WO2022121507A1 - Procédé de commande à faible complexité pour système de suivi de position servo-hydraulique asymétrique - Google Patents

Procédé de commande à faible complexité pour système de suivi de position servo-hydraulique asymétrique Download PDF

Info

Publication number
WO2022121507A1
WO2022121507A1 PCT/CN2021/124567 CN2021124567W WO2022121507A1 WO 2022121507 A1 WO2022121507 A1 WO 2022121507A1 CN 2021124567 W CN2021124567 W CN 2021124567W WO 2022121507 A1 WO2022121507 A1 WO 2022121507A1
Authority
WO
WIPO (PCT)
Prior art keywords
bounded
servo
hydraulic
error
hydraulic system
Prior art date
Application number
PCT/CN2021/124567
Other languages
English (en)
Chinese (zh)
Inventor
刘爽
王文波
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Priority to JP2022579147A priority Critical patent/JP7448692B2/ja
Publication of WO2022121507A1 publication Critical patent/WO2022121507A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Definitions

  • the invention relates to the field of servo hydraulic position control, in particular to a low-complexity control method for an asymmetric servo hydraulic position tracking system.
  • Servo hydraulic systems have the advantages of excellent load efficiency, small power ratio, and fast response speed, so they are widely used in modern industries (such as active suspension systems, hydraulic excavators, manipulators).
  • the servo hydraulic system includes two kinds of hydraulic actuators, the symmetrical hydraulic actuator with double rod and the asymmetric hydraulic actuator with single rod.
  • active suspension control research the areas of the two oil chambers are often considered equal, and a symmetrical hydraulic actuator is used.
  • asymmetric servo hydraulic systems due to the existence of the piston rod, the effective areas of the rod cavity and the rodless cavity of the hydraulic cylinder are not equal, and the symmetrical hydraulic actuator that can achieve the same performance is often larger than the asymmetric hydraulic actuator. It is used in a few special occasions, and widely used in industry is asymmetric hydraulic actuators. Therefore, it is unreasonable to place symmetrical hydraulic actuators in the vehicle suspension system with great space limitations.
  • the asymmetric servo hydraulic system is a complex nonlinear system, and it involves various uncertainties, such as load changes, parameter uncertainties, and unknown nonlinearities, which will lead to modeling and design control. Therefore, for asymmetric servo-hydraulic systems, high-precision position control is facing a huge challenge.
  • the parameter uncertainties mainly include leakage coefficient, oil film viscosity and viscous friction coefficient
  • the unknown nonlinearity mainly includes spool dead zone and external disturbance, which hinder the development of high-performance controllers.
  • many control techniques have been developed in the past ten years, such as neural network adaptation, fuzzy logic control, robust adaptive control, and backstepping adaptive control.
  • Bechlioulis CP, Rovithakis GA, et al. initially proposed novel controller design methods that can guarantee tracking error transient performance.
  • the transient and steady-state performance of tracking error is specified by introducing a specified performance function, and the original system with constraints is equivalent to an unlimited system by introducing error transformation.
  • This idea is further applied to high-order nonlinear fault-tolerant control systems, hydraulic servo systems, and suspension systems.
  • the control schemes are all combined with adaptive control methods to deal with unknown dynamics in the system.
  • the servo hydraulic system and its position control method have the following shortcomings: 1.
  • the single-rod nonlinear servo hydraulic system is a typical complex nonlinear system, which involves load changes, parameter uncertainty and unknown Because of the nonlinearity and other problems, there is a huge gap between the establishment of the theoretical model and the actual system, which leads to the difficulty and complexity of designing the controller; 2.
  • Most of the current servo-hydraulic position control methods are based on backstep control adaptive However, these control methods have a high degree of dependence on the model, and in the process of backstepping design of high-order systems, a large amount of calculation will be generated, and the online learning of uncertain parameters is not conducive to actual experiments.
  • the present invention discloses a low-complexity control method for an asymmetric servo-hydraulic position tracking system, including the following steps: S1: establishing a servo-hydraulic system model of a single-exit rod; S2: according to the single-exit rod S3: According to the controller of the servo hydraulic system with a single rod and the model of the servo hydraulic system with a single rod, it is proved that the single output rod The stability of the servo-hydraulic system of the rod.
  • the process of establishing the model expression of the servo-hydraulic system of the single rod is as follows: establish the dynamic model of the hydraulic cylinder according to Newton's second law:
  • f(t) represents various disturbances
  • x and m represent the position and mass of the load respectively
  • B is the viscous damping coefficient
  • K is the equivalent spring stiffness of the load, when the load is an inertial load
  • K 0
  • P 1 , P 2 are the pressures of the large and small chambers of the hydraulic cylinder
  • a 1 , A 2 are the effective areas of the pistons of the large and small chambers
  • the load pressure dynamics is expressed by the following formula:
  • C t is the leakage coefficient inside the hydraulic cylinder, and C e is the external leakage coefficient of the hydraulic cylinder.
  • ⁇ e is the elastic modulus of oil;
  • Q 1 is the hydraulic oil flow rate with rod cavity,
  • Q 2 is the hydraulic oil flow rate without rod cavity;
  • P s is the oil supply pressure of the hydraulic system
  • P r is the oil return pressure of the hydraulic system
  • C d is the flow coefficient of the orifice
  • w is the area gradient of the spool valve
  • is the oil density
  • x v is the spool of the servo valve
  • is the time constant of the servo valve dynamics model, and u(t) is the current input; considering the spool displacement ⁇ (x v ) with an unknown dead zone, its expression is as follows:
  • the parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity;
  • ⁇ 1 , ⁇ 2 , ⁇ 3 are virtual control variables
  • x 1r is the command signal of the hydraulic position tracking system
  • z 1 is the position tracking error
  • the controller of the servo hydraulic system is:
  • the standardized error vector has a maximum solution in the non-empty open set ⁇ ⁇ in the time period t ⁇ [0, ⁇ max ): the non-empty open set ⁇ ⁇ , select the performance function
  • ⁇ i satisfy: ⁇ i (0)>min ⁇ -i , ⁇ - i ⁇
  • , i 1...4, we can get:
  • V 1 V 01 +A 1 x
  • V 2 V 02 -A 2 x
  • a safety margin is reserved, that is, according to the physical structure, the hydraulic cylinder can fluctuate up to 12 cm up and down near the neutral position, and the amplitude of the command signal is less than or equal to 10 cm to ensure h 1 h 2 h 3 is bounded, that is, there are three positive numbers respectively make
  • the present invention provides a low-complexity control method for an asymmetric servo-hydraulic position tracking system, which can solve various uncertainties in the hydraulic system (eg, unknown friction effects, variable parameters, etc.). Determined and load changes) and unknown nonlinear problems (such as spool dead zone, external disturbances), the design of the controller does not rely on an accurate mathematical model, only the state signal that can be measured, the calculation of the control rate is consistent with the existing in Compared with the algorithm developed on the basis of backstepping adaptation, the calculation process is simple, the amount of calculation is small, it is convenient for real-time control, and it is easier to realize engineering; the invention can ensure the convergence speed and steady-state accuracy of tracking error; finally, the experimental results show that, Compared with the traditional pid control method, the position tracking effect of the present invention has higher steady-state precision and smaller tracking displacement phase lag.
  • uncertainties in the hydraulic system eg, unknown friction effects, variable parameters, etc.
  • unknown nonlinear problems such as spool dead zone, external disturbances
  • the degree of control displacement hysteresis is basically unchanged, the tracking error always converges within the specified boundary, and the amplitude is basically not attenuated.
  • the displacement tracking error of the pid algorithm is larger, and the control algorithm of the present invention can still ensure that the tracking error converges within the specified boundary, the degree after the phase is small, and the amplitude is basically not attenuated.
  • Fig. 1 is a kind of low-complexity control method flow chart for the asymmetric servo hydraulic position tracking system of the present invention:
  • Figure 2 is a model block diagram of a servo hydraulic system with a single rod
  • Figure 3(a) is the structure composition diagram I of the experimental platform
  • Figure 3(b) is the structural composition diagram II of the experimental platform
  • Figure 3(c) is the structural composition diagram III of the experimental platform
  • Figure 3(d) is the structural composition diagram IV of the experimental platform
  • Fig. 4 is the error convergence simulation curve graph under the action of the controller of the present invention.
  • Fig. 5 is the simulation curve diagram of tracking error convergence under disturbance action
  • Fig. 6 is the simulation curve diagram of error convergence under the action of unknown spool dead zone
  • Fig. 7 is a simulation curve diagram of spool displacement under the action of unknown spool dead zone
  • FIG. 8 is a simulation graph showing the comparison of error convergence between the control method of the present invention and the adaptive backstepping control mode (SPPFBSA) with unknown dead zone of the spool that satisfies the specified performance;
  • SPPFBSA adaptive backstepping control mode
  • Fig. 9 is a statistical diagram of control method of the present invention and SPPFBSA simulation calculation time and error adjustment time;
  • FIG. 1 is a flowchart of a low-complexity control method for an asymmetrical servo hydraulic position tracking system of the present invention: a low-complexity control method for an asymmetrical servo-hydraulic positional tracking system, comprising the following steps: S1: establish a Servo hydraulic system model; Figure 2 is a block diagram of the servo hydraulic system model with a single output rod; S2: According to the servo hydraulic system model of a single output rod, the controller of the single output rod servo hydraulic system is designed with a low-complex control strategy; S3: According to the controller of the single-rod servo-hydraulic system and the model of the single-rod servo-hydraulic system, the stability of the single-rod servo-hydraulic system is proved.
  • P s is the oil supply pressure of the hydraulic system
  • P r is the oil return pressure of the hydraulic system
  • C d is the flow coefficient of the orifice
  • w is the area gradient of the spool valve
  • is the oil density
  • x v is the spool displacement of the servo valve ;
  • the indeterminate parameter leakage coefficient Ct is bounded, that is make
  • the uncertain parameter leakage coefficient C e is bounded, that is, make
  • the uncertain parameter oil elastic modulus ⁇ e is bounded, namely make
  • the spool displacement x v of the servo valve is actually controlled by the voltage or current input u to obtain the required corresponding force.
  • the dynamic characteristics of the servo valve are as follows:
  • is the time constant of the servo valve dynamics model and u(t) is the current input.
  • the parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity;
  • the servo valve is a key mechanical component in the electro-hydraulic actuator.
  • the current or voltage controls the displacement of the spool of the servo valve, and then controls the hydraulic oil to be drawn in or out of the oil chamber, and finally the actuator performs the corresponding movement; obviously, in the servo valve
  • In the hydraulic position tracking system there must be a nonlinear problem of the dead zone of the spool. Therefore, it is necessary to consider the adverse effects of this problem to obtain better system performance; in addition, considering that it is difficult to obtain an accurate slope of the dead zone model in practical applications and interval points, so a robust and strong novel control strategy is proposed to solve this problem;
  • ⁇ 1 , ⁇ 2 , ⁇ 3 are the virtual control quantities obtained in the subsequent proof process
  • x 1r is the command signal of the hydraulic position tracking system
  • z 1 is the position tracking error
  • four positive smooth decreasing functions is selected as the specified performance function
  • the virtual control function is selected as follows:
  • the controller of the servo hydraulic system is:
  • the virtual controller and the controller of the servo hydraulic system can ensure that the closed-loop signal is bounded as follows:
  • V 1 V 01 + A 1 x
  • V 2 V 02 -A 2 x
  • h 1 h 2 h 3 bounded, that is, there are three positive numbers respectively.
  • ⁇ :R+ ⁇ ⁇ ⁇ R n is a continuous function vector
  • ⁇ ⁇ ⁇ R n is a non-empty open set
  • Definition 1 A solution ⁇ (t) of the initial value problem (50), without proper right extension, the solution is the largest;
  • the initial value theorem is as follows: For the initial value problem (12), if ⁇ (t, ⁇ ) satisfies: (1) when t>0, ⁇ (t, ⁇ ) satisfies the local Lipschitz condition for ⁇ ; (2) for ⁇ (t) ⁇ ⁇ , ⁇ (t, ⁇ ) is piecewise continuous; (3) For ⁇ (t) ⁇ ⁇ , ⁇ (t, ⁇ ) is locally integrable with respect to t; then in the time period t ⁇ [ 0, ⁇ max ), there is a solution to the initial value problem (50) ⁇ (t) ⁇ ⁇ , where ⁇ max >0.
  • the initial value proposal is as follows: Assuming the initial value theorem holds; for the maximum solution ⁇ (t) on the time period [0, ⁇ max ) and the set When ⁇ max ⁇ , there exists a time constant t 1 ⁇ [0, ⁇ max ) such that
  • the experimental platform is built, and the experimental software program is debugged.
  • the experimental platform is mainly divided into two parts: software design and hardware circuit connection;
  • Fig. 3 (a) is the structural composition diagram I of the experimental platform;
  • Fig. 3(b) is the structural composition of the experimental platform II;
  • Fig. 3(c) is the structural composition of the experimental platform III;
  • Fig. 3(d) is the structural composition of the experimental platform IV;
  • the hardware of the experimental platform is mainly divided into three parts, the first part is
  • the actuator mainly includes a hydraulic source system (such as accumulator, hydraulic pump, etc.), a servo valve and a single-rod hydraulic cylinder actuator.
  • the experimental platform of the present invention adopts a three-position five-way servo valve, and its model is FD234-01K004VSX2A .
  • the second part is the signal acquisition mechanism.
  • the hardware of the signal acquisition mechanism is mainly the signal conversion board and the A/D board.
  • the function of the signal conversion board is to convert the voltage and current signals to each other. Specifically, the sensor signal 4-20ma current signal is converted into 1-5v voltage signal, convert the voltage signal of ⁇ 5v to the current signal of ⁇ 10ma, the A/D board used in the experiment platform of the present invention is ADT882, its function is to realize the mutual conversion of analog continuous signal and digital discrete signal .
  • the third part is the control mechanism.
  • the core of the control mechanism is the industrial control computer.
  • the experimental platform of the present invention adopts the industrial computer pc104, and its function realizes the construction of the software platform and the realization of the control algorithm.
  • the hardware line connection mainly refers to the connection between each sensor signal line and the servo valve control current signal line and the signal conversion board, and the connection between the signal conversion board and the ADT882 board.
  • the software design environment is VC++6.0, window operating system, the software program mainly includes writing interface functions, configuring A/D board, setting interrupt program to complete signal acquisition, control quantity calculation and output;
  • the initial value of the boundary ⁇ i0 should be as large as possible, the upper bound of the error convergence rate hi should be as small as possible, and the upper bound of the steady-state residual set of the convergence error should be as large as possible;
  • the second step adjust the virtual control rate gains k 1 , k 2 , k 3 , k 4 , when the control rate gain ki is adjusted to an appropriate value;
  • the third step slowly and appropriately reduce the initial value of the boundary ⁇ i0 , increase the upper bound hi of the error convergence rate, and reduce the steady-state residual error of the convergence error Set the upper bound value ⁇ i ⁇ until the desired control effect is achieved.
  • Fig. 4 is the simulation curve diagram of error convergence under the action of the controller of the present invention, as can be seen from Fig. 4, the controller of the present invention can ensure the convergence speed and control accuracy of the displacement tracking error;
  • the controller of the present invention has a strong inhibitory effect on strong disturbances, and can still ensure the transient and steady-state performance of the convergence error.
  • Figure 6 is the simulation curve of error convergence under the action of unknown spool dead zone
  • Figure 7 is the simulation curve of spool displacement under the action of unknown spool dead zone
  • Figures 6 and 7 verify the low-complexity control scheme proposed in this paper It has better robustness to deal with unknown spool dead zone problem.
  • the unknown dead zone nonlinearity of the valve core is added to the system model.
  • Fig. 8 is a comparative simulation graph of error convergence between the control method of the present invention and the adaptive backstepping control method (SPPFBSA) with unknown dead zone of the spool that meets the specified performance
  • Fig. 9 is the simulation calculation time and error of the control method of the present invention and SPPFBSA Adjustment time statistics chart; it can be seen from Figure 8 that both controllers can ensure the convergence speed and steady-state accuracy of the displacement tracking error, but as can be seen from Figure 9, in the simulation running time, the controller of the present invention and Compared with the SPPFBSA controller, it is reduced by 91.7%, and the error convergence adjustment time is reduced by 95.5%. Because the controller design of the invention has low dependence on the model, compared with the algorithm developed on the basis of backstepping self-adaptation, the calculation amount is small, and online learning is not required, so it is convenient for real-time control and engineering realization.
  • the displacement tracking curve obtained by the controller of the present invention has almost only a small phase lag during the upward process of the cylinder, Compared with the ascending process of the cylinder block, when the cylinder block descends, the phase lag degree of the displacement tracking curve is larger, but the control effect of the controller of the present invention is in the whole process of the displacement tracking, the displacement tracking curve is higher than the pid displacement tracking curve. The degree of phase lag is small.
  • the control effect of the controller of the present invention is that the phase lag degree is basically unchanged during the cylinder body ascending process, and the phase lag degree is getting smaller and smaller during the cylinder body descending process, and the amplitude is basically not attenuated.
  • the pid tracking error becomes larger and larger, while the tracking error of the controller of the present invention is basically unchanged and converges within the specified performance boundary.

Abstract

Procédé de commande à faible complexité pour un système de suivi de position servo-hydraulique asymétrique. Le procédé comprend les étapes suivantes consistant : à établir un modèle de système servo-hydraulique d'une tige à sortie unique (étape1) ; en fonction du modèle de système servo-hydraulique de la tige à sortie unique, à concevoir un dispositif de commande d'un système servo-hydraulique de la tige à sortie unique à l'aide d'une stratégie de commande à faible complexité (étape2) ; et à démontrer la stabilité du système servo-hydraulique de la tige à sortie unique en fonction du dispositif de commande du système servo-hydraulique de la tige à sortie unique et du modèle de système servo-hydraulique de la tige à sortie unique (étape 3). Le procédé peut résoudre divers problèmes d'incertitude et des problèmes non linéaires inconnus dans le système hydraulique, et la conception du dispositif de commande ne dépend pas d'un modèle mathématique précis, et nécessite seulement un signal d'état qui peut être mesuré.
PCT/CN2021/124567 2020-12-07 2021-10-19 Procédé de commande à faible complexité pour système de suivi de position servo-hydraulique asymétrique WO2022121507A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579147A JP7448692B2 (ja) 2020-12-07 2021-10-19 非対称サーボ油圧位置追跡システムのための低複雑度制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011438457.2 2020-12-07
CN202011438457.2A CN112486021B (zh) 2020-12-07 2020-12-07 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法

Publications (1)

Publication Number Publication Date
WO2022121507A1 true WO2022121507A1 (fr) 2022-06-16

Family

ID=74941242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124567 WO2022121507A1 (fr) 2020-12-07 2021-10-19 Procédé de commande à faible complexité pour système de suivi de position servo-hydraulique asymétrique

Country Status (3)

Country Link
JP (1) JP7448692B2 (fr)
CN (1) CN112486021B (fr)
WO (1) WO2022121507A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629543A (zh) * 2022-10-21 2023-01-20 东北林业大学 一种可干预的mdf连续平压三支决策协同控制方法、系统及存储介质
CN115903748A (zh) * 2022-12-14 2023-04-04 燕山大学 基于参考模型的电液伺服位移跟踪试验装置及控制方法
CN116300420A (zh) * 2022-12-13 2023-06-23 南方海洋科学与工程广东省实验室(湛江) 伺服控制方法、系统、装置、终端设备以及存储介质
CN116300565A (zh) * 2022-12-27 2023-06-23 南京理工大学 一种具有防越界功能的预设性能控制方法
CN117389156A (zh) * 2023-12-09 2024-01-12 中信重工机械股份有限公司 基于摩擦补偿的液压机械臂自适应积分鲁棒控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112486021B (zh) * 2020-12-07 2021-10-08 燕山大学 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法
CN113942354B (zh) * 2021-10-09 2023-09-22 燕山大学 一种具有电液作动器的整车主动悬挂的状态反馈控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192594A (ja) * 2002-12-09 2004-07-08 Takara Sangyo:Kk サーボシリンダー送り装置
JP2004209523A (ja) * 2003-01-06 2004-07-29 Nippon Steel Corp 油圧サーボ系のパラメータ同定方法
CN104635490A (zh) * 2014-12-15 2015-05-20 南京理工大学 一种单出杆液压缸位置伺服系统的输出反馈控制方法
CN105697463A (zh) * 2016-03-22 2016-06-22 西安理工大学 一种液压位置伺服系统输出反馈自适应控制方法
CN106406088A (zh) * 2016-08-30 2017-02-15 上海交通大学 基于切换的mmsla的液压伺服系统控制方法及控制系统
CN106640809A (zh) * 2016-11-07 2017-05-10 同济大学 变排量变压力调节负载匹配电液位置跟踪控制方法
CN110081046A (zh) * 2019-05-27 2019-08-02 电子科技大学 一种基于反步控制的多电液伺服执行器跟踪同步控制方法
CN110703608A (zh) * 2019-11-18 2020-01-17 南京工业大学 一种液压伺服执行机构智能运动控制方法
CN110794687A (zh) * 2019-12-02 2020-02-14 安徽工业大学 基于干扰补偿的电液伺服系统自适应状态约束控制方法
CN110928182A (zh) * 2019-11-05 2020-03-27 南京理工大学 基于状态估计的液压伺服系统鲁棒自适应重复控制方法
CN111577711A (zh) * 2020-04-30 2020-08-25 南京理工大学 双出杆液压缸位置伺服系统的自抗扰鲁棒控制方法
CN112486021A (zh) * 2020-12-07 2021-03-12 燕山大学 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000415A (ja) * 1998-06-16 2000-01-07 Mitsubishi Heavy Ind Ltd セラミックスフィルタのシール構造
JP4247699B2 (ja) 2001-02-28 2009-04-02 富士電機システムズ株式会社 非線形制御対象のフィードバック制御方法
AT502348B1 (de) 2005-08-17 2008-09-15 Voest Alpine Ind Anlagen Regelungsverfahren und regler für ein mechanisch- hydraulisches system mit einem mechanischen freiheitsgrad pro hydraulischem aktuator
DK1924669T3 (da) * 2005-09-16 2012-10-22 Halliburton Energy Serv Inc Polymerblandinger til tværbundne fluida
CN101216695B (zh) * 2007-12-26 2010-06-02 燕山大学 一种平整轧制压力设定、预报及自学习方法
NL2003800C2 (en) * 2009-11-13 2011-05-16 Baggerwerken Decloedt & Zn N V Device for dredging soil material under water.
RU2559998C2 (ru) * 2010-04-12 2015-08-20 Марк Энтони КУЧЕЛ Способ обработки грунта
CN104698844B (zh) * 2015-02-09 2017-04-19 南京理工大学 液压位置伺服系统的不确定性补偿的滑模控制方法
CN105068426B (zh) * 2015-08-24 2018-03-09 南京理工大学 基于干扰补偿的电液位置伺服系统连续滑模控制方法
JP6487872B2 (ja) * 2016-03-30 2019-03-20 日立建機株式会社 作業機械の駆動制御装置
JP6544408B2 (ja) * 2017-03-03 2019-07-17 日亜化学工業株式会社 光学部品及び光学部品の製造方法
CN109901387B (zh) * 2017-12-11 2023-01-10 上海航空电器有限公司 一种航空器自动近地防撞系统自适应飞行轨迹预测方法
CN108995495B (zh) * 2018-08-09 2020-04-03 燕山大学 一种非线性主动悬架的抗饱和自适应控制方法及系统
CN110262232B (zh) * 2019-05-30 2021-12-17 中国矿业大学 一种水下导弹发射井盖打开装置高跟踪精度的控制方法
CN110397634B (zh) * 2019-07-17 2020-07-07 太原理工大学 一种低能耗高动态泵阀联合位置伺服系统及其控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192594A (ja) * 2002-12-09 2004-07-08 Takara Sangyo:Kk サーボシリンダー送り装置
JP2004209523A (ja) * 2003-01-06 2004-07-29 Nippon Steel Corp 油圧サーボ系のパラメータ同定方法
CN104635490A (zh) * 2014-12-15 2015-05-20 南京理工大学 一种单出杆液压缸位置伺服系统的输出反馈控制方法
CN105697463A (zh) * 2016-03-22 2016-06-22 西安理工大学 一种液压位置伺服系统输出反馈自适应控制方法
CN106406088A (zh) * 2016-08-30 2017-02-15 上海交通大学 基于切换的mmsla的液压伺服系统控制方法及控制系统
CN106640809A (zh) * 2016-11-07 2017-05-10 同济大学 变排量变压力调节负载匹配电液位置跟踪控制方法
CN110081046A (zh) * 2019-05-27 2019-08-02 电子科技大学 一种基于反步控制的多电液伺服执行器跟踪同步控制方法
CN110928182A (zh) * 2019-11-05 2020-03-27 南京理工大学 基于状态估计的液压伺服系统鲁棒自适应重复控制方法
CN110703608A (zh) * 2019-11-18 2020-01-17 南京工业大学 一种液压伺服执行机构智能运动控制方法
CN110794687A (zh) * 2019-12-02 2020-02-14 安徽工业大学 基于干扰补偿的电液伺服系统自适应状态约束控制方法
CN111577711A (zh) * 2020-04-30 2020-08-25 南京理工大学 双出杆液压缸位置伺服系统的自抗扰鲁棒控制方法
CN112486021A (zh) * 2020-12-07 2021-03-12 燕山大学 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629543A (zh) * 2022-10-21 2023-01-20 东北林业大学 一种可干预的mdf连续平压三支决策协同控制方法、系统及存储介质
CN115629543B (zh) * 2022-10-21 2023-04-07 东北林业大学 一种可干预的mdf连续平压三支决策协同控制方法、系统及存储介质
CN116300420A (zh) * 2022-12-13 2023-06-23 南方海洋科学与工程广东省实验室(湛江) 伺服控制方法、系统、装置、终端设备以及存储介质
CN116300420B (zh) * 2022-12-13 2024-03-15 南方海洋科学与工程广东省实验室(湛江) 伺服控制方法、系统、装置、终端设备以及存储介质
CN115903748A (zh) * 2022-12-14 2023-04-04 燕山大学 基于参考模型的电液伺服位移跟踪试验装置及控制方法
CN116300565A (zh) * 2022-12-27 2023-06-23 南京理工大学 一种具有防越界功能的预设性能控制方法
CN117389156A (zh) * 2023-12-09 2024-01-12 中信重工机械股份有限公司 基于摩擦补偿的液压机械臂自适应积分鲁棒控制方法
CN117389156B (zh) * 2023-12-09 2024-03-22 中信重工机械股份有限公司 基于摩擦补偿的液压机械臂自适应积分鲁棒控制方法

Also Published As

Publication number Publication date
CN112486021B (zh) 2021-10-08
CN112486021A (zh) 2021-03-12
JP7448692B2 (ja) 2024-03-12
JP2023517140A (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
WO2022121507A1 (fr) Procédé de commande à faible complexité pour système de suivi de position servo-hydraulique asymétrique
Feng et al. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system
CN104317198B (zh) 具有时变输出约束的电液伺服系统非线性鲁棒位置控制方法
CN112415891B (zh) 一种电液伺服系统自适应输出反馈渐近控制方法
Feng et al. Identification and compensation of non-linear friction for a electro-hydraulic system
CN104345638B (zh) 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN108181813A (zh) 一种柔性关节机械臂的分数阶滑模控制方法
CN104698844A (zh) 液压位置伺服系统的不确定性补偿的滑模控制方法
CN108181818A (zh) 含未建模摩擦动态的电液位置伺服系统鲁棒自适应控制方法
CN110794687A (zh) 基于干扰补偿的电液伺服系统自适应状态约束控制方法
CN110308651A (zh) 基于扩张状态观测器的电液伺服系统全状态约束控制方法
CN113110037A (zh) 一种电液伺服系统智能自学习pid控制方法
Li et al. Adaptive robust H∞ control for double support balance systems
CN102063061A (zh) 气动伺服系统中摩擦的自适应补偿方法
Yao et al. Energy-saving control of single-rod hydraulic cylinders with programmable valves and improved working mode selection
Niu et al. Neural network-based finite-time command-filtered adaptive backstepping control of electro-hydraulic servo system with a three-stage valve
CN114545779B (zh) 一种基于直驱泵的快速起竖系统自调节积分鲁棒控制方法
CN112068447A (zh) 大型装备电液系统高精度鲁棒位置控制方法
Gao et al. Using fuzzy switching to achieve the smooth switching of force and position
Feng et al. Nonlinear adaptive robust control of valve-controlled symmetrical cylinder system
Yin et al. An Adaptive Control Method for Robot Constant Force Polishing Device
Yang et al. Adaptive backstepping control of uncertain electro-hydrostatic actuator with unknown dead-zone nonlinearity
CN117193044B (en) Fuzzy active disturbance rejection control joint simulation method for electrohydraulic servo system
CN117289612B (zh) 一种液压机械臂自适应神经网络控制方法
Shi et al. Research on hydraulic motor control system based on fuzzy neural network combing sliding mode control and time delay estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902214

Country of ref document: EP

Kind code of ref document: A1