for increasing the frequency. Therefore, if a dielectric substrate with a high dielectric constant and a small dielectric loss tangent can be used, it is possible to increase the frequency, shorten the circuit, and reduce the size of communication equipment.
  • Patent Document 1 a dielectric substrate which is a composite material containing a fluororesin and a glass cloth and an antenna whose two-dimensional roughness Ra of the surface in contact with the fluororesin is less than 0.2 ⁇ m is disclosed for a circuit.
  • An antenna having a substrate is disclosed.
  • the document describes the dielectric constant and dielectric loss tangent of the circuit board measured at 1 GHz.
  • Patent Document 2 discloses a resin composition containing a siloxane-modified polyamideimide resin, a high dielectric constant filler, and an epoxy resin, and having a cured product with a dielectric constant of 15 or more at 25°C and 1 MHz. Examples of the document describe an example of using barium titanate as the high dielectric constant filler.
  • Patent Document 3 discloses a resin composition containing an epoxy resin, a dielectric powder, a nonionic surfactant, and an active ester curing agent. This document describes that this resin composition can be used as a high dielectric constant insulating material for electronic parts used in a high frequency range and as a high dielectric constant insulating material for fingerprint sensors. Examples of the literature describe an example of using barium titanate as the dielectric powder.
  • Patent document 4 contains an epoxy resin, a curing agent, and an inorganic filler containing predetermined amounts of calcium titanate particles and strontium titanate particles, and the inorganic filler consists of silica particles and alumina particles.
  • a molding resin composition further containing at least one selected from the group and used for encapsulating electronic parts in high-frequency devices is disclosed.
  • Patent Documents 1 to 4 have room for improvement in the following points. It has been found that the composite material described in Patent Document 1 has room for improvement in terms of high dielectric constant and low dielectric loss tangent in a higher frequency band, and further in terms of durability under heat. This is the first issue. In addition, the dielectric substrates described in Patent Documents 1 to 4 above have problems with high dielectric constant and low dielectric loss tangent, and these problems are particularly noticeable in a high frequency band. This is the second subject.
  • thermosetting resin composition the present inventors used a high dielectric constant filler and an active ester compound together, and controlled the bending elastic modulus ratio at 260°C to 25°C within an appropriate range to achieve the above-mentioned
  • the first problem can be solved, and completed the first invention. That is, the first invention can be shown below.
  • thermosetting resin a thermosetting resin
  • a high dielectric constant filler having a relative dielectric constant of 10 or more at 25° C. and 25 GHz
  • an active ester compound a thermosetting resin composition
  • a thermosetting resin composition comprising When the flexural modulus at 25 °C is FM25 and the flexural modulus at 260 °C is FM260, measured according to the following procedure, FM25 and FM260 are 0.005 ⁇ FM260 / FM25 ⁇ 0 . .1, A thermosetting resin composition is provided. (procedure)
  • the thermosetting resin composition is injection molded into a mold using a low-pressure transfer molding machine under the conditions of a mold temperature of 130 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds.
  • a molding with a height of 80 mm is obtained.
  • the resulting molded article is post-cured at 175° C. for 4 hours to prepare a test piece.
  • the flexural modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C is measured according to JIS K6911.
  • a high-frequency device comprising a cured product of the above thermosetting resin composition.
  • the present inventors have found that the second problem can be solved by a combination of specific components, and completed the second invention. That is, the second invention can be shown below.
  • a thermosetting resin composition comprising The epoxy resin (A) contains a biphenylaralkyl-type epoxy resin and/or a biphenyl-type epoxy resin (excluding a biphenylaralkyl-type epoxy resin),
  • the curing agent (B) contains an active ester curing agent and a phenolic curing agent
  • High dielectric constant filler (C) is calcium titanate, barium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, At least one selected from calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, and
  • thermosetting resin composition A dielectric substrate obtained by curing the thermosetting resin composition is provided.
  • a microstrip antenna comprising:
  • a dielectric substrate a radiation conductor plate provided on one surface of the dielectric substrate; a ground conductor plate provided on the other surface of the dielectric substrate; a high-dielectric material facing the radiation conductor plate;
  • a microstrip antenna comprising: A microstrip antenna is provided, wherein the high dielectric is composed of the dielectric substrate.
  • thermosetting resin composition capable of forming a member having a high dielectric constant, a low dielectric loss tangent and excellent thermal durability, and a high frequency device using the same.
  • a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent is obtained, and a thermosetting resin composition excellent in moldability and a dielectric substrate made of the resin composition, and a microstrip antenna comprising the dielectric substrate.
  • the thermosetting resin composition of the second invention can provide a dielectric substrate with an excellent balance between a high dielectric constant and a low dielectric loss tangent.
  • FIG. 1 is a top perspective view showing a microstrip antenna of this embodiment
  • FIG. 4 is a cross-sectional view showing another aspect of the microstrip antenna of this embodiment
  • thermosetting resin composition of the first embodiment An outline of the thermosetting resin composition of the first embodiment will be described.
  • thermosetting resin composition of the present embodiment contains a thermosetting resin, a high dielectric constant filler having a relative dielectric constant of 10 or more at 25 ° C. and 25 GHz, and an active ester compound, and is measured according to the following procedure.
  • a thermosetting resin a high dielectric constant filler having a relative dielectric constant of 10 or more at 25 ° C. and 25 GHz
  • an active ester compound an active ester compound
  • the lower limit of FM260 / FM25 is 0.005 or more, preferably 0.006 or more, more preferably 0.007 or more, still more preferably 0.008 or more.
  • a member having a good high dielectric constant and a low dielectric loss tangent (cured product of the thermosetting resin composition) can have good hot durability.
  • the upper limit of FM260 / FM25 may be, for example, 0.1 or less, preferably 0.05 or less, more preferably 0.03 or less, and even more preferably 0.02 or less. Thereby, the physical properties of the cured product of the thermosetting resin composition can be balanced.
  • the temperature of the operating environment tends to increase more and more due to design circumstances such as higher frequency, higher output of power semiconductors, and lower profile of devices.
  • the inventors investigated the thermal properties of a cured product of a thermosetting resin composition.
  • the index FM 260 /FM 25 can stably evaluate the resistance to deformation of a cured product of a thermosetting resin composition before and after heat treatment.
  • the above FM 260 /FM 25 It is possible to control FS 260 /FS 25 , glass transition temperature, and coefficient of linear expansion, which are described below.
  • Resins and the like are listed as factors for setting the above FM 260 /FM 25 , FS 260 /FS 25 below, glass transition temperature, and linear expansion coefficient within desired numerical ranges.
  • thermosetting resin composition has a bending strength of FS 25 at 25°C and a bending strength of FS 260 at 260°C measured at a head speed of 5 mm/min according to JIS K 6911 according to the above procedure.
  • FS 25 and FS 260 may be configured to satisfy 0.025 ⁇ FS 260 /FS 25 ⁇ 0.2.
  • the lower limit of FS260 / FS25 is 0.025 or more, preferably 0.028 or more, more preferably 0.030 or more, and still more preferably 0.032 or more. This makes it possible to improve hot toughness in a member (hardened product of thermosetting resin composition) having good high dielectric constant and low dielectric loss tangent.
  • the upper limit of FS260 / FS25 may be, for example, 0.2 or less, preferably 0.1 or less, more preferably 0.07 or less, and even more preferably 0.05 or less. Thereby, the physical properties of the cured product of the thermosetting resin composition can be balanced.
  • thermosetting resin composition is injection molded into a mold using a low-pressure transfer molding machine under the conditions of a mold temperature of 130 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. A molding of 80 mm is obtained. The resulting molded article is post-cured at 175° C. for 4 hours to prepare a test piece.
  • the flexural modulus (N/mm 2 ) and flexural strength (N/mm 2 ) of the test piece were measured at a head speed of 5 mm/min and at room temperature (25°C) and 260°C. Measure.
  • the lower limit of the glass transition temperature of the cured product of the thermosetting resin composition is, for example, 100° C. or higher, preferably 103° C. or higher, and more preferably 105° C. or higher.
  • the upper limit of the glass transition temperature of the cured product is not particularly limited, it may be 250° C. or lower, for example.
  • CTE1 is, for example, 5 ppm/°C or more and 25 ppm/°C or less, preferably 5 ppm/°C or more and 23 ppm/°C or less.
  • CTE2 is, for example, 30 ppm/°C or more and 100 ppm/°C or less, preferably 30 ppm/°C or more and 90 ppm/°C or less.
  • thermosetting resin composition of this embodiment will be described in detail below.
  • thermosetting resin composition of this embodiment contains a thermosetting resin.
  • a thermosetting resin one or more selected from epoxy resins, cyanate resins, and maleimide resins can be used. Among these, an epoxy resin may be used.
  • Epoxy resins can be general monomers, oligomers, and polymers having two or more epoxy groups in one molecule, and their molecular weights and molecular structures are not limited.
  • Epoxy resins include, for example, biphenyl type epoxy resins; bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, and tetramethylbisphenol F type epoxy resins; stilbene type epoxy resins; phenol novolak type epoxy resins and cresol novolak type epoxy resins.
  • Novolak epoxy resins such as epoxy resins; Polyfunctional epoxy resins such as trisphenol epoxy resins exemplified by triphenolmethane epoxy resins and alkyl-modified triphenolmethane epoxy resins; Phenol aralkyl epoxy resins having a phenylene skeleton , a naphthol aralkyl type epoxy resin having a phenylene skeleton, a phenol aralkyl type epoxy resin having a biphenylene skeleton, a phenol aralkyl type epoxy resin such as a naphthol aralkyl type epoxy resin having a biphenylene skeleton; an epoxy resin containing a biphenylene skeleton; a dihydroxy naphthalene type epoxy resin , naphthol-type epoxy resins such as epoxy resins obtained by glycidyl-etherifying dimers of dihydroxynaphthalene; triazine nucleus-containing epoxy resins such as triglycidyl is
  • epoxy resins containing a biphenylene skeleton are preferred, and more preferably one or more selected from the group consisting of biphenylaralkyl-type epoxy resins and biphenyl-type epoxy resins (excluding biphenylaralkyl-type epoxy resins).
  • the content of the thermosetting resin is, for example, 2% by mass or more, preferably 5% by mass or more, more preferably 7% by mass or more in 100% by mass of the thermosetting resin composition.
  • the content of the epoxy resin can be, for example, 20% by mass or less, preferably 15% by mass or less, and more preferably 10% by mass or less in 100% by mass of the thermosetting resin composition.
  • thermosetting resin composition of this embodiment contains a high dielectric constant filler (high dielectric constant filler).
  • High dielectric constant fillers include calcium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, zinc titanate, barium zirconate, calcium zirconate titanate, and titanium. Examples include lead zirconate, barium magnesium niobate, and calcium zirconate, and one or more selected from these can be used.
  • the high dielectric constant filler may contain at least one of calcium titanate and strontium titanate, preferably calcium titanate. Thereby, the dielectric loss tangent in the high frequency band can be further reduced.
  • the average particle size of the high dielectric constant filler is, for example, preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, and still more preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the shape of the high dielectric constant filler is granular, amorphous, flaky, etc., and high dielectric constant fillers of these shapes can be used at any ratio.
  • the content of the high dielectric constant filler is preferably 30% by mass to 90% by mass, more preferably 35% by mass to 80% by mass, and still more preferably 40% by mass to 70% by mass in 100% by mass of the thermosetting resin composition. % range.
  • the amount of the high-dielectric-constant filler added is within the above range, the resulting cured product has a lower dielectric constant and is excellent in production of molded articles.
  • thermosetting resin composition of this embodiment contains an active ester compound (active ester curing agent).
  • active ester compound functions as a curing agent for thermosetting resins such as epoxy resins.
  • a compound having one or more active ester groups in one molecule can be used as the active ester compound.
  • active ester compounds include compounds having two or more highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. is preferred.
  • the active ester compound examples include an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated phenol novolak, and an active ester compound containing a benzoylated phenol novolac.
  • Examples include ester compounds.
  • the active ester compound can contain at least one selected from these. Among them, an active ester compound containing a naphthalene structure and an active ester compound containing a dicyclopentadiene-type diphenol structure are more preferable.
  • "Dicyclopentadiene-type diphenol structure” represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • the active ester compound can be, for example, a resin having a structure represented by the following general formula (1).
  • Ar is a substituted or unsubstituted arylene group.
  • Substituents of the substituted arylene group include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, phenyl groups and aralkyl groups.
  • Y is a single bond, a substituted or unsubstituted linear alkylene group having 1 to 6 carbon atoms, or a substituted or unsubstituted cyclic alkylene group having 3 to 6 carbon atoms, or a substituted or unsubstituted divalent is an aromatic hydrocarbon group, an ether bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group.
  • Substituents for the aforementioned groups include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, phenyl groups, aralkyl groups and the like.
  • Y include a single bond, a methylene group, —CH(CH 3 ) 2 —, an ether bond, an optionally substituted cycloalkylene group, an optionally substituted 9,9-fluorenylene group, and the like.
  • n is an integer of 0-4, preferably 0 or 1;
  • B is a structure represented by the following general formula (B1) or the following general formula (B2).
  • A is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group;
  • Ar' is a substituted or unsubstituted aryl group;
  • k is the average value of repeating units and ranges from 0.25 to 3.5.
  • the resulting cured product can have excellent dielectric properties and excellent low dielectric loss tangent.
  • the active ester compound used in the thermosetting resin composition of this embodiment has an active ester group represented by formula (B).
  • the active ester group of the active ester compound reacts with the epoxy group of the epoxy resin to generate secondary hydroxyl groups. This secondary hydroxyl group is blocked by an ester residue of the active ester compound. Therefore, the dielectric loss tangent of the cured product is reduced.
  • the structure represented by formula (B) above is preferably at least one selected from the following formulas (B-1) to (B-6).
  • each R 1 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group;
  • Each R 2 is independently an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group
  • X is a linear alkylene group having 2 to 6 carbon atoms, ether a bond, a carbonyl group, a carbonyloxy group, a sulfide group, or a sulfone group
  • n is an integer of 0-4
  • p is an integer of 1-4.
  • thermosetting resin composition A cured product of the material can have a low dielectric loss tangent in the high frequency band.
  • an active ester compound having a structure represented by formula (B-2), formula (B-3) or formula (B-5) is preferable, and furthermore, the active ester compound of formula (B-2)
  • An active ester compound having a structure in which n is 0, a structure in which X in formula (B-3) is an ether bond, or a structure in which two carbonyloxy groups are at the 4,4'-positions in formula (B-5) is more preferred.
  • all R 1 in each formula are preferably hydrogen atoms.
  • Ar′ in formula (1) is an aryl group, such as a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 3,5-xylyl group, o-biphenyl group, m-biphenyl group, p-biphenyl group, 2-benzylphenyl group, 4-benzylphenyl group, 4-( ⁇ -cumyl)phenyl group, 1-naphthyl group, 2-naphthyl group and the like.
  • a 1-naphthyl group or a 2-naphthyl group is preferable because a cured product having a particularly low dielectric loss tangent can be obtained.
  • [A] in the active ester compound represented by formula (1) is a substituted or unsubstituted arylene group linked via an aliphatic cyclic hydrocarbon group, such an arylene group is, for example, a structure obtained by polyaddition reaction of an unsaturated aliphatic cyclic hydrocarbon compound containing two double bonds in one molecule and a phenolic compound.
  • the unsaturated aliphatic cyclic hydrocarbon compounds containing two double bonds in one molecule are, for example, dicyclopentadiene, cyclopentadiene oligomers, tetrahydroindene, 4-vinylcyclohexene, 5-vinyl-2-norbornene. , limonene, etc., and these may be used alone or in combination of two or more.
  • dicyclopentadiene is preferable because a cured product having excellent heat resistance can be obtained.
  • dicyclopentadiene is contained in petroleum distillates, industrial dicyclopentadiene may contain cyclopentadiene polymers and other aliphatic or aromatic diene compounds as impurities.
  • the phenolic compounds include, for example, phenol, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol, 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like, each of which may be used alone; More than one type may be used together.
  • phenol is preferable because it has high curability and becomes an active ester compound having excellent dielectric properties in a cured product.
  • [A] in the active ester compound represented by formula (1) has a structure represented by formula (A).
  • a cured product of a thermosetting resin composition containing an active ester compound in which [A] in formula (1) has the following structure can achieve a low dielectric loss tangent in a high frequency band.
  • each R 3 is independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group; l is 0 or 1, and m is an integer of 1 or more.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group.
  • Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus
  • l is 0 or 1
  • k is a repeating unit is the average of 0.25 to 3.5.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group.
  • Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus
  • l is 0 or 1
  • k is a repeating unit is the average of 0.25 to 3.5.
  • R 1 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or an aralkyl group.
  • Z is a phenyl group, a naphthyl group, or a phenyl group or a naphthyl group having 1 to 3 alkyl groups having 1 to 4 carbon atoms on the aromatic nucleus
  • l is 0 or 1
  • k is a repeating unit is the average of 0.25 to 3.5.
  • the active ester compound represented by the general formula (A) includes a phenolic compound (a) having a structure in which a plurality of aryl groups having a phenolic hydroxyl group are connected via an aliphatic cyclic hydrocarbon group, and an aromatic nucleus-containing It can be produced by a known method of reacting a dicarboxylic acid or its halide (b) with an aromatic monohydroxy compound (c).
  • the reaction ratio of the phenolic compound (a), the aromatic nucleus-containing dicarboxylic acid or its halide (b), and the aromatic monohydroxy compound (c) can be appropriately adjusted according to the desired molecular design.
  • the phenolic compound (a) is added to a total of 1 mol of the carboxyl group or acid halide group possessed by the aromatic nucleus-containing dicarboxylic acid or its halide (b). is in the range of 0.25 to 0.90 mol, and the hydroxyl group in the aromatic monohydroxy compound (c) is in the range of 0.10 to 0.75 mol.
  • the phenolic hydroxyl group of the phenolic compound (a) is in the range of 0.50 to 0.75 mol, and the hydroxyl group of the aromatic monohydroxy compound (c) is 0.25 It is more preferable to use each raw material in a ratio that is in the range of 0.50 mol.
  • the functional group equivalent weight of the active ester compound is such that a cured product with excellent curability and low dielectric loss tangent can be obtained when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups of the resin. Therefore, it is preferably in the range of 200 g/eq to 230 g/eq, more preferably in the range of 210 g/eq to 220 g/eq.
  • the content of the active ester compound and the epoxy resin is excellent in curability and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the amount of epoxy groups in the epoxy resin is 0.8 to 1.2 equivalents per equivalent.
  • the active group in the active ester compound refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
  • the active ester compound is preferably 0.5% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 12% by mass or less, still more preferably 2% by mass or more and 9% by mass in 100% by mass of the thermosetting resin composition. % or less.
  • thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent by using the active ester compound and the above high dielectric constant filler in combination, and is excellent in these effects even in a high frequency band.
  • the active ester compound is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass or less, still more preferably It can be contained so as to be 3 parts by mass or more and 15 parts by mass or less.
  • thermosetting resin composition of this embodiment can contain a curing agent other than the active ester compound.
  • Other curing agents include phenolic curing agents, amine compound curing agents, amide compound curing agents, acid anhydride curing agents, and the like. These may be used alone or in combination of two or more. Among these, a phenol-based curing agent may be used.
  • Phenolic curing agents include, for example, phenol novolak resins, cresol novolak resins, aromatic hydrocarbon formaldehyde resin-modified phenol resins, dicyclopentadiene phenol addition type resins, phenol resins containing a biphenylene skeleton, phenol aralkyl resins, naphthol aralkyl resins, tri methylolmethane resin, tetraphenylolethane resin, naphthol novolac resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nuclei are linked by bismethylene groups), Polyhydric phenol compounds such as biphenyl-modified naphthol resin (polyhydric naphthol compound with phenol nucleus linked by bismethylene group), aminotriazine-modified phenol resin (polyhydric
  • Amine compound curing agents include, for example, amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complexes and guanidine derivatives.
  • amine compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complexes and guanidine derivatives.
  • amide compound-based curing agents include polyamide resins synthesized from dicyandiamide, a dimer of linolenic acid, and ethylenediamine.
  • Acid anhydride curing agents include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methyl Hexahydrophthalic anhydride may be mentioned.
  • the amount is preferably 0.5% by mass or more and 15% by mass or less, more preferably 1% by mass or more and 10% by mass or less, relative to 100% by mass of the thermosetting resin. .
  • the curing agent in an amount within the above range, a thermosetting resin composition having excellent curability can be obtained.
  • the thermosetting resin composition may contain a curing catalyst.
  • a curing catalyst may also be called a curing accelerator or the like.
  • the curing catalyst is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin, and known curing catalysts can be used.
  • phosphorus atom-containing compounds such as organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; 2-methylimidazole, 2- imidazoles such as phenylimidazole (imidazole-based curing accelerators); Nitrogen atom-containing compounds such as salts can be mentioned, and only one type may be used, or two or more types may be used.
  • a phosphorus atom-containing compound such as a tetra-substituted phosphonium compound, a phosphobetaine compound, a phosphine compound and a quinone compound. It is more preferable to include latent compounds such as adducts of phosphonium compounds and silane compounds, tetrasubstituted phosphonium compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. Adducts are particularly preferred.
  • organic phosphines examples include primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
  • thermosetting resin composition When a curing catalyst is used, its content is preferably 0.05 to 3% by mass, more preferably 0.08 to 2% by mass, based on 100% by mass of the thermosetting resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
  • thermosetting resin composition of the present embodiment can further contain an inorganic filler in addition to the high dielectric constant filler in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity, and improve strength.
  • Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
  • the content of the inorganic filler other than the high dielectric constant filler is preferably 3% by mass or more and 60% by mass in 100% by mass of the thermosetting resin composition from the viewpoint of moldability, reduction in thermal expansion, and improvement in strength. Below, more preferably, it can be in the range of 5% by mass or more and 50% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
  • the thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent.
  • silane coupling agents include amino group-containing silane coupling agents, mercapto group-containing silane coupling agents, and the like.
  • the miscibility of the high dielectric constant filler with an organic component such as an epoxy resin, and the viewpoint of bending strength and bending elastic modulus these are classified into two types. It is preferable to use the above.
  • thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above.
  • the production method include a method of sufficiently mixing raw materials in a predetermined content with a mixer or the like, melt-kneading the mixture with a mixing roll, a kneader, an extruder or the like, and then cooling and pulverizing the mixture.
  • the resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
  • thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. can be planned.
  • thermosetting resin composition can be used to form part of a high frequency device selected from the group consisting of microstrip antennas, dielectric waveguides, and multilayer antennas.
  • the high-frequency device of this embodiment includes a cured product obtained from a thermosetting resin composition.
  • a thermosetting resin composition An example of a high frequency device will be described below.
  • a microstrip antenna 10 includes a dielectric substrate 12 obtained by curing the thermosetting resin composition described above, and a radiation conductor plate (radiation element) provided on one surface of the dielectric substrate 12. ) 14 and a ground conductor plate 16 provided on the other surface of the dielectric substrate 12 .
  • the shape of the radiation conductor plate can be rectangular or circular. In this embodiment, an example using a rectangular radiation conductor plate 14 will be described.
  • the radiation conductor plate 14 includes any one of a metal material, an alloy of metal materials, a hardened metal paste, and a conductive polymer.
  • Metallic materials include copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cadmium lead, selenium, manganese, tin, vanadium, lithium, cobalt, titanium, and the like.
  • An alloy includes multiple metallic materials.
  • the metal paste contains powder of a metal material kneaded with an organic solvent and a binder. Binders include epoxy resins, polyester resins, polyimide resins, polyamideimide resins, and polyetherimide resins.
  • Conductive polymers include polythiophene-based polymers, polyacetylene-based polymers, polyaniline-based polymers, polypyrrole-based polymers, and the like.
  • the microstrip antenna 10 of this embodiment has a radiation conductor plate 14 having a length L and a width W, and resonates at a frequency where L is an integer multiple of 1/2 wavelength.
  • L is an integer multiple of 1/2 wavelength.
  • the thickness h of the dielectric substrate 12 and the width W of the radiation conductor plate 14 are designed to be sufficiently small with respect to the wavelength.
  • the ground conductor plate 16 is a thin plate made of highly conductive metal such as copper, silver, and gold.
  • the thickness is sufficiently thin with respect to the central operating frequency of the antenna device, and may be about 1/50 to 1/1000 wavelength of the central operating frequency.
  • feeding methods for microstrip antennas include direct feeding methods such as rear coaxial feeding and coplanar feeding, and electromagnetic coupling feeding methods such as slot coupling feeding and proximity coupling feeding.
  • power can be fed from the back of the antenna to the radiating conductor plate 14 by using a coaxial line or connector passing through the ground conductor plate 16 and the dielectric substrate 12 .
  • the radiation conductor plate 14 can be fed with a microstrip line (not shown) arranged on the same plane as the radiation conductor plate 14 .
  • another dielectric substrate (not shown) is provided so as to sandwich the ground conductor plate 16, and the radiation conductor plate 14 and the microstrip line are formed on separate dielectric substrates.
  • the radiation conductor plate 14 is excited by electromagnetically coupling the radiation conductor plate 14 and the microstrip line through a slot formed in the ground conductor plate 16 .
  • the dielectric substrate 12 has a laminated structure, and the dielectric substrate on which the radiation conductor plate 14 is formed and the dielectric substrate on which the strip conductor of the microstrip line and the ground conductor plate 16 are arranged. It is layered.
  • the radiation conductor plate 14 is excited by extending the strip conductor of the microstrip line below the radiation conductor plate 14 and electromagnetically coupling the radiation conductor plate 14 and the microstrip line.
  • the microstrip antenna 20 includes a dielectric substrate 22, a radiation conductor plate 14 provided on one surface of the dielectric substrate 22, and a radiation conductor plate 14 provided on the other surface of the dielectric substrate 22. and a high dielectric substrate (high dielectric) 24 facing the radiation conductor plate 14 .
  • the dielectric substrate 22 and the radiation conductor plate 14 and the high dielectric substrate 24 can be configured to be separated from each other by a predetermined distance with spacers 26 interposed therebetween.
  • the dielectric substrate 22 is composed of a substrate having a low dielectric constant such as a Teflon substrate.
  • the high dielectric substrate 24 is composed of a dielectric substrate obtained by curing the resin composition described above.
  • the gap between the dielectric substrate 22 and the high dielectric substrate 24 may be a space or may be filled with a dielectric material.
  • a structure in which a high dielectric substrate 24 is brought into contact with the upper surface of the radiation conductor plate 14 can be employed.
  • the dielectric waveguide comprises a dielectric obtained by curing the thermosetting resin composition of this embodiment, and a conductor film covering the surface of the dielectric.
  • a dielectric waveguide confines electromagnetic waves in a dielectric (dielectric medium) for transmission.
  • the conductor film can be made of a metal such as copper, an oxide high-temperature superconductor, or the like.
  • the multilayer antenna comprises a dielectric sheet obtained by curing the thermosetting resin composition of this embodiment.
  • a multi-layer antenna is a module obtained by printing a circuit consisting of a large number of elements such as capacitors and inductors on dielectric sheets and stacking them.
  • thermosetting resin composition of the second embodiment contains an epoxy resin (A), a curing agent (B), and a high dielectric constant filler (C), and has a high 30% by mass or more of the dielectric constant filler (C) is included.
  • the epoxy resin (A) includes biphenylaralkyl epoxy resin and/or biphenyl epoxy resin (excluding biphenylaralkyl epoxy resin).
  • the biphenyl aralkyl type epoxy resin of this embodiment preferably has a structural unit represented by general formula (a) below.
  • R a and R b are each independently a monovalent organic group, a hydroxyl group or a halogen atom when there are more than one; r and s are each independently 0 to 4; * indicates that it is connected to another atomic group.
  • R a and R b include alkyl groups, alkenyl groups, alkynyl groups, alkylidene groups, aryl groups, aralkyl groups, alkaryl groups, cycloalkyl groups, alkoxy groups, heterocyclic groups, and carboxyl groups. and the like.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like.
  • Alkenyl groups include, for example, allyl groups, pentenyl groups, and vinyl groups.
  • alkynyl groups include ethynyl groups.
  • the alkylidene group includes, for example, a methylidene group and an ethylidene group.
  • Aryl groups include, for example, tolyl, xylyl, phenyl, naphthyl, and anthracenyl groups.
  • the aralkyl group includes, for example, a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include tolyl group and xylyl group.
  • Cycloalkyl groups include, for example, adamantyl, cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, s-butoxy, isobutoxy, t-butoxy, n-pentyloxy, and neopentyloxy groups. , n-hexyloxy group and the like.
  • Heterocyclic groups include, for example, an epoxy group and an oxetanyl group.
  • the total carbon number of the monovalent organic groups of R a and R b is, for example, 1 to 30, preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to 6, respectively.
  • r and s are each independently preferably 0 to 2, more preferably 0 to 1. In one aspect, r and s are both zero.
  • R c is each independently a monovalent organic group, a hydroxyl group or a halogen atom when there are more than one; t is an integer from 0 to 3; Specific examples of the monovalent organic group for R c are the same as the specific examples for R a and R b . t is preferably 0-2, more preferably 0-1.
  • the weight average molecular weight Mw of the biphenyl aralkyl type epoxy resin of the present embodiment is preferably 500 or more and 2000 or less, more preferably 600 or more and 1900 or less, and still more preferably 700 or more and 1800 or less.
  • the degree of dispersion (weight average molecular weight Mw/number average molecular weight Mn) of the biphenyl aralkyl epoxy resin is preferably 2.0 or more and 4.0 or less, more preferably 1.8 or more and 3.8 or less, further preferably 1 .6 or more and 3.6 or less.
  • the physical properties of the epoxy resin can be made uniform, which is preferable.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw/Mn) are, for example, polystyrene conversion values obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement.
  • Measurement conditions for GPC measurement are, for example, as follows.
  • the biphenyl-type epoxy resin of this embodiment can be represented by the following general formula (b).
  • each R independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms.
  • biphenyl-type epoxy resins include diglycidyl ether of 4,4'-dihydroxybiphenyl, diglycidyl ether of 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl, 3, Examples include diglycidyl ether of 3′,5,5′-tetra-tert-butyl-4,4′-dihydroxybiphenyl, diglycidyl ether of dimethyldipropylbiphenol, and diglycidyl ether of dimethylbiphenol.
  • the epoxy resin (A) may further contain other epoxy resins in addition to the above two types of epoxy resins within a range that does not impair the effects of the present invention.
  • Other epoxy resins include bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, phenol aralkyl-type epoxy resin, naphthalene-type epoxy resin, dicyclopentadiene-type epoxy resin, glycidylamine-type epoxy resin, and the like.
  • the content of the "biphenyl aralkyl-type epoxy resin and/or biphenyl-type epoxy resin" in the epoxy resin (A) is preferably 50% by mass or more and 100% by mass or less, more preferably 70% by mass or more and 100% by mass. % by mass or less, more preferably 80% by mass or more and 100% by mass or less, and the epoxy resin (A) may contain only these two types of epoxy resins.
  • the thermosetting resin composition (100% by mass) of the present embodiment preferably contains the epoxy resin (A) in an amount of 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 25% by mass. It can be contained in an amount of 5 mass % or more and 20 mass % or less, more preferably 5 mass % or less.
  • the curing agent (B) contains an active ester curing agent and a phenolic curing agent.
  • the same active ester compound as described in the embodiment of the first invention can be used, and can be produced in the same manner.
  • the active ester curing agent is a resin having a structure represented by the general formula (1)
  • "B" in the general formula (1) is represented by the formulas (B-1) to (B-6). It is preferable that the structure is Since the structures represented by the formulas (B-1) to (B-6) are all highly oriented structures, when using an active ester curing agent containing this, the resulting thermosetting
  • the cured product of the resin composition has a low dielectric loss tangent and excellent adhesion to metals, and therefore can be suitably used as a semiconductor encapsulating material.
  • the functional group equivalent weight of the active ester curing agent is excellent in curability and a cured product with a low dielectric loss tangent is obtained when the sum of the arylcarbonyloxy groups and phenolic hydroxyl groups in the resin structure is taken as the total number of functional groups in the resin. Therefore, it is preferably in the range of 200 g/eq to 230 g/eq, and more preferably in the range of 210 g/eq to 220 g/eq.
  • the blending amount of the active ester curing agent and the epoxy resin is excellent in curability, and a cured product with a low dielectric loss tangent can be obtained. It is preferable that the ratio of the epoxy groups in the epoxy resin is 0.8 to 1.2 equivalents with respect to the total equivalent of active groups.
  • the active group in the active ester curing agent refers to an arylcarbonyloxy group and a phenolic hydroxyl group in the resin structure.
  • the active ester curing agent is preferably 0.2% by mass or more and 15% by mass or less, more preferably 0.5% by mass or more and 10% by mass, relative to the entire thermosetting resin composition. % or less, more preferably 1.0 mass % or more and 7 mass % or less.
  • the resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent by using a combination of an active ester curing agent and a high dielectric constant filler described later, and is excellent in these effects even in a high frequency band.
  • the active ester curing agent is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass or less, with respect to 100 parts by mass of the high dielectric constant filler described later. More preferably, it can be contained so as to be 3 parts by mass or more and 15 parts by mass or less.
  • the applicant of the present invention uses a resin composition containing an epoxy resin and a predetermined active ester-based curing agent in a semiconductor encapsulation application different from the present invention.
  • the present invention differs from the technique described in the publication in that it contains a high dielectric constant filler.
  • the effect of the combination of the active ester curing agent and the epoxy resin is different in that it has a high dielectric constant and is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band. is doing.
  • Phenolic curing agents include phenol novolac resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin, naphthol aralkyl resin, trimethylolmethane resin, tetraphenylolethane.
  • Resin naphthol novolak resin, naphthol-phenol co-condensed novolac resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenolic resin (polyhydric phenol compound with phenol nucleus linked by bismethylene group), biphenyl-modified naphthol resin (bismethylene group Polyhydric phenol compounds such as polyhydric naphthol compounds with phenol nuclei linked) and aminotriazine-modified phenolic resins (polyhydric phenol compounds with phenol nuclei linked with melamine, benzoguanamine, etc.).
  • the blending amount of the phenol-based curing agent is preferably 20% by mass or more and 70% by mass or less with respect to the epoxy resin (A). By using the curing agent in an amount within the above range, a resin composition having excellent curability can be obtained.
  • the ratio of the content of the phenolic curing agent b to the active ester curing agent a is preferably 0.5 or more and 8 or less, more preferably 1 or more and 5 or less, and further Preferably, it can be 1.5 or more and 3 or less.
  • the curing agent (B) containing an active ester curing agent and a phenolic curing agent is preferably 0.2% by mass or more and 15% by mass or less with respect to the entire thermosetting resin composition. , more preferably 0.5% by mass or more and 10% by mass or less, and still more preferably 1.0% by mass or more and 7% by mass or less.
  • the high dielectric constant filler (C) includes calcium titanate, barium titanate, strontium titanate, magnesium titanate, magnesium zirconate, strontium zirconate, bismuth titanate, zirconium titanate, and titanic acid.
  • Zinc, barium zirconate, calcium zirconate titanate, lead zirconate titanate, barium magnesium niobate, calcium zirconate, and the like can be mentioned, and at least one selected from these can be included.
  • the high dielectric constant filler is preferably at least one selected from calcium titanate, strontium titanate, and magnesium titanate, and is selected from calcium titanate and magnesium titanate. is more preferably at least one of
  • the shape of the high dielectric constant filler is granular, amorphous, flaky, etc., and these shaped high dielectric constant fillers can be used in any ratio.
  • the average particle size of the high dielectric constant filler is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, still more preferably 0, from the viewpoint of the effects of the present invention and fluidity/fillability. .5 ⁇ m or more and 10 ⁇ m or less.
  • the amount of the high dielectric constant filler is 30% by mass or more, preferably 35% by mass or more, more preferably 45% by mass or more in 100% by mass of the thermosetting resin composition.
  • the upper limit is about 80% by mass or more.
  • thermosetting resin composition of this embodiment can further contain a curing catalyst (D).
  • the curing catalyst (D) is sometimes called a curing accelerator or the like.
  • the curing catalyst (D) is not particularly limited as long as it accelerates the curing reaction of the thermosetting resin, and known curing catalysts can be used.
  • the curing catalyst (D) include phosphorus atom-containing compounds such as organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds; Imidazoles (imidazole curing accelerators) such as 2-methylimidazole and 2-phenylimidazole; , nitrogen atom-containing compounds such as quaternary salts of amidines and amines, and the like, and only one kind may be used, or two or more kinds may be used.
  • phosphorus atom-containing compounds such as organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds
  • Imidazoles imidazole curing accelerators
  • a phosphorus atom-containing compound such as a tetra-substituted phosphonium compound, a phosphobetaine compound, a phosphine compound and a quinone compound. It is more preferable to include latent compounds such as adducts of phosphonium compounds and silane compounds, tetrasubstituted phosphonium compounds, adducts of phosphine compounds and quinone compounds, and adducts of phosphonium compounds and silane compounds. Adducts are particularly preferred.
  • organic phosphines include primary phosphines such as ethylphosphine and phenylphosphine; secondary phosphines such as dimethylphosphine and diphenylphosphine; and tertiary phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine and triphenylphosphine.
  • Examples of tetra-substituted phosphonium compounds include compounds represented by the following general formula (6).
  • P represents a phosphorus atom.
  • R 4 , R 5 , R 6 and R 7 each independently represent an aromatic group or an alkyl group.
  • A represents an anion of an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group and a thiol group on an aromatic ring.
  • AH represents an aromatic organic acid having at least one functional group selected from a hydroxyl group, a carboxyl group and a thiol group on an aromatic ring.
  • x and y are 1 to 3
  • z is 0 to 3
  • x y.
  • a compound represented by the general formula (6) is obtained, for example, as follows. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and uniformly mixed to generate an aromatic organic acid anion in the solution system. Water is then added to precipitate the compound represented by general formula (6).
  • R 4 , R 5 , R 6 and R 7 bonded to the phosphorus atom are phenyl groups
  • AH is a compound having a hydroxyl group in the aromatic ring, that is, a phenol.
  • A is preferably the anion of the phenol.
  • phenols examples include monocyclic phenols such as phenol, cresol, resorcin and catechol; condensed polycyclic phenols such as naphthol, dihydroxynaphthalene and anthraquinol; bisphenols such as bisphenol A, bisphenol F and bisphenol S; Examples include polycyclic phenols such as phenylphenol and biphenol.
  • Examples of phosphobetaine compounds include compounds represented by the following general formula (7).
  • P represents a phosphorus atom.
  • R 8 represents an alkyl group having 1 to 3 carbon atoms, and R 9 represents a hydroxyl group.
  • f is 0-5 and g is 0-3.
  • a compound represented by the general formula (7) is obtained, for example, as follows. First, the triaromatic-substituted phosphine, which is the third phosphine, is brought into contact with a diazonium salt to substitute the diazonium group of the triaromatic-substituted phosphine with the diazonium salt.
  • Examples of adducts of phosphine compounds and quinone compounds include compounds represented by the following general formula (8).
  • P represents a phosphorus atom.
  • R 10 , R 11 and R 12 each represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms and may be the same or different.
  • R 13 , R 14 and R 15 each represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different, and R 14 and R 15 combine to form a cyclic structure.
  • the phosphine compound used for the adduct of the phosphine compound and the quinone compound includes, for example, triphenylphosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, trinaphthylphosphine, tris(benzyl)phosphine and the like.
  • Substituents or those in which a substituent such as an alkyl group or an alkoxyl group is present are preferred, and examples of substituents such as an alkyl group or an alkoxyl group include those having 1 to 6 carbon atoms.
  • Triphenylphosphine is preferred from the viewpoint of availability.
  • the quinone compound used for the adduct of the phosphine compound and the quinone compound includes benzoquinone and anthraquinones, among which p-benzoquinone is preferable from the viewpoint of storage stability.
  • the adduct can be obtained by contacting and mixing in a solvent in which both the organic tertiary phosphine and the benzoquinones can be dissolved.
  • a solvent in which both the organic tertiary phosphine and the benzoquinones can be dissolved.
  • ketones such as acetone and methyl ethyl ketone, which have low solubility in the adduct, are preferred. However, it is not limited to this.
  • Examples of adducts of phosphonium compounds and silane compounds include compounds represented by the following general formula (9).
  • P represents a phosphorus atom and Si represents a silicon atom.
  • R 16 , R 17 , R 18 and R 19 each represent an aromatic or heterocyclic organic group or an aliphatic group, and may be the same or different.
  • R20 is an organic group that bonds with groups Y2 and Y3 .
  • R21 is an organic group that bonds with groups Y4 and Y5 .
  • Y2 and Y3 each represent a group formed by releasing protons from a proton - donating group , and the groups Y2 and Y3 in the same molecule combine with silicon atoms to form a chelate structure.
  • Y4 and Y5 represent a group formed by releasing protons from a proton - donating group, and the groups Y4 and Y5 in the same molecule bind to silicon atoms to form a chelate structure.
  • R 20 and R 21 may be the same or different, and Y 2 , Y 3 , Y 4 and Y 5 may be the same or different.
  • Z1 is an organic group having an aromatic or heterocyclic ring, or an aliphatic group.
  • R 16 , R 17 , R 18 and R 19 are, for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group and methyl group. , ethyl group, n-butyl group, n-octyl group and cyclohexyl group. , an aromatic group having a substituent such as a hydroxyl group or an unsubstituted aromatic group is more preferable.
  • R20 is an organic group that bonds with Y2 and Y3 .
  • R 21 is an organic group that bonds with groups Y 4 and Y 5 .
  • Y2 and Y3 are groups formed by proton - releasing proton - donating groups , and the groups Y2 and Y3 in the same molecule bond with silicon atoms to form a chelate structure.
  • Y4 and Y5 are groups in which proton - donating groups release protons, and groups Y4 and Y5 in the same molecule bond with silicon atoms to form a chelate structure.
  • the groups R 20 and R 21 may be the same or different, and the groups Y 2 , Y 3 , Y 4 and Y5 may be the same or different.
  • the proton donor releases two protons
  • the proton donor is preferably an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule, and furthermore, the adjacent carbon atoms constituting the aromatic ring have a carboxyl group or a hydroxyl group.
  • An aromatic compound having at least two hydroxyl groups is preferable, and an aromatic compound having at least two hydroxyl groups on adjacent carbon atoms constituting an aromatic ring is more preferable.
  • examples include alcohol, 1,2-cyclohexanediol, 1,2-propanediol and glycerin, and among these, catechol, 1,2-dihydroxynaphthalene and 2,3-dihydroxynaphthalene are more preferred.
  • Z 1 in general formula (9) represents an organic group or aliphatic group having an aromatic or heterocyclic ring, specific examples of which include a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group. and aliphatic hydrocarbon groups such as octyl group, aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxy groups such as glycidyloxypropyl group, mercaptopropyl group, aminopropyl group, mercapto groups, alkyl groups having amino groups, and reactive substituents such as vinyl groups.
  • a method for producing an adduct of a phosphonium compound and a silane compound is, for example, as follows.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added and dissolved in a flask containing methanol, and then a sodium methoxide-methanol solution is added dropwise while stirring at room temperature. Furthermore, when a solution prepared in advance by dissolving a tetrasubstituted phosphonium halide such as tetraphenylphosphonium bromide in methanol is added dropwise thereto while stirring at room temperature, crystals are precipitated. Precipitated crystals are filtered, washed with water and dried in a vacuum to obtain an adduct of a phosphonium compound and a silane compound.
  • the curing catalyst (D) When the curing catalyst (D) is used, its content is preferably 0.1 to 3% by mass, more preferably 0.3 to 2% by mass, relative to 100% by mass of the thermosetting resin composition. By setting it to such a numerical range, a sufficient curing acceleration effect can be obtained without excessively deteriorating other performances.
  • thermosetting resin composition of the present embodiment further contains an inorganic filler in addition to the high dielectric constant filler (C) in order to reduce hygroscopicity, reduce the coefficient of linear expansion, improve thermal conductivity and improve strength. can be done.
  • Inorganic fillers include fused silica, crystalline silica, alumina, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, Examples include powders of mullite, titania, etc., beads obtained by spheroidizing these powders, glass fibers, and the like. These inorganic fillers may be used alone or in combination of two or more. Among the above inorganic fillers, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. is preferred.
  • the amount of the inorganic filler other than the high dielectric constant filler (C) is preferably 10% with respect to 100% by mass of the thermosetting resin composition, from the viewpoint of moldability, reduction of thermal expansion, and improvement of strength. It can be in the range of 15% by mass or more and 40% by mass or less, more preferably 20% by mass or more and 35% by mass or less. If it is the said range, it will be excellent in thermal-expansion reduction and moldability.
  • thermosetting resin composition of the present embodiment may optionally contain various components such as a silane coupling agent, a release agent, a colorant, a dispersant, and a stress reducing agent. can.
  • thermosetting resin composition of the present embodiment contains the following epoxy resin (A), the following curing agent (B), and the following high dielectric constant filler (C), and the high dielectric constant filler 30% by mass or more of (C) is contained in 100% by mass of the composition.
  • Epoxy resin (A) includes biphenyl aralkyl type epoxy resin and/or biphenyl type epoxy resin.
  • thermosetting resin composition of the present embodiment which is obtained by combining such components, it is possible to obtain a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent, and furthermore, a microstrip comprising the dielectric substrate Antenna can be provided.
  • the thermosetting resin composition of this embodiment is
  • the epoxy resin (A) in 100% by mass of the composition is preferably 2% by mass or more and 30% by mass or less, more preferably 3% by mass or more and 25% by mass or less, still more preferably 5% by mass or more and 20% by mass or less.
  • the high dielectric constant filler (C) can be contained in 100% by mass of the composition in an amount of 30% by mass or more, preferably 35% by mass or more, and more preferably 45% by mass or more.
  • the upper limit is 80% by mass.
  • an epoxy resin (A), a curing agent (B), and a high dielectric constant filler (C) are included in combination, and the high dielectric constant filler (C) is added to 100 mass of the composition. %, it is possible to provide a thermosetting resin composition from which a dielectric substrate having a high dielectric constant and a low dielectric loss tangent can be obtained.
  • thermosetting resin composition of this embodiment can be produced by uniformly mixing the components described above.
  • Examples of the production method include a method of sufficiently mixing raw materials in a predetermined amount with a mixer or the like, melt-kneading the mixture with a mixing roll, kneader, extruder or the like, and then cooling and pulverizing the mixture.
  • the resulting thermosetting resin composition may, if desired, be tableted to a size and mass that are suitable for molding conditions.
  • thermosetting resin composition of the present embodiment has a spiral flow length of 70 cm or more, preferably 80 cm or more, more preferably 90 cm or more, and even more preferably 100 cm or more. Therefore, the thermosetting resin composition of this embodiment has excellent moldability.
  • a mold temperature of 175 ° C. is injected into a mold for spiral flow measurement according to EMMI-1-66. This can be done by injecting the resin molding material under conditions of a pressure of 6.9 MPa and a curing time of 120 seconds and measuring the flow length.
  • the gel time of the thermosetting resin composition of the present embodiment is preferably 32 seconds or more and 80 seconds or less, more preferably 35 seconds or more and 70 seconds or less.
  • thermosetting resin composition of the present embodiment has a rectangular pressure of 0.1 MPa or more, preferably 0.15 MPa or more, more preferably 0.20 MPa or more, measured under the following conditions. Rectangular pressure is a parameter of melt viscosity, and the smaller the numerical value, the lower the melt viscosity.
  • the thermosetting resin composition of the present embodiment has a rectangular pressure within the above range, and is therefore excellent in mold filling properties during molding.
  • thermosetting resin composition was injected into a rectangular flow path with a width of 13 mm, a thickness of 1 mm, and a length of 175 mm under conditions of a mold temperature of 175°C and an injection speed of 177 mm 3 /sec. Then, the change in pressure over time is measured with a pressure sensor embedded at a position 25 mm from the upstream end of the flow channel, the minimum pressure at the time of flow of the thermosetting resin composition is calculated, and this minimum pressure is measured as a rectangular pressure.
  • the thermosetting resin composition of the present embodiment has the following dielectric constant and dielectric loss tangent (tan ⁇ ) in a cured product obtained by heating at 200° C. for 90 minutes. It can have a dielectric constant of 10 or more, preferably 12 or more, more preferably 13 or more at 25 GHz by the cavity resonator method.
  • the dielectric loss tangent (tan ⁇ ) at 25 GHz by the cavity resonator method can be 0.04 or less, preferably 0.03 or less, more preferably 0.02 or less, and particularly preferably 0.015 or less.
  • thermosetting resin composition of the present embodiment Since the cured product obtained from the thermosetting resin composition of the present embodiment is excellent in high dielectric constant and low dielectric loss tangent in the high frequency band, it is possible to increase the frequency and shorten the circuit and reduce the size of communication equipment. It can be suitably used as a material for forming a microstrip antenna, a material for forming a dielectric waveguide, a material for forming an electromagnetic wave absorber, and the like.
  • the dielectric waveguide comprises a dielectric obtained by curing the thermosetting resin composition of this embodiment, and a conductor film covering the surface of the dielectric.
  • a dielectric waveguide confines electromagnetic waves in a dielectric (dielectric medium) for transmission.
  • the conductor film can be made of a metal such as copper, an oxide high-temperature superconductor, or the like.
  • the electromagnetic wave absorber has a laminated structure of a support, a resistive film, a dielectric layer, and a reflective layer.
  • the electromagnetic wave absorber can be used as a ⁇ /4 type electromagnetic wave absorber having high electromagnetic wave absorption performance.
  • a resin base material etc. are mentioned as a support body.
  • the support can protect the resistive film and enhance the durability as a radio wave absorber.
  • Resistive films include indium tin oxide and molybdenum-containing resistive films.
  • the dielectric layer is formed by curing the thermosetting resin composition of this embodiment. Its thickness is about 10 ⁇ m or more and 2000 ⁇ m or less.
  • the reflective layer can function as a radio wave reflective layer, and includes, for example, a metal film.
  • Example A shows an example of the first invention (claims 1 to 13 and 22 to 24 at the time of filing) and the first embodiment.
  • Example B shows an example of the second invention (claims 14 to 21 and 22 to 24 at the time of filing) and the second embodiment.
  • thermosetting resin composition [Examples A1 to A4, Comparative Example A1] ⁇ Preparation of thermosetting resin composition> The following raw materials were mixed at room temperature using a mixer at the contents shown in Table 1, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a thermosetting resin composition in the form of powder particles. Then, a tablet-like thermosetting resin composition was obtained by tableting at high pressure.
  • Inorganic filler ⁇ Inorganic filler 1: alumina (K75-1V25F, manufactured by Denka Co., Ltd.) ⁇ Inorganic filler 2: Fused spherical silica (SC-2500-SQ, manufactured by Admatechs)
  • Epoxy resin 1 biphenyl type epoxy resin (YX4000K, manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin 2 Biphenylene skeleton-containing phenol aralkyl type epoxy resin (NC3000L, manufactured by Nippon Kayaku Co., Ltd.)
  • Epoxy resin 3 bisphenol A type epoxy resin (YL6810, manufactured by Mitsubishi Chemical Corporation)
  • Active ester compound 1 Active ester compound prepared by the following preparation method In a flask equipped with a thermometer, a dropping funnel, a condenser, a fractionating tube, and a stirrer, 279.1 g of biphenyl-4,4'-dicarboxylic acid dichloride ( Mole number of acid chloride group: 2.0 mol) and 1338 g of toluene were charged, and the inside of the system was replaced with nitrogen under reduced pressure and dissolved.
  • Active ester compound 2 Active ester compound prepared by the following preparation method In a flask equipped with a thermometer, a dropping funnel, a condenser, a fractionating tube, and a stirrer, 203.0 g of 1,3-benzenedicarboxylic acid dichloride (acid chloride Mole number of group: 2.0 mol) and 1338 g of toluene were charged, and the inside of the system was replaced with nitrogen under reduced pressure and dissolved.
  • the average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio.
  • the obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
  • Phenolic curing agent 1 Biphenyl aralkyl type resin (HE910-20, manufactured by Air Water)
  • Phenolic curing agent 2 biphenylene skeleton-containing phenol aralkyl type resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
  • Silane coupling agent - Silane coupling agent 1: phenylaminopropyltrimethoxysilane (CF4083, Dow Corning Toray Co., Ltd.) ⁇ Silane coupling agent 2: 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
  • Curing catalyst tetraphenylphosphonium-4,4′-sulfonyl diphenolate
  • Curing catalyst 2 tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenylsilicate
  • Release agent ⁇ Releasing agent 1: Glycerin trimontanate (Rekolb WE-4, manufactured by Clariant Japan Co., Ltd.)
  • thermosetting resin composition was applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 ⁇ m. This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
  • a network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter ⁇ 42 mm, height 30 mm) were set up. The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 18 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were obtained.
  • the measurement mode was TE 011 mode.
  • the glass transition temperature (Tg) and linear expansion coefficients (CTE1, CTE2) of the cured product of the obtained thermosetting resin composition were measured as follows. First, using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.), the thermosetting resin composition for sealing is injected at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. It was molded to obtain a test piece of 10 mm x 4 mm x 4 mm. Then, after post-curing the obtained test piece at 175 ° C.
  • KTS-15 low-pressure transfer molding machine
  • thermomechanical analyzer manufactured by Seiko Electronics Industries Co., Ltd., TMA100
  • the measurement temperature range is 0 ° C. to 320 ° C.
  • the heating rate is Measurement was performed under the condition of 5°C/min. From these measurement results, the glass transition temperature (Tg), the coefficient of linear expansion below the glass transition temperature (CTE1), and the coefficient of linear expansion above the glass transition temperature (CTE2) were calculated.
  • thermosetting resin composition was cured using a low-pressure transfer molding machine ("KTS-30" manufactured by Kotaki Seiki Co., Ltd.) under the conditions of a mold temperature of 130 ° C., an injection pressure of 9.8 MPa, and a curing time of 300 seconds. Injection molded into a mold. As a result, a molded article having a width of 10 mm, a thickness of 4 mm and a length of 80 mm was obtained. The resulting molded article was then post-cured at 175° C. for 4 hours. This produced a test piece for evaluation of mechanical strength.
  • KTS-30 manufactured by Kotaki Seiki Co., Ltd.
  • the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
  • thermosetting resin composition (Heat durability) The cured product of the obtained thermosetting resin composition was subjected to 10 repeated heat cycles at 175° C. for 100 hours, and the rate of change in physical properties was evaluated.
  • the rate of change obtained from (FMa-FMb)/FMa x 100% is 200%. A case of less than 200% was evaluated as x.
  • thermosetting resin compositions of Examples A1 to A4 according to the first invention are excellent in high dielectric constant and low dielectric loss tangent in the high frequency band, and are members with excellent thermal durability compared to Comparative Example A1 ( The result showed that a cured product) could be formed.
  • Such a thermosetting resin composition can be suitably used to form part of high-frequency devices such as microstrip antennas, dielectric waveguides, and multilayer antennas.
  • Example B> [Examples B1 to B10, Comparative Example B1]
  • the following raw materials were mixed in a blending amount shown in Table 2 at room temperature using a mixer, and then roll-kneaded at 70 to 100°C. After cooling the obtained kneaded material, the kneaded material was pulverized to obtain a powdery resin composition. Subsequently, tablet-shaped resin composition was obtained by tablet-molding at high pressure.
  • High dielectric constant filler ⁇ High dielectric constant filler 1: calcium titanate (average particle size 2.0 ⁇ m))
  • Inorganic filler ⁇ Inorganic filler 1: alumina (DAB25MA-TS3, manufactured by Denka Co., Ltd.) ⁇ Inorganic filler 2: Fused spherical silica (SC-2500-SQ, manufactured by Admatechs)
  • Coloring agent Black titanium oxide (manufactured by Ako Kasei Co., Ltd.)
  • Coupling agent 1 phenylaminopropyltrimethoxysilane (CF-4083, manufactured by Dow Corning Toray Co., Ltd.)
  • Coupling agent 2 3-mercaptopropyltrimethoxysilane (Sila Ace, manufactured by JNC)
  • Epoxy resin 1 biphenylene skeleton-containing phenol aralkyl epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000L, containing structural units represented by the above general formula (a))
  • Curing agent 1 Active ester curing agent prepared by the following preparation method (method for preparing active ester curing agent) 279.1 g of biphenyl-4,4′-dicarboxylic acid dichloride (moles of acid chloride group: 2.0 mol) and 1338 g of toluene were placed in a flask equipped with a thermometer, dropping funnel, condenser, fractionating tube, and stirrer. was charged, and the inside of the system was replaced with nitrogen under reduced pressure to dissolve.
  • Curing agent 2 Biphenylene skeleton-containing phenol aralkyl type resin (MEH-7851SS, manufactured by Meiwa Kasei Co., Ltd.)
  • Curing agent 3 phenol hydroxybenzaldehyde type curing agent (MEH-7500, manufactured by Meiwa Kasei Co., Ltd.)
  • Curing agent 4 Novolac type phenolic resin (Sumilite Resin PR-51470, manufactured by Sumitomo Bakelite Co., Ltd.)
  • Curing agent 5 Zyloc type phenol aralkyl type phenol curing agent (MEHC-7800SS, manufactured by Meiwa Kasei Co., Ltd.)
  • Curing agent 6 Polyvalent MAR type phenol curing agent (SH-002-02, manufactured by Meiwa Kasei Co., Ltd.) Curing agent 7:
  • the average value k of repeating units of the active ester resin was in the range of 0.5 to 1.0 as calculated from the reaction equivalent ratio.
  • the obtained active ester resin specifically had a structure represented by the following chemical formula. In the following formula, the average value k of repeating units was 0.5 to 1.0.
  • Catalyst Tetraphenylphosphonium-4,4'-sulfonyl diphenolate
  • a test piece was obtained using the resin composition. Specifically, the resin compositions prepared in Examples and Comparative Examples were applied to a Si substrate and prebaked at 120° C. for 4 minutes to form a resin film having a coating thickness of 12 ⁇ m. This was heated in an oven at 200° C. for 90 minutes in a nitrogen atmosphere and hydrofluoric acid treatment (immersed in a 2 mass % hydrofluoric acid aqueous solution). After removing the substrate from the hydrofluoric acid, the cured film was peeled off from the Si substrate and used as a test piece.
  • a network analyzer HP8510C, a synthesized sweeper HP83651A, and a test set HP8517B were used as measuring devices. These devices and a cylindrical cavity resonator (inner diameter ⁇ 42 mm, height 30 mm) were set up. The resonance frequency, 3 dB bandwidth, transmitted power ratio, etc. were measured at a frequency of 25 GHz with and without inserting the test piece into the resonator. Then, by analytically calculating these measurement results with software, the dielectric properties such as dielectric constant (Dk) and dielectric loss tangent (Df) were obtained.
  • the measurement mode was TE 011 mode.
  • Mold shrinkage rate For each example and comparative example, the molding shrinkage (after ASM) was measured after molding (ASM: as Mold) for the obtained resin composition, and after the molding, main curing was performed to form a dielectric substrate. The molding shrinkage rate (after PMC) was evaluated under heating conditions (PMC: Post Mold Cure) assuming the production of .
  • PMC Heating conditions
  • a test piece prepared using a low-pressure transfer molding machine ("KTS-15" manufactured by Kotaki Seiki Co., Ltd.) at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Mold shrinkage (after ASM) was obtained according to K6911. Furthermore, the obtained test piece was heat-treated at 175° C. for 4 hours, and the molding shrinkage (after ASM) was measured according to JIS K 6911.
  • KTS-15 low-pressure transfer molding machine
  • the glass transition temperature (Tg) and linear expansion coefficients (CTE1, CTE2) of the cured resin composition obtained were measured as follows. First, using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), the encapsulating resin composition was injection molded at a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A test piece of 10 mm x 4 mm x 4 mm was obtained. Then, after post-curing the obtained test piece at 175 ° C.
  • KTS-15 low-pressure transfer molding machine
  • thermomechanical analyzer manufactured by Seiko Electronics Industries Co., Ltd., TMA100
  • the measurement temperature range is 0 ° C. to 320 ° C.
  • the heating rate is Measurement was performed under the condition of 5°C/min. From these measurement results, the glass transition temperature (Tg), the coefficient of linear expansion below the glass transition temperature (CTE1), and the coefficient of linear expansion above the glass transition temperature (CTE2) were calculated.
  • the bending strength (N/mm 2 ) and bending elastic modulus (N/mm 2 ) of the test piece at room temperature (25°C) or 260°C were measured in accordance with JIS K 6911 at a head speed of 5 mm/min. .
  • thermosetting resin composition of the second invention it is possible to obtain a dielectric substrate excellent in high dielectric constant and low dielectric loss tangent, in other words, excellent in balance of these properties. It became clear. Furthermore, it has been clarified that the thermosetting resin composition of the present invention has a long flow length of spiral flow and a gel time within an appropriate range, so that it is excellent in moldability.
  • microstrip antenna 12 dielectric substrate 14 radiation conductor plate 16 ground conductor plate 20, 20' microstrip antenna 22 dielectric substrate 24 high dielectric substrate 26 spacer a void

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

【解決手段】本発明の熱硬化性樹脂組成物は、熱硬化性樹脂と、25℃、25GHzでの比誘電率が10以上の高誘電率フィラーと、活性エステル化合物と、を含む、熱硬化性樹脂組成物であって、25℃における曲げ弾性率をFM25とし、260℃における曲げ弾性率をFM260としたとき、FM25とFM260が、0.005≦FM260/FM25≦0.1を満たすように構成されるものである。また、本発明の熱硬化性樹脂組成物は、(A)エポキシ樹脂と、(B)硬化剤と、(C)高誘電率充填剤と、を含み、エポキシ樹脂(A)が、ビフェニルアラルキル型エポキシ樹脂および/またはビフェニル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂を除く)を含み、硬化剤(B)が、活性エステル系硬化剤およびフェノール系硬化剤を含み、高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含み、前記熱硬化性樹脂組成物100質量%中に、高誘電率充填剤(C)を30質量%以上の量で含む。

Description

熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ
 本発明は、熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナに関する。
 近年、無線通信が高速化され、さらに使用される通信機器に対して高性能化および小型化が求められている。さらに、近年、無線通信の容量が急激に増大してきており、それに伴う伝送信号の使用周波数の広帯域化、高周波化が急速に進行している。そのため、通信機器の使用周波数帯は、従来使用されてきたマイクロ波帯だけでは対応できず、ミリ波帯にまで拡大されつつある。そのような背景から通信機器に搭載されるアンテナヘの高性能化が強く求められている。
 通信機器は、通信機器内部に組み込まれたアンテナ材料(誘電体基板)の誘電率が高くなると、より一層の小型化が図れる。また、誘電体基板の誘電正接が小さくなると、低損失になり、高周波化に有利となる。従って、誘電率が高く、誘電正接が小さい誘電体基板を使用できれば、高周波化ひいては回路の短縮化および通信機器の小型化が図ることができる。
 特許文献1には、フッ素樹脂とガラスクロスとを含む複合材料である誘電体基板と、フッ素樹脂に接する面の二次元粗度Raが0.2μm未満であるアンテナとの積層体である回路用基板を有するアンテナが開示されている。当該文献には、1GHzにて測定された回路用基板の誘電率および誘電正接が記載されている。
 特許文献2には、シロキサン変性ポリアミドイミド樹脂と高誘電率充填剤とエポキシ樹脂とを含み、25℃、1MHzにおける硬化物の比誘電率が15以上である樹脂組成物が開示されている。当該文献の実施例には、この高誘電率充填剤としてチタン酸バリウムを用いた例が記載されている。
 特許文献3には、エポキシ樹脂、誘電体粉末、ノニオン性界面活性剤、及び活性エステル系硬化剤を含有する樹脂組成物が開示されている。当該文献には、この樹脂組成物を、高周波領域で使用される電子部品の高誘電率絶縁材料や、指紋センサー用の高誘電率絶縁材料として用いることができると記載されている。当該文献の実施例には、この誘電体粉末としてチタン酸バリウムを用いた例が記載されている。
 特許文献4には、エポキシ樹脂と、硬化剤と、チタン酸カルシウム粒子及びチタン酸ストロンチウム粒子を所定の量で含む無機充填材と、を含み、前記無機充填材が、シリカ粒子及びアルミナ粒子からなる群より選択される少なくとも一種をさらに含有し、高周波デバイスにおける電子部品の封止に用いられる成形用樹脂組成物が開示されている。
特開2018-41998号公報 特開2004-315653号公報 特開2020-105523号公報 特許第6870778号公報
 しかしながら、特許文献1~4に記載の従来の技術においては以下の点に改善の余地があった。
 上記の特許文献1に記載の複合材料において、より高周波帯域における高誘電率および低誘電正接の点、さらに熱時耐久性の点で改善の余地があることが判明した。これを第一の課題とする。
 また、上記の特許文献1~4に記載の誘電体基板は、高誘電率および低誘電正接に課題があり、特に高周波帯域において当該課題は顕著であった。これを第二の課題とする。
 本発明者らは、熱硬化性樹脂組成物において、高誘電率フィラーと活性エステル化合物とを併用した上で、25℃に対する260℃における曲げ弾性率比を適切な範囲に制御することにより、上記第一の課題を解決できることを見出し、第一の発明を完成させた。
 すなわち、第一の発明は、以下に示すことができる。
 第一の発明によれば、
 熱硬化性樹脂と、
 25℃、25GHzでの比誘電率が10以上の高誘電率フィラーと、
 活性エステル化合物と、
を含む、熱硬化性樹脂組成物であって、
 下記の手順に従って測定される、25℃における曲げ弾性率をFM25とし、260℃における曲げ弾性率をFM260としたとき、FM25とFM260が、0.005≦FM260/FM25≦0.1を満たす、
熱硬化性樹脂組成物が提供される。
(手順)
 当該熱硬化性樹脂組成物を、低圧トランスファー成形機を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形し、幅10mm、厚み4mm、長さ80mmの成形品を得る。
 得られた成形品を175℃、4時間の条件で後硬化させ、試験片を作製する。
 試験片の室温(25℃)または260℃における曲げ弾性率(N/mm)を、JIS K 6911に準拠して測定する。
 また、第一の発明によれば、
 上記の熱硬化性樹脂組成物の硬化物を備える、高周波デバイスが提供される。
 また、本発明者らは、特定の成分の組み合わせにより上記第二の課題を解決できることを見出し、第二の発明を完成させた。
 すなわち、第二の発明は、以下に示すことができる。
 第二の発明によれば
(A)エポキシ樹脂と、
(B)硬化剤と、
(C)高誘電率充填剤と、
を含む、熱硬化性樹脂組成物であって、
 エポキシ樹脂(A)が、ビフェニルアラルキル型エポキシ樹脂および/またはビフェニル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂を除く)を含み、
 硬化剤(B)が、活性エステル系硬化剤およびフェノール系硬化剤を含み、
 高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含み、前記熱硬化性樹脂組成物100質量%中に、高誘電率充填剤(C)を30質量%以上の量で含む、熱硬化性樹脂組成物を提供することができる。
 第二の発明によれば、
 前記熱硬化性樹脂組成物を硬化してなる誘電体基板が提供される。
 第一または第二の発明によれば、
 前記誘電体基板と,
 前記誘電体基板の一方の面に設けられた放射導体板と、
 前記誘電体基板の他方の面に設けられた地導体板と、
を備える、マイクロストリップアンテナが提供される。
 第一または第二の発明によれば、
 誘電体基板と,
 前記誘電体基板の一方の面に設けられた放射導体板と、
 前記誘電体基板の他方の面に設けられた地導体板と、
 前記放射導体板に対向配置された高誘電体と、
を備える、マイクロストリップアンテナであって、
 前記高誘電体が、前記誘電体基板により構成されている、マイクロストリップアンテナが提供される。
 第一の発明によれば、高誘電率、低誘電正接および熱時耐久性に優れた部材を形成できる熱硬化性樹脂組成物、およびそれを用いた高周波デバイスを提供できる。
 また、第二の発明によれば、高誘電率および低誘電正接に優れた誘電体基板が得られるとともに、成形性に優れた熱硬化性樹脂組成物および当該樹脂組成物からなる誘電体基板、および当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。言い換えれば、第二の発明の熱硬化性樹脂組成物は、高誘電率および低誘電正接のバランスに優れた誘電体基板を得ることができる。
本実施形態のマイクロストリップアンテナを示す上面斜視図である。 本実施形態のマイクロストリップアンテナの別の態様を示す断面図である。
 以下、第一の発明(出願時請求項1~13,22~24)を第1の実施の形態に基づいて、図面を参照しながら説明し、第二の発明(出願時請求項14~21,22~24)を第2の実施の形態に基づいて、図面を参照しながら説明する。
 尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、例えば「1~10」は特に断りがなければ「1以上」から「10以下」を表す。
[第一の発明]
 第1の実施形態の熱硬化性樹脂組成物の概要を説明する。
 本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂と、25℃、25GHzでの比誘電率が10以上の高誘電率フィラーと、活性エステル化合物と、を含み、下記の手順に従って測定される、25℃における曲げ弾性率をFM25とし、260℃における曲げ弾性率をFM260としたとき、FM25とFM260が、0.005≦FM260/FM25≦0.1を満たすように構成される。
 FM260/FM25の下限は、0.005以上、好ましくは0.006以上、より好ましくは0.007以上、さらに好ましくは0.008以上である。これにより、高誘電率および低誘電正接が良好な部材(熱硬化性樹脂組成物の硬化物)において、熱時耐久性を良好なものとすることができる。
 一方、FM260/FM25の上限は、例えば、0.1以下、好ましくは0.05以下、より好ましくは0.03以下、さらに好ましくは0.02以下としてもよい。これにより、熱硬化性樹脂組成物の硬化物における物性のバランスを図ることができる。
 現在、高周波化、パワー半導体の高出力化、デバイスの低背化などの設計事情により、動作環境の温度は益々増大する傾向にある。このような動作環境の高温化に対応すべく、発明者は、熱硬化性樹脂組成物の硬化物における熱的特性について検討を行った。
 本発明者の知見によれば、上記のFM260/FM25という指標は、熱硬化性樹脂組成物の硬化物について、熱処理前後における変形しにくさを安定的に評価することができる。そして、指標となるFM260/FM25を上記下限値以上とすることにより、加熱による硬化物の熱劣化を抑制することができるため、硬化物を用いて形成される部材の熱時耐久性を向上できることが判明した。
 また、上記部材において、熱劣化による誘電特性の低下が抑制されることも期待できる。
 本実施形態では、たとえば熱硬化性樹脂組成物中に含まれる各成分の種類や配合量、熱硬化性樹脂組成物の調製方法等を適切に選択することにより、上記のFM260/FM25、下記のFS260/FS25、ガラス転移温度、および線膨張係数を制御することが可能である。これらの中でも、たとえば、高誘電率フィラーとしてチタン酸カルシウムを使用すること、高誘電率フィラーの含有量、無機充填材としてアルミナをさらに使用すること、熱硬化性樹脂としてビフェニル型エポキシ樹脂および/またはビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂と活性エステル化合物としてジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物とを併用すること、またフェノール系硬化剤としてビフェニルアラルキル型樹脂および/またはビフェニレン骨格含有フェノールアラルキル型樹脂等が、上記のFM260/FM25、下記のFS260/FS25、ガラス転移温度、および線膨張係数を所望の数値範囲とするための要素として挙げられる。
 また、熱硬化性樹脂組成物は、上記の手順に従ってJIS K 6911に準拠して、ヘッドスピード5mm/minで測定される、25℃における曲げ強度をFS25とし、260℃における曲げ強度をFS260としたとき、FS25とFS260が、0.025≦FS260/FS25≦0.2を満たすように構成されてもよい。
 FS260/FS25の下限は、0.025以上、好ましくは0.028以上、より好ましくは0.030以上、さらに好ましくは0.032以上である。これにより、高誘電率および低誘電正接が良好な部材(熱硬化性樹脂組成物の硬化物)において、熱時靱性を良好なものとすることができる。
 一方、FS260/FS25の上限は、例えば、0.2以下、好ましくは0.1以下、より好ましくは0.07以下、さらに好ましくは0.05以下としてもよい。これにより、熱硬化性樹脂組成物の硬化物における物性のバランスを図ることができる。
(曲げ弾性率および曲げ強度の測定手順)
 熱硬化性樹脂組成物を、低圧トランスファー成形機を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形し、幅10mm、厚み4mm、長さ80mmの成形品を得る。
 得られた成形品を175℃、4時間の条件で後硬化させ、試験片を作製する。
 JIS K 6911に準拠して、ヘッドスピード5mm/minで、室温(25℃)および260℃のそれぞれにおいて、試験片の曲げ弾性率(N/mm)および曲げ強度(N/mm)を、測定する。
 熱硬化性樹脂組成物の硬化物におけるガラス転移温度の下限は、例えば、100℃以上、好ましくは103℃以上、より好ましくは105℃以上である。
 上記硬化物におけるガラス転移温度の上限は、特に限定されないが、例えば、250℃以下でもよい。
 当該熱硬化性樹脂組成物の硬化物における、ガラス転移温度以下の範囲の線膨張係数をCTE1とし、ガラス転移温度超え320℃以下の範囲の線膨張係数をCTE2とする。
 CTE1が、例えば、5ppm/℃以上25ppm/℃以下、好ましくは5ppm/℃以上23ppm/℃以下である。
 CTE2が、例えば、30ppm/℃以上100ppm/℃以下、好ましくは30ppm/℃以上90ppm/℃以下である。
 以下、本実施形態の熱硬化性樹脂組成物の各成分について詳述する。

[熱硬化性樹脂]
 本実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂を含む。
 熱硬化性樹脂として、エポキシ樹脂、シアネート樹脂、およびマレイミド樹脂から選択される一種または二種以上を用いることができる。これらの中でも、エポキシ樹脂を用いてもよい。
 エポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は限定されない。
 エポキシ樹脂は、例えばビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等に例示されるトリスフェノール型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ビフェニレン骨格を含むエポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 これらの内、ビフェニレン骨格を含むエポキシ樹脂が好ましく、ビフェニルアラルキル型エポキシ樹脂およびビフェニル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂を除く)からなる群から選択される1種以上を含むことがより好ましい。
 熱硬化性樹脂の含有量は、熱硬化性樹脂組成物100質量%中、例えば、2質量%以上、好ましくは5質量%以上、より好ましくは7質量%以上である。
 また、エポキシ樹脂の含有量は、熱硬化性樹脂組成物100質量%中、例えば、20質量%以下、好ましくは15質量%以下、さらに好ましくは10質量%以下含むことができる。
[高誘電率フィラー]
 本実施形態の熱硬化性樹脂組成物は、高誘電率フィラー(高誘電率充填剤)を含む。
 高誘電率フィラーとしては、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、またはジルコン酸カルシウム等を挙げることができ、これらから選択される1種または2種以上を用いることができる。
 高誘電率フィラーは、上記の例示の中でも、チタン酸カルシウムおよびチタン酸ストロンチウムの少なくとも一方を含んでもよく、好ましくはチタン酸カルシウムを含む。これにより、高周波帯域における誘電正接を一層低減できる。
 高誘電率フィラーの平均粒子径は、例えば、好ましくは0.1μm以上50μm以下、より好ましくは0.3μm以上20μm以下、さらに好ましくは0.5μm以上10μm以下である。
 高誘電率フィラーの形状は、粒状、不定形、フレーク状などであり、これらの形状の高誘電率フィラーを任意の比率で用いることができる。
 高誘電率フィラーの含有量は、熱硬化性樹脂組成物100質量%中、好ましくは30質量%~90質量%、より好ましくは35質量%~80質量%、さらに好ましくは40質量%~70質量%の範囲である。高誘電率フィラーの添加量が上記範囲であると、得られる硬化物の誘電率がより低くなるとともに、成形品の製造にも優れる。
[活性エステル化合物]
 本実施形態の熱硬化性樹脂組成物は、活性エステル化合物(活性エステル硬化剤)を含む。
 活性エステル化合物は、エポキシ樹脂などの熱硬化性樹脂の硬化剤として機能する。
 活性エステル化合物としては、1分子中に1個以上の活性エステル基を有する化合物を用いることができる。中でも、活性エステル化合物としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましい。
 活性エステル化合物の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が挙げられる。活性エステル化合物はこれらから選択される少なくとも1種を含むことができる。
 中でも、ナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。
 本実施形態において、活性エステル化合物は、例えば、以下の一般式(1)で表される構造を有する樹脂を用いることができる。
Figure JPOXMLDOC01-appb-C000005
 式(1)において、「B」は、式(B)で表される構造である。
Figure JPOXMLDOC01-appb-C000006
 式(B)中、Arは、置換または非置換のアリーレン基である。置換されたアリーレン基の置換基は炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基等が挙げられる。
 Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。前記基の置換基としては、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基等が挙げられる。
 Yとして好ましくは、単結合、メチレン基、-CH(CH-、エーテル結合、置換されていてもよいシクロアルキレン基、置換されていてもよい9,9-フルオレニレン基等が挙げられる。
 nは0~4の整数であり、好ましくは0または1である。
 Bは、具体的には、下記一般式(B1)または下記一般式(B2)で表される構造である。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(B1)および上記一般式(B2)中、ArおよびYは、一般式(B)と同義である。
 Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、
 Ar’は、置換または非置換のアリール基であり、
 kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。
 本実施形態の熱硬化性樹脂組成物は、特定の活性エステル化合物を含むことにより、得られる硬化物は優れた誘電特性を有することができ、低誘電正接に優れる。
 本実施形態の熱硬化性樹脂組成物に用いられる活性エステル化合物は、式(B)で表される活性エステル基を有する。エポキシ樹脂と活性エステル化合物との硬化反応において、活性エステル化合物の活性エステル基はエポキシ樹脂のエポキシ基と反応して2級の水酸基を生じる。この2級の水酸基は、活性エステル化合物のエステル残基により封鎖される。そのため、硬化物の誘電正接が低減される。
 一実施形態において、上記式(B)で表される構造は、以下の式(B-1)~式(B-6)から選択される少なくとも1つであることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(B-1)~(B-6)において、
 Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、
 Rはそれぞれ独立に炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基の何れかであり、Xは炭素原子数2~6の直鎖のアルキレン基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、スルホン基のいずれかであり、
 nは0~4の整数であり、pは1~4の整数である。
 上記式(B-1)~(B-6)で表される構造は、いずれも配向性が高い構造であることから、これを含む活性エステル化合物を用いた場合、得られる熱硬化性樹脂組成物の硬化物は、高周波帯域における低誘電正接を有することができる。
 中でも、低誘電正接の観点から、式(B-2)、式(B-3)または式(B-5)で表される構造を有する活性エステル化合物が好ましく、さらに式(B-2)のnが0である構造、式(B-3)のXがエーテル結合である構造、または式(B-5)において二つのカルボニルオキシ基が4,4'-位にある構造を有する活性エステル化合物がより好ましい。また各式中のRはすべて水素原子であることが好ましい。
 式(1)における「Ar'」はアリール基であり、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、3,5-キシリル基、o-ビフェニル基、m-ビフェニル基、p-ビフェニル基、2-ベンジルフェニル基、4-ベンジルフェニル基、4-(α-クミル)フェニル基、1-ナフチル基、2-ナフチル基等であり得る。中でも、特に誘電正接の低い硬化物が得られることから、1-ナフチル基または2-ナフチル基であることが好ましい。
 本実施形態において、式(1)で表される活性エステル化合物における[A]は、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、このようなアリーレン基としては、例えば、1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物と、フェノール性化合物とを重付加反応させて得られる構造が挙げられる。
 前記1分子中に二重結合を2個含有する不飽和脂肪族環状炭化水素化合物は、例えば、ジシクロペンタジエン、シクロペンタジエンの多量体、テトラヒドロインデン、4-ビニルシクロヘキセン、5-ビニル-2-ノルボルネン、リモネン等が挙げられ、これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、耐熱性に優れる硬化物が得られることからジシクロペンタジエンが好ましい。尚、ジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンにはシクロペンタジエンの多量体や、他の脂肪族或いは芳香族性ジエン化合物等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等の性能を考慮すると、ジシクロペンタジエンの純度90質量%以上の製品を用いることが望ましい。
 一方、前記フェノール性化合物は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの中でも、硬化性が高く硬化物における誘電特性に優れる活性エステル化合物となることからフェノールが好ましい。
 好ましい実施形態において、式(1)で表される活性エステル化合物における[A]は、式(A)で表される構造を有する。式(1)における[A]が以下の構造である活性エステル化合物を含む熱硬化性樹脂組成物の硬化物は、高周波帯域における低誘電正接を実現できる。
Figure JPOXMLDOC01-appb-C000009
 式(A)において、
  Rはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、
  lは0または1であり、mは1以上の整数である。
 式(1)で表される活性エステル化合物のうち、より好ましいものとして、下記式(1-1)、式(1-2)および式(1-3)で表される樹脂が挙げられ、特に好ましいものとして、下記式(1-3)で表される樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(1-1)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、Zはフェニル基、ナフチル基、または、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニル基或いはナフチル基であり、lは0または1であり、kは繰り返し単位の平均であり、0.25~3.5である。
Figure JPOXMLDOC01-appb-C000011
 式(1-2)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、Zはフェニル基、ナフチル基、または、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニル基或いはナフチル基であり、lは0または1であり、kは繰り返し単位の平均であり、0.25~3.5である。
Figure JPOXMLDOC01-appb-C000012
 式(1-3)中、R及びRはそれぞれ独立に水素原子、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基、アラルキル基の何れかであり、Zはフェニル基、ナフチル基、または、芳香核上に炭素原子数1~4のアルキル基を1~3個有するフェニル基或いはナフチル基であり、lは0または1であり、kは繰り返し単位の平均であり、0.25~3.5である。
 上記一般式(A)で表される活性エステル化合物は、脂肪族環状炭化水素基を介してフェノール性水酸基を有するアリール基が複数結節された構造を有するフェノール性化合物(a)と、芳香核含有ジカルボン酸またはそのハライド(b)と、芳香族モノヒドロキシ化合物(c)とを反応させる、公知の方法により製造することができる。
 上記フェノール性化合物(a)と、芳香核含有ジカルボン酸またはそのハライド(b)と、芳香族モノヒドロキシ化合物(c)との反応割合は、所望の分子設計に応じて適宜調整することができるが、中でも、より硬化性の高い活性エステル化合物が得られることから、芳香核含有ジカルボン酸またはそのハライド(b)が有するカルボキシル基または酸ハライド基の合計1モルに対し、前記フェノール性化合物(a)が有するフェノール性水酸基が0.25~0.90モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(c)が有するヒドロキシル基が0.10~0.75モルの範囲となる割合で各原料を用いることが好ましく、前記フェノール性化合物(a)が有するフェノール性水酸基が0.50~0.75モルの範囲となり、かつ、前記芳香族モノヒドロキシ化合物(c)が有するヒドロキシル基が0.25~0.50モルの範囲となる割合で各原料を用いることがより好ましい。
 また、活性エステル化合物の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電正接の低い硬化物が得られることから、200g/eq以上230g/eq以下の範囲であることが好ましく、210g/eq以上220g/eq以下の範囲であることがより好ましい。
 本実施形態の熱硬化性樹脂組成物において、活性エステル化合物とエポキシ樹脂との含有量は、硬化性に優れ、誘電正接の低い硬化物が得られることから、活性エステル化合物中の活性基の合計1当量に対して、エポキシ樹脂中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル化合物中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。
 活性エステル化合物は、熱硬化性樹脂組成物100質量%中、好ましくは0.5質量%以上15質量%以下、より好ましくは2質量%以上12質量%以下、さらに好ましくは2質量%以上9質量%以下の量で用いられる。
 特定の活性エステル化合物を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
 本実施形態の熱硬化性樹脂組成物は、活性エステル化合物と、上述の高誘電率フィラーとを組み合わせて用いることにより、高誘電率および低誘電正接により優れ、高周波帯においてもこれらの効果に優れる。
 上記効果の観点から、活性エステル化合物は、上述の高誘電率フィラー100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下となるように含むことができる。
[硬化剤]
 本実施形態の熱硬化性樹脂組成物は、活性エステル化合物以外の他の硬化剤を含むことができる。
 他の硬化剤としては、フェノール系硬化剤、アミン化合物系硬化剤、アミド化合物系硬化剤、酸無水物系硬化剤などが用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。この中でも、フェノール系硬化剤を用いてもよい。
 フェノール系硬化剤は、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、ビフェニレン骨格を含むフェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 この中でも、ビフェニルアラルキル型フェノール樹脂を用いることができる。
 アミン化合物系硬化剤は、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等のアミン化合物が挙げられる。
 アミド化合物系硬化剤は、例えば、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂が挙げられる。
 酸無水物系硬化剤は、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸が挙げられる。
 硬化剤を用いる場合、その配合量は、熱硬化性樹脂100質量%に対して、好ましくは0.5質量%以上15質量%以下、より好ましくは1質量%以上10質量%以下の量である。上記範囲の量で硬化剤を使用することにより、優れた硬化性を有する熱硬化性樹脂組成物が得られる。
[硬化触媒]
 熱硬化性樹脂組成物は、硬化触媒を含んでもよい。
 硬化触媒は、硬化促進剤などと呼ばれる場合もある。硬化触媒は、熱硬化性樹脂の硬化反応を早めるものである限り特に限定されず、公知の硬化触媒を用いることができる。
 具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類(イミダゾール系硬化促進剤);1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン、アミジンやアミンの4級塩等の窒素原子含有化合物などを挙げることができ、1種のみを用いてもよいし、2種以上を用いてもよい。
 これらの中でも、硬化性を向上させ、曲げ強度などの機械強度に優れた磁性材料を得る観点からはリン原子含有化合物を含むことが好ましく、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有するものを含むことがより好ましく、テトラ置換ホスホニウム化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。
 一般式(1)で表される化合物(C)と潜伏性を有する硬化触媒とを組み合わせて用いることにより、成形性により優れるとともに、曲げ強度などの機械強度により優れた磁性材料を得ることができる。
 有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 硬化触媒を用いる場合、その含有量は、熱硬化性樹脂組成物100質量%中、好ましくは0.05~3質量%、より好ましくは0.08~2質量%である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。
[無機充填材]
 本実施形態の熱硬化性樹脂組成物は、さらに、吸湿性低減、線膨張係数低減、熱伝導性向上および強度向上のために、高誘電率フィラー以外に無機充填材を含むことができる。
 無機充填材としては、溶融シリカ、結晶シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。これらの無機充填材は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性および金型摩耗性の点から球形が好ましい。
 高誘電率フィラー以外の無機充填材の含有量は、成形性、熱膨張性の低減、および強度向上の観点から、熱硬化性樹脂組成物100質量%中、好ましくは3質量%以上60質量%以下、より好ましくは5質量%以上50質量%以下の範囲とすることができる。上記範囲であれば、熱膨張性低減および成形性に優れる。
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記成分に加え、必要に応じて、シランカップリング剤、離型剤、着色剤、分散剤、低応力化剤等の種々の成分を含むことができる。
 特に、シランカップリング剤は、アミノ基含有シランカップリング剤、メルカプト基含有シランカップリング剤等が挙げられる。また、高誘電率フィラーと無機充填材とが均質に混合する観点、高誘電率フィラーとエポキシ樹脂等の有機成分との混合性、及び、曲げ強度・曲げ弾性率の観点から、これらを2種以上使用することが好ましい。
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、上述の各成分を均一に混合することにより製造できる。製造方法としては、所定の含有量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。得られた熱硬化性樹脂組成物は、必要に応じて、成形条件に合うような寸法および質量でタブレット化してもよい。
 本実施形態の熱硬化性樹脂組成物から得られる硬化物は、高周波帯において高誘電率および低誘電正接に優れることから、高周波化ひいては回路の短縮化および通信機器等の高周波デバイスにおける小型化を図ることができる。
 このような熱硬化性樹脂組成物は、マイクロストリップアンテナ、誘電体導波路、および多層アンテナからなる群から選ばれる高周波デバイスの一部を形成するために用いることができる。
 本実施形態の高周波デバイスは、熱硬化性樹脂組成物から得られる硬化物を備える。
 以下、高周波デバイスの一例を説明する。
<マイクロストリップアンテナ>
 図1に示すように、マイクロストリップアンテナ10は、上述の熱硬化性樹脂組成物を硬化してなる誘電体基板12と、誘電体基板12の一方の面に設けられた放射導体板(放射素子)14と、誘電体基板12の他方の面に設けられた地導体板16と、を備える。
 放射導体板の形状は矩形または円形が挙げられる。本実施形態においては、矩形の放射導体板14を用いた例によって説明する。
 放射導体板14は、金属材料、金属材料の合金、金属ペーストの硬化物、および導電性高分子のいずれかを含む。金属材料は、銅、銀、パラジウム、金、白金、アルミニウム、クロム、ニッケル、カドミウム鉛、セレン、マンガン、錫、バナジウム、リチウム、コバルト、およびチタン等を含む。合金は、複数の金属材料を含む。金属ペースト剤は、金属材料の粉末を有機溶剤、およびバインダとともに混練したものを含む。バインダは、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂を含む。導電性ポリマーは、ポリチオフェン系ポリマー、ポリアセチレン系ポリマー、ポリアニリン系ポリマー、ポリピロール系ポリマー等を含む。
 本実施形態のマイクロストリップアンテナ10は、図1に示すように、長さL、幅Wの放射導体板14を有しており、Lが1/2波長の整数倍に一致する周波数で共振する。本実施形態のように、高誘電率である誘電体基板12を用いる場合、誘電体基板12の厚さhと放射導体板14の幅Wは波長に対して十分小さくなるように設計される。
 地導体板16は、銅や銀、金などの導電性の高い金属で構成される薄い板である。その厚さは、アンテナ装置の中心動作周波数に対して十分薄く、中心動作周波数の50分の1波長から1000分の1波長程度であればよい。
 マイクロストリップアンテナの給電方法としては,背面同軸給電および共平面給電のような直接給電方式や、スロット結合給電および近接結合給電のような電磁結合給電方式が挙げられる。
 背面同軸給電は、地導体板16と誘電体基板12を貫く同軸線路やコネクタを用いてアンテナ背面から放射導体板14に給電することができる。
 共平面給電は、放射導体板14と同一面上に配置されたマイクロストリップ線路(不図示)で放射導体板14に給電することができる。
 スロット結合給電においては,地導体板16を挟み込む形でさらに別の誘電体基板(不図示)を設け、放射導体板14とマイクロストリップ線路とを別々の誘電体基板に形成する。地導体板16に空けられたスロットを介して,放射導体板14とマイクロストリップ線路とを電磁結合させることによって放射導体板14が励振される。
 近接結合給電においては、誘電体基板12が積層構造を有し、放射導体板14が形成された誘電体基板と,マイクロストリップ線路のストリップ導体および地導体板16が配置された誘電体基板とが積層されている.マイクロストリップ線路のストリップ導体を放射導体板14の下部に延長し、放射導体板14とマイクロストリップ線路を電磁結合させることにより、放射導体板14が励振される。
 図2(a)(b)に、他のマイクロストリップアンテナの態様を示す。なお、図1と同一の構成には同一の番号を付して適宜説明を省略する。
 図2(a)に示すように、マイクロストリップアンテナ20は、誘電体基板22と、誘電体基板22の一方の面に設けられた放射導体板14と、誘電体基板22の他方の面に設けられた地導体板16と、放射導体板14に対向配置された高誘電体基板(高誘電体)24と、を備える。誘電体基板22および放射導体板14と、高誘電体基板24とは、スペーサー26を介して所定距離離間するように構成することができる。
 誘電体基板22としては、テフロン基板等の低誘電率の基板から構成される。
 高誘電体基板24は、上述の樹脂組成物を硬化してなる誘電体基板により構成されている。
 誘電体基板22と高誘電体基板24との空隙部は空間であってもよく、誘電体材料が充填されていてもよい。
 また、図2(b)のマイクロストリップアンテナ20'に示されるように、放射導体板14の上面に高誘電体基板24を当接させた構造とすることもできる。
<誘電体導波路>
 本実施形態において、誘電体導波路は、本実施形態の熱硬化性樹脂組成物を硬化してなる誘電体と、当該誘電体の表面を覆う導体膜と、を備える。誘電体導波路は、電磁波を誘電体(誘電体媒質)中に閉じこめて伝送させるものである。
 前記導体膜は、銅等の金属や、酸化物高温超伝導体等から構成することができる。
<多層アンテナ>
 本実施形態において、多層アンテナは、本実施形態の熱硬化性樹脂組成物を硬化してなる誘電体シートを備える。
 具体的には、多層アンテナは、コンデンサ、インダクタなどの多数の素子からなる回路を、誘電体シートに印刷して積層するモジュール化したものである。
[第二の発明]
 第2の実施形態の熱硬化性樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、高誘電率充填剤(C)と、を含み、当該組成物100質量%中に高誘電率充填剤(C)を30質量%以上含む。
[エポキシ樹脂(A)]
 本実施形態において、エポキシ樹脂(A)は、ビフェニルアラルキル型エポキシ樹脂および/またはビフェニル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂を除く)を含む。
 本実施形態のビフェニルアラルキル型エポキシ樹脂は、以下一般式(a)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(a)において、
 RおよびRは、複数ある場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 rおよびsは、それぞれ独立に、0~4であり、
 *は、他の原子団と連結していることを表す。
 RおよびRの1価の有機基の具体例としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、アルコキシ基、ヘテロ環基、カルボキシル基などを挙げることができる。
 アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。
 アルケニル基としては、例えばアリル基、ペンテニル基、ビニル基などが挙げられる。
 アルキニル基としては、例えばエチニル基などが挙げられる。
 アルキリデン基としては、例えばメチリデン基、エチリデン基などが挙げられる。
 アリール基としては、例えばトリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基が挙げられる。
 アラルキル基としては、例えばベンジル基、フェネチル基などが挙げられる。
 アルカリル基としては、例えばトリル基、キシリル基などが挙げられる。
 シクロアルキル基としては、例えばアダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。
 ヘテロ環基としては、例えばエポキシ基、オキセタニル基などが挙げられる。
 RおよびRの1価の有機基の総炭素数は、それぞれ、例えば1~30、好ましくは1~20、より好ましくは1~10、特に好ましくは1~6である。
 rおよびsは、それぞれ独立に、好ましくは0~2であり、より好ましくは0~1である。一態様として、rおよびsはともに0である。
 Rは、複数ある場合はそれぞれ独立に、1価の有機基、ヒドロキシル基またはハロゲン原子であり、
 tは、0~3の整数である。
 Rの1価の有機基の具体例としては、RおよびRの具体例として挙げたものと同様のものを挙げることができる。
 tは、好ましくは0~2であり、より好ましくは0~1である。
 本実施形態のビフェニルアラルキル型エポキシ樹脂の重量平均分子量Mwは、好ましくは500以上2000以下、より好ましくは600以上1900以下、さらに好ましくは700以上1800以下である。
 また、ビフェニルアラルキル型エポキシ樹脂の分散度(重量平均分子量Mw/数平均分子量Mn)は、好ましくは2.0以上4.0以下、より好ましくは1.8以上3.8以下、さらに好ましくは1.6以上3.6以下である。分散度を適切に調整することで、エポキシ樹脂の物性を均質にすることができ、好ましい。
 重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)は、例えば、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。GPC測定の測定条件は、例えば、以下の通りである。
 東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
 カラム:東ソー社製TSK-GEL Supermultipore HZ-M
 検出器:液体クロマトグラム用RI検出器
 測定温度:40℃
 溶剤:THF
 試料濃度:2.0mg/ミリリットル
 本実施形態のビフェニル型エポキシ樹脂は、以下一般式(b)で表すことができる。
Figure JPOXMLDOC01-appb-C000014
 一般式(b)中、Rは各々独立して、水素原子、炭素数1~5のアルキル基を示し、好ましくは炭素数1~3のアルキル基である。
 ビフェニル型エポキシ樹脂としては、具体的に、4,4’-ジヒドロキシビフェニルのジグリシジルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニルのジグリシジルエーテル、3,3’,5,5’-テトラtert-ブチル-4,4’-ジヒドロキシビフェニルのジグリシジルエーテル、ジメチルジプロピルビフェノールのジグリシジルエーテル、およびジメチルビフェノールのジグリシジルエーテルなどが挙げられる。
 エポキシ樹脂(A)は、本発明の効果を損なわない範囲で、上記2種のエポキシ樹脂以外に、さらにその他のエポキシ樹脂を含むこともできる。
 その他のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等を挙げることができる。
 本実施形態において、エポキシ樹脂(A)中の「ビフェニルアラルキル型エポキシ樹脂および/またはビフェニル型エポキシ樹脂」の含有量は、好ましくは50質量%以上100質量%以下、より好ましくは70質量%以上100質量%以下、さらに好ましくは80質量%以上100質量%以下であり、エポキシ樹脂(A)はこれら2種のエポキシ樹脂のみを含んでいてもよい。
 本実施形態の熱硬化性樹脂組成物(100質量%)は、本発明の効果の観点から、エポキシ樹脂(A)を好ましくは2質量%以上30質量%以下、より好ましくは3質量%以上25質量%以下、さらに好ましくは5質量%以上20質量%以下の量で含むことができる。
[硬化剤](B)
 本実施形態において、硬化剤(B)は、活性エステル系硬化剤およびフェノール系硬化剤を含む。これの硬化剤を組み合わせて含むことにより、高誘電率および低誘電正接に優れた誘電体基板が得られるとともに、成形性に優れた熱硬化性樹脂組成物を得ることができる。
(活性エステル系硬化剤)
 活性エステル系硬化剤としては、第一の発明の実施形態で説明した活性エステル化合物と同様のものを用いることができ、同様に製造することができる。
 活性エステル系硬化剤が前記一般式(1)で表される構造を有する樹脂である場合、前記一般式(1)の「B」が前記式(B-1)~(B-6)で表される構造であることが好ましい。前記式(B-1)~(B-6)で表される構造は、いずれも配向性が高い構造であることから、これを含む活性エステル系硬化剤を用いた場合、得られる熱硬化性樹脂組成物の硬化物は、低誘電正接を有するとともに、金属に対する密着性に優れ、そのため半導体封止材料として好適に用いることができる。
 また、活性エステル系硬化剤の官能基当量は、樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計を樹脂の官能基数とした場合、硬化性に優れ、誘電正接の低い硬化物が得られることから、200g/eq以上230g/eq以下の範囲であることが好ましく、210g/eq以上220g/eq以下の範囲であることがより好ましい。
 本実施形態の熱硬化性樹脂組成物において、活性エステル系硬化剤とエポキシ樹脂との配合量は、硬化性に優れ、誘電正接の低い硬化物が得られることから、活性エステル系硬化剤中の活性基の合計1当量に対して、エポキシ樹脂中のエポキシ基が0.8~1.2当量となる割合であることが好ましい。ここで、活性エステル系硬化剤中の活性基とは、樹脂構造中に有するアリールカルボニルオキシ基及びフェノール性水酸基を指す。
 本実施形態の組成物において、活性エステル系硬化剤は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定の活性エステル系硬化剤を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
 本実施形態の樹脂組成物は、活性エステル系硬化剤と、後述の高誘電率充填剤とを組み合わせて用いることにより、高誘電率および低誘電正接により優れ、高周波帯においてもこれらの効果に優れる。
 上記効果の観点から、活性エステル系硬化剤は、後述の高誘電率充填剤100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下となるように含むことができる。
 なお、本出願人は、特開2020-90615号公報に記載のように、本発明とは異なる半導体封止用途において、エポキシ樹脂と、所定の活性エステル系硬化剤と、を含む樹脂組成物を開発している。本発明は、同公報記載の技術に対して、高誘電率充填剤を含有する点で相違している。また、高誘電率充填剤を含有するため、活性エステル系硬化剤とエポキシ樹脂の組み合わせによる作用効果も、高誘電率を有する点、さらに高周波帯において高誘電率および低誘電正接に優れる点で相違している。
(フェノール系硬化剤)
 フェノール系硬化剤としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 フェノール系硬化剤の配合量は、エポキシ樹脂(A)に対して、好ましくは、20質量%以上70質量%以下の量である。上記範囲の量で硬化剤を使用することにより、優れた硬化性を有する樹脂組成物が得られる。
 活性エステル系硬化剤aに対するフェノール系硬化剤bの含有量の比(b(質量部)/a(質量部))は、好ましくは0.5以上8以下、より好ましくは1以上5以下、さらに好ましくは1.5以上3以下とすることができる。
 活性エステル系硬化剤およびフェノール系硬化剤を上記の比で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
 本実施形態の組成物において、活性エステル系硬化剤およびフェノール系硬化剤を含む硬化剤(B)は、熱硬化性樹脂組成物全体に対して、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で用いられる。
 特定の活性エステル系硬化剤を上記範囲で含むことにより、得られる硬化物はより優れた誘電特性を有することができ、低誘電正接にさらに優れる。
[高誘電率充填剤(C)]
 本実施形態において、高誘電率充填剤(C)としては、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウム等を挙げることができ、これらから選択される少なくとも1種を含むことができる。これらの高誘電率充填剤を含むことにより、高誘電率および低誘電正接に優れた誘電体基板が得られる。
 本発明の効果の観点から、高誘電率充填剤としては、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種であることが好ましく、チタン酸カルシウムおよびチタン酸マグネシウムから選択される少なくとも1種であることがさらに好ましい。
 高誘電率充填剤の形状は、粒状、不定形、フレーク状などであり、これらの形状の高誘電率充填剤を任意の比率で用いることができる。高誘電率充填剤の平均粒子径は、本発明の効果の観点や流動性・充填性の観点から、好ましくは0.1μm以上50μm以下、より好ましくは0.3μm以上20μm以下、さらに好ましくは0.5μm以上10μm以下である。
 高誘電率充填剤の配合量は、熱硬化性樹脂組成物100質量%中に、30質量%以上、好ましくは35質量%以上、より好ましくは45質量%以上の範囲である。上限値は80質量%以程度である。
 高誘電率充填剤の添加量が上記範囲であると、得られる硬化物の誘電率がより低くなるとともに、成形品の製造にも優れる。
[硬化触媒(D)]
 本実施形態の熱硬化性樹脂組成物は、さらに硬化触媒(D)を含むことができる。
 硬化触媒(D)は、硬化促進剤などと呼ばれる場合もある。硬化触媒(D)は、熱硬化性樹脂の硬化反応を早めるものである限り特に限定されず、公知の硬化触媒を用いることができる。
 硬化触媒(D)として、具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類(イミダゾール系硬化促進剤);1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン、アミジンやアミンの4級塩等の窒素原子含有化合物などを挙げることができ、1種のみを用いてもよいし、2種以上を用いてもよい。
 これらの中でも、硬化性を向上させ、曲げ強度などの機械強度に優れた磁性材料を得る観点からはリン原子含有化合物を含むことが好ましく、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有するものを含むことがより好ましく、テトラ置換ホスホニウム化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。
 ナフトールアラルキル型エポキシ樹脂を含むエポキシ樹脂(A)と潜伏性を有する硬化触媒とを組み合わせて用いることにより、成形性により優れるとともに、曲げ強度などの機械強度により優れた磁性材料を得ることができる。
 有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 テトラ置換ホスホニウム化合物としては、例えば下記一般式(6)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 一般式(6)において、
 Pはリン原子を表す。
 R、R、RおよびRは、それぞれ独立に、芳香族基またはアルキル基を表す。
 Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。
 AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。
 x、yは1~3、zは0~3であり、かつx=yである。
 一般式(6)で表される化合物は、例えば、以下のようにして得られる。
 まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(6)で表される化合物を沈殿させることができる。一般式(6)で表される化合物において、リン原子に結合するR、R、RおよびRがフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは該フェノール類のアニオンであるのが好ましい。上記フェノール類としては、フェノール、クレゾール、レゾルシン、カテコールなどの単環式フェノール類、ナフトール、ジヒドロキシナフタレン、アントラキノールなどの縮合多環式フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類、フェニルフェノール、ビフェノールなどの多環式フェノール類などが例示される。
 ホスホベタイン化合物としては、例えば、下記一般式(7)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 一般式(7)において、
 Pはリン原子を表す。
 Rは炭素数1~3のアルキル基、Rはヒドロキシル基を表す。
 fは0~5であり、gは0~3である。
 一般式(7)で表される化合物は、例えば以下のようにして得られる。
 まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。
 ホスフィン化合物とキノン化合物との付加物としては、例えば、下記一般式(8)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 一般式(8)において、
 Pはリン原子を表す。
 R10、R11およびR12は、炭素数1~12のアルキル基または炭素数6~12のアリール基を表し、互いに同一であっても異なっていてもよい。
 R13、R14およびR15は水素原子または炭素数1~12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R14とR15が結合して環状構造となっていてもよい。
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換またはアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基等の置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
 また、ホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
 一般式(8)で表される化合物において、リン原子に結合するR10、R11およびR12がフェニル基であり、かつR13、R14およびR15が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が封止用樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。
 ホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(9)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 一般式(9)において、
 Pはリン原子を表し、Siは珪素原子を表す。
 R16、R17、R18およびR19は、それぞれ、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。
 R20は、基YおよびYと結合する有機基である。
 R21は、基YおよびYと結合する有機基である。
 YおよびYは、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。
 YおよびYはプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。
 R20、およびR21は互いに同一であっても異なっていてもよく、Y、Y、YおよびYは互いに同一であっても異なっていてもよい。
 Z1は芳香環または複素環を有する有機基、あるいは脂肪族基である。
 一般式(9)において、R16、R17、R18およびR19としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基およびシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等のアルキル基、アルコキシ基、水酸基などの置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
 一般式(9)において、R20は、YおよびYと結合する有機基である。同様に、R21は、基YおよびYと結合する有機基である。YおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。同様にYおよびYはプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基YおよびYが珪素原子と結合してキレート構造を形成するものである。基R20およびR21は互いに同一であっても異なっていてもよく、基Y、Y、Y、およびY5は互いに同一であっても異なっていてもよい。このような一般式(9)中の-Y-R20-Y-、およびY-R21-Y-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、分子内にカルボキシル基、または水酸基を少なくとも2個有する有機酸が好ましく、さらには芳香環を構成する隣接する炭素にカルボキシル基または水酸基を少なくとも2個有する芳香族化合物が好ましく、芳香環を構成する隣接する炭素に水酸基を少なくとも2個有する芳香族化合物がより好ましく、例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2'-ビフェノール、1,1'-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオールおよびグリセリン等が挙げられるが、これらの中でも、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。
 一般式(9)中のZは、芳香環または複素環を有する有機基または脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基等のグリシジルオキシ基、メルカプト基、アミノ基を有するアルキル基およびビニル基等の反応性置換基等が挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面から、より好ましい。
 ホスホニウム化合物とシラン化合物との付加物の製造方法は、例えば以下である。
 メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3-ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド-メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。
 硬化触媒(D)を用いる場合、その含有量は、熱硬化性樹脂組成物100質量%に対して、好ましくは0.1~3質量%、より好ましくは0.3~2質量%である。このような数値範囲とすることにより、他の性能を過度に悪くすることなく、十分に硬化促進効果が得られる。
[無機充填剤]
 本実施形態の熱硬化性樹脂組成物は、さらに、吸湿性低減、線膨張係数低減、熱伝導性向上および強度向上のために、高誘電率充填剤(C)以外に無機充填剤を含むことができる。
 無機充填剤としては、溶融シリカ、結晶シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、ガラス繊維などが挙げられる。これらの無機充填材は単独で用いても2種以上を組み合わせて用いてもよい。上記の無機充填材の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、充填材形状は成形時の流動性および金型摩耗性の点から球形が好ましい。
 高誘電率充填剤(C)以外の無機充填材の配合量は、成形性、熱膨張性の低減、および強度向上の観点から、熱硬化性樹脂組成物100質量%に対して、好ましくは10質量%以上、50質量%以下、より好ましくは15質量%以上、40質量%以下、さらに好ましくは20質量%以上、35質量%以下の範囲とすることができる。上記範囲であれば、熱膨張性低減および成形性に優れる。
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記成分に加え、必要に応じて、シランカップリング剤、離型剤、着色剤、分散剤、低応力化剤等の種々の成分を含むことができる。
 本実施形態の熱硬化性樹脂組成物は、以下のエポキシ樹脂(A)と、以下の硬化剤(B)と、以下の高誘電率充填剤(C)と、を含み、高誘電率充填剤(C)を、当該組成物100質量%中に30質量%以上含む。
 エポキシ樹脂(A):ビフェニルアラルキル型エポキシ樹脂および/またはビフェニル型エポキシ樹脂を含む。
 硬化剤(B):活性エステル系硬化剤およびフェノール系硬化剤を含む。
 高誘電率充填剤(C):チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含む。
 このような成分を組み合わせてなる本実施形態の熱硬化性樹脂組成物によれば、高誘電率および低誘電正接に優れた誘電体基板を得ることができ、さらに当該誘電体基板を備えるマイクロストリップアンテナを提供することができる。
 本実施形態の熱硬化性樹脂組成物は、
 エポキシ樹脂(A)を、当該組成物100質量%中に、好ましくは2質量%以上30質量%以下、より好ましくは3質量%以上25質量%以下、さらに好ましくは5質量%以上20質量%以下の量で含むことができ、
 硬化剤(B)を、当該組成物100質量%中に、好ましくは0.2質量%以上15質量%以下、より好ましくは0.5質量%以上10質量%以下、さらに好ましくは1.0質量%以上7質量%以下の量で含むことができ、
 高誘電率充填剤(C)を、当該組成物100質量%中に、30質量%以上、好ましくは35質量%以上、より好ましくは45質量%以上含むことができ。上限値は80質量%である。
 本実施形態においては、エポキシ樹脂(A)と、硬化剤(B)と、高誘電率充填剤(C)と、を組み合わせて含み、高誘電率充填剤(C)を、当該組成物100質量%中に30質量%以上含むことにより、高誘電率および低誘電正接により優れた誘電体基板が得られる熱硬化性樹脂組成物を提供することができる。
 本実施形態の熱硬化性樹脂組成物は、上述の各成分を均一に混合することにより製造できる。製造方法としては、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕する方法を挙げることができる。得られた熱硬化性樹脂組成物は、必要に応じて、成形条件に合うような寸法および質量でタブレット化してもよい。
 本実施形態の熱硬化性樹脂組成物は、スパイラルフローの流動長が70cm以上、好ましくは80cm以上、より好ましくは90cm以上、さらに好ましくは100cm以上である。したがって、本実施形態の熱硬化性樹脂組成物は、成形性に優れる。
 スパイラルフロー試験は、たとえば低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で樹脂成形材料を注入し、流動長を測定することにより行うことができる。
 本実施形態の熱硬化性樹脂組成物のゲルタイムは、32秒以上80秒以下であることが好ましく、35秒以上70秒以下がより好ましい。
 熱硬化性樹脂組成物のゲルタイムを上記下限値以上とすることにより、充填性に優れ、上記上限値以下とすることにより、成形性が良好となる。
 また、本実施形態の熱硬化性樹脂組成物は、下記条件で測定された矩形圧が0.1MPa以上、好ましくは0.15MPa以上、さらに好ましくは0.20MPa以上である。
 矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低い。本実施形態の熱硬化性樹脂組成物は、矩形圧が上記範囲であることにより、成形時における金型充填性に優れる。
(条件)
 低圧トランスファー成形機を用いて、金型温度175℃、注入速度177mm/秒の条件にて、幅13mm、厚さ1mm、長さ175mmの矩形状の流路に熱硬化性樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記熱硬化性樹脂組成物の流動時における最低圧力を算出して、この最低圧力を矩形圧とする。
 本実施形態の熱硬化性樹脂組成物は、200℃で90分加熱して硬化させた硬化物において、以下の誘電率および誘電正接(tanδ)を有する。
 空洞共振器法による25GHzでの誘電率が10以上、好ましくは12以上、より好ましくは13以上とすることができる。
 空洞共振器法による25GHzでの誘電正接(tanδ)が0.04以下、好ましくは0.03以下、より好ましくは0.02以下、特に好ましくは0.015以下とすることができる。
 本実施形態の熱硬化性樹脂組成物から得られる硬化物は、高周波帯において高誘電率および低誘電正接に優れることから、高周波化ひいては回路の短縮化および通信機器等の小型化を図ることができ、マイクロストリップアンテナを形成する材料、誘電体導波路を形成する材料、さらに電磁波吸収体を形成する材料等として好適に用いることができる。
<マイクロストリップアンテナ>
 本実施形態のマイクロストリップアンテナは、第一の発明の実施形態と同様に図1、図2(a)(b)に示す構造を備えるため、説明を省略する。
<誘電体導波路>
 本実施形態において、誘電体導波路は、本実施形態の熱硬化性樹脂組成物を硬化してなる誘電体と、当該誘電体の表面を覆う導体膜と、を備える。誘電体導波路は、電磁波を誘電体(誘電体媒質)中に閉じこめて伝送させるものである。
 前記導体膜は、銅等の金属や、酸化物高温超伝導体等から構成することができる。
<電磁波吸収体>
 本実施形態において、電磁波吸収体は、支持体、抵抗皮膜、誘電体層、及び反射層が積層した構造を備える。当該電磁波吸収体は、高い電波吸収性能を備えるλ/4型電波吸収体として用いることができる。
 支持体としては樹脂基材等が挙げられる。支持体により、抵抗皮膜を保護することができ、電波吸収体としての耐久性を高めることができる。
 抵抗皮膜としては、酸化インジウムスズ、モリブデン含有抵抗皮膜等が挙げられる。
 誘電体層は本実施形態の熱硬化性樹脂組成物を硬化してなる。その厚みは、10μm以上2000μm以下程度である。
 反射層は電波の反射層として機能し得るものであり、例えば金属膜が挙げられる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 第1の発明(出願時請求項1~13、22~24)および第1の実施形態に係る実施例を、実施例Aに示す。
 第2の発明(出願時請求項14~21、22~24)および第2の実施形態に係る実施例を、実施例Bに示す。
<実施例A>
[実施例A1~A4、比較例A1]
<熱硬化性樹脂組成物の調製>
 以下の原料を表1に示す含有量で、常温でミキサーを用いて混合した後、70~100℃でロール混錬した。次いで、得られた混錬物を冷却した後、これを粉砕して粉粒状の熱硬化性樹脂組成物を得た。ついで、高圧で打錠成形することにより、タブレット状の熱硬化性樹脂組成物を得た。
 以下、表1中の原料の情報を示す。
(高誘電率フィラー)
・高誘電率フィラー1:チタン酸カルシウム(CT、平均粒子径2.0μm、富士チタン社製、25℃、1GHz時の比誘電率:135)
(無機充填材)
・無機充填材1:アルミナ(K75-1V25F、デンカ株式会社製)
・無機充填材2:溶融球状シリカ(SC-2500-SQ、アドマテックス社製)
(熱硬化性樹脂)
・エポキシ樹脂1:ビフェニル型エポキシ樹脂(YX4000K、三菱ケミカル社製)
・エポキシ樹脂2:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(NC3000L、日本化薬社製)
・エポキシ樹脂3:ビスフェノールA型エポキシ樹脂(YL6810、三菱ケミカル社製)
(活性エステル化合物)
・活性エステル化合物1:下記調製方法で調製した活性エステル化合物
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ビフェニル-4,4'-ジカルボン酸ジクロライド279.1g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-1)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。さらに、繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。
・活性エステル化合物2:下記調製方法で調製した活性エステル化合物
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3-ベンゼンジカルボン酸ジクロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-3)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。活性エステル樹脂の繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。得られた活性エステル樹脂は具体的に以下の化学式で表される構造を有していた。下記式中、繰り返し単位の平均値kは0.5~1.0であった。
Figure JPOXMLDOC01-appb-C000019
(硬化剤)
・フェノール系硬化剤1:ビフェニルアラルキル型樹脂(HE910-20、エア・ウォーター社製)
・フェノール系硬化剤2:ビフェニレン骨格含有フェノールアラルキル型樹脂(MEH-7851SS、明和化成社製)
 (シランカップリング剤)
・シランカップリング剤1:フェニルアミノプロピルトリメトキシシラン(CF4083、東レ・ダウコーニング社製)
・シランカップリング剤2:3-メルカプトプロピルトリメトキシシラン(サイラエース、JNC社製)
(硬化触媒)
・硬化触媒1:テトラフェニルフォスフォニウム-4,4'-スルフォニルジフェノラート
・硬化触媒2:テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート
(離型剤)
・離型剤1:グリセリントリモンタン酸エステル(リコルブWE-4、クラリアントジャパン社製)
(空洞共振器法による誘電率および誘電正接の評価)
 得られた熱硬化性樹脂組成物を、Si基板に塗布し、120℃で4分間プリベークを行い、塗布膜厚12μmの樹脂膜を形成した。
 これを、窒素雰囲気下、オーブンを用いて200℃で90分加熱し、フッ酸処理(2質量%フッ酸水溶液に浸漬)した。フッ酸から基板を取り出した後に、硬化膜をSi基板から剥離して、これを試験片とした。
 測定装置は、ネットワークアナライザHP8510C、シンセサイズドスイーパHP83651AおよびテストセットHP8517B(全てアジレント・テクノロジー社製)を用いた。これら装置と、円筒空洞共振器(内径φ42mm、高さ30mm)とを、セットアップした。
 上記共振器内に試験片を挿入した状態と、未挿入状態とで、共振周波数、3dB帯域幅、透過電力比などを、周波数18GHzで測定した。そして、これら測定結果をソフトウェアで解析的に計算することで、誘電率(Dk)および誘電正接(Df)の誘電特性を求めた。なお、測定モードはTE011モードとした。
(ガラス転移温度、線膨張係数)
 得られた熱硬化性樹脂組成物の硬化物のガラス転移温度(Tg)、線膨張係数(CTE1、CTE2)を、以下のように測定した。まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒で封止用熱硬化性樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得た。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行った。この測定結果から、ガラス転移温度(Tg)、ガラス転移温度以下における線膨張係数(CTE1)、ガラス転移温度超過における線膨張係数(CTE2)を算出した。
(機械強度の評価(曲げ強度、曲げ弾性率))
 得られた熱硬化性樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形した。これにより、幅10mm、厚み4mm、長さ80mmの成形品を得た。次いで、得られた成形品を175℃、4時間の条件で後硬化させた。これにより、機械的強度の評価用の試験片を作製した。そして、試験片の室温(25℃)または260℃における曲げ強度(N/mm)および曲げ弾性率(N/mm)を、JIS K 6911に準拠して、ヘッドスピード5mm/minで測定した。
Figure JPOXMLDOC01-appb-T000020
(熱時耐久性)
 得られた熱硬化性樹脂組成物の硬化物について、175℃100時間の熱履歴を10回繰り返し加えた後の物性の変化率を評価した。繰り返し前の熱履歴前260℃曲げ弾性率をFMaとし、繰り返し後の熱履歴前260℃曲げ弾性率をFMbとしたとき、(FMa-FMb)/FMa×100%から求められる変化率が200%以内の場合を、200%超えの場合を×と評した。
 第一の発明に係る実施例A1~A4の熱硬化性樹脂組成物は、高周波帯域における高誘電率および低誘電正接に優れており、比較例A1と比べて熱時耐久性に優れた部材(硬化物)を形成できる結果を示した。
 このような熱硬化性樹脂組成物は、マイクロストリップアンテナ、誘電体導波路、および多層アンテナ等の高周波デバイスの一部を形成するために好適に用いることが可能である。
<実施例B>
[実施例B1~B10、比較例B1]
 以下の原料を表2に示す配合量で、常温でミキサーを用いて混合した後、70~100℃でロール混錬した。次いで、得られた混錬物を冷却した後、これを粉砕して粉粒状の樹脂組成物を得た。ついで、高圧で打錠成形することにより、タブレット状の樹脂組成物を得た。
(高誘電率充填剤)
・高誘電率充填剤1:チタン酸カルシウム(平均粒子径2.0μm)) 
(無機充填剤)
・無機充填剤1:アルミナ(DAB25MA-TS3、デンカ株式会社製)
・無機充填剤2:溶融球状シリカ(SC-2500-SQ、アドマテックス社製)
(着色剤)
・着色剤1:黒色酸化チタン(赤穂化成社製)
(カップリング剤)
・カップリング剤1:フェニルアミノプロピルトリメトキシシラン(CF-4083、東レ・ダウコーニング社製)
・カップリング剤2:3-メルカプトプロピルトリメトキシシラン(サイラエース、JNC社製)
 (エポキシ樹脂)
・エポキシ樹脂1:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、NC-3000L、前掲の一般式(a)で表される構造単位含有)
 (硬化剤)
・硬化剤1:下記調製方法で調製した活性エステル系硬化剤
(活性エステル系硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、ビフェニル-4,4’-ジカルボン酸ジクロライド279.1g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-1)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。さらに、繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。
・硬化剤2:ビフェニレン骨格含有フェノールアラルキル型樹脂(MEH-7851SS、明和化成社製)
・硬化剤3:フェノールヒドロキシベンズアルデヒド型硬化剤(MEH-7500、明和化成社製)
・硬化剤4:ノボラック型フェノール樹脂(Sumilite Resin PR-51470、住友ベークライト社製)
・硬化剤5:ザイロック型フェノールアラルキル型フェノール硬化剤(MEHC-7800SS、明和化成社製)
・硬化剤6:多価MAR型フェノール硬化剤(SH-002-02、明和化成社製)
・硬化剤7:下記調製方法で調製した活性エステル系硬化剤
(活性エステル系硬化剤の調製方法)
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、1,3-ベンゼンジカルボン酸ジクロリド203.0g(酸クロリド基のモル数:2.0モル)とトルエン1338gとを仕込み、系内を減圧窒素置換して溶解させた。次いで、α-ナフトール96.5g(0.67モル)、ジシクロペンタジエンフェノール樹脂を219.5g(フェノール性水酸基のモル数:1.33モル)を仕込み、系内を減圧窒素置換して溶解させた。その後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液400gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているトルエン相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のpHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し不揮発分65%のトルエン溶液状態にある活性エステル樹脂を得た。得られた活性エステル樹脂の構造を確認したところ、上述の式(1-3)においてR及びRが水素原子、Zがナフチル基、lが0の構造を有していた。活性エステル樹脂の繰り返し単位の平均値kは、反応等量比から算出したところ0.5~1.0の範囲であった。得られた活性エステル樹脂は具体的に以下の化学式で表される構造を有していた。下記式中、繰り返し単位の平均値kは0.5~1.0であった。
Figure JPOXMLDOC01-appb-C000021
(触媒)
・触媒1:テトラフェニルフォスフォニウム-4,4’-スルフォニルジフェノラート
(空洞共振器法による誘電率および誘電正接の評価)
 まず、樹脂組成物を用いて、試験片を得た。
 具体的には、実施例および比較例で調製した樹脂組成物を、Si基板に塗布し、120℃で4分間プリベークを行い、塗布膜厚12μmの樹脂膜を形成した。
 これを、窒素雰囲気下、オーブンを用いて200℃で90分加熱し、フッ酸処理(2質量%フッ酸水溶液に浸漬)した。フッ酸から基板を取り出した後に、硬化膜をSi基板から剥離して、これを試験片とした。
 測定装置は、ネットワークアナライザHP8510C、シンセサイズドスイーパHP83651AおよびテストセットHP8517B(全てアジレント・テクノロジー社製)を用いた。これら装置と、円筒空洞共振器(内径φ42mm、高さ30mm)とを、セットアップした。
 上記共振器内に試験片を挿入した状態と、未挿入状態とで、共振周波数、3dB帯域幅、透過電力比などを、周波数25GHzで測定した。そして、これら測定結果をソフトウェアで解析的に計算することで、誘電率(Dk)および誘電正接(Df)の誘電特性を求めた。なお、測定モードはTE011モードとした。
(スパイラルフローの測定)
 低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例および比較例で得られた樹脂組成物を注入し、流動長を測定した。
(ゲルタイム(GT))
 175℃に加熱した熱板上で実施例および比較例の樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
(成形収縮率)
 各実施例および比較例について、得られた樹脂組成物について、成形(ASM:as Mold)を行った後の成形収縮率(ASM後)を測定し、当該成形後、本硬化させて誘電体基板を作製することを想定した加熱条件(PMC:Post Mold Cure)で成形収縮率(PMC後)を評価した。
 まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で作製した試験片に対して、JIS K 6911に準じて成形収縮率(ASM後)を得た。
 さらに、得られた試験片を175℃で4時間加熱処理し、JIS K 6911に準じて成形収縮率(ASM後)を測定した。
(ガラス転移温度、線膨張係数)
 各実施例および比較例について、得られた樹脂組成物の硬化物のガラス転移温度(Tg)、線膨張係数(CTE1、CTE2)を、以下のように測定した。まず、低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒で封止用樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得た。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行った。この測定結果から、ガラス転移温度(Tg)、ガラス転移温度以下における線膨張係数(CTE1)、ガラス転移温度超過における線膨張係数(CTE2)を算出した。
(機械強度の評価(曲げ強度/曲げ弾性率))
 実施例および比較例の樹脂組成物を、低圧トランスファー成形機(コータキ精機株式会社製「KTS-30」)を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形した。これにより、幅10mm、厚み4mm、長さ80mmの成形品を得た。次いで、得られた成形品を175℃、4時間の条件で後硬化させた。これにより、機械的強度の評価用の試験片を作製した。そして、試験片の室温(25℃)または260℃における曲げ強度(N/mm)および曲げ弾性率(N/mm)を、JIS K 6911に準拠して、ヘッドスピード5mm/minで測定した。
Figure JPOXMLDOC01-appb-T000022
 表2の結果から、第二の発明の熱硬化性樹脂組成物によれば、高誘電率および低誘電正接に優れた、言い換えればこれらの特性のバランスに優れた誘電体基板が得られることが明らかとなった。さらに、本発明の熱硬化性樹脂組成物はスパイラルフローの流動長が長く、ゲルタイムが適切な範囲にあることから成形性に優れることが明らかとなった。
 この出願は、2021年3月25日に出願された日本出願特願2021-051748号、2021年10月21日に出願された日本出願特願2021-172197号、2021年12月6日に出願された日本出願特願2021-197667号、2021年12月6日に出願された日本出願特願2021-197669号、2021年12月6日に出願された日本出願特願2021-197679号、2021年12月6日に出願された日本出願特願2021-197720号および2021年12月6日に出願された日本出願特願2021-197731号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10   マイクロストリップアンテナ
12   誘電体基板
14   放射導体板
16   地導体板
20、20'   マイクロストリップアンテナ
22   誘電体基板
24   高誘電体基板
26   スペーサー
a    空隙部

Claims (24)

  1.  熱硬化性樹脂と、
     25℃、25GHzでの比誘電率が10以上の高誘電率フィラーと、
     活性エステル化合物と、
    を含む、熱硬化性樹脂組成物であって、
     下記の手順に従って測定される、25℃における曲げ弾性率をFM25とし、260℃における曲げ弾性率をFM260としたとき、FM25とFM260が、0.005≦FM260/FM25≦0.1を満たす、
    熱硬化性樹脂組成物。
    (手順)
     当該熱硬化性樹脂組成物を、低圧トランスファー成形機を用いて、金型温度130℃、注入圧力9.8MPa、硬化時間300秒の条件で金型に注入成形し、幅10mm、厚み4mm、長さ80mmの成形品を得る。
     得られた成形品を175℃、4時間の条件で後硬化させ、試験片を作製する。
     試験片の室温(25℃)または260℃における曲げ弾性率(N/mm)を、JIS K 6911に準拠して測定する。
  2.  前記手順に従ってJIS K 6911に準拠して測定される、25℃における曲げ強度をFS25とし、260℃における曲げ強度をFS260としたとき、FS25とFS260が、0.025≦FS260/FS25≦0.2を満たす、請求項1に記載の熱硬化性樹脂組成物。
  3.  前記熱硬化性樹脂組成物の硬化物におけるガラス転移温度が、100℃以上250℃以下である、請求項1または2に記載の熱硬化性樹脂組成物。
  4.  前記熱硬化性樹脂組成物の硬化物における、ガラス転移温度以下の範囲の線膨張係数CTE1が5ppm/℃以上25ppm/℃以下、およびガラス転移温度超え320℃以下の範囲の線膨張係数CTE2が30ppm/℃以上100ppm/℃以下である、請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。
  5.  前記高誘電率フィラーが、チタン酸カルシウムを含む、請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。
  6.  前記高誘電率フィラーの含有量が、当該熱硬化性樹脂組成物の100質量%中、30質量%以上90質量%以下である、請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。
  7.  前記活性エステル化合物が、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物から選択される少なくとも1種を含む、請求項1~6のいずれか一項に記載の熱硬化性樹脂組成物。
  8.  前記活性エステル化合物が、下記一般式(1)で表される構造を有する、請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、
     Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、
     Ar'は、置換または非置換のアリール基であり、
    Bは、下記一般式(B)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000002
    (一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
     kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
  9.  前記熱硬化性樹脂が、ビフェニレン骨格を含むエポキシ樹脂を含む、請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物。
  10.  さらに、フェノール系硬化剤を含む、請求項1~9のいずれか一項に記載の熱硬化性樹脂組成物。
  11.  前記フェノール系硬化剤が、ビフェニレン骨格を含むフェノール樹脂を含む、請求項10に記載の熱硬化性樹脂組成物。
  12.  マイクロストリップアンテナ、誘電体導波路、および多層アンテナからなる群から選ばれる高周波デバイスの一部を形成するために用いられる、請求項1~11のいずれか一項に記載の熱硬化性樹脂組成物。
  13.  請求項1~12のいずれか一項に記載の熱硬化性樹脂組成物の硬化物を備える、高周波デバイス。
  14. (A)エポキシ樹脂と、
    (B)硬化剤と、
    (C)高誘電率充填剤と、
    を含む、熱硬化性樹脂組成物であって、
     エポキシ樹脂(A)が、ビフェニルアラルキル型エポキシ樹脂および/またはビフェニル型エポキシ樹脂(ビフェニルアラルキル型エポキシ樹脂を除く)を含み、
     硬化剤(B)が、活性エステル系硬化剤およびフェノール系硬化剤を含み、
     高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸マグネシウム、ジルコン酸マグネシウム、ジルコン酸ストロンチウム、チタン酸ビスマス、チタン酸ジルコニウム、チタン酸亜鉛、ジルコン酸バリウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸鉛、ニオブ酸マグネシウム酸バリウム、およびジルコン酸カルシウムから選択される少なくとも1種を含み、
     前記熱硬化性樹脂組成物100質量%中に、高誘電率充填剤(C)を30質量%以上の量で含む、熱硬化性樹脂組成物。
  15.  高誘電率充填剤(C)が、チタン酸カルシウム、チタン酸ストロンチウム、およびチタン酸マグネシウムから選択される少なくとも1種である、請求項14に記載の熱硬化性樹脂組成物。
  16.  前記活性エステル系硬化剤は、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系硬化剤、ナフタレン構造を含む活性エステル系硬化剤、フェノールノボラックのアセチル化物を含む活性エステル系硬化剤、およびフェノールノボラックのベンゾイル化物を含む活性エステル系硬化剤から選択される少なくとも1種である、請求項14または15に記載の熱硬化性樹脂組成物。
  17.  前記活性エステル系硬化剤は、下記一般式(1)で表される構造を備える、請求項14~16のいずれか一項に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(1)中、Aは、脂肪族環状炭化水素基を介して連結された置換または非置換のアリーレン基であり、Ar’は、置換または非置換のアリール基であり、
    Bは、下記一般式(B)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000004
    (一般式(B)中、Arは、置換または非置換のアリーレン基であり、Yは、単結合、置換または非置換の炭素原子数1~6の直鎖のアルキレン基、または置換または非置換の炭素原子数3~6の環式のアルキレン基、置換または非置換の2価の芳香族炭化水素基、エーテル結合、カルボニル基、カルボニルオキシ基、スルフィド基、あるいはスルホン基である。nは0~4の整数である。)
     kは、繰り返し単位の平均値であり、0.25~3.5の範囲である。)
  18.  さらに硬化触媒(D)を含む、請求項14~17のいずれか一項に記載の熱硬化性樹脂組成物。
  19.  マイクロストリップアンテナを形成する材料として用いられる、請求項14~18のいずれか一項に記載の熱硬化性樹脂組成物。
  20.  誘電体導波路を形成する材料として用いられる、請求項14~18のいずれか一項に記載の熱硬化性樹脂組成物。
  21.  電磁波吸収体を形成する材料として用いられる、請求項14~18のいずれか一項に記載の熱硬化性樹脂組成物。
  22.  請求項1~12および14~21のいずれか一項に記載の熱硬化性樹脂組成物を硬化してなる誘電体基板。
  23.  請求項22に記載の誘電体基板と,
     前記誘電体基板の一方の面に設けられた放射導体板と、
     前記誘電体基板の他方の面に設けられた地導体板と、
    を備える、マイクロストリップアンテナ。
  24.  誘電体基板と,
     前記誘電体基板の一方の面に設けられた放射導体板と、
     前記誘電体基板の他方の面に設けられた地導体板と、
     前記放射導体板に対向配置された高誘電体と、
    を備える、マイクロストリップアンテナであって、
     前記高誘電体が、請求項22に記載の誘電体基板により構成されている、マイクロストリップアンテナ。
PCT/JP2022/013057 2021-03-25 2022-03-22 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ WO2022202781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023509181A JP7396534B2 (ja) 2021-03-25 2022-03-22 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ
KR1020237036073A KR20230160869A (ko) 2021-03-25 2022-03-22 열경화성 수지 조성물, 고주파 디바이스, 유전체 기판, 및 마이크로스트립 안테나
CN202280024604.2A CN117120504A (zh) 2021-03-25 2022-03-22 热固性树脂组合物、高频设备、电介质基板和微带天线
JP2023192059A JP2024014929A (ja) 2021-03-25 2023-11-10 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2021051748 2021-03-25
JP2021-051748 2021-03-25
JP2021172197 2021-10-21
JP2021-172197 2021-10-21
JP2021-197667 2021-12-06
JP2021197667 2021-12-06
JP2021-197679 2021-12-06
JP2021197720 2021-12-06
JP2021-197720 2021-12-06
JP2021197679 2021-12-06
JP2021-197731 2021-12-06
JP2021-197669 2021-12-06
JP2021197669 2021-12-06
JP2021197731 2021-12-06

Publications (1)

Publication Number Publication Date
WO2022202781A1 true WO2022202781A1 (ja) 2022-09-29

Family

ID=83395876

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2022/013094 WO2022202792A1 (ja) 2021-03-25 2022-03-22 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ
PCT/JP2022/013123 WO2022202804A1 (ja) 2021-03-25 2022-03-22 熱硬化性樹脂組成物、誘電体基板、およびマイクロストリップアンテナ
PCT/JP2022/013057 WO2022202781A1 (ja) 2021-03-25 2022-03-22 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/013094 WO2022202792A1 (ja) 2021-03-25 2022-03-22 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ
PCT/JP2022/013123 WO2022202804A1 (ja) 2021-03-25 2022-03-22 熱硬化性樹脂組成物、誘電体基板、およびマイクロストリップアンテナ

Country Status (4)

Country Link
JP (6) JP7396534B2 (ja)
KR (3) KR20230160342A (ja)
TW (3) TW202248273A (ja)
WO (3) WO2022202792A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145327A1 (ja) * 2022-01-26 2023-08-03 株式会社レゾナック 熱硬化性樹脂組成物、プリプレグ、樹脂フィルム、積層板、プリント配線板、アンテナ装置、アンテナモジュール及び通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103351578A (zh) * 2013-07-19 2013-10-16 广东生益科技股份有限公司 一种用于形成天线用的介质基板的介质层的树脂组合物及其用途
JP6870778B1 (ja) * 2020-12-11 2021-05-12 昭和電工マテリアルズ株式会社 成形用樹脂組成物及び電子部品装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241853A (ja) * 1994-03-08 1995-09-19 Kinugawa Rubber Ind Co Ltd 誘電加熱成形型
JP2004124066A (ja) * 2002-08-07 2004-04-22 Toray Ind Inc 高誘電体組成物
JP3680854B2 (ja) * 2003-04-04 2005-08-10 東レ株式会社 ペースト組成物およびこれを用いた誘電体組成物
JP2004315653A (ja) 2003-04-16 2004-11-11 Hitachi Chem Co Ltd 樹脂組成物とその利用
JP2008106106A (ja) 2006-10-24 2008-05-08 Hitachi Chem Co Ltd 高誘電率樹脂組成物,プリプレグ及びプリント配線板用積層板
JP6066865B2 (ja) * 2013-08-15 2017-01-25 信越化学工業株式会社 高誘電率エポキシ樹脂組成物および半導体装置
TWI506077B (zh) * 2013-12-31 2015-11-01 Taiwan Union Technology Corp 樹脂組合物及其應用
JP2018041998A (ja) 2015-01-28 2018-03-15 日本化薬株式会社 アンテナ、およびアンテナを有する電子装置
JP7067576B2 (ja) 2020-02-21 2022-05-16 味の素株式会社 樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103351578A (zh) * 2013-07-19 2013-10-16 广东生益科技股份有限公司 一种用于形成天线用的介质基板的介质层的树脂组合物及其用途
JP6870778B1 (ja) * 2020-12-11 2021-05-12 昭和電工マテリアルズ株式会社 成形用樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
JP7347713B2 (ja) 2023-09-20
TW202248340A (zh) 2022-12-16
JPWO2022202792A1 (ja) 2022-09-29
KR20230161473A (ko) 2023-11-27
JP2024014929A (ja) 2024-02-01
TW202248273A (zh) 2022-12-16
TW202248274A (zh) 2022-12-16
JPWO2022202804A1 (ja) 2022-09-29
WO2022202804A1 (ja) 2022-09-29
JP7351434B2 (ja) 2023-09-27
JPWO2022202781A1 (ja) 2022-09-29
KR20230160869A (ko) 2023-11-24
JP2023179419A (ja) 2023-12-19
JP7396534B2 (ja) 2023-12-12
KR20230160342A (ko) 2023-11-23
WO2022202792A1 (ja) 2022-09-29
JP2023164926A (ja) 2023-11-14

Similar Documents

Publication Publication Date Title
KR101229854B1 (ko) 에폭시 수지, 이를 함유하는 경화성 수지 조성물 및 그용도
KR100950398B1 (ko) 열경화성 수지, 그것을 포함하는 열경화성 조성물, 및그로부터 얻어지는 성형체
JP5330013B2 (ja) エポキシ樹脂組成物および硬化物
TW201815872A (zh) 苯酚酚醛清漆樹脂、硬化性樹脂組成物及其硬化物
JP5664817B2 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP2024014929A (ja) 熱硬化性樹脂組成物、高周波デバイス、誘電体基板、およびマイクロストリップアンテナ
JP2024026589A (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
KR100376776B1 (ko) 시클로펜틸렌 화합물 및 그 중간체, 에폭시수지 조성물, 성형재료 및 수지씰링형 전자장치
WO2021166669A1 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、積層板、及びビルドアップフィルム
JP5682805B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
TWI820139B (zh) 樹脂組成物、樹脂構件、樹脂薄片、b階段薄片、c階段薄片、附有樹脂之金屬箔、金屬基板及電力半導體裝置
CN117120504A (zh) 热固性树脂组合物、高频设备、电介质基板和微带天线
KR20220000829A (ko) 다가 하이드록시 수지, 그 제조 방법, 및 그것을 포함하는 에폭시 수지 조성물, 그리고 에폭시 수지 경화물
JP2024008617A (ja) 成形用樹脂組成物、誘電体基板およびマイクロストリップアンテナ
JP2024021200A (ja) Lds用熱硬化性樹脂組成物およびその用途
JP2024021201A (ja) Lds用熱硬化性樹脂組成物およびその用途
WO2023238950A1 (ja) 成形用樹脂組成物及び電子部品装置
WO2023238951A1 (ja) 成形用樹脂組成物及び電子部品装置
JP2022096238A (ja) Lds用熱硬化性樹脂組成物および電子デバイス
JP2022165611A (ja) フェノキシ樹脂、熱硬化性樹脂組成物、熱伝導性シート、樹脂基板、積層板、および電子装置
JP2024055668A (ja) 成形用樹脂組成物及び電子部品装置
JP2023168050A (ja) 樹脂組成物及び電子部品装置
TW202313759A (zh) 密封用樹脂組成物、電子零件裝置及電子零件裝置的製造方法
JPWO2014199661A1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
WO2020158851A1 (ja) 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509181

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237036073

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036073

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775564

Country of ref document: EP

Kind code of ref document: A1