CN110928182A - 基于状态估计的液压伺服系统鲁棒自适应重复控制方法 - Google Patents

基于状态估计的液压伺服系统鲁棒自适应重复控制方法 Download PDF

Info

Publication number
CN110928182A
CN110928182A CN201911073132.6A CN201911073132A CN110928182A CN 110928182 A CN110928182 A CN 110928182A CN 201911073132 A CN201911073132 A CN 201911073132A CN 110928182 A CN110928182 A CN 110928182A
Authority
CN
China
Prior art keywords
equation
hydraulic servo
gain
servo system
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911073132.6A
Other languages
English (en)
Other versions
CN110928182B (zh
Inventor
姚建勇
王子龙
乐贵高
邓文翔
赵先亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911073132.6A priority Critical patent/CN110928182B/zh
Publication of CN110928182A publication Critical patent/CN110928182A/zh
Application granted granted Critical
Publication of CN110928182B publication Critical patent/CN110928182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种基于状态估计的液压伺服系统鲁棒自适应重复控制方法,该方法步骤如下:首先建立液压系统的数学模型,做出如下假设:系统的未建模干扰足够光滑,使得其存在并有界;期望位置轨迹三阶可微并且有界;其次,构建鲁棒自适应重复控制器,并运用滑模观测器对鲁棒自适应重复控制器的各阶状态进行估计;最后,运用李雅普诺夫稳定性理论对液压伺服系统进行稳定性证明,并运用Barbalat引理得到系统的渐进稳定的结果。本发明有效地解决了传统重复控制方法的控制律带宽很高的问题,获得了更好的跟踪性能。

Description

基于状态估计的液压伺服系统鲁棒自适应重复控制方法
技术领域
本发明涉及液压伺服控制领域,特别是一种基于状态估计的液压伺服系统鲁棒自适应重复控制方法。
背景技术
液压控制在工业界的应用有着近百年的历史,由于液压系统具有重量轻、尺寸小、反应迅速、负载刚度大等优点,所以被广泛应用在航天、军事、民用工业上,随着工业技术的快速发展,工业领域对液压系统的高精度、高效率控制提出了更高的要求,但由于液压系统是典型的非线性系统并具有固定的非线性特性以及存在于系统中的各种不确定性,因此,非线性、参数不确定性和未建模干扰在液压系统中逐渐成为现实开发先进控制器的主要障碍,使得传统的基于传递函数的线性化控制方法很难满足目前高精度、高性能的控制要求,非线性及建模不确定性已经成为限制液压伺服系统跟踪性能提升的瓶颈。
针对液压系统的建模不确定性和非线性控制问题,许多方法相继被提出,例如自适应控制,鲁棒控制等,自适应控制是估算未知但恒定参数并提高跟踪精度的有力工具。然而,当面对大的未建模干扰时,它可能会不稳定。另一方面,非线性鲁棒控制可以有效地增强闭环系统对未建模干扰的鲁棒性。事实上,在某些情况下,鲁棒控制可能等同于高增益反馈,同时也不适用于仅具有参数不确定性的良好建模的非线性系统。
发明内容
本发明的目的在于提供一种基于状态估计的液压伺服系统鲁棒自适应重复控制方法,有效地解决了传统重复控制方法的控制律带宽很高的问题。
实现本发明目的的技术解决方案为:一种基于状态估计的液压伺服系统鲁棒自适应重复控制方法,包括以下步骤:
步骤1,建立液压伺服系统的数学模型;
步骤2,设计基于状态估计的鲁棒自适应重复控制器;
步骤3,运用李雅普诺夫稳定性理论对液压伺服系统进行稳定性证明,并运用Barbalat引理得到系统的渐进稳定的结果。
本发明与现有技术相比,其显著优点是:(1)有效地解决了传统重复控制方法的控制律带宽很高的问题;(2)获得了更好的跟踪性能,仿真结果验证了其有效性;(3)可靠稳定,应用前景广阔。
附图说明
图1是本发明基于状态估计的液压伺服系统鲁棒自适应重复控制方法的流程图。
图2是单出杆液压缸系统的典型示意图。
图3是期望跟踪指令的示意图。
图4是状态估计和状态估计误差曲线图,其中图(a)是x2的估计曲线图,图(b)是x2的估计误差曲线图,图(c)是x3估计曲线图,图(d)是x3的估计误差曲线图。
图5中,图(a)、(b)、(c)、(d)分别是未知常值参数向量
Figure BDA0002261587120000025
中a1、b1、a2、b2估计值随时的变化曲线图。
图6是系统的控制输入曲线图。
图7是跟踪信号和跟踪误差曲线图,其中图(a)是跟踪信号曲线图,图(b) 是跟踪误差曲线图。
具体实施方式
下面结合实例及具体实施例对本发明做进一步详细说明
结合图1~2,本发明所述的基于状态估计的液压伺服系统鲁棒自适应重复控制方法,包括以下步骤:
步骤1、建立液压伺服系统的数学模型,具体如下:
步骤1.1、液压位置伺服系统为通过伺服阀控制的单出杆液压缸驱动惯性负载的系统,根据牛顿第二定律,单出杆液压缸惯性负载的动力学模型方程为:
Figure BDA0002261587120000021
式(1)中,m为负载的质量,B为粘性摩擦系数,
Figure BDA0002261587120000022
库伦摩擦力和与系统状态相关的建模不确定性,d(t)是其他未建模干扰,y为惯性负载的位移,
Figure BDA0002261587120000023
为惯性负载的速度,
Figure BDA0002261587120000024
为惯性负载的加速度,PL为负载压力,A为负载面积, t为时间变量。
忽略液压缸外泄漏,负载压力动态方程可以写成:
Figure BDA0002261587120000031
其中βe是有效容积模量、Ct是内泄露系数、Vt是总的作用体积、QL为负载流量,q(t)为建模误差;
对于电液伺服阀,阀芯位移xv与控制输入u近似为比例环节,即xv=kiu,因此,得到电液伺服阀流量方成为:
Figure BDA0002261587120000032
式中
Figure BDA0002261587120000033
为流量增益,ki为伺服阀增益,u为实际控制输入,Ps为供油压力,Cd为流量系数,ω为阀芯面积梯度,ρ为液压油密度。sign(u)定义为:
Figure RE-GDA0002370820590000034
步骤1.2、定义状态变量:
Figure BDA0002261587120000035
由式(1)、(2)、(3)由得:
Figure BDA0002261587120000036
即:
Figure BDA0002261587120000037
则系统的状态方程为:
Figure BDA0002261587120000038
式(5)中:
Figure BDA0002261587120000041
Figure BDA0002261587120000042
式(5)的空间状态方程可以写成:
Figure BDA0002261587120000043
Figure BDA0002261587120000044
Figure BDA0002261587120000045
式(7)中,中间变量θ=[θ123]T
θ1=mVt/(4βeAkt),θ2=A/kt+BCt/(Akt),θ3=Ctm/(Akt)+VtB/(4βeAkt)
系统控制器设计的目标为给定系统位置参考信号yd(t)=x1d(t),设计一个有界的连续控制输入u使得系统的输出y=x1尽可能的跟踪系统的参考信号。
步骤1.3、构建液压伺服系统设计模型
尽管建模不确定性f(x1,x2,x3)是未知的,但是对于执行周期性任务的液压伺服系统,其建模不确定性在一定时间以后也会呈现出相同的周期性,因此可以利用重复控制的方法处理此类周期性建模不确定性,而对于非周期性的建模不确定性和其他未建模干扰
Figure BDA0002261587120000046
可设计鲁棒控制器以抑制其对跟踪性能的影响。因此式 (7)可以写成如下形式:
Figure BDA0002261587120000047
式(8)中,中间变量
Figure BDA0002261587120000048
由(8)式可知,f(x1d,x2d,x3d)只与参考位置信号及其导数有关,为了简便起见定义非线性函数:fd(t)=f(x1d,x2d,x3d),对于周期性位置参考信号x1d(t),具有如下性质:
x1d(t-T)=x1d(t) (9)
式(9)中,T为已知的最小正周期,显然fd(t)也是周期性的,因此
fd(t-T)=fd(t) (10)
采用傅里叶级数对周期性的非线性函数fd(t)进行近似可得
Figure BDA0002261587120000051
式中:a0为非线性函数fd(t)的傅里叶级数展开式中的常值;an和bn均为常值系数,角速度ω=2π/T,T为周期,n≥1为正整数,考虑到机械系统的传递函数在物理意义上等价于一个具有有限带宽的低通滤波器,因此fd(t)可以用式 (11)中的有限频率部分表示,即在实际中,式(11)中的有限项傅里叶级数可以很好地近似为:
Figure BDA0002261587120000052
为简化系统方程,定义未知常值参数向量
Figure BDA0002261587120000058
和中间变量Φ为:
Figure BDA0002261587120000057
基于式(12)和(13),式(8)可写成:
Figure BDA0002261587120000053
为了便于控制器设计,有如下假设:
假设1:系统参考指令信号x1d(t)是三阶连续可微的,且其各阶导数有界;
假设2:不确定项
Figure BDA0002261587120000054
二阶连续可微且满足:
Figure BDA0002261587120000055
其中,δ1、δ2分别为
Figure BDA0002261587120000056
一阶导数绝对值数和二阶导数绝对值的上界;
假设3:期望的位置轨迹yd∈C3且有界,在实际的液压系统中,PL总是受限于Ps,即:0<|PL|<Ps
步骤2、设计基于状态估计的鲁棒自适应重复控制器
在实际工程中,所有的状态都需要测量,就导致了测量成本的增加,所以这里用滑模观测器对系统的各阶状态进行估计;
步骤2.1、令
Figure BDA0002261587120000061
表示x的估计,估计误差为:
Figure RE-GDA0002370820590000062
根据式(14)构建滑模观测器:
Figure BDA0002261587120000063
式(17)中,L式观测器中的Lipschitz常数,λ1、λ2、λ3、λ4是正观测系数,vi、ei为观测器中间变量,i=1,2,3,4;
由(14)可得系统加入观测器后的模型为:
Figure BDA0002261587120000064
步骤2.2、定义系统的跟踪误差z1=x1-x1d,x1d是系统期望跟踪的位置指令且该指令三阶连续可微,根据式(14)中的第一个方程
Figure BDA0002261587120000065
选取x2为虚拟控制,使方程
Figure BDA0002261587120000066
趋于稳定状态;令α1为虚拟控制的期望值,α1与真实状态x2的误差z2=x21,对z1求导得:
Figure RE-GDA0002370820590000067
设计虚拟控制律:
Figure BDA0002261587120000068
式(20)中,可调增益k1>0,则:
Figure BDA0002261587120000069
由于z1(s)=G(s)z2(s),式中,G(s)=1/(s+k1),G(s)为一个稳定的传递函数,k1为正反馈增益,s为复参数,当z2趋于0时,z1也必然趋于0,接下来以使z2趋于0为设计目标;
选取x3为虚拟控制,使方程
Figure BDA0002261587120000071
趋于稳定状态;令α2为虚拟控制的期望值,α2与真实状态x3的误差z3=x32,对z2求导得:
Figure RE-GDA0002370820590000072
设计虚拟控制律:
Figure BDA0002261587120000077
式(23)中,可调增益k2>0,则
Figure BDA0002261587120000073
由于z2(s)=G(s)z3(s),式中,G(s)=1/(s+k2),G(s)为一个稳定的传递函数,当z3趋于0时,z2也必然趋于0,接下来以使z3趋于0为设计目标;
定义如下状态变量:
Figure BDA0002261587120000074
式(25)中k1、k2、k3是正反馈增益,在(25)中,我们定义了辅助误差信号r(t)以获得额外的设计自由。值得注意的是,滤波跟踪误差r(t)是不可测量的,因为它取决于加速度的时间导数,并且它仅被引入以辅助以下控制器设计。根据(25),可以给出以下扩展公式
Figure BDA0002261587120000075
根据式(14),可以得到r(t)的展开形式:
Figure BDA0002261587120000076
根据式(27),基于模型的控制器设计为:
U=Ua+Us
式中:
Figure RE-GDA0002370820590000081
中间变量
Figure BDA0002261587120000083
式(28)中
Figure BDA0002261587120000084
Figure BDA0002261587120000085
分别为参数θ和
Figure BDA0002261587120000086
的估计值,且定义
Figure BDA0002261587120000087
分别为参数θ和
Figure BDA0002261587120000088
的估计误差;kr>0为线性反馈增益;β>0为积分鲁棒反馈增益;
Figure BDA0002261587120000089
为增益β的估计值,且定义估计误差
Figure BDA00022615871200000810
Ua为模型补偿项,Us为鲁棒项;步骤2.3、参数自适应律及增益β自适应律设计为:
Figure RE-GDA00023708205900000810
式(29)中Γθ
Figure BDA00022615871200000812
均为正定常值对角自适应律矩阵;Γβ为正定的自适应增益,sign(z3)为符号函数,由于式(29)中含有不可测的信号r(t),因此对其采用分部积分处理,得到实际执行的自适应律如下:
Figure RE-GDA00023708205900000812
将式(28)和(29)代入式(27)中,并对式(27)求导可得:
Figure BDA00022615871200000814
步骤3、运用Lyapunov稳定性理论对液压伺服系统进行稳定性证明,并运用Barbalat引理得到系统的渐进稳定的结果。
引理1:定义辅助函数:
Figure BDA0002261587120000091
若积分鲁棒反馈增益β的选取满足如下条件:
Figure BDA0002261587120000092
则如下定义的函数恒为非负,即:
Figure BDA0002261587120000093
引理1的证明:
对(32)式两边积分并运用式(33)得:
Figure BDA0002261587120000094
对式(35)后两项分部积分得:
Figure BDA0002261587120000095
故:
Figure BDA0002261587120000096
从式(37)可以看出,若β的选取满足式(33)所示的条件时,易推断引理1 的成立。
定理1、对于式(18)描述的系统,满足假设1、假设2,利用式(28)的鲁棒自适应重复控制器,当k1,k2,k3,kr取得足够大使得如下定义矩阵Λ为正定矩阵:
Figure BDA0002261587120000101
式(38)中k4、c1、c2、c3均为中间变量且分别对其作如下定义:
Figure BDA0002261587120000102
结合式(29)中的参数自适应律,则液压伺服系统的位置输出可渐进跟踪参考位置信号,即当t→∞时,跟踪误差z1→0。
定义误差向量:
Figure BDA0002261587120000103
选取Lyapunov函数
Figure RE-GDA0002370820590000104
显然函数V满足如下性质:
W1(ξ)≤V≤W2(ξ) (41)
式(41)中:
Figure BDA0002261587120000105
Figure BDA0002261587120000106
Figure BDA0002261587120000107
且λmin(·)和λmax(·)为矩阵的最小、最大特征值,v1、v2为中间变量,W(ξ)为对于任意ξ∈Ω都为正的连续函数;
求函数V对时间的微分,并结合式(25)、(26)、(27)、(32)可得
Figure RE-GDA0002370820590000111
代入式(29)的自适应律可得
Figure BDA0002261587120000112
代入式(39)定义的c1,c2,c3,得
Figure BDA0002261587120000113
代入式(39)中的k4,式(38)的矩阵Λ为正定矩阵,可以将式(44)写成:
Figure BDA0002261587120000114
式(45)中
Figure BDA0002261587120000115
有:
Figure BDA0002261587120000116
基于式(25)可得:
Figure RE-GDA0002370820590000121
将式(47)代入式(46),可得:
Figure BDA0002261587120000122
基于假设(1)和假设(2),并对式(48)运用均值定理可得:
Figure BDA0002261587120000123
式(49)中:ρ为恒正的不减函数。
因此,结合如下不等式的性质:
Figure BDA0002261587120000124
式(45)可简化为:
Figure RE-GDA0002370820590000125
由式(51)可知,当
Figure BDA0002261587120000126
时,有:
Figure 2
式(52)中:系数μ为正数,W(ξ)为对于任意ξ∈Ω都为正的连续函数,且有:
Figure 3
因此,根据式(53)可以推断,在域Ω内,z、
Figure BDA0002261587120000129
Figure BDA00022615871200001210
有界,由假设(1) 可以推断x1,x2和x3有界,因为常值参数θ和
Figure BDA0002261587120000131
及增益β有界,因此
Figure BDA0002261587120000132
Figure BDA0002261587120000133
有界,根据式(28)可以判断控制输入U有界,再根据假设(2)可得实际控制输入u有界,基于(25)、(27)可知
Figure BDA0002261587120000134
范数,即
Figure BDA0002261587120000135
范数,因此函数W(ξ)一致连续,由Barbalat引理可知当系统初始条件满足ξ(0)∈S时,且
Figure BDA0002261587120000136
则当t→∞,W(ξ)→0,进而有当t→∞,z1→0;
因此有结论:针对液压伺服系统设计的状态可估计的误差符号疾风鲁棒重复控制器可使系统达到渐进稳定的结果。即系统获得渐进跟踪稳定。
实施例
为考核所设计的控制器性能,在仿真中取如下参数对液压系统进行建模:
m=40kg,B=4000,kt=1.18×10-8m3/s/V/Pa1/2,A=904.778mm2, V=3.98×10- 5m3,Ps=12MPa,Pr=0,βe=700Mpa,Ct=3×10-12m3/s/Mpa。
近似的库伦摩擦力中:Af=100Nm,Sf(x2)=arctan(900x2)。
给定系统的期望指令为:x1d=0.02sin(t)[1-exp(0.01t3)](rad)。
估计状态的滑模观测器中:L=1,λi={12,8,5,3},i=1,2,3,4。
鲁棒自适应重复控制器:其控制增益取为k1=1500,k2=300,k3=10, kr=10;傅里叶级数展开式中m=2,建模不确定性近似项中的未知常值参数自适应增益
Figure BDA0002261587120000138
积分鲁棒反馈增益β=10,θ1=mVt/(4βeAkt)、θ2=A/kt+BCt/(Akt)、θ3=Ctm/(Akt)+VtB/(4βeAkt)均取名义值且已知。
控制率作用效果:
结合图3~4,在给定期望指令时,在一定的误差范围内,滑模观测器可以准确估计出x2、x3的值;
图5是(a)、(b)、(c)、(d)分别是未知常值参数向量
Figure BDA0002261587120000137
中a1、b1、a2、b2估计值随时的变化曲线图,在给a1、b1、a2、b2任意初值的情况下,利用自适应律对其进行实时更新,获得了更小的跟踪误差;
结合图6~7,给定系统的期望指令x1d=0.02sin(t)[1-exp(0.01t3)](rad),通过设计的控制器得到系统的实际控制输入,使系统的跟踪信号很好的跟踪期望指令,并且跟踪误差在有限时间后趋于稳态,如图7(b)所示,稳态跟踪误差的幅值约为8×10-5(rad)
综上所述,基于状态估计的液压伺服系统鲁棒自适应重复控制方法在仿真环境下能够准确的估计出系统的状态,本发明设计的控制器能够极大的提高存在干扰的情况下系统的控制精度。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,本发明的保护范围当视权利要求书所界定者为准。

Claims (4)

1.一种基于状态估计的液压伺服系统鲁棒自适应重复控制方法,其特征在于,包括以下步骤:
步骤1,建立液压伺服系统的数学模型,转入步骤2;
步骤2,设计基于状态估计的鲁棒自适应重复控制器,转入步骤3;
步骤3,运用李雅普诺夫稳定性理论对液压伺服系统进行稳定性证明,并运用Barbalat引理得到系统的渐进稳定的结果。
2.根据权利要求1所述的基于状态估计的液压伺服系统鲁棒自适应重复控制方法,其特征在于步骤1所述建立液压伺服系统的数学模型,具体如下:
步骤1.1、液压位置伺服系统为通过伺服阀控制的单出杆液压缸驱动惯性负载的系统,根据牛顿第二定律,单出杆液压缸惯性负载的动力学模型方程为:
Figure RE-FDA0002370820580000011
式(1)中,m为负载的质量,B为粘性摩擦系数,
Figure RE-FDA00023708205800000110
库伦摩擦力和与系统状态相关的建模不确定性,d(t)是其他未建模干扰,y为惯性负载的位移,
Figure RE-FDA0002370820580000012
为惯性负载的速度,
Figure RE-FDA0002370820580000013
为惯性负载的加速度,PL为负载压力,A为负载面积,t为时间变量;
步骤1.2、定义状态变量:
Figure RE-FDA0002370820580000014
则式(1)运动方程转化为状态方程:
Figure RE-FDA0002370820580000015
其中,中间变量θ=[θ123]T,θ1=mVt/(4βeAkt),θ2=A/kt+BCt/(Akt),θ3=Ctm/(Akt)+VtB/(4βeAkt),u为系统的控制输入,
Figure RE-FDA0002370820580000016
Figure RE-FDA0002370820580000017
为系统未建模的非周期干扰,
Figure RE-FDA0002370820580000018
未建模周期性干扰
Figure RE-FDA0002370820580000019
βe是有效容积模量、Ct是内泄露系数、Vt是总的作用体积、kt是总的流量增益、Ps是供油压力、U是实际系统的输入、q(t)为系统压力动态建模误差;
步骤1.3、构建液压伺服系统的数学模型:
式(7)写成如下形式:
Figure RE-FDA0002370820580000021
式(8)中,中间变量
Figure RE-FDA0002370820580000022
定义:非线性函数fd(t)=f(x1d,x2d,x3d),且fd(t)只与参考位置信号及其导数有关,采用傅里叶级数对周期性的非线性函数fd(t)进行近似得:
Figure RE-FDA0002370820580000023
式中:a0为非线性函数fd(t)的傅里叶级数展开式中的常值;an和bn均为常值系数;角速度ω=2π/T,T为周期,n≥1,且为正整数;考虑到机械系统的传递函数在物理意义上等价于一个具有有限带宽的低通滤波器,因此fd(t)用式(4)中的有限频率部分表示,即在实际中,式(11)中的有限项傅里叶级数近似为:
Figure RE-FDA0002370820580000024
基于式(12),式(8)写成:
Figure RE-FDA0002370820580000025
Figure RE-FDA0002370820580000026
Figure RE-FDA0002370820580000027
其中中间变量θ=[θ123]T,fd(t)中未知常值参数向量定义为
Figure RE-FDA0002370820580000028
中间变量Φ=[cosωt,sinωt,···,coshωt,sinhωt]T
做如下假设:
假设1:系统参考指令信号x1d(t)是三阶连续可微的,且其各阶导数有界;
假设2:不确定项
Figure RE-FDA0002370820580000031
二阶连续可微且满足:
Figure RE-FDA0002370820580000032
其中,δ1、δ2分别为
Figure RE-FDA0002370820580000033
一阶导数绝对值数和二阶导数绝对值的上界;
假设3:期望的位置轨迹yd∈C3,其中C3代表三阶可导,实际正常工作下的液压系统的PL总是有界的,即:0<|PL|<Ps
3.根据权利要求1所述的基于状态估计的液压伺服系统鲁棒自适应重复控制方法,其特征在于,步骤2所述的设计基于状态估计的鲁棒自适应重复控制器,步骤如下:
步骤2.1、令
Figure RE-FDA0002370820580000034
表示x的估计,则估计误差为:
Figure RE-FDA0002370820580000035
根据式(14)构建滑模观测器:
Figure RE-FDA0002370820580000036
Figure RE-FDA0002370820580000037
Figure RE-FDA0002370820580000038
Figure RE-FDA0002370820580000039
Figure RE-FDA00023708205800000310
Figure RE-FDA00023708205800000311
式(17)中,L为观测器中的Lipschitz常数,λ1、λ2、λ3、λ4均为正观测系数,vi、ei为观测器中间变量,i=1,2,3,4;
由(14)可得加入观测器后的系统为:
Figure RE-FDA00023708205800000312
步骤2.2、定义系统的跟踪误差z1=x1-x1d,x1d是系统期望跟踪的位置指令且该指令三阶连续可微,根据式(6)中的第一个方程
Figure RE-FDA00023708205800000313
选取x2为虚拟控制,使方程
Figure RE-FDA0002370820580000041
趋于稳定状态;令α1为虚拟控制的期望值,α1与真实状态x2的误差z2=x21,对z1求导得:
Figure RE-FDA0002370820580000042
设计虚拟控制律:
Figure RE-FDA0002370820580000043
式(20)中,可调增益k1>0,则:
Figure RE-FDA0002370820580000044
由于z1(s)=G(s)z2(s),式中,G(s)=1/(s+k1),G(s)为一个稳定的传递函数,k1为正反馈增益,s为复参数,当z2趋于0时,z1也必然趋于0,接下来以使z2趋于0为设计目标;
选取x3为虚拟控制,使方程
Figure RE-FDA0002370820580000045
趋于稳定状态;令α2为虚拟控制的期望值,α2与真实状态x3的误差z3=x32,对z2求导得:
Figure RE-FDA0002370820580000046
设计虚拟控制律:
Figure RE-FDA0002370820580000047
式(23)中,可调增益k2>0,则
Figure RE-FDA0002370820580000048
由于z2(s)=G(s)z3(s),式中,G(s)=1/(s+k2),G(s)为一个稳定的传递函数,当z3趋于0时,z2也必然趋于0,接下来以使z3趋于0为设计目标;
定义如下状态变量:
Figure RE-FDA0002370820580000049
为了获得一个额外的控制器设计自由度,定义一个辅助误差信号r(t)式(25)中,可调增益k3>0;
根据式(14)和式(25),有如下的r(t)展开形式:
Figure RE-FDA0002370820580000051
根据式(27),基于模型的控制器设计为:
Figure RE-FDA0002370820580000052
中间变量
Figure RE-FDA0002370820580000053
式(28)中
Figure RE-FDA0002370820580000054
Figure RE-FDA0002370820580000055
分别为参数θ和
Figure RE-FDA0002370820580000056
的估计值,且定义
Figure RE-FDA0002370820580000057
分别为参数θ和
Figure RE-FDA0002370820580000058
的估计误差;kr>0为线性反馈增益;β>0为积分鲁棒反馈增益;
Figure RE-FDA0002370820580000059
为增益β的估计值,且定义估计误差
Figure RE-FDA00023708205800000510
Ua为模型补偿项,Us为鲁棒项;
步骤2.3、参数自适应律及增益β自适应律设计为:
Figure RE-FDA00023708205800000511
式(29)中Γθ
Figure RE-FDA00023708205800000513
为正定常值对角自适应律矩阵;Γβ为正定的自适应增益。由于式(29)中含有不可测的信号r(t),因此对其采用分部积分处理,得到实际执行的自适应律如下:
Figure RE-FDA00023708205800000512
4.根据权利要求1所述的基于状态估计的液压伺服系统鲁棒自适应重复控制方法,其特征在于,步骤3所述,运用李雅普诺夫稳定性理论对液压伺服系统进行稳定性证明,并运用Barbalat引理得到系统的渐进稳定的结果:
定义辅助函数:
Figure RE-FDA0002370820580000061
经证明当
Figure RE-FDA0002370820580000062
时,则如下定义函数非负,即:
Figure RE-FDA0002370820580000063
因此定义Lyapunov函数如下:
Figure RE-FDA0002370820580000064
运用Lyapunov稳定性理论进行稳定性证明,并运用Barbalat引理得到系统的渐进稳定结果,因此调节增益k1、k2、k3、kr,Γθ
Figure RE-FDA0002370820580000065
及Γβ使系统的跟踪误差在时间趋于无穷的条件下趋于零。
CN201911073132.6A 2019-11-05 2019-11-05 基于状态估计的液压伺服系统鲁棒自适应重复控制方法 Active CN110928182B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911073132.6A CN110928182B (zh) 2019-11-05 2019-11-05 基于状态估计的液压伺服系统鲁棒自适应重复控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911073132.6A CN110928182B (zh) 2019-11-05 2019-11-05 基于状态估计的液压伺服系统鲁棒自适应重复控制方法

Publications (2)

Publication Number Publication Date
CN110928182A true CN110928182A (zh) 2020-03-27
CN110928182B CN110928182B (zh) 2022-12-13

Family

ID=69852426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911073132.6A Active CN110928182B (zh) 2019-11-05 2019-11-05 基于状态估计的液压伺服系统鲁棒自适应重复控制方法

Country Status (1)

Country Link
CN (1) CN110928182B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111546350A (zh) * 2020-04-30 2020-08-18 浙江大学 一种多关节重载液压机器人系统及高精度运动控制方法
CN111577711A (zh) * 2020-04-30 2020-08-25 南京理工大学 双出杆液压缸位置伺服系统的自抗扰鲁棒控制方法
CN111585475A (zh) * 2020-07-09 2020-08-25 湖南科技大学 一种无刷直流电机伺服系统扰动抑制与高精度跟踪控制方法
CN111913391A (zh) * 2020-08-12 2020-11-10 深圳职业技术学院 一种自适应控制的离散时间非最小相位系统的稳定方法
CN112631133A (zh) * 2020-12-28 2021-04-09 江苏师范大学 一种基于双蓄能器的液压位置伺服系统控制方法
CN113093553A (zh) * 2021-04-13 2021-07-09 哈尔滨工业大学 一种基于指令滤波扰动估计的自适应反步控制方法
CN113552805A (zh) * 2021-08-12 2021-10-26 南京理工大学 一种电静液作动器的间接自适应鲁棒控制方法
CN114609929A (zh) * 2022-03-08 2022-06-10 南京理工大学 一种三铰点多级液压快速起竖恒功率轨迹规划方法
WO2022121507A1 (zh) * 2020-12-07 2022-06-16 燕山大学 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法
CN114839880A (zh) * 2022-06-02 2022-08-02 淮阴工学院 一种基于柔性关节机械臂的自适应控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345638A (zh) * 2014-10-09 2015-02-11 南京理工大学 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN104635490A (zh) * 2014-12-15 2015-05-20 南京理工大学 一种单出杆液压缸位置伺服系统的输出反馈控制方法
CN107121932A (zh) * 2017-06-12 2017-09-01 南京理工大学 电机伺服系统误差符号积分鲁棒自适应控制方法
CN108155833A (zh) * 2017-12-16 2018-06-12 南京理工大学 考虑电气特性的电机伺服系统渐近稳定控制方法
CN108227676A (zh) * 2017-12-28 2018-06-29 浙江工业大学 阀控缸电液伺服系统在线故障检测、估计及定位方法
CN108303885A (zh) * 2018-01-31 2018-07-20 南京理工大学 一种基于干扰观测器的电机位置伺服系统自适应控制方法
CN108303895A (zh) * 2018-02-27 2018-07-20 南京理工大学 一种电液位置伺服系统多模型鲁棒自适应控制方法
CN108415249A (zh) * 2018-02-09 2018-08-17 南京理工大学 一种基于低频学习的电液伺服系统自适应鲁棒控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345638A (zh) * 2014-10-09 2015-02-11 南京理工大学 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN104635490A (zh) * 2014-12-15 2015-05-20 南京理工大学 一种单出杆液压缸位置伺服系统的输出反馈控制方法
CN107121932A (zh) * 2017-06-12 2017-09-01 南京理工大学 电机伺服系统误差符号积分鲁棒自适应控制方法
CN108155833A (zh) * 2017-12-16 2018-06-12 南京理工大学 考虑电气特性的电机伺服系统渐近稳定控制方法
CN108227676A (zh) * 2017-12-28 2018-06-29 浙江工业大学 阀控缸电液伺服系统在线故障检测、估计及定位方法
CN108303885A (zh) * 2018-01-31 2018-07-20 南京理工大学 一种基于干扰观测器的电机位置伺服系统自适应控制方法
CN108415249A (zh) * 2018-02-09 2018-08-17 南京理工大学 一种基于低频学习的电液伺服系统自适应鲁棒控制方法
CN108303895A (zh) * 2018-02-27 2018-07-20 南京理工大学 一种电液位置伺服系统多模型鲁棒自适应控制方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111577711A (zh) * 2020-04-30 2020-08-25 南京理工大学 双出杆液压缸位置伺服系统的自抗扰鲁棒控制方法
CN111546350A (zh) * 2020-04-30 2020-08-18 浙江大学 一种多关节重载液压机器人系统及高精度运动控制方法
CN111546350B (zh) * 2020-04-30 2021-09-10 浙江大学 一种多关节重载液压机器人系统及高精度运动控制方法
CN111585475A (zh) * 2020-07-09 2020-08-25 湖南科技大学 一种无刷直流电机伺服系统扰动抑制与高精度跟踪控制方法
CN111913391B (zh) * 2020-08-12 2022-05-24 深圳职业技术学院 一种自适应控制的离散时间非最小相位系统的稳定方法
CN111913391A (zh) * 2020-08-12 2020-11-10 深圳职业技术学院 一种自适应控制的离散时间非最小相位系统的稳定方法
WO2022121507A1 (zh) * 2020-12-07 2022-06-16 燕山大学 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法
CN112631133A (zh) * 2020-12-28 2021-04-09 江苏师范大学 一种基于双蓄能器的液压位置伺服系统控制方法
CN113093553A (zh) * 2021-04-13 2021-07-09 哈尔滨工业大学 一种基于指令滤波扰动估计的自适应反步控制方法
CN113093553B (zh) * 2021-04-13 2023-01-17 哈尔滨工业大学 一种基于指令滤波扰动估计的自适应反步控制方法
CN113552805A (zh) * 2021-08-12 2021-10-26 南京理工大学 一种电静液作动器的间接自适应鲁棒控制方法
CN113552805B (zh) * 2021-08-12 2022-12-27 南京理工大学 一种电静液作动器的间接自适应鲁棒控制方法
CN114609929A (zh) * 2022-03-08 2022-06-10 南京理工大学 一种三铰点多级液压快速起竖恒功率轨迹规划方法
CN114609929B (zh) * 2022-03-08 2023-10-31 南京理工大学 一种三铰点多级液压快速起竖恒功率轨迹规划方法
CN114839880A (zh) * 2022-06-02 2022-08-02 淮阴工学院 一种基于柔性关节机械臂的自适应控制方法
CN114839880B (zh) * 2022-06-02 2024-04-19 淮阴工学院 一种基于柔性关节机械臂的自适应控制方法

Also Published As

Publication number Publication date
CN110928182B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
CN110928182B (zh) 基于状态估计的液压伺服系统鲁棒自适应重复控制方法
Yao et al. Adaptive RISE control of hydraulic systems with multilayer neural-networks
Feng et al. Identification and compensation of non-linear friction for a electro-hydraulic system
Yang et al. Output feedback control of electro-hydraulic servo actuators with matched and mismatched disturbances rejection
Yao et al. Precision motion control for electro-hydraulic servo systems with noise alleviation: A desired compensation adaptive approach
CN104345639B (zh) 一种电液位置伺服系统鲁棒自适应控制方法
CN104111607B (zh) 一种考虑输入时滞的电机位置伺服系统的控制方法
CN108181818B (zh) 含未建模摩擦动态的电液位置伺服系统鲁棒自适应控制方法
CN111338209B (zh) 一种基于扩张干扰观测器的电液伺服系统自适应控制方法
CN104898428B (zh) 一种基于干扰估计的电液伺服系统自适应鲁棒控制方法
CN105563489B (zh) 基于非线性自抗扰控制技术的柔性机械臂控制方法
CN112415891B (zh) 一种电液伺服系统自适应输出反馈渐近控制方法
CN108869420B (zh) 一种基于指令滤波的电液伺服系统自适应反步控制方法
Yang et al. High-precision motion servo control of double-rod electro-hydraulic actuators with exact tracking performance
CN108415252B (zh) 基于扩张状态观测器的电液伺服系统模型预测控制方法
CN107121932B (zh) 电机伺服系统误差符号积分鲁棒自适应控制方法
CN110308651B (zh) 基于扩张状态观测器的电液伺服系统全状态约束控制方法
CN104345638A (zh) 一种液压马达位置伺服系统的自抗扰自适应控制方法
CN110703608B (zh) 一种液压伺服执行机构智能运动控制方法
CN104360635A (zh) 一种电机位置伺服系统的抗干扰控制方法
Sun et al. Nonlinear motion control of a hydraulic press based on an extended disturbance observer
Wang et al. Tracking differentiator based back-stepping control for valve-controlled hydraulic actuator system
CN110794687A (zh) 基于干扰补偿的电液伺服系统自适应状态约束控制方法
CN109426150A (zh) 基于扩张状态观测器的负载模拟器反步控制方法
CN108107728B (zh) 一种基于干扰补偿的电液位置伺服系统控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant