RU2559998C2 - Способ обработки грунта - Google Patents

Способ обработки грунта Download PDF

Info

Publication number
RU2559998C2
RU2559998C2 RU2013143874/03A RU2013143874A RU2559998C2 RU 2559998 C2 RU2559998 C2 RU 2559998C2 RU 2013143874/03 A RU2013143874/03 A RU 2013143874/03A RU 2013143874 A RU2013143874 A RU 2013143874A RU 2559998 C2 RU2559998 C2 RU 2559998C2
Authority
RU
Russia
Prior art keywords
soil
foundation
urethane
clay
ground
Prior art date
Application number
RU2013143874/03A
Other languages
English (en)
Other versions
RU2013143874A (ru
Inventor
Марк Энтони КУЧЕЛ
Original Assignee
Марк Энтони КУЧЕЛ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44798173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2559998(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AU2010901539A external-priority patent/AU2010901539A0/en
Application filed by Марк Энтони КУЧЕЛ filed Critical Марк Энтони КУЧЕЛ
Publication of RU2013143874A publication Critical patent/RU2013143874A/ru
Application granted granted Critical
Publication of RU2559998C2 publication Critical patent/RU2559998C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/01Flat foundations
    • E02D27/08Reinforcements for flat foundations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/30Polyisocyanates; Polyurethanes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D35/00Straightening, lifting, or lowering of foundation structures or of constructions erected on foundations

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soil Sciences (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Architecture (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Изобретение относится к строительству, а именно к укреплению грунта и обеспечению устойчивости фундаментов сооружений. Способ обеспечения устойчивости части фундамента здания включает стадии введения водостойкой пластмассы в грунт и отверстия в грунте вблизи фундамента для уплотнения этих участков и последующего введения под фундамент обработанного катализатором мономера, представляющего собой медленно затвердевающую пластмассу, с применением насоса сверхвысокого давления. Технический результат состоит в повышении несущей способности грунтов основания, обеспечении контроля степени уплотнения и выравнивания сооружения. 2 н. и 8 з.п. ф-лы, 24 ил.

Description

ОБЛАСТЬ ТЕХНИЧЕСКОГО ПРИМЕНЕНИЯ
Настоящее изобретение относится к способу обработки грунтов и, в частности, обеспечению устойчивости фундаментов и осуществлению контролируемого поднятия.
УРОВЕНЬ ТЕХНИКИ
Задача, на решение которой направлено настоящее изобретение, касается проблем, связанных с неустойчивостью грунта.
Один пример обработки грунтов описан в австралийском патенте №731637. В этом патенте рассмотрено применение быстро расширяющегося химического агента, который вводят в землю.
При этом степень расширения выбирают таким образом, чтобы указанное расширение было большим - например, примерно в пять раз больше вводимого объема. При введении такого очень активного химического агента в землю обеспечивается поднятие грунта за счет непрерывного химически индуцированного расширения и, тем самым, эффекта поднятия.
Проблема, возникающая при реализации этой идеи, состоит в том, что после введения в грунт химического агента утрачивается контроль за процессом, и величина подъема зависит от степени химически индуцированного расширения. Если такое расширение слишком велико, то возникают значительные трудности. Настоящий пример относится к контролированию поднятия грунта, однако к тому времени, когда подъем грунта уже заметен, мало что можно сделать чтобы прекратить дальнейший подъем, если химический агент все еще расширяется.
ЗАДАЧА НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Задача настоящего изобретения заключается в том, чтобы обеспечить способ обработки грунтов, позволяющий лучше контролировать степень поднятия, которая может быть достигнута.
ОПИСАНИЕ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Можно сказать, что в одном из вариантов предложенное изобретение состоит в способе обеспечения устойчивости части фундамента здания, включающем стадии введения водостойкой пластмассы в грунт и отверстия в грунте вблизи фундамента, затем введение под фундамент обработанного катализатором мономера, представляющего собой медленно затвердевающую пластмассу, с помощью насоса сверхвысокого давления.
Катализируемый мономер предпочтительно представляет собой пенообразующую уретановую пластмассу. Степень пенообразования выбирают таким образом, чтобы обеспечить аэрацию в полученном материале и, следовательно, способствовать приданию упругости, но также выбирают и получают таким образом, чтобы материал действовал медленно.
Соответственно, применение такого материала позволяет осуществлять гораздо более эффективный контроль в случаях, когда имеется несколько непредсказуемых параметров.
Можно сказать, что в альтернативном варианте настоящее изобретение заключается в способе применения насоса высокого давления и низкой скорости потока «двухкомпонентного» уретана с низкой вязкостью и медленным химическим отверждением, последовательно инжектируемого в грунты, такие как глина и глинистые грунты со сложным профилем, в одно и то же место для первоначального образования уретанового шара.
Когда указанный шар почти полностью затвердевает, повторное закачивание в то же место с повторным применением очень высокого внешнего давления позволяет получить шар внутри первого шара. Первый шар будет сплющиваться изнутри и надавливать на грунт, образуя конструкцию, подобную пузырю или баллону. Далее используют последовательные циклы такой процедуры для формирования предпочтительно довольно большой покрытой площади поверхности.
Указанную процедуру предпочтительно выполняют как эффект завесы под нагрузкой линии стены, так что эффект, подобный гидравлическому, будет фактически поднимать находящуюся наверху стену или структуру; затем, поддерживая такое давление до тех пор, пока уретан не затвердеет, обеспечивают увеличение объема в грунте - как раз в том месте, где это может быть необходимо. Применение высокого гидравлического давления, создаваемого внешним насосом, и доставка с низкой скоростью означает, что степень поднятия можно регулировать очень точно и, в частности, можно избежать избыточного подъема. Поднятие можно остановить в любой момент времени. Если, например, необходимо закрыть несколько трещин, закачивание можно остановить, как только они закроются.
Поэтому предложенный способ отличается от случая, когда используют быстро расширяющийся уретан, и для обеспечения подъема применяют давление, образующееся главным образом за счет химически расширяющегося уретана. Раз начавшись, химическое расширение будет продолжаться без какой-либо внешней возможности замедлить его или остановить.
Это может привести к чрезмерному подъему и крайне нежелательно.
В настоящем изобретении предложен систематический подход (критический путь), который использует преимущество природных и химических/механических свойств глины и глинистых грунтовых оснований со сложным профилем.
Влагосодержание можно регулировать естественным образом или искусственно, путем механического и/или химического осушения. «Буферная зона» зона устойчивости в глине и глинистых грунтах со сложным профилем - непосредственно связана с глубиной грунта, при которой влагосодержание остается постоянным в природных условиях (ежегодно). Буферную зону можно регулировать естественным образом, механическими и/или химическими способами.
Объем можно восстановить механическими и/или химическими способами. Когда уровни влажности глины и глинистых грунтовых оснований со сложным профилем изменяются от среднего значения до сравнительно низких уровней, они могут выдержать большие нагрузки. Потеря влажности приведет к потере объема в соответствующем соотношении, в этих условиях нагрузка будет смещать грунт вниз. Для лучшего понимания настоящего изобретения оно теперь будет подробно описано со ссылкой на варианты реализации, проиллюстрированные с помощью чертежей, на которых:
На фиг.1 приведено схематическое поперечное сечение каменной стены с каменным фундаментом, как это может выглядеть после строительства на глине с низкой реакционной способностью/глинистом грунте со сложным профилем, и показаны как вертикальные трещины в грунте, так и горизонтальные разломы по состоянию на конец летнего сезона.
На фиг.2 приведено то же изображение, что и на фиг.1, однако на этом чертеже показаны эффекты, возникающие, когда почвы представляют собой глины с высокой реакционной способностью/глинистый грунт со сложным профилем, и показаны гораздо более глубокие вертикальные трещины и неустойчивое грунтовое основание.
На фиг.3 показана следующая стадия, на которой используют высушивание, при этом в пространство вокруг фундамента вводят несколько труб со сжатым воздухом, подаваемым через указанные трубы для высушивания грунта.
На фиг.4 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, включающая закачивание низковязкого и медленно затвердевающего уретана при очень высоком давлении через стержни реактора, имеющие выходные отверстия вокруг фундамента, для заполнения зазоров.
На фиг.5 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, на которой стержень реактора теперь имеет выходное отверстие, расположенное под фундаментом, и низковязкий слегка пенообразующий уретан закачивают при очень высоком давлении под фундамент. Указанную процедуру теперь контролируют путем наблюдения за подъемом стены (хорошими индикаторами являются размер трещин и выравнивание) и закачивание в то же место теперь повторно осуществляют с помощью стержня реактора до тех пор, пока не достигнут требуемого уровня поднятия стены.
На фиг.6 показана следующая стадия, на которой водонепроницаемый слой укладывают на верхнюю поверхность грунта для защиты его на будущее.
На фиг.7 показано схематическое поперечное сечение каменной стены с широким фундаментом, как это может выглядеть после строительства на глине с низкой реакционной способностью/глинистом грунте со сложным профилем, и показаны как вертикальные трещины в грунте, так и горизонтальные разломы по состоянию на конец летнего сезона.
Фиг.8 представляет собой то же изображение, что и на фиг.7, однако на этом чертеже показаны эффекты, возникающие, когда почвы представляют собой глины с высокой реакционной способностью/глинистый грунт со сложным профилем, и показаны гораздо более глубокие вертикальные трещины и неустойчивое грунтовое основание.
На фиг.9 показана следующая стадия, на которой используют высушивание, при этом в пространство вокруг фундамента вводят несколько труб со сжатым воздухом, подаваемым через указанные трубы для высушивания грунта.
На фиг.10 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, включающая закачивание вокруг фундамента низковязкого и медленно затвердевающего уретана при очень высоком давлении через стержни реактора, имеющие выходные отверстия, для заполнения зазоров.
На фиг.11 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, на которой стержень реактора теперь имеет выходное отверстие, расположенное под фундаментом, и низковязкий слегка пенообразующий уретан закачивают при очень высоком давлении под фундамент. Указанную процедуру теперь контролируют путем наблюдения за подъемом стены (хорошими индикаторами являются размер трещин и выравнивание) и закачивание в то же место теперь повторно осуществляют с помощью стержня реактора до тех пор, пока не достигнут требуемого уровня поднятия стены.
На фиг.12 показана следующая стадия, на которой водонепроницаемый слой укладывают на верхнюю поверхность грунта для защиты его на будущее.
На фиг.13 показано схематическое поперечное сечение каменной армированной стены с укрепленным бетонным фундаментом, как это может выглядеть после строительства на глине с низкой реакционной способностью/глинистом грунте со сложным профилем, и показаны как вертикальные трещины в грунте, так и горизонтальные разломы по состоянию на конец летнего сезона.
Фиг.14 представляет собой то же изображение, что и на фиг.13, однако на этом чертеже показаны эффекты, возникающие, когда почвы представляют собой глины с высокой реакционной способностью/глинистый грунт со сложным профилем, и показаны гораздо более глубокие вертикальные трещины и неустойчивое грунтовое основание.
На фиг.15 показана следующая стадия, на которой используют высушивание, при этом в пространство вокруг фундамента вводят несколько труб со сжатым воздухом, подаваемым через указанные трубы для высушивания грунта.
На фиг.16 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, включающая закачивание низковязкого и медленно затвердевающего уретана при очень высоком давлении через стержни реактора, имеющие выходные отверстия вокруг фундамента, для заполнения зазоров.
На фиг.17 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, на которой стержень реактора теперь имеет выходное отверстие, расположенное под фундаментом, и низковязкий слегка пенообразующий уретан закачивают при очень высоком давлении под фундамент. Указанную процедуру теперь контролируют путем наблюдения за подъемом стены (хорошими индикаторами являются размер трещин и выравнивание) и закачивание в то же место теперь повторно осуществляют с помощью стержня реактора до тех пор, пока не достигнут требуемого уровня поднятия стены.
На фиг.18 показана следующая стадия, на которой водонепроницаемый слой укладывают на верхнюю поверхность грунта для защиты его на будущее.
На фиг.19 показано схематическое поперечное сечение фундамента в виде ростверка с навесным фундаментом, как это может выглядеть после строительства на глине с низкой реакционной способностью/глинистом грунте со сложным профилем, и показаны как вертикальные трещины в грунте, так и горизонтальные разломы по состоянию на конец летнего сезона.
Фиг.20 представляет собой то же изображение, что и на фиг.1, однако на этом чертеже показаны эффекты, возникающие, когда почвы представляют собой глины с высокой реакционной способностью/глинистый грунт со сложным профилем, и показаны гораздо более глубокие вертикальные трещины и неустойчивое грунтовое основание.
На фиг.21 показана следующая стадия, на которой используют высушивание, при этом в пространство вокруг фундамента вводят несколько труб со сжатым воздухом, подаваемым через указанные трубы для высушивания грунта.
На фиг.22 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, включающая закачивание низковязкого и медленно затвердевающего уретана при очень высоком давлении через стержни реактора, имеющие выходные отверстия вокруг фундамента, для заполнения зазоров.
На фиг.23 показана следующая стадия обработки глины с высокой реакционной способностью/глинистых грунтов со сложным профилем, на которой стержень реактора теперь имеет выходное отверстие, расположенное под фундаментом, и низковязкий слегка пенообразующий уретан закачивают при очень высоком давлении под фундамент. Указанную процедуру теперь контролируют путем наблюдения за подъемом стены (хорошими индикаторами являются размер трещин и выравнивание) и закачивание в то же место теперь повторно осуществляют с помощью стержня реактора до тех пор, пока не будет достигнут требуемый уровень подъема стены.
На фиг.24 показана следующая стадия, на которой водонепроницаемый слой укладывают на верхнюю поверхность грунта для защиты его на будущее.
ОПИСАНИЕ ВАРИАНТОВ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ
На фиг.1-6 одинаковые стадии повторяются в последующих примерах, приведенных на фиг.7-12, 13-18 и 19-24, на которых просто изменены фундаменты и стеновые структуры, в частности, на фиг.1-6 изображена каменная стена 1 с фундаментом 2. Вертикальные трещины 3 изображены вместе со случайными горизонтальными разломами 4 и имеют среднюю глубину, показанную под номером 5.
Величина вспучивания грунта обычно показана под номером 6. Протяженность устойчивой или неустойчивой опоры для фундамента, обеспеченной грунтом, показана под номером 7.
Как показано на фиг.3, полые стержни со сжатым воздухом 8 связаны с обычной приточной вентиляционной трубой 9.
На фиг.4 в стержни реактора 10 подают через однопутевой клапан 11 медленно затвердевающий предварительно обработанный катализатором мономер уретана, предназначенный для введения с наружной стороны фундамента для последующего блокирования утечки поднимающегося материала.
На фиг.5 стержень реактора 12 вставлен с усилием таким образом, чтобы его выходное отверстие находилось под фундаментом 2, так что через него можно будет осуществлять последовательные введения низковязкого пенообразующего предварительно обработанного катализатором мономера уретана в пространство под фундаментом 2. Такие введения приведут к образованию последовательных шаров 13, 14, 15 и 16, входящих друг в друга, при этом каждый раз наружный шар будет увеличиваться, что, тем самым, обеспечит регулируемый поднимающий эффект, почти исключительно направленный на фундамент 2 и стену 1. Указанную процедуру можно повторять много раз для достижения требуемой степени поднятия.
На фиг.6 показана конечная стадия варианта реализации изобретения, которая состоит в нанесении водонепроницаемого уплотняющего слоя 17 на верхнюю часть поверхности земли вокруг стены и фундамента.
Чтобы избежать излишнего повторения в описаниях, на последующих чертежах изображен один и тот же способ, применяемый к разным фундаментам, поэтому одинаковые элементы будут обозначены одинаковыми позициями, при этом различия заключаются в том, что на фиг.1-6 изображена каменная стена 1, тогда как на фиг.7-12 стена представляет собой двойную кирпичную пустотную стену 20, опирающуюся на ленточный фундамент 21.
На фиг.13-18 изображена двойная кирпичная стена 23, поддерживаемая железобетонным составным фундаментом 24.
На фиг.19-24 изображена двойная кирпичная пустотная стена 25, поддерживаемая железобетонным составным фундаментом и напольной опорной плитой, изготовленной в виде одного элемента 26.
Многие структуры, построенные на глине и глинистых грунтах со сложным профилем, остаются в исправном состоянии в течение сотен лет без какого-либо значительного повреждения. На фиг.1, 7, 13, и 19 показаны различные виды конструкции в сочетании с предложенным способом. Отметим, что во всех случаях имеется буферная зона, которая простирается глубоко в грунт. Устойчивый уровень подошвы фундамента расположен там, где влагосодержание стабильно по глубине.
Как правило, структуры, которые были повреждены, построены, как описано на фиг.2, 8, 14, и 20. Глубина трещин, образовавшихся летом, такова, что грунтовое основание претерпевает изменение влагосодержания, становится неустойчивым, претерпевает последовательные изменения в объеме.
Предложенный нами способ стабилизации влагосодержания и естественного уплотнения чувствительных к влажности грунтовых оснований и грунтов, несущих нагрузку, состоит в том, чтобы поддерживать грунт в сухом состоянии или высушивать его с помощью природных процессов и ждать до конца лета, см. фиг.2, 8, 14, и 20. Летняя погода высушила грунт. Также не возникает проблемы, если при неотложных работах используют механические средства. На фиг.3, 9, 15, и 21 показан способ, при котором используют сжатый воздух (высокое давление и низкую скорость потока). Сжатый воздух представляет собой «сухой воздух». Предложенная система состоит из нескольких труб 11, введенных в землю. В большинстве случаев, систему необходимо запустить только на пару недель. Компрессор работает, чтобы через примерно 5 минут заполнить сборный бак. Компрессор отключают. Сборный бак выпускает воздух в землю в течение примерно 15 минут с помощью нескольких труб, создавая в земле значительное движение воздуха, что, в свою очередь, высушивает грунт. Как только сборный бак опорожнится, компрессор сам начинает работать, происходит повторное заполнение, и цикл повторяется снова и снова. Во время этого процесса поступление воды в грунт прекращается. Грунт можно высушить так же, как в конце летних условий, см. фиг.2, 8, 14, и 20.
Глины и глинистые грунтовые основания со сложным профилем в состоянии вспучивания теряют свою способность выдерживать нагрузку, когда влажность внутри грунта достигала сравнительно высокого уровня, и вызывала "пластичность" или "пластическое состояние" грунта. Глины и глинистые грунтовые основания со сложным профилем в пластическом состоянии не могут успешно выдерживать нагрузку. Однако влагосодержание грунта в пластическом состоянии можно уменьшить естественным путем или с помощью механических средств, таких как сушка сжатым воздухом.
Когда грунт находится при оптимальной сухости и в результате происходит потеря его максимального объема, низковязкий пенообразующий уретан, который смешивают и выбирают благодаря его медленному отверждению, и смесь с умеренным расширением закачивают в грунт при высоком давлении, создаваемом внешним насосом высокого давления, и на низкой скорости. Такая процедура представляет собой «процесс законопачивания», как показано на фиг.4. 10, 16 и 22. Уретан представляет собой однородную двухкомпонентную смесь. Насос, используемый для доставки уретана, представляет собой многоканальный насос, который может поставлять части уретана раздельно при высоком давлении, вплоть до 5000 фунт/квадратный дюйм, в отдельных шлангах. Фактическое давление, используемое для нагнетания смеси, будет меняться в зависимости от противодавления, оказываемого на выходе и, следовательно, как правило, будет меньше, чем мощность насоса при полном давлении. Однако давление будет очень высоким и при минимальном значении будет составлять по меньшей мере 1000 psi. Насос работает на основе принципа вытеснения. Насос имеет дополнительные свойства, которые позволяют закачивать другие материалы одновременно или периодически при таком же высоком давлении. Части уретана перемешивают с помощью статического смесителя как раз тогда, когда он проникает в стержни реактора. В стержнях реактора указанный материал начинает химический процесс образования пены. Однако предусмотрена и выбрана такая степень и скорость пенообразования, которая является сравнительно умеренной и безусловно несколько меньшей, чем, возможно, необходимо использовать для многократного увеличения первоначального объема материала, находящегося in situ.
Однако такое увеличение возможно, если оставить материал расширяться в свободной атмосфере в более чем пять раз относительно его первоначального объема, но такой процесс не является подходящим способом, применимым в настоящей заявке.
Некоторое преимущество обеспечивают путем установки в каждый стержень реактора однопутевого клапана с тем, чтобы ограничить обратный поток медленно затвердевающего материала во время ожидания его частичного отверждения, вне зависимости от насоса, который удерживает такое противодавление.
Пенообразующий материал с усилием нагнетают в землю, когда он выходит из концов стержней реактора, которые были стратегически размещены в грунте на требуемой глубине. Указанные стержни будут вставлены с некоторым усилием и для достижения подходящей глубины введения можно использовать отбойный молоток. Такая процедура имеет преимущество, состоящее в уплотнении грунта вокруг стержня реактора и, следовательно, уверенности, что жидкий уретан не будет просачиваться за пределы боковых поверхностей указанных стержней, и необходима, поскольку высокое давление, создаваемое внешним насосом, может выдернуть их из грунта. Уретан идет по пути наименьшего сопротивления, систематически заполняя все пустоты в грунте. Пустоты включают вертикальные образующиеся летом трещины и горизонтальные разломы. Применение уретана по сравнению с другими материалами является особенно предпочтительным. Влага может действовать как катализатор, способствуя химической реакции. Уретан проникает в грунт и образует с ним химические связи.
Грунт не высушивает низковязкий химически реагирующий уретан. Любая влага, оставшаяся в грунте, не является недостатком, поскольку она способствует химическому связыванию уретана с грунтом и превращению его в часть грунта. Цель состоит в том, чтобы поместить уретан в трещины, пустоты и разломы, не оказывая давление на грунт, находящийся вблизи. Уретановая пена затвердевает в свое время, закупоривая все трещины, пустоты и разломы подобно пробке в винной бутылке. Теперь легкое проникновение воды в грунт, которое происходило в прошлом, когда вода просто стекала в трещины, пустоты и разломы, предотвращено. Стержни реактора, пока они все еще находятся в грунте, очищают с помощью очистителя, который продувают через них также при высоком давлении. Стержни можно повторно закачать, при необходимости. В конце процесса законопачивания стержни реактора удаляют.
Глины и глинистые грунтовые основания со сложным профилем в пластическом состоянии теряют свою способность выдерживать нагрузку, когда влажность внутри грунта достигала сравнительно высокого уровня и вызывала "пластичность" или "пластическое состояние" грунта. Глины и глинистые грунтовые основания со сложным профилем в "пластическом состоянии" не могут успешно выдерживать нагрузку. Однако влагосодержание грунта в пластическом состоянии можно уменьшить естественным путем или с помощью механических средств. Также не возникает проблемы, если при неотложных работах используют механические средства.
Когда грунт находится при оптимальной сухости и в результате происходит потеря его объема набухания, низковязкий пенообразующий уретан закачивают в грунт при высоком давлении на низкой скорости. Такая процедура представляет собой «процесс законопачивания», как показано на фиг.4. 10, 16 и 22. Уретан представляет собой однородную двухкомпонентную смесь. Насос, используемый для доставки уретана, представляет собой многоканальный насос, который может поставлять части уретана раздельно при высоком давлении, вплоть до 5000 фунт/квадратный дюйм, в отдельных шлангах. Насос работает на основе принципа вытеснения. Насос имеет дополнительные свойства, которые позволяют закачивать другие материалы одновременно или периодически при таком же высоком давлении. Части уретана перемешивают с помощью статического смесителя как раз тогда, когда он проникает в стержни реактора. В стержнях реактора указанный материал начинает химический процесс образования пены. Слегка пенообразующий материал с усилием нагнетают в землю при очень высоком давлении, когда он выходит из концов стержней реактора, которые были стратегически размещены в грунте на требуемую глубину. Стержни реактора вбивают в грунт с помощью отбойного молотка, так что они плотно заблокированы. Такое уплотнение используют, поскольку иначе высокое давление может выдернуть их из грунта или они могут подтекать по бокам. Уретан идет по пути наименьшего сопротивления, систематически заполняя все пустоты в грунте. Пустоты включают вертикальные образующиеся летом трещины и горизонтальные разломы. Применение уретана по сравнению с другими материалами является особенно предпочтительным. Влага может действовать как катализатор, способствуя химической реакции. Уретан проникает в грунт и образует с ним химические связи. Грунт не высушивает низковязкий химически реагирующий уретан. Любая влага, оставшаяся в грунте, не является недостатком, поскольку она способствует химическому связыванию уретана с грунтом и превращению его в часть грунта. Цель состоит в том, чтобы поместить уретан в трещины, пустоты и разломы, не оказывая давление на грунт, находящийся вблизи. Уретановая пена затвердевает в свое время, закупоривая все трещины, пустоты и разломы подобно пробке в бутылке вина. Теперь имеет место предотвращение легкого проникновения воды в грунт, как это происходило в прошлом, когда вода просто стекала в трещины, пустоты и разломы. Тем не менее, стержни реактора все еще очищают в месте их размещения в земле с помощью очистителя, который продувают через них также при высоком давлении. Стержни можно повторно закачать, при необходимости. В конце процесса законопачивания стержни реактора удаляют.
Как правило, объем сухой глины и глинистых грунтов со сложным профилем можно заменить с помощью механических средств - на фиг.5, 11, 17 и 23 показан способ восстановления объема грунта, который высох в естественных условиях или был высушен с применением механических средств. В результате глина и глинистый грунт со сложным профилем теряют объем. Когда грунт находится при оптимальной сухости и в результате происходит потеря его максимального объема, низковязкий пенообразующий уретан закачивают в грунт при высоком давлении на низкой скорости, как описано в процессе законопачивания, который можно видеть на фиг.4. 10, 16 и 22, рассмотренных ранее. Уретан, применяемый в подобном процессе, представляет собой однородную двухкомпонентную смесь, которую добавляют в грунт для восстановления объема без добавления какой-либо значительной массы. Насос, используемый для доставки уретана, представляет собой многоканальный насос, который может поставлять части уретана раздельно при высоком давлении, вплоть до 5000 фунт/квадратный дюйм, в отдельных шлангах. Насос работает на основе принципа вытеснения. Пенообразующий материал с усилием нагнетают в землю, когда он выходит из концов стержней реактора, которые были стратегически размещены в грунте на требуемую глубину. Уретан закачивают в грунт с помощью нескольких стержней реактора. Стержни реактора вбивают в грунт с помощью отбойного молотка, так что они плотно заблокированы. Такое уплотнение необходимо, поскольку высокое давление может выдернуть их из грунта или они могут подтекать по бокам. При применении насоса высокого давления и низкой скорости потока двухкомпонентного уретана с низкой вязкостью и длительным временем химического отверждения, последовательно закачиваемого в глину и глинистые грунты со сложным профилем в одно и то же место в грунте, сначала образуется уретановый шар. Когда указанный шар полностью схватится, повторное закачивание в то же место позволит получить шар внутри первого шара. Первый шар будет сплющиваться изнутри, надавливать на грунт, образуя конструкцию, подобно пузырю или трубе. Применение последовательных циклов такой процедуры позволит сформировать довольно большую покрытую площадь поверхности. Это важное наблюдение, поскольку если указанная процедура выполнена как «эффект завесы» под нагрузкой линии стены, эффект, подобный гидравлическому, стратегически восстанавливающий объем грунта вдоль линии стены, может поднять вверх стену или структуру, подобно закачиванию воздуха в шину. При отверждении уретана объем грунта был восстановлен непосредственно в том месте, где он мог потребоваться. Одним из преимуществ высокого гидравлического давления и низкой скорости доставки является контролирование. Можно остановиться в любой момент времени. Если, например, необходимо закрыть несколько трещин в структуре, описанной выше, закачивание можно остановить, как только они закроются. Использование уретанового материала в качестве самоформирующегося пузыря само по себе является изобретательским. Высокое давление насоса позволяет легко преодолеть структуру затвердевшей пены. Площадь поверхности шара можно увеличить, при необходимости, и мощность гидравлического процесса, естественно, увеличивали при увеличении площади поверхности. Поскольку уретановая пена сравнительно легкая, природный эластичный потенциал грунта не является препятствием. К грунту добавляют незначительную массу.
Долгосрочная устойчивость структуры, рассмотренной выше, будет обеспечена стратегией, описанной на фиг.6, 12, 18 и 24. Непроницаемый слой (можно применять большое число различных материалов, например, бетонные дорожки, кирпичную мостовую, лист из уретановой мембраны и т.п.) на поверхности глины и глинистых грунтов со сложным профилем, нанесенный поверх уже обработанных участков вдоль линии нагрузки защищает грунт от попадания влаги. Расстояние по ширине будет по величине не меньше, чем глубина образующихся летом трещин, которые встречались бы в грунте в природных условиях. Предложенный способ устанавливает буферную зону, хотя и горизонтальную, по расстояниям похожую на буферную зону, показанную на фиг.1, 7, 13 и 19. Протяженность буферной зоны создана искусственно за счет использования преимущества природного воздействия.

Claims (10)

1. Способ обеспечения устойчивости части фундамента здания, включающий стадии введения водостойкой пластмассы в грунт и отверстия в грунте вблизи фундамента для уплотнения этих участков и последующего введения под фундамент обработанного катализатором мономера, представляющего собой медленно затвердевающую пластмассу, с применением насоса сверхвысокого давления.
2. Способ по п.1, отличающийся тем, что стадию введения под фундамент обработанного катализатором мономера, представляющего собой медленно затвердевающую пластмассу, осуществляют повторно в то же место до достижения заданного поднятия фундамента.
3. Способ по п.1 или 2, отличающийся тем, что обработанный катализатором мономер представляет собой уретановую пластмассу медленного вспенивания.
4. Способ по любому из пп.1 или 2, отличающийся тем, что указанный насос высокого давления используют при низкой скорости потока двухкомпонентного полиуретанового пластического материала с низкой вязкостью и длительным временем химического отверждения.
5. Способ по любому из пп.1 или 2, в котором пластический материал инжектируют в грунт под фундаментом, а затем в это же место с первоначальным формированием уретанового шара и, после того как первый инжектированный пластический материал почти затвердел, опять закачивают материал в то же место с применением насоса сверхвысокого внешнего давления с получением шарообразной формы из пластического материала внутри первого инжектированного пластического материала.
6. Способ по п.5, отличающийся тем, что в результате первой инжекции образуется шароподобная форма, в которую затем осуществляют инжектирование путем последовательных введений в то же самое место с обеспечением увеличения первой шарообразной формы в размере и тем самым поднятия находящегося над ней фундамента.
7. Способ по любому из пп.1, 2 или 6, в котором стадии по любому из предшествующих пунктов осуществляют повторно вдоль линии фундамента с обеспечением поднятия фундамента вдоль указанной линии.
8. Способ по любому из пп.1, 2 или 6, в котором сначала осуществляют сушку грунта путем введения в землю полых стержней и нагнетания сжатого воздуха.
9. Способ по любому из пп.1, 2 или 6, в котором грунт представляет собой глину с высокой реакционной способностью или глинистый грунт со сложным профилем.
10. Здание, модифицированное способом по любому из пп.1-9.
RU2013143874/03A 2010-04-12 2011-04-12 Способ обработки грунта RU2559998C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2010901539 2010-04-12
AU2010901539A AU2010901539A0 (en) 2010-04-12 Method for treating soil
PCT/AU2011/000421 WO2011127528A1 (en) 2010-04-12 2011-04-12 Method for treating soil

Publications (2)

Publication Number Publication Date
RU2013143874A RU2013143874A (ru) 2015-04-10
RU2559998C2 true RU2559998C2 (ru) 2015-08-20

Family

ID=44798173

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143874/03A RU2559998C2 (ru) 2010-04-12 2011-04-12 Способ обработки грунта

Country Status (6)

Country Link
US (1) US8844240B2 (ru)
AU (1) AU2011203301B1 (ru)
CA (1) CA2831956C (ru)
NZ (1) NZ603034A (ru)
RU (1) RU2559998C2 (ru)
WO (1) WO2011127528A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013203983A1 (en) * 2012-12-13 2014-07-03 Rigid Ground Pty Ltd Treating particulate and connecting slab portions
EP2818040A1 (en) * 2013-06-24 2014-12-31 Huntsman International Llc Polyurethane foam for use as soil improver
US9512587B2 (en) * 2013-12-16 2016-12-06 Heisei Techno's Co., Ltd. Ground improvement method
US10364544B2 (en) 2014-01-17 2019-07-30 Royal Adhesives & Sealants Canada Ltd. Polyurethane foam in foundation footings for load-bearing structures
US20150204044A1 (en) * 2014-01-17 2015-07-23 Royal Adhesives & Sealants Canada Ltd. Polyurethane Foam In Foundation Footings For Load-Bearing Structures
CN107764978A (zh) * 2017-11-08 2018-03-06 北京林业大学 一种气囊式张力计及其使用方法
US11885092B2 (en) * 2019-01-31 2024-01-30 Terracon Consultants, Inc. Reinforcement structures for tensionless concrete pier foundations and methods of constructing the same
US10961682B1 (en) * 2020-01-14 2021-03-30 John Dustin Williams System and methods for concrete slab foundation repair
CN111270664A (zh) * 2020-03-19 2020-06-12 宁波大学 雨量感应式双组份高聚物注浆设备及其制作方法
US11944029B2 (en) * 2020-07-22 2024-04-02 GroundTruth Ag, Inc. Systems and methods for diagnosing soil characteristics and subterranean plant characteristics
CN112486021B (zh) * 2020-12-07 2021-10-08 燕山大学 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2545572A1 (de) * 1975-10-10 1977-04-14 Hans Ribbert Bauverankerung
RU2119009C1 (ru) * 1997-01-27 1998-09-20 Новосибирская государственная академия строительства Способ уплотнения грунта
AU731637B2 (en) * 1996-12-02 2001-04-05 Uretek Worldwide Oy Method for increasing the bearing capacity of foundation soils for buildings
RU2184812C2 (ru) * 2000-06-14 2002-07-10 Новосибирский государственный архитектурно-строительный университет Способ адаптации плитного фундамента к изменению характеристик грунтового основания
JP2006070513A (ja) * 2004-08-31 2006-03-16 Sekkeishitsu Soil:Kk 構造物の高さ調節方法
RU2352723C1 (ru) * 2007-08-06 2009-04-20 Леонид Викторович Нуждин Способ корректировки вертикального положения зданий и сооружений на плитном фундаменте

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927719A (en) * 1975-04-25 1975-12-23 Us Interior Remote sealing of mine passages
US4000621A (en) * 1975-06-19 1977-01-04 The United States Of America As Represented By The Secretary Of The Interior Remote sealing of mine passages containing flowing water
DE3332256C2 (de) 1983-02-26 1986-02-27 MC-Bauchemie Müller GmbH & Co, Chemische Fabrik, 4300 Essen Verfahren zum Verfestigen von oberflächennahen Bodenschichten, insbesondere des Untergrundes von Baugruben
AU663550B2 (en) * 1992-01-23 1995-10-12 Multi Construction Chemicals (Proprietary) Limited A method of filling a borehole
US5342149A (en) * 1992-08-31 1994-08-30 Mccabe Brothers, Inc. Long hole chemical grout injector system
JP3126896B2 (ja) 1995-03-22 2001-01-22 平成テクノス株式会社 不等沈下構築物の復元工法
US20010002970A1 (en) * 1996-12-09 2001-06-07 Domenico Pizzorni Device for treating the soil in the vicinity of buried structures
US6322293B1 (en) * 1997-01-29 2001-11-27 Patrick J. Stephens Method for filling voids with aggregate material
JP3098466B2 (ja) * 1997-04-07 2000-10-16 俊多 白石 地盤の地震時液状化防止工法及び、この工法に用いる送排気管構造
US6739800B2 (en) * 1998-12-17 2004-05-25 Joseph Bevilacqua Self-flushing gutter pipe
JP2000303488A (ja) * 1999-04-23 2000-10-31 Nittoc Constr Co Ltd 復元注入工法
SI20880A (sl) * 2001-02-13 2002-10-31 Ivan Klane�Ek Stabilizacija in hidroizolacija temelja zidu
CA2443759C (en) * 2003-10-17 2008-09-16 Casey Moroschan Foam pile system
ITMI20042149A1 (it) * 2004-11-09 2005-02-09 Uretek Srl Procedimento per la saturazione di cavita' presenti in un ammasso di terreno o in un corpo in genere
JP5270819B2 (ja) * 2005-06-02 2013-08-21 強化土エンジニヤリング株式会社 地盤強化方法
US20060275087A1 (en) * 2005-06-07 2006-12-07 Trout Steven M Soil extraction/grouting device
ITBO20060414A1 (it) * 2006-05-26 2007-11-27 Soles Societa Lavori Edili E Serbatoi Spa Metodo per sollevare un manufatto edilizio.
EP1914350B2 (en) * 2006-10-13 2019-06-05 Geosec S.r.l. A method for homogenizing and stabilising a soil by way of injections
US7806631B2 (en) * 2007-04-17 2010-10-05 Smith Eric W Underground filling and sealing method
CA2648820A1 (en) * 2009-01-02 2010-07-02 Casey Moroschan Controlled system for the densification of weak soils

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2545572A1 (de) * 1975-10-10 1977-04-14 Hans Ribbert Bauverankerung
AU731637B2 (en) * 1996-12-02 2001-04-05 Uretek Worldwide Oy Method for increasing the bearing capacity of foundation soils for buildings
RU2119009C1 (ru) * 1997-01-27 1998-09-20 Новосибирская государственная академия строительства Способ уплотнения грунта
RU2184812C2 (ru) * 2000-06-14 2002-07-10 Новосибирский государственный архитектурно-строительный университет Способ адаптации плитного фундамента к изменению характеристик грунтового основания
JP2006070513A (ja) * 2004-08-31 2006-03-16 Sekkeishitsu Soil:Kk 構造物の高さ調節方法
RU2352723C1 (ru) * 2007-08-06 2009-04-20 Леонид Викторович Нуждин Способ корректировки вертикального положения зданий и сооружений на плитном фундаменте

Also Published As

Publication number Publication date
NZ603034A (en) 2013-09-27
US20130036689A1 (en) 2013-02-14
AU2011203301B1 (en) 2011-09-22
CA2831956C (en) 2016-11-15
WO2011127528A1 (en) 2011-10-20
CA2831956A1 (en) 2011-10-20
RU2013143874A (ru) 2015-04-10
US8844240B2 (en) 2014-09-30

Similar Documents

Publication Publication Date Title
RU2559998C2 (ru) Способ обработки грунта
JP2001510514A (ja) 建築物の基礎土壌の支持力を増大させるための方法
US10487473B2 (en) Wall lifting methods
JP3126896B2 (ja) 不等沈下構築物の復元工法
CN105220680A (zh) 一种排水松木桩加固软黏土地基及其施工方法
JP3653305B2 (ja) 不等沈下構築物の復元工法
RU2184812C2 (ru) Способ адаптации плитного фундамента к изменению характеристик грунтового основания
US11525230B2 (en) System and method for mitigation of liquefaction
JP2010261236A (ja) 地盤改良工法
RU94992U1 (ru) Устройство грунтового основания для здания или сооружения на вечномерзлых грунтах
KR100475443B1 (ko) 구조물 하부의 지반보강공법
JPH0913416A (ja) 沈下した建物の修正方法
Abdelnaeem et al. Characterization of polyurethane foam conditioned sand
Katunská et al. Application of Chemical Grouting as an Option of Removing Soil Moisture-a Case Study in the Reconstruction of the Church
GB2565414A (en) Soil treatment
KR100994744B1 (ko) 지하구조물누수의 보수보강 공법
JP4927113B2 (ja) 地盤安定化工法
RU2015247C1 (ru) Способ уплотнения лессовых грунтов в основании зданий и сооружений
KR100554364B1 (ko) 건물용 기초 토양의 지지력 증대 방법
AU2019101315A4 (en) A method and apparatus
CN205024667U (zh) 一种排水松木桩加固软黏土地基
CN218779466U (zh) 一种高聚物注浆处理软基施工结构
KR102308916B1 (ko) 부등침하 암거의 인양장치 및 이를 이용한 부등침하 암거의 인양공법
KR100971531B1 (ko) 팽창성 구조물보강용 조성물을 이용한 말뚝시공방법
US20180363266A1 (en) Wall lifting methods