WO2022121507A1 - Low-complexity control method for asymmetric servo hydraulic position tracking system - Google Patents

Low-complexity control method for asymmetric servo hydraulic position tracking system Download PDF

Info

Publication number
WO2022121507A1
WO2022121507A1 PCT/CN2021/124567 CN2021124567W WO2022121507A1 WO 2022121507 A1 WO2022121507 A1 WO 2022121507A1 CN 2021124567 W CN2021124567 W CN 2021124567W WO 2022121507 A1 WO2022121507 A1 WO 2022121507A1
Authority
WO
WIPO (PCT)
Prior art keywords
bounded
servo
hydraulic
error
hydraulic system
Prior art date
Application number
PCT/CN2021/124567
Other languages
French (fr)
Chinese (zh)
Inventor
刘爽
王文波
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Priority to JP2022579147A priority Critical patent/JP7448692B2/en
Publication of WO2022121507A1 publication Critical patent/WO2022121507A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Definitions

  • the invention relates to the field of servo hydraulic position control, in particular to a low-complexity control method for an asymmetric servo hydraulic position tracking system.
  • Servo hydraulic systems have the advantages of excellent load efficiency, small power ratio, and fast response speed, so they are widely used in modern industries (such as active suspension systems, hydraulic excavators, manipulators).
  • the servo hydraulic system includes two kinds of hydraulic actuators, the symmetrical hydraulic actuator with double rod and the asymmetric hydraulic actuator with single rod.
  • active suspension control research the areas of the two oil chambers are often considered equal, and a symmetrical hydraulic actuator is used.
  • asymmetric servo hydraulic systems due to the existence of the piston rod, the effective areas of the rod cavity and the rodless cavity of the hydraulic cylinder are not equal, and the symmetrical hydraulic actuator that can achieve the same performance is often larger than the asymmetric hydraulic actuator. It is used in a few special occasions, and widely used in industry is asymmetric hydraulic actuators. Therefore, it is unreasonable to place symmetrical hydraulic actuators in the vehicle suspension system with great space limitations.
  • the asymmetric servo hydraulic system is a complex nonlinear system, and it involves various uncertainties, such as load changes, parameter uncertainties, and unknown nonlinearities, which will lead to modeling and design control. Therefore, for asymmetric servo-hydraulic systems, high-precision position control is facing a huge challenge.
  • the parameter uncertainties mainly include leakage coefficient, oil film viscosity and viscous friction coefficient
  • the unknown nonlinearity mainly includes spool dead zone and external disturbance, which hinder the development of high-performance controllers.
  • many control techniques have been developed in the past ten years, such as neural network adaptation, fuzzy logic control, robust adaptive control, and backstepping adaptive control.
  • Bechlioulis CP, Rovithakis GA, et al. initially proposed novel controller design methods that can guarantee tracking error transient performance.
  • the transient and steady-state performance of tracking error is specified by introducing a specified performance function, and the original system with constraints is equivalent to an unlimited system by introducing error transformation.
  • This idea is further applied to high-order nonlinear fault-tolerant control systems, hydraulic servo systems, and suspension systems.
  • the control schemes are all combined with adaptive control methods to deal with unknown dynamics in the system.
  • the servo hydraulic system and its position control method have the following shortcomings: 1.
  • the single-rod nonlinear servo hydraulic system is a typical complex nonlinear system, which involves load changes, parameter uncertainty and unknown Because of the nonlinearity and other problems, there is a huge gap between the establishment of the theoretical model and the actual system, which leads to the difficulty and complexity of designing the controller; 2.
  • Most of the current servo-hydraulic position control methods are based on backstep control adaptive However, these control methods have a high degree of dependence on the model, and in the process of backstepping design of high-order systems, a large amount of calculation will be generated, and the online learning of uncertain parameters is not conducive to actual experiments.
  • the present invention discloses a low-complexity control method for an asymmetric servo-hydraulic position tracking system, including the following steps: S1: establishing a servo-hydraulic system model of a single-exit rod; S2: according to the single-exit rod S3: According to the controller of the servo hydraulic system with a single rod and the model of the servo hydraulic system with a single rod, it is proved that the single output rod The stability of the servo-hydraulic system of the rod.
  • the process of establishing the model expression of the servo-hydraulic system of the single rod is as follows: establish the dynamic model of the hydraulic cylinder according to Newton's second law:
  • f(t) represents various disturbances
  • x and m represent the position and mass of the load respectively
  • B is the viscous damping coefficient
  • K is the equivalent spring stiffness of the load, when the load is an inertial load
  • K 0
  • P 1 , P 2 are the pressures of the large and small chambers of the hydraulic cylinder
  • a 1 , A 2 are the effective areas of the pistons of the large and small chambers
  • the load pressure dynamics is expressed by the following formula:
  • C t is the leakage coefficient inside the hydraulic cylinder, and C e is the external leakage coefficient of the hydraulic cylinder.
  • ⁇ e is the elastic modulus of oil;
  • Q 1 is the hydraulic oil flow rate with rod cavity,
  • Q 2 is the hydraulic oil flow rate without rod cavity;
  • P s is the oil supply pressure of the hydraulic system
  • P r is the oil return pressure of the hydraulic system
  • C d is the flow coefficient of the orifice
  • w is the area gradient of the spool valve
  • is the oil density
  • x v is the spool of the servo valve
  • is the time constant of the servo valve dynamics model, and u(t) is the current input; considering the spool displacement ⁇ (x v ) with an unknown dead zone, its expression is as follows:
  • the parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity;
  • ⁇ 1 , ⁇ 2 , ⁇ 3 are virtual control variables
  • x 1r is the command signal of the hydraulic position tracking system
  • z 1 is the position tracking error
  • the controller of the servo hydraulic system is:
  • the standardized error vector has a maximum solution in the non-empty open set ⁇ ⁇ in the time period t ⁇ [0, ⁇ max ): the non-empty open set ⁇ ⁇ , select the performance function
  • ⁇ i satisfy: ⁇ i (0)>min ⁇ -i , ⁇ - i ⁇
  • , i 1...4, we can get:
  • V 1 V 01 +A 1 x
  • V 2 V 02 -A 2 x
  • a safety margin is reserved, that is, according to the physical structure, the hydraulic cylinder can fluctuate up to 12 cm up and down near the neutral position, and the amplitude of the command signal is less than or equal to 10 cm to ensure h 1 h 2 h 3 is bounded, that is, there are three positive numbers respectively make
  • the present invention provides a low-complexity control method for an asymmetric servo-hydraulic position tracking system, which can solve various uncertainties in the hydraulic system (eg, unknown friction effects, variable parameters, etc.). Determined and load changes) and unknown nonlinear problems (such as spool dead zone, external disturbances), the design of the controller does not rely on an accurate mathematical model, only the state signal that can be measured, the calculation of the control rate is consistent with the existing in Compared with the algorithm developed on the basis of backstepping adaptation, the calculation process is simple, the amount of calculation is small, it is convenient for real-time control, and it is easier to realize engineering; the invention can ensure the convergence speed and steady-state accuracy of tracking error; finally, the experimental results show that, Compared with the traditional pid control method, the position tracking effect of the present invention has higher steady-state precision and smaller tracking displacement phase lag.
  • uncertainties in the hydraulic system eg, unknown friction effects, variable parameters, etc.
  • unknown nonlinear problems such as spool dead zone, external disturbances
  • the degree of control displacement hysteresis is basically unchanged, the tracking error always converges within the specified boundary, and the amplitude is basically not attenuated.
  • the displacement tracking error of the pid algorithm is larger, and the control algorithm of the present invention can still ensure that the tracking error converges within the specified boundary, the degree after the phase is small, and the amplitude is basically not attenuated.
  • Fig. 1 is a kind of low-complexity control method flow chart for the asymmetric servo hydraulic position tracking system of the present invention:
  • Figure 2 is a model block diagram of a servo hydraulic system with a single rod
  • Figure 3(a) is the structure composition diagram I of the experimental platform
  • Figure 3(b) is the structural composition diagram II of the experimental platform
  • Figure 3(c) is the structural composition diagram III of the experimental platform
  • Figure 3(d) is the structural composition diagram IV of the experimental platform
  • Fig. 4 is the error convergence simulation curve graph under the action of the controller of the present invention.
  • Fig. 5 is the simulation curve diagram of tracking error convergence under disturbance action
  • Fig. 6 is the simulation curve diagram of error convergence under the action of unknown spool dead zone
  • Fig. 7 is a simulation curve diagram of spool displacement under the action of unknown spool dead zone
  • FIG. 8 is a simulation graph showing the comparison of error convergence between the control method of the present invention and the adaptive backstepping control mode (SPPFBSA) with unknown dead zone of the spool that satisfies the specified performance;
  • SPPFBSA adaptive backstepping control mode
  • Fig. 9 is a statistical diagram of control method of the present invention and SPPFBSA simulation calculation time and error adjustment time;
  • FIG. 1 is a flowchart of a low-complexity control method for an asymmetrical servo hydraulic position tracking system of the present invention: a low-complexity control method for an asymmetrical servo-hydraulic positional tracking system, comprising the following steps: S1: establish a Servo hydraulic system model; Figure 2 is a block diagram of the servo hydraulic system model with a single output rod; S2: According to the servo hydraulic system model of a single output rod, the controller of the single output rod servo hydraulic system is designed with a low-complex control strategy; S3: According to the controller of the single-rod servo-hydraulic system and the model of the single-rod servo-hydraulic system, the stability of the single-rod servo-hydraulic system is proved.
  • P s is the oil supply pressure of the hydraulic system
  • P r is the oil return pressure of the hydraulic system
  • C d is the flow coefficient of the orifice
  • w is the area gradient of the spool valve
  • is the oil density
  • x v is the spool displacement of the servo valve ;
  • the indeterminate parameter leakage coefficient Ct is bounded, that is make
  • the uncertain parameter leakage coefficient C e is bounded, that is, make
  • the uncertain parameter oil elastic modulus ⁇ e is bounded, namely make
  • the spool displacement x v of the servo valve is actually controlled by the voltage or current input u to obtain the required corresponding force.
  • the dynamic characteristics of the servo valve are as follows:
  • is the time constant of the servo valve dynamics model and u(t) is the current input.
  • the parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity;
  • the servo valve is a key mechanical component in the electro-hydraulic actuator.
  • the current or voltage controls the displacement of the spool of the servo valve, and then controls the hydraulic oil to be drawn in or out of the oil chamber, and finally the actuator performs the corresponding movement; obviously, in the servo valve
  • In the hydraulic position tracking system there must be a nonlinear problem of the dead zone of the spool. Therefore, it is necessary to consider the adverse effects of this problem to obtain better system performance; in addition, considering that it is difficult to obtain an accurate slope of the dead zone model in practical applications and interval points, so a robust and strong novel control strategy is proposed to solve this problem;
  • ⁇ 1 , ⁇ 2 , ⁇ 3 are the virtual control quantities obtained in the subsequent proof process
  • x 1r is the command signal of the hydraulic position tracking system
  • z 1 is the position tracking error
  • four positive smooth decreasing functions is selected as the specified performance function
  • the virtual control function is selected as follows:
  • the controller of the servo hydraulic system is:
  • the virtual controller and the controller of the servo hydraulic system can ensure that the closed-loop signal is bounded as follows:
  • V 1 V 01 + A 1 x
  • V 2 V 02 -A 2 x
  • h 1 h 2 h 3 bounded, that is, there are three positive numbers respectively.
  • ⁇ :R+ ⁇ ⁇ ⁇ R n is a continuous function vector
  • ⁇ ⁇ ⁇ R n is a non-empty open set
  • Definition 1 A solution ⁇ (t) of the initial value problem (50), without proper right extension, the solution is the largest;
  • the initial value theorem is as follows: For the initial value problem (12), if ⁇ (t, ⁇ ) satisfies: (1) when t>0, ⁇ (t, ⁇ ) satisfies the local Lipschitz condition for ⁇ ; (2) for ⁇ (t) ⁇ ⁇ , ⁇ (t, ⁇ ) is piecewise continuous; (3) For ⁇ (t) ⁇ ⁇ , ⁇ (t, ⁇ ) is locally integrable with respect to t; then in the time period t ⁇ [ 0, ⁇ max ), there is a solution to the initial value problem (50) ⁇ (t) ⁇ ⁇ , where ⁇ max >0.
  • the initial value proposal is as follows: Assuming the initial value theorem holds; for the maximum solution ⁇ (t) on the time period [0, ⁇ max ) and the set When ⁇ max ⁇ , there exists a time constant t 1 ⁇ [0, ⁇ max ) such that
  • the experimental platform is built, and the experimental software program is debugged.
  • the experimental platform is mainly divided into two parts: software design and hardware circuit connection;
  • Fig. 3 (a) is the structural composition diagram I of the experimental platform;
  • Fig. 3(b) is the structural composition of the experimental platform II;
  • Fig. 3(c) is the structural composition of the experimental platform III;
  • Fig. 3(d) is the structural composition of the experimental platform IV;
  • the hardware of the experimental platform is mainly divided into three parts, the first part is
  • the actuator mainly includes a hydraulic source system (such as accumulator, hydraulic pump, etc.), a servo valve and a single-rod hydraulic cylinder actuator.
  • the experimental platform of the present invention adopts a three-position five-way servo valve, and its model is FD234-01K004VSX2A .
  • the second part is the signal acquisition mechanism.
  • the hardware of the signal acquisition mechanism is mainly the signal conversion board and the A/D board.
  • the function of the signal conversion board is to convert the voltage and current signals to each other. Specifically, the sensor signal 4-20ma current signal is converted into 1-5v voltage signal, convert the voltage signal of ⁇ 5v to the current signal of ⁇ 10ma, the A/D board used in the experiment platform of the present invention is ADT882, its function is to realize the mutual conversion of analog continuous signal and digital discrete signal .
  • the third part is the control mechanism.
  • the core of the control mechanism is the industrial control computer.
  • the experimental platform of the present invention adopts the industrial computer pc104, and its function realizes the construction of the software platform and the realization of the control algorithm.
  • the hardware line connection mainly refers to the connection between each sensor signal line and the servo valve control current signal line and the signal conversion board, and the connection between the signal conversion board and the ADT882 board.
  • the software design environment is VC++6.0, window operating system, the software program mainly includes writing interface functions, configuring A/D board, setting interrupt program to complete signal acquisition, control quantity calculation and output;
  • the initial value of the boundary ⁇ i0 should be as large as possible, the upper bound of the error convergence rate hi should be as small as possible, and the upper bound of the steady-state residual set of the convergence error should be as large as possible;
  • the second step adjust the virtual control rate gains k 1 , k 2 , k 3 , k 4 , when the control rate gain ki is adjusted to an appropriate value;
  • the third step slowly and appropriately reduce the initial value of the boundary ⁇ i0 , increase the upper bound hi of the error convergence rate, and reduce the steady-state residual error of the convergence error Set the upper bound value ⁇ i ⁇ until the desired control effect is achieved.
  • Fig. 4 is the simulation curve diagram of error convergence under the action of the controller of the present invention, as can be seen from Fig. 4, the controller of the present invention can ensure the convergence speed and control accuracy of the displacement tracking error;
  • the controller of the present invention has a strong inhibitory effect on strong disturbances, and can still ensure the transient and steady-state performance of the convergence error.
  • Figure 6 is the simulation curve of error convergence under the action of unknown spool dead zone
  • Figure 7 is the simulation curve of spool displacement under the action of unknown spool dead zone
  • Figures 6 and 7 verify the low-complexity control scheme proposed in this paper It has better robustness to deal with unknown spool dead zone problem.
  • the unknown dead zone nonlinearity of the valve core is added to the system model.
  • Fig. 8 is a comparative simulation graph of error convergence between the control method of the present invention and the adaptive backstepping control method (SPPFBSA) with unknown dead zone of the spool that meets the specified performance
  • Fig. 9 is the simulation calculation time and error of the control method of the present invention and SPPFBSA Adjustment time statistics chart; it can be seen from Figure 8 that both controllers can ensure the convergence speed and steady-state accuracy of the displacement tracking error, but as can be seen from Figure 9, in the simulation running time, the controller of the present invention and Compared with the SPPFBSA controller, it is reduced by 91.7%, and the error convergence adjustment time is reduced by 95.5%. Because the controller design of the invention has low dependence on the model, compared with the algorithm developed on the basis of backstepping self-adaptation, the calculation amount is small, and online learning is not required, so it is convenient for real-time control and engineering realization.
  • the displacement tracking curve obtained by the controller of the present invention has almost only a small phase lag during the upward process of the cylinder, Compared with the ascending process of the cylinder block, when the cylinder block descends, the phase lag degree of the displacement tracking curve is larger, but the control effect of the controller of the present invention is in the whole process of the displacement tracking, the displacement tracking curve is higher than the pid displacement tracking curve. The degree of phase lag is small.
  • the control effect of the controller of the present invention is that the phase lag degree is basically unchanged during the cylinder body ascending process, and the phase lag degree is getting smaller and smaller during the cylinder body descending process, and the amplitude is basically not attenuated.
  • the pid tracking error becomes larger and larger, while the tracking error of the controller of the present invention is basically unchanged and converges within the specified performance boundary.

Abstract

A low-complexity control method for an asymmetric servo hydraulic position tracking system. The method comprises the following steps: establishing a servo hydraulic system model of a single-outlet rod (step 1); according to the servo hydraulic system model of the single-output rod, designing a controller of a servo hydraulic system of the single-output rod by using a low-complexity control strategy (step 2); and proving the stability of the servo hydraulic system of the single-output rod according to the controller of the servo hydraulic system of the single-output rod and the servo hydraulic system model of the single-output rod (step 3). The method can solve various uncertainty problems and unknown nonlinear problems in the hydraulic system, and the design of the controller does not depend on an accurate mathematical model, and only needs a state signal that can be measured.

Description

一种针对非对称伺服液压位置跟踪系统的低复杂控制方法A Low-Complexity Control Method for Asymmetric Servo-Hydraulic Position Tracking System 技术领域technical field
本发明涉及伺服液压位置控制领域,尤其涉及一种针对非对称伺服液压位置跟踪系统的低复杂控制方法。The invention relates to the field of servo hydraulic position control, in particular to a low-complexity control method for an asymmetric servo hydraulic position tracking system.
背景技术Background technique
伺服液压系统具有出色的负载效率,较小的功率比,响应速度快等优点,因此,在现代工业中,它们被广泛应用(例如主动悬挂系统,液压挖掘机,机械手)。伺服液压系统包括两种液压执行机构,双出杆对称液压执行机构和单出杆非对称液压执行机构。在主动悬挂控制研究中常常将两个油腔面积视为相等,使用对称液压执行机构。对于非对称伺服液压系统,由于活塞杆的存在导致液压缸的有杆腔和无杆腔的有效面积不等,能够实现相同性能的对称液压执行机构往往比非对称液压执行机构体积要大,一般应用于少数特殊场合,工业上广泛应用的则是非对称液压执行机构。因此,在空间局限性很大的汽车悬挂系统中放置对称液压执行机构是不合理的。Servo hydraulic systems have the advantages of excellent load efficiency, small power ratio, and fast response speed, so they are widely used in modern industries (such as active suspension systems, hydraulic excavators, manipulators). The servo hydraulic system includes two kinds of hydraulic actuators, the symmetrical hydraulic actuator with double rod and the asymmetric hydraulic actuator with single rod. In active suspension control research, the areas of the two oil chambers are often considered equal, and a symmetrical hydraulic actuator is used. For asymmetric servo hydraulic systems, due to the existence of the piston rod, the effective areas of the rod cavity and the rodless cavity of the hydraulic cylinder are not equal, and the symmetrical hydraulic actuator that can achieve the same performance is often larger than the asymmetric hydraulic actuator. It is used in a few special occasions, and widely used in industry is asymmetric hydraulic actuators. Therefore, it is unreasonable to place symmetrical hydraulic actuators in the vehicle suspension system with great space limitations.
然而,非对称伺服液压系统是一个复杂的非线性系统,同时它涉及了各种各样的不确定性,例如,负载变化,参数不确定以及未知的非线性,这将导致建立模型和设计控制器的困难性和复杂性,因此,对于非对称伺服液压系统,高精度的位置控制正在面临巨大的挑战。其中,参数不确定主要包括泄露系数,油膜粘度和粘滞摩擦系数,未知的非线性主要包括阀芯死区和外部扰动,这些因素阻碍了高性能控制器的发展。为了满足位置跟踪系统的操作性能,在过去的十几年里已经发展了许多控制技术,例如神经网络自适应,模糊逻辑控制,鲁棒自适应控制,反步自适应控制。在这些控制方式中,自适应控制,由于它的在线学习能力,可以处理参数不确定问题,鲁棒自适应控制可以处理未知扰动问题。尽管上述基于自适应控制的算法可以获得很好的仿真结果,但是,一个关键的问题是,这些算法具有沉重的计算负担,需要很长时间才能达到收敛,所以,在液压系统中,应用基于自适应的上述控制算法是困难的。此外,伺服液压系统现有的控制方法大多数是在反步控制的基础上进行开发的。众所周知,在高阶系统的反步设计过程中,由于虚拟控制函数反复求导,将导致计算爆炸问题。因此,寻找设计对系统依赖程度低,计算负担轻的,没有函数逼近功能的新颖的控制策略是很有必要的。However, the asymmetric servo hydraulic system is a complex nonlinear system, and it involves various uncertainties, such as load changes, parameter uncertainties, and unknown nonlinearities, which will lead to modeling and design control. Therefore, for asymmetric servo-hydraulic systems, high-precision position control is facing a huge challenge. Among them, the parameter uncertainties mainly include leakage coefficient, oil film viscosity and viscous friction coefficient, and the unknown nonlinearity mainly includes spool dead zone and external disturbance, which hinder the development of high-performance controllers. In order to meet the operational performance of the position tracking system, many control techniques have been developed in the past ten years, such as neural network adaptation, fuzzy logic control, robust adaptive control, and backstepping adaptive control. Among these control methods, adaptive control, due to its online learning ability, can deal with parameter uncertainties, and robust adaptive control can deal with unknown disturbances. Although the above algorithms based on adaptive control can obtain good simulation results, a key problem is that these algorithms have a heavy computational burden and take a long time to reach convergence. Adaptation of the above control algorithm is difficult. In addition, most of the existing control methods of servo hydraulic system are developed on the basis of backstep control. It is well known that in the process of backstepping design of high-order systems, the problem of computational explosion will be caused due to the repeated derivation of the virtual control function. Therefore, it is necessary to find novel control strategies with low system dependence, light computational burden, and no function approximation function.
另外,在伺服液压位置跟踪系统中,从实际的应用角度来看,上述方法中如果存在潜在的不好的瞬态响应(超调过大,收敛缓慢),这将可能导致跟踪性能恶化,发生危险甚至造成硬件的损坏。Bechlioulis CP,Rovithakis GA等人最初提出了能够保证跟踪误差瞬态性能的新颖的控制器设计方法。该方法通过引入规定性能函数,规定跟踪误差瞬态和稳态性能,通过引入误差变换,将原始的带有限制的系统等效成没有限制的系统。这个思想进一步的被应用到高阶非线性容错控制系统,液压伺服系统,悬架系统。然而,使用规定性能函数的上述文献中,控制方案都与自适应控制方式相结合处理系统中未知动力学问题。In addition, in the servo-hydraulic position tracking system, from the practical application point of view, if there is a potential bad transient response (overshoot is too large, the convergence is slow) in the above method, it may lead to the deterioration of the tracking performance and the occurrence of Dangerous or even cause hardware damage. Bechlioulis CP, Rovithakis GA, et al. initially proposed novel controller design methods that can guarantee tracking error transient performance. In this method, the transient and steady-state performance of tracking error is specified by introducing a specified performance function, and the original system with constraints is equivalent to an unlimited system by introducing error transformation. This idea is further applied to high-order nonlinear fault-tolerant control systems, hydraulic servo systems, and suspension systems. However, in the above-mentioned literatures that use a specified performance function, the control schemes are all combined with adaptive control methods to deal with unknown dynamics in the system.
综上所述,伺服液压系统及其位置控制方法存在以下不足之处:一、单出杆非线性伺服液压系统是一种典型的复杂非线性系统,它涉及了负载变化,参数不确定以及未知的 非线性等问题,以至于建立理论模型与实际系统之间存在巨大差距,导致设计控制器的困难性和复杂性;二、目前存在的伺服液压位置控制方式大多数是在反步控制自适应基础上进行开发的,然而这些控制方式对模型的依赖程度较高,并且在高阶系统的反步设计过程中,会产生较大的计算量,对不确定参数的在线学习,不利于实际试验中实时控制;三、从实际的应用角度来看,在伺服液压位置跟踪系统中,如果存在潜在的不好的瞬态响应(超调过大,收敛缓慢),这将可能导致跟踪性能恶化,发生危险甚至造成硬件的损坏。To sum up, the servo hydraulic system and its position control method have the following shortcomings: 1. The single-rod nonlinear servo hydraulic system is a typical complex nonlinear system, which involves load changes, parameter uncertainty and unknown Because of the nonlinearity and other problems, there is a huge gap between the establishment of the theoretical model and the actual system, which leads to the difficulty and complexity of designing the controller; 2. Most of the current servo-hydraulic position control methods are based on backstep control adaptive However, these control methods have a high degree of dependence on the model, and in the process of backstepping design of high-order systems, a large amount of calculation will be generated, and the online learning of uncertain parameters is not conducive to actual experiments. Third, from the practical application point of view, in the servo hydraulic position tracking system, if there is a potential bad transient response (overshoot is too large, the convergence is slow), which may lead to the deterioration of the tracking performance, Dangerous or even hardware damage.
发明内容SUMMARY OF THE INVENTION
根据现有技术存在的问题,本发明公开了一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,包括以下步骤:S1:建立单出杆的伺服液压系统模型;S2:根据单出杆的伺服液压系统模型,采用低复杂控制策略设计出单出杆的伺服液压系统的控制器;S3:根据单出杆的伺服液压系统的控制器及单出杆的伺服液压系统模型,证明单出杆的伺服液压系统的稳定性。According to the problems existing in the prior art, the present invention discloses a low-complexity control method for an asymmetric servo-hydraulic position tracking system, including the following steps: S1: establishing a servo-hydraulic system model of a single-exit rod; S2: according to the single-exit rod S3: According to the controller of the servo hydraulic system with a single rod and the model of the servo hydraulic system with a single rod, it is proved that the single output rod The stability of the servo-hydraulic system of the rod.
进一步地,其特征还在于:所述建立单出杆的伺服液压系统模型表达式的过程如下:根据牛顿第二定律建立液压缸体的动力学模型:Further, it is also characterized in that: the process of establishing the model expression of the servo-hydraulic system of the single rod is as follows: establish the dynamic model of the hydraulic cylinder according to Newton's second law:
Figure PCTCN2021124567-appb-000001
Figure PCTCN2021124567-appb-000001
其中:f(t)表示各种干扰,x和m分别表示负载的位置和质量,B是粘性阻尼系数,K是负载的等效弹簧刚度,当负载是惯性负载时,K=0,F=A 1*P 1-A 2*P 2是液压作动器输出的主动力,其中P 1,P 2是液压缸大小腔压力,A 1,A 2是大小腔活塞的有效面积;采用三位五通伺服阀,负载压力动力学通过如下公式表示: Where: f(t) represents various disturbances, x and m represent the position and mass of the load respectively, B is the viscous damping coefficient, K is the equivalent spring stiffness of the load, when the load is an inertial load, K=0, F= A 1 *P 1 -A 2 *P 2 is the main power output by the hydraulic actuator, where P 1 , P 2 are the pressures of the large and small chambers of the hydraulic cylinder, A 1 , A 2 are the effective areas of the pistons of the large and small chambers; using three positions Five-way servo valve, the load pressure dynamics is expressed by the following formula:
Figure PCTCN2021124567-appb-000002
Figure PCTCN2021124567-appb-000002
Figure PCTCN2021124567-appb-000003
Figure PCTCN2021124567-appb-000003
式中:V 1,V 2分别为有杆腔和无杆腔容积,V 1=V 01+A 1x,V 2=V 02-A 2x,V 01和V 02分别为活塞处于初始位置时,无杆腔和有杆腔容积,C t为液压缸内部的泄露系数,C e为液压缸的外泄露系数。β e为油液弹性模量;Q 1是有杆腔液压油流量,Q 2是无杆腔液压油流量; In the formula: V 1 and V 2 are the volumes of the rod cavity and the rodless cavity respectively, V 1 =V 01 +A 1 x, V 2 =V 02 -A 2 x, V 01 and V 02 are the initial positions of the piston, respectively When , the volume of the rodless cavity and the rod cavity, C t is the leakage coefficient inside the hydraulic cylinder, and C e is the external leakage coefficient of the hydraulic cylinder. β e is the elastic modulus of oil; Q 1 is the hydraulic oil flow rate with rod cavity, Q 2 is the hydraulic oil flow rate without rod cavity;
其中:
Figure PCTCN2021124567-appb-000004
in:
Figure PCTCN2021124567-appb-000004
Figure PCTCN2021124567-appb-000005
Figure PCTCN2021124567-appb-000005
其中,
Figure PCTCN2021124567-appb-000006
是流量增益,s(Γ(x v))表达式如下:
in,
Figure PCTCN2021124567-appb-000006
is the flow gain, and s(Γ(x v )) is expressed as:
Figure PCTCN2021124567-appb-000007
Figure PCTCN2021124567-appb-000007
P s为液压系统供油压力,P r为液压系统回油压力,C d为节流口的流量系数,w是滑阀面积梯度,ρ是油液密度,x v是伺服阀的阀芯;通过电压或电流输入u来控制伺服阀的阀芯位移x v,进而获得所需要的对应的力,伺服阀的动态特性如下所示: P s is the oil supply pressure of the hydraulic system, P r is the oil return pressure of the hydraulic system, C d is the flow coefficient of the orifice, w is the area gradient of the spool valve, ρ is the oil density, and x v is the spool of the servo valve; The spool displacement x v of the servo valve is controlled by the voltage or current input u to obtain the required corresponding force. The dynamic characteristics of the servo valve are as follows:
Figure PCTCN2021124567-appb-000008
Figure PCTCN2021124567-appb-000008
τ是伺服阀动力学模型的时间常数,u(t)是电流输入;考虑了存在未知死区的阀芯位移Γ(x v),其表达式如下: τ is the time constant of the servo valve dynamics model, and u(t) is the current input; considering the spool displacement Γ(x v ) with an unknown dead zone, its expression is as follows:
Figure PCTCN2021124567-appb-000009
Figure PCTCN2021124567-appb-000009
参数m r和m l代表死区特性曲线的左右斜率,参数b r和b l代表输入非线性的断点;阀芯死区表示为Γ(x v)=m(t)x v+d(t),m(t),d(t)表达式如下所示: The parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity; the spool dead zone is expressed as Γ(x v )=m(t)x v +d( t), m(t), d(t) expressions are as follows:
Figure PCTCN2021124567-appb-000010
Figure PCTCN2021124567-appb-000010
Figure PCTCN2021124567-appb-000011
Figure PCTCN2021124567-appb-000011
由于m r,m l,b r,b l有界,故d(t)有界,记d(t)上界为
Figure PCTCN2021124567-appb-000012
定义状态变量如下:x 1=x,
Figure PCTCN2021124567-appb-000013
x 3=P 1,x 4=P 2,x 5=x v,获得具有未知阀芯死区位置跟踪系统的状态方程如下:
Since m r , ml , br , and b l are bounded, d(t) is bounded, and the upper bound of d(t) is written as
Figure PCTCN2021124567-appb-000012
The state variables are defined as follows: x 1 =x,
Figure PCTCN2021124567-appb-000013
x 3 =P 1 , x 4 =P 2 , x 5 =x v , the state equation of the tracking system with unknown spool dead zone position is obtained as follows:
Figure PCTCN2021124567-appb-000014
Figure PCTCN2021124567-appb-000014
其中:
Figure PCTCN2021124567-appb-000015
in:
Figure PCTCN2021124567-appb-000015
进一步地:所述根据单出杆的伺服液压系统模型,采用低复杂控制策略设计出单出杆的伺服液压系统的控制器的过程如下:定义误差变量:Further: the process of designing the controller of the servo hydraulic system with a single output rod according to the servo hydraulic system model of the single output rod using a low-complexity control strategy is as follows: define the error variable:
z 1=x 1-x r z 2=x 21 z 3=F-α 2 z 4=x 53  (17) z 1 =x 1 -x r z 2 =x 21 z 3 =F-α 2 z 4 =x 53 (17)
其中,α 1,α 2,α 3是虚拟控制量,x 1r是液压位置跟踪系统的指令信号,F(F=A 1x 3-A 2x 4)是作动器输出的主动力,z 1是位置跟踪误差,z i i=2...4是控制误差,四个正的光滑递减函数
Figure PCTCN2021124567-appb-000016
选做规定性能函数,定义标准化误差ζ i,对z i i=1...4做误差转换,转换后的误差
Figure PCTCN2021124567-appb-000017
如下:
Among them, α 1 , α 2 , α 3 are virtual control variables, x 1r is the command signal of the hydraulic position tracking system, F (F=A 1 x 3 -A 2 x 4 ) is the active force output by the actuator, z 1 is the position tracking error, z i i=2...4 is the control error, four positive smooth decreasing functions
Figure PCTCN2021124567-appb-000016
Select the specified performance function, define the standardized error ζ i , do error conversion for zi i = 1...4, the converted error
Figure PCTCN2021124567-appb-000017
as follows:
Figure PCTCN2021124567-appb-000018
Figure PCTCN2021124567-appb-000018
Figure PCTCN2021124567-appb-000019
Figure PCTCN2021124567-appb-000019
Figure PCTCN2021124567-appb-000020
Figure PCTCN2021124567-appb-000020
选取虚拟控制器如下:Select the virtual controller as follows:
Figure PCTCN2021124567-appb-000021
Figure PCTCN2021124567-appb-000021
Figure PCTCN2021124567-appb-000022
Figure PCTCN2021124567-appb-000022
Figure PCTCN2021124567-appb-000023
Figure PCTCN2021124567-appb-000023
伺服液压系统的控制器为:The controller of the servo hydraulic system is:
Figure PCTCN2021124567-appb-000024
Figure PCTCN2021124567-appb-000024
进一步地,所述根据单出杆的伺服液压系统的控制器及单出杆的伺服液压系统模型,证明单出杆的伺服液压系统的稳定性的过程如下:S3-1:利用初值定理,证明标准化误差向量在时间段t∈[0,τ max)时,在非空开集合Ω ζ中存在最大解;S3-2:当标准化误差向量在时间段t∈[0,τ max)上,在非空开集合Ω ζ中存在最大解时,虚拟控制器以及伺服液压系统的控制器,对于t∈[0,τ max)能保证闭环信号有界;S3-3:利用初值提议证明当S3-2中的τ max=+∞时,所有闭环信号有界仍是正确的。 Further, according to the controller of the servo-hydraulic system of the single-exit rod and the servo-hydraulic system model of the single-exit rod, the process of proving the stability of the servo-hydraulic system of the single-exit rod is as follows: S3-1: Utilize the initial value theorem, Prove that when the normalized error vector is in the time period t∈[0,τ max ), there is a maximum solution in the non-empty open set Ω ζ ; S3-2: When the normalized error vector is in the time period t∈[0,τ max ), When there is a maximum solution in the non-empty open set Ωζ , the virtual controller and the controller of the servo-hydraulic system can guarantee that the closed-loop signal is bounded for t∈[0,τ max ); S3-3: Use the initial value proposal to prove that when When τ max = +∞ in S3-2, it is still true that all closed-loop signals are bounded.
进一步地,所述利用初值定理,证明标准化误差向量在时间段t∈[0,τ max)时,在非空开集合Ω ζ中存在最大解:非空的开集合Ω ζ,选择性能函数ρ i时,满足:ρ i(0)>min{δ -i- i}|z i(0)|,i=1...4由此可得:|ζ i(0)|<min{δ -i- i},i=1...4,因此,标准化误差向量ζ(0)∈Ω ζ;由于期望的追踪轨迹x r,性能函数ρ i(t),i=1...4,中间控制信号α i,i=1...3和控制率u是连续光滑可导的,阀芯死区位置跟踪系统的状态方程中的动力学变量是连续可导的函数,故式标准化误差向量中函数L(t,ζ)关于时间t是分段连续的,且在开集合Ω ζ中,ζ满足利普希茨条件;初值定理中的条件都满足,所以在时间段[0,τ max)中,标准化误差向量存在唯一的最大解ζ(t)∈Ω ζ,对于
Figure PCTCN2021124567-appb-000025
都能保证ζ i(t)∈Ω ζ,i=1...4。
Further, using the initial value theorem, it is proved that the standardized error vector has a maximum solution in the non-empty open set Ω ζ in the time period t∈[0,τ max ): the non-empty open set Ω ζ , select the performance function When ρ i , satisfy: ρ i (0)>min{δ -i- i }|z i (0)|, i=1...4, we can get: |ζ i (0)|< min{δ −i i }, i=1...4, therefore, the normalized error vector ζ (0)∈Ωζ; due to the desired tracking trajectory x r , the performance function ρ i (t), i= 1...4, the intermediate control signal α i , i=1...3 and the control rate u are continuously smooth and derivable, the dynamic variables in the state equation of the spool dead zone position tracking system are continuously derivable function, so the function L(t,ζ) in the standardized error vector of the formula is piecewise continuous with respect to time t, and in the open set Ω ζ , ζ satisfies the Lipschitz condition; the conditions in the initial value theorem are all satisfied, so In the time period [0,τ max ), there exists a unique maximum solution ζ(t)∈Ω ζ for the normalized error vector, for
Figure PCTCN2021124567-appb-000025
can guarantee ζ i (t)∈Ω ζ , i=1...4.
进一步地,所述当标准化误差向量在时间段t∈[0,τ max)上,在非空开集合Ω ζ中存在最大解时,虚拟控制器以及伺服液压系统的控制器,对于t∈[0,τ max)能保证闭环信号有界的的过程如下:S3-2-1:根据式(18)求出
Figure PCTCN2021124567-appb-000026
对时间的导数
Figure PCTCN2021124567-appb-000027
Further, when the normalized error vector has a maximum solution in the non-empty open set Ω ζ in the time period t∈[0,τ max ), the virtual controller and the controller of the servo hydraulic system, for t∈[ 0,τ max ) can ensure that the closed-loop signal is bounded as follows: S3-2-1: Calculate according to formula (18)
Figure PCTCN2021124567-appb-000026
Derivative to Time
Figure PCTCN2021124567-appb-000027
Figure PCTCN2021124567-appb-000028
Figure PCTCN2021124567-appb-000028
其中
Figure PCTCN2021124567-appb-000029
存在一个正常数r M1,使得0>r 1>r M1
in
Figure PCTCN2021124567-appb-000029
There is a constant r M1 such that 0>r 1 >r M1 ;
进一步可得:
Figure PCTCN2021124567-appb-000030
Further available:
Figure PCTCN2021124567-appb-000030
Figure PCTCN2021124567-appb-000031
remember
Figure PCTCN2021124567-appb-000031
1(t)=r 1k 1  (32) 1 (t)=r 1 k 1 (32)
考虑到
Figure PCTCN2021124567-appb-000032
Figure PCTCN2021124567-appb-000033
ρ 2是有界的,由极值定理可知a 1有界;由(31)和(32)得:
Figure PCTCN2021124567-appb-000034
considering
Figure PCTCN2021124567-appb-000032
and
Figure PCTCN2021124567-appb-000033
ρ 2 is bounded, according to the extreme value theorem, we know that a 1 is bounded; from (31) and (32) we get:
Figure PCTCN2021124567-appb-000034
选取李雅普诺夫函数
Figure PCTCN2021124567-appb-000035
Choose the Lyapunov function
Figure PCTCN2021124567-appb-000035
(33)和(34)符合不等式引理形式,由不等式引理可知,因为a 1有界,即
Figure PCTCN2021124567-appb-000036
|a 1|<A 1,0<△ 1(t)<r M1k 1,所以
Figure PCTCN2021124567-appb-000037
因为
Figure PCTCN2021124567-appb-000038
有界,可得-δ -1ρ 1(t)<z 1- 1ρ 1(t),所以对于
Figure PCTCN2021124567-appb-000039
跟踪误差z 1在规定的边界内衰减;保证在时间段t∈[0,τ max)跟踪误差z 1在规定性能边界中收敛,因为指令是有界正弦信号,所以状态变量x 1是有界的;
(33) and (34) conform to the form of the inequality lemma, which can be known from the inequality lemma, because a 1 is bounded, that is
Figure PCTCN2021124567-appb-000036
|a 1 |<A 1 , 0<△ 1 (t)<r M1 k 1 , so
Figure PCTCN2021124567-appb-000037
because
Figure PCTCN2021124567-appb-000038
Bounded, we can get -δ -1 ρ 1 (t)<z 1- 1 ρ 1 (t), so for
Figure PCTCN2021124567-appb-000039
The tracking error z 1 decays within the specified bounds; it is guaranteed that the tracking error z 1 converges within the specified performance bounds in the time period t∈[0,τ max ), since the command is a bounded sinusoidal signal, the state variable x 1 is bounded of;
S3-2-2:根据式(18)求出
Figure PCTCN2021124567-appb-000040
对时间的导数
Figure PCTCN2021124567-appb-000041
S3-2-2: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000040
Derivative to Time
Figure PCTCN2021124567-appb-000041
Figure PCTCN2021124567-appb-000042
Figure PCTCN2021124567-appb-000042
其中
Figure PCTCN2021124567-appb-000043
存在一个正常数r M2,使得0>r 2>r M2
in
Figure PCTCN2021124567-appb-000043
There is a constant r M2 such that 0>r 2 >r M2 ;
进一步可得:Further available:
Figure PCTCN2021124567-appb-000044
Figure PCTCN2021124567-appb-000044
记:
Figure PCTCN2021124567-appb-000045
remember:
Figure PCTCN2021124567-appb-000045
考虑到
Figure PCTCN2021124567-appb-000046
Figure PCTCN2021124567-appb-000047
ρ i,是有界的,f(t)是未知有界的扰动项,B是有界的不确定参数,由极值定理可知a 2有界;由(36)和(37)得:
considering
Figure PCTCN2021124567-appb-000046
and
Figure PCTCN2021124567-appb-000047
ρ i , is bounded, f(t) is an unknown and bounded disturbance term, B is a bounded uncertain parameter, it can be known from the extreme value theorem that a 2 is bounded; from (36) and (37) we get:
Figure PCTCN2021124567-appb-000048
Figure PCTCN2021124567-appb-000048
选取李雅普诺夫函数
Figure PCTCN2021124567-appb-000049
Choose the Lyapunov function
Figure PCTCN2021124567-appb-000049
(38)和(39)符合不等式引理形式,由不等式引理可知,因为a 2有界即
Figure PCTCN2021124567-appb-000050
使得|a 2|<A 2
Figure PCTCN2021124567-appb-000051
所以
Figure PCTCN2021124567-appb-000052
由于
Figure PCTCN2021124567-appb-000053
有界,可得-δ -2ρ 2(t)<z 2- 2ρ 2(t),所以对于
Figure PCTCN2021124567-appb-000054
保证控制误差z 2有界和状态变量x 2有界;
(38) and (39) conform to the form of inequality lemma, which can be seen from the inequality lemma, because a 2 is bounded, i.e.
Figure PCTCN2021124567-appb-000050
such that |a 2 |<A 2 ,
Figure PCTCN2021124567-appb-000051
so
Figure PCTCN2021124567-appb-000052
because
Figure PCTCN2021124567-appb-000053
Bounded, we can get -δ -2 ρ 2 (t)<z 2- 2 ρ 2 (t), so for
Figure PCTCN2021124567-appb-000054
Ensure that the control error z 2 is bounded and the state variable x 2 is bounded;
S3-2-3:根据式(18)求出
Figure PCTCN2021124567-appb-000055
对时间的导数
Figure PCTCN2021124567-appb-000056
S3-2-3: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000055
Derivative to Time
Figure PCTCN2021124567-appb-000056
Figure PCTCN2021124567-appb-000057
Figure PCTCN2021124567-appb-000057
其中
Figure PCTCN2021124567-appb-000058
存在一个正常数r M3,使得0>r 3>r M3
in
Figure PCTCN2021124567-appb-000058
There is a constant r M3 such that 0>r 3 >r M3 ;
将式(10),(24),(11)和(21)带入(40)中得:Substituting equations (10), (24), (11) and (21) into (40), we get:
Figure PCTCN2021124567-appb-000059
Figure PCTCN2021124567-appb-000059
Figure PCTCN2021124567-appb-000060
remember
Figure PCTCN2021124567-appb-000060
Figure PCTCN2021124567-appb-000061
Figure PCTCN2021124567-appb-000061
其中V 1=V 01+A 1x,V 2=V 02-A 2x; where V 1 =V 01 +A 1 x, V 2 =V 02 -A 2 x;
鉴于伺服液压系统作动器的安全运行,留出安全裕度,即根据物理结构,液压缸在中位附近上下最大可波动12厘米,指令信号的幅值小于等于10厘米保证了h 1h 2h 3有界,即分别存在三个正数
Figure PCTCN2021124567-appb-000062
使得
Figure PCTCN2021124567-appb-000063
In view of the safe operation of the servo hydraulic system actuator, a safety margin is reserved, that is, according to the physical structure, the hydraulic cylinder can fluctuate up to 12 cm up and down near the neutral position, and the amplitude of the command signal is less than or equal to 10 cm to ensure h 1 h 2 h 3 is bounded, that is, there are three positive numbers respectively
Figure PCTCN2021124567-appb-000062
make
Figure PCTCN2021124567-appb-000063
考虑到
Figure PCTCN2021124567-appb-000064
且α 1
Figure PCTCN2021124567-appb-000065
ρ i是有界的,m(t)为阀芯死区的未知斜率,m(t)是有界的(即
Figure PCTCN2021124567-appb-000066
),由极值定理可知a 3有界;
considering
Figure PCTCN2021124567-appb-000064
and α 1 ,
Figure PCTCN2021124567-appb-000065
ρ i is bounded, m(t) is the unknown slope of the spool dead zone, m(t) is bounded (ie
Figure PCTCN2021124567-appb-000066
), from the extreme value theorem we know that a 3 is bounded;
由(41)和(42)得:
Figure PCTCN2021124567-appb-000067
From (41) and (42) we get:
Figure PCTCN2021124567-appb-000067
选取李雅普诺夫函数
Figure PCTCN2021124567-appb-000068
Choose the Lyapunov function
Figure PCTCN2021124567-appb-000068
(43)和(44)符合不等式引理形式,由不等式引理可知,因为a 3有界,即
Figure PCTCN2021124567-appb-000069
使得|a 3|<A 3
Figure PCTCN2021124567-appb-000070
所以
Figure PCTCN2021124567-appb-000071
由于
Figure PCTCN2021124567-appb-000072
有界,可得-δ -3ρ 3(t)<z 3- 3ρ 3(t),所以对于
Figure PCTCN2021124567-appb-000073
保证控制误差z 3有界和主动力u a有界,从状态方程的数学表达式上看,状态变量x 3和x 4是有界的,并且它们都小于液压源P s的压力值;
(43) and (44) conform to the form of the inequality lemma, which can be known from the inequality lemma, because a 3 is bounded, namely
Figure PCTCN2021124567-appb-000069
such that |a 3 |<A 3 ,
Figure PCTCN2021124567-appb-000070
so
Figure PCTCN2021124567-appb-000071
because
Figure PCTCN2021124567-appb-000072
Bounded, we can get -δ -3 ρ 3 (t)<z 3- 3 ρ 3 (t), so for
Figure PCTCN2021124567-appb-000073
Ensure that the control error z3 is bounded and the active force u a is bounded. From the mathematical expression of the state equation, the state variables x3 and x4 are bounded, and they are both less than the pressure value of the hydraulic source P s ;
S3-2-4:根据式(18)求出
Figure PCTCN2021124567-appb-000074
对时间的导数
Figure PCTCN2021124567-appb-000075
S3-2-4: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000074
Derivative to Time
Figure PCTCN2021124567-appb-000075
Figure PCTCN2021124567-appb-000076
Figure PCTCN2021124567-appb-000076
其中
Figure PCTCN2021124567-appb-000077
存在一个正常数r M4,使得0>r 4>r M4
in
Figure PCTCN2021124567-appb-000077
There is a constant r M4 such that 0>r 4 >r M4 ;
进一步得:
Figure PCTCN2021124567-appb-000078
Further get:
Figure PCTCN2021124567-appb-000078
Figure PCTCN2021124567-appb-000079
remember
Figure PCTCN2021124567-appb-000079
考虑到
Figure PCTCN2021124567-appb-000080
且α i,
Figure PCTCN2021124567-appb-000081
ρ i是有界的,k 4为设计控制器时自选参数,故a 4有界;由(46)和(47)得:
considering
Figure PCTCN2021124567-appb-000080
and α i ,
Figure PCTCN2021124567-appb-000081
ρ i is bounded, k 4 is an optional parameter when designing the controller, so a 4 is bounded; from (46) and (47):
Figure PCTCN2021124567-appb-000082
Figure PCTCN2021124567-appb-000082
选取李雅普诺夫函数:
Figure PCTCN2021124567-appb-000083
Choose a Lyapunov function:
Figure PCTCN2021124567-appb-000083
(48)和(49)符合不等式引理形式,由不等式引理可知,因为a 4有界,即
Figure PCTCN2021124567-appb-000084
使得|a 4|<A 4
Figure PCTCN2021124567-appb-000085
所以
Figure PCTCN2021124567-appb-000086
由于
Figure PCTCN2021124567-appb-000087
有界,可得-δ -4ρ 4(t)<z 4- 4ρ 4(t),所以对于
Figure PCTCN2021124567-appb-000088
保证控制误差z 4有界和状态变量x 5有界。
(48) and (49) conform to the form of the inequality lemma, which can be known from the inequality lemma, because a 4 is bounded, namely
Figure PCTCN2021124567-appb-000084
such that |a 4 |<A 4 ,
Figure PCTCN2021124567-appb-000085
so
Figure PCTCN2021124567-appb-000086
because
Figure PCTCN2021124567-appb-000087
Bounded, we get -δ -4 ρ 4 (t)<z 4- 4 ρ 4 (t), so for
Figure PCTCN2021124567-appb-000088
It is guaranteed that the control error z4 is bounded and the state variable x5 is bounded.
进一步地,所述不等式引理表达式如下:
Figure PCTCN2021124567-appb-000089
Further, the inequality lemma is expressed as follows:
Figure PCTCN2021124567-appb-000089
如果a有界(即
Figure PCTCN2021124567-appb-000090
|a|<A),
Figure PCTCN2021124567-appb-000091
那么x必有界且
Figure PCTCN2021124567-appb-000092
If a is bounded (i.e.
Figure PCTCN2021124567-appb-000090
|a|<A),
Figure PCTCN2021124567-appb-000091
then x must be bounded and
Figure PCTCN2021124567-appb-000092
进一步地,所述利用初值提议证明当S3-2中的τ max=+∞时,所有闭环信号有界仍是正确的过程如下: Further, the process of using the initial value proposal to prove that when τ max =+∞ in S3-2, all closed-loop signals are bounded is still correct as follows:
因为
Figure PCTCN2021124567-appb-000093
所以
because
Figure PCTCN2021124567-appb-000093
so
Figure PCTCN2021124567-appb-000094
是非空集合;
Figure PCTCN2021124567-appb-000094
is a non-empty set;
Figure PCTCN2021124567-appb-000095
假设τ max<+∞,初值提议中强调存在一个时间常数t 1∈[0,τ max)使得
Figure PCTCN2021124567-appb-000096
造成矛盾,得出的假设是τ max=+∞,对于任何t∈[0,+∞),所有闭环系统信号是有界的,并且能够保证跟踪误差在规定边界内收敛。
Figure PCTCN2021124567-appb-000095
Assuming τ max <+∞, the initial value proposal emphasizes the existence of a time constant t 1 ∈ [0,τ max ) such that
Figure PCTCN2021124567-appb-000096
Contradictory, the resulting assumption is that τ max = +∞, for any t∈[0,+∞), all closed-loop system signals are bounded and the tracking error is guaranteed to converge within specified bounds.
由于采用了上述技术方案,本发明提供的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,可以解决液压系统中存在的各种不确定性问题(如,未知的摩擦效应,参数不确定以及负载变化)和未知的非线性问题(例如阀芯死区,外部扰动),控制器的设计不依赖精确的数学模型,只需要能够测量的状态信号,控制率的计算与现有的在反步自适应基础上开发的算法相比,计算过程简单,计算量很小,便于实时控制,更加容易工程实现;本发明可以保证跟踪误差的收敛速度和稳态精度;最后,实验结果表明,本发明的位置跟踪效果与传统的pid控制方法相比,稳态精度更高,跟踪位移相位滞后程度更小。当期望轨迹信号频率提高时,pid算法控制得到的实际跟踪位移相位滞后程度越大,幅值衰减越厉害,位移跟踪误差越大,本发明的控制算法在期望轨迹信号频率提高时,得到的实际控制位移滞后程度基本不变,跟踪误差始终在规定边界内收敛,幅值基本没有衰减。当期望信号频率不变,幅值变大时,pid算法的位移跟踪误差越大,本发明控制算法,仍然可以保证跟踪误差在规定边界内收敛,相位之后程度很小,幅值基本没有衰减。Due to the adoption of the above technical solution, the present invention provides a low-complexity control method for an asymmetric servo-hydraulic position tracking system, which can solve various uncertainties in the hydraulic system (eg, unknown friction effects, variable parameters, etc.). Determined and load changes) and unknown nonlinear problems (such as spool dead zone, external disturbances), the design of the controller does not rely on an accurate mathematical model, only the state signal that can be measured, the calculation of the control rate is consistent with the existing in Compared with the algorithm developed on the basis of backstepping adaptation, the calculation process is simple, the amount of calculation is small, it is convenient for real-time control, and it is easier to realize engineering; the invention can ensure the convergence speed and steady-state accuracy of tracking error; finally, the experimental results show that, Compared with the traditional pid control method, the position tracking effect of the present invention has higher steady-state precision and smaller tracking displacement phase lag. When the frequency of the desired track signal increases, the actual tracking displacement phase lag degree obtained by the pid algorithm control is greater, the amplitude attenuation is more severe, and the displacement tracking error is greater. The degree of control displacement hysteresis is basically unchanged, the tracking error always converges within the specified boundary, and the amplitude is basically not attenuated. When the frequency of the desired signal remains unchanged and the amplitude increases, the displacement tracking error of the pid algorithm is larger, and the control algorithm of the present invention can still ensure that the tracking error converges within the specified boundary, the degree after the phase is small, and the amplitude is basically not attenuated.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments described in this application. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1是本发明一种针对非对称伺服液压位置跟踪系统的低复杂控制方法流程图:Fig. 1 is a kind of low-complexity control method flow chart for the asymmetric servo hydraulic position tracking system of the present invention:
图2是单出杆的伺服液压系统模型框图;Figure 2 is a model block diagram of a servo hydraulic system with a single rod;
图3(a)是实验平台结构组成图Ⅰ;Figure 3(a) is the structure composition diagram I of the experimental platform;
图3(b)是实验平台结构组成图Ⅱ;Figure 3(b) is the structural composition diagram II of the experimental platform;
图3(c)是实验平台结构组成图Ⅲ;Figure 3(c) is the structural composition diagram III of the experimental platform;
图3(d)是实验平台结构组成图Ⅳ;Figure 3(d) is the structural composition diagram IV of the experimental platform;
图4是本发明控制器作用下的误差收敛仿真曲线图;Fig. 4 is the error convergence simulation curve graph under the action of the controller of the present invention;
图5是扰动作用下的跟踪误差收敛仿真曲线图;Fig. 5 is the simulation curve diagram of tracking error convergence under disturbance action;
图6是具有未知阀芯死区作用下的误差收敛仿真曲线图;Fig. 6 is the simulation curve diagram of error convergence under the action of unknown spool dead zone;
图7是具有未知阀芯死区作用下的阀芯位移仿真曲线图;Fig. 7 is a simulation curve diagram of spool displacement under the action of unknown spool dead zone;
图8是本发明控制方法与满足规定性能的具有阀芯未知死区的自适应反步控制方式(SPPFBSA)的误差收敛对比仿真曲线图;FIG. 8 is a simulation graph showing the comparison of error convergence between the control method of the present invention and the adaptive backstepping control mode (SPPFBSA) with unknown dead zone of the spool that satisfies the specified performance;
图9是本发明控制方法与SPPFBSA仿真计算时间与误差调节时间统计图;Fig. 9 is a statistical diagram of control method of the present invention and SPPFBSA simulation calculation time and error adjustment time;
图10是指令信号为TS=3s:x r=100sin((2*pi*t)/3)mm,本发明控制方法与pid对比位移跟踪实验图; Fig. 10 is the command signal is TS=3s: x r =100sin((2*pi*t)/3)mm, the control method of the present invention and pid contrast displacement tracking experiment diagram;
图11是指令信号为TS=3s:x r=100sin((2*pi*t)/3)mm,本发明控制方法的跟踪误差实验图; Figure 11 is an experimental diagram of the tracking error of the control method of the present invention when the command signal is TS=3s: x r =100sin((2*pi*t)/3)mm;
图12是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图; Figure 12 is an experimental diagram of displacement tracking compared with the control method of the present invention and pid when the command signal is TS=2s: x r =100sin(pi*t)mm;
图13是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法的跟踪误差实验图; Figure 13 is an experimental diagram of the tracking error of the control method of the present invention when the command signal is TS=2s: x r =100sin(pi*t)mm;
图14是指令信号为TS=1s:x r=50sin(2*pi*t)mm,本发明控制方法与pid对比位移跟踪实验图; Fig. 14 is an experiment diagram of displacement tracking comparing the control method of the present invention with pid when the command signal is TS=1s: x r =50sin(2*pi*t)mm;
图15是指令信号为TS=1s:x r=50sin(2*pi*t)mm,本发明控制方法的跟踪误差实验图; Figure 15 is an experimental diagram of the tracking error of the control method of the present invention when the command signal is TS=1s: x r =50sin(2*pi*t)mm;
图16是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图; Figure 16 is an experimental diagram of displacement tracking compared with the control method of the present invention and pid when the command signal is TS=2s: x r =100sin(pi*t)mm;
图17是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法的跟踪误差实验图; Figure 17 is an experimental diagram of the tracking error of the control method of the present invention when the command signal is TS=2s: x r =100sin(pi*t)mm;
图18是指令信号为TS=2s:x r=80sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图; Figure 18 is an experimental diagram of displacement tracking compared with the control method of the present invention and pid when the command signal is TS=2s: x r =80sin(pi*t)mm;
图19是指令信号为TS=2s:x r=80sin(pi*t)mm,本发明控制方法的跟踪误差实验图; Figure 19 is an experimental diagram of the tracking error of the control method of the present invention when the command signal is TS=2s: x r =80sin(pi*t)mm;
图20是指令信号为TS=2s:x r=60sin(pi*t)mm,本发明控制方法与pid对比位移 跟踪实验图; Figure 20 is an experimental diagram of displacement tracking compared with the control method of the present invention and pid when the command signal is TS=2s: x r =60sin(pi*t)mm;
图21是指令信号为TS=2s:x r=60sin(pi*t)mm,本发明控制方法的跟踪误差实验图。 FIG. 21 is an experimental diagram of the tracking error of the control method of the present invention when the command signal is TS=2s: x r =60sin(pi*t)mm.
具体实施方式Detailed ways
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:In order to make the technical solutions and advantages of the present invention clearer, the technical solutions in the embodiments of the present invention will be described clearly and completely below with reference to the accompanying drawings in the embodiments of the present invention:
下面结合附图对本发明具体实施方式做进一步说明:The specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings:
图1是本发明一种针对非对称伺服液压位置跟踪系统的低复杂控制方法流程图:一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,包括以下步骤:S1:建立单出杆的伺服液压系统模型;图2是单出杆的伺服液压系统模型框图;S2:根据单出杆的伺服液压系统模型,采用低复杂控制策略设计出单出杆的伺服液压系统的控制器;S3:根据单出杆的伺服液压系统的控制器及单出杆的伺服液压系统模型,证明单出杆的伺服液压系统的稳定性。1 is a flowchart of a low-complexity control method for an asymmetrical servo hydraulic position tracking system of the present invention: a low-complexity control method for an asymmetrical servo-hydraulic positional tracking system, comprising the following steps: S1: establish a Servo hydraulic system model; Figure 2 is a block diagram of the servo hydraulic system model with a single output rod; S2: According to the servo hydraulic system model of a single output rod, the controller of the single output rod servo hydraulic system is designed with a low-complex control strategy; S3: According to the controller of the single-rod servo-hydraulic system and the model of the single-rod servo-hydraulic system, the stability of the single-rod servo-hydraulic system is proved.
所述建立单出杆的伺服液压系统模型表达式的过程如下:The process of establishing the model expression of the servo-hydraulic system with a single rod is as follows:
首先,根据牛顿第二定律建立液压缸体的动力学模型:First, establish the dynamic model of the hydraulic cylinder according to Newton's second law:
Figure PCTCN2021124567-appb-000097
Figure PCTCN2021124567-appb-000097
力学方程(1)中额外项f(t)表示各种干扰(例如,未建模的摩擦效应,未建模的动力学,外部扰动等),x和m分别表示负载的位置和质量,B是粘性阻尼系数,K是负载的等效弹簧刚度,负载主要是惯性负载,因此,K=0;F=A 1*P 1-A 2*P 2是液压作动器输出的主动力,其中P 1,P 2是液压缸大小腔压力,可以利用压力传感器测量出来,A 1,A 2是大小腔活塞的有效面积。 The additional term f(t) in the mechanics equation (1) represents various disturbances (eg, unmodeled friction effects, unmodeled dynamics, external disturbances, etc.), x and m represent the position and mass of the load, respectively, B is the viscous damping coefficient, K is the equivalent spring stiffness of the load, and the load is mainly inertial load, therefore, K=0; F=A 1 *P 1 -A 2 *P 2 is the main power output by the hydraulic actuator, where P 1 , P 2 are the pressures of the large and small chambers of the hydraulic cylinder, which can be measured by a pressure sensor, and A 1 and A 2 are the effective areas of the pistons of the large and small chambers.
假设1:干扰项f(t)是有界的,即
Figure PCTCN2021124567-appb-000098
使得|f(t)|<f m,粘性阻尼系数B是不确定的有界正的参数,即
Figure PCTCN2021124567-appb-000099
使得
Figure PCTCN2021124567-appb-000100
本发明采用三位五通阀活塞作动器,负载压力动力学描述如下:
Assumption 1: The interference term f(t) is bounded, i.e.
Figure PCTCN2021124567-appb-000098
Such that |f(t)|<f m , the viscous damping coefficient B is an uncertain bounded positive parameter, namely
Figure PCTCN2021124567-appb-000099
make
Figure PCTCN2021124567-appb-000100
The present invention adopts a three-position five-way valve piston actuator, and the load pressure dynamics are described as follows:
Figure PCTCN2021124567-appb-000101
Figure PCTCN2021124567-appb-000101
Figure PCTCN2021124567-appb-000102
Figure PCTCN2021124567-appb-000102
式中V 1,V 2分别为有杆腔和无杆腔容积(V 1=V 01+A 1x,V 2=V 02-A 2x),V 01和V 02分别为活塞处于初始位置时,无杆腔和有杆腔容积,C t为液压缸内部的泄露系数,C e为液压缸的外泄露系数,β e为油液弹性模量,Q 1是无杆腔供(回)油流量,Q 2是有杆腔回(供)油流量,Q 1和Q 2计算公式如下: In the formula, V 1 and V 2 are the volumes of the rod cavity and the rod-less cavity respectively (V 1 =V 01 +A 1 x, V 2 =V 02 -A 2 x), and V 01 and V 02 are the initial positions of the piston, respectively C t is the leakage coefficient inside the hydraulic cylinder, C e is the external leakage coefficient of the hydraulic cylinder, β e is the elastic modulus of the oil, Q 1 is the supply (return) of the rodless cavity Oil flow, Q 2 is the return (supply) oil flow of the rod cavity, and the calculation formulas of Q 1 and Q 2 are as follows:
Figure PCTCN2021124567-appb-000103
Figure PCTCN2021124567-appb-000103
Figure PCTCN2021124567-appb-000104
Figure PCTCN2021124567-appb-000104
其中,
Figure PCTCN2021124567-appb-000105
是流量增益,s(Γ(x v))表达式如下:
in,
Figure PCTCN2021124567-appb-000105
is the flow gain, and s(Γ(x v )) is expressed as:
Figure PCTCN2021124567-appb-000106
Figure PCTCN2021124567-appb-000106
P s为液压系统供油压力,P r为液压系统回油压力,C d为节流口的流量系数,w是滑阀面积梯度,ρ是油液密度,x v是伺服阀的阀芯位移; P s is the oil supply pressure of the hydraulic system, P r is the oil return pressure of the hydraulic system, C d is the flow coefficient of the orifice, w is the area gradient of the spool valve, ρ is the oil density, and x v is the spool displacement of the servo valve ;
假设2:不确定参数内泄系数 Ct有界,即
Figure PCTCN2021124567-appb-000107
使得
Figure PCTCN2021124567-appb-000108
不确定参数外泄系数C e有界,即
Figure PCTCN2021124567-appb-000109
使得
Figure PCTCN2021124567-appb-000110
不确定参数油液弹性模量β e有界,即
Figure PCTCN2021124567-appb-000111
使得
Figure PCTCN2021124567-appb-000112
Assumption 2: The indeterminate parameter leakage coefficient Ct is bounded, that is
Figure PCTCN2021124567-appb-000107
make
Figure PCTCN2021124567-appb-000108
The uncertain parameter leakage coefficient C e is bounded, that is,
Figure PCTCN2021124567-appb-000109
make
Figure PCTCN2021124567-appb-000110
The uncertain parameter oil elastic modulus β e is bounded, namely
Figure PCTCN2021124567-appb-000111
make
Figure PCTCN2021124567-appb-000112
在液压作动器操作中,实际是通过电压或电流输入u来控制伺服阀的阀芯位移x v,进而获得所需要的对应的力,伺服阀的动态特性如下所示: In the operation of the hydraulic actuator, the spool displacement x v of the servo valve is actually controlled by the voltage or current input u to obtain the required corresponding force. The dynamic characteristics of the servo valve are as follows:
Figure PCTCN2021124567-appb-000113
Figure PCTCN2021124567-appb-000113
τ是伺服阀动力学模型的时间常数,u(t)是电流输入。τ is the time constant of the servo valve dynamics model and u(t) is the current input.
本文考虑了存在未知死区的阀芯位移Γ(x v),其表达式如下: In this paper, the spool displacement Γ(x v ) with unknown dead zone is considered, and its expression is as follows:
Figure PCTCN2021124567-appb-000114
Figure PCTCN2021124567-appb-000114
参数m r和m l代表死区特性曲线的左右斜率,参数b r和b l代表输入非线性的断点; The parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity;
假设3:参数m r,m l,b r,b l是未知的正数且m r=m l,在本文中,斜率上界是m max,b r的上界是
Figure PCTCN2021124567-appb-000115
b l的上界是
Figure PCTCN2021124567-appb-000116
阀芯死区可以表示为Γ(x v)=m(t)x v+d(t), m(t), d( t)表达式如下所示:
Assumption 3: The parameters m r , ml , br , bl are unknown positive numbers and m r = ml , in this paper, the upper bound of the slope is m max , and the upper bound of br is
Figure PCTCN2021124567-appb-000115
The upper bound of b l is
Figure PCTCN2021124567-appb-000116
The spool dead zone can be expressed as Γ(x v )=m(t)x v +d(t), m (t), d ( t ) expression is as follows:
Figure PCTCN2021124567-appb-000117
Figure PCTCN2021124567-appb-000117
Figure PCTCN2021124567-appb-000118
Figure PCTCN2021124567-appb-000118
由于m r,m l,b r,b l有界,故d(t)有界,记d(t)上界为
Figure PCTCN2021124567-appb-000119
Since m r , ml , br , and b l are bounded, d(t) is bounded, and the upper bound of d(t) is written as
Figure PCTCN2021124567-appb-000119
众所周知,伺服阀在电液执行器中是关键的机械部件,电流或电压控制伺服阀的阀芯位移,进而控制油腔抽入或抽出液压油,最后执行器执行相应的运动;显然,在伺服液压位置跟踪系统中必然存在阀芯死区非线性的问题,因此,有必要考虑这种问题的不利影响以获得更好的系统性能;此外,考虑到实际应用中难以获得死区模型精确的斜率以及间隔点,因此提出了一种鲁棒很强的新颖控制策略来解决这一问题;As we all know, the servo valve is a key mechanical component in the electro-hydraulic actuator. The current or voltage controls the displacement of the spool of the servo valve, and then controls the hydraulic oil to be drawn in or out of the oil chamber, and finally the actuator performs the corresponding movement; obviously, in the servo valve In the hydraulic position tracking system, there must be a nonlinear problem of the dead zone of the spool. Therefore, it is necessary to consider the adverse effects of this problem to obtain better system performance; in addition, considering that it is difficult to obtain an accurate slope of the dead zone model in practical applications and interval points, so a robust and strong novel control strategy is proposed to solve this problem;
为将液压非对称缸位置跟踪系统推导成状态空间表达式的形式,定义状态变量如下:x 1=x,
Figure PCTCN2021124567-appb-000120
x 3=P 1,x 4=P 2,x 5=x v,(1)到(6)动力学方程可以获得具有阀芯死区的状态方程如下:
In order to deduce the hydraulic asymmetric cylinder position tracking system into the form of state space expression, the state variables are defined as follows: x 1 =x,
Figure PCTCN2021124567-appb-000120
x 3 =P 1 , x 4 =P 2 , x 5 =x v , (1) to (6) the dynamic equations can obtain the state equation with the spool dead zone as follows:
Figure PCTCN2021124567-appb-000121
Figure PCTCN2021124567-appb-000121
其中
Figure PCTCN2021124567-appb-000122
in
Figure PCTCN2021124567-appb-000122
所述根据单出杆的伺服液压系统模型,采用低复杂控制策略设计出单出杆的伺服液压系统的控制器的过程如下:定义误差变量:The process of designing the controller of the servo-hydraulic system of the single-rod according to the servo-hydraulic system model of the single-rod and adopting the low-complexity control strategy is as follows: define the error variable:
z 1=x 1-x r z 2=x 21 z 3=F-α 2 z 4=x 53  (17) z 1 =x 1 -x r z 2 =x 21 z 3 =F-α 2 z 4 =x 53 (17)
其中,α 1,α 2,α 3是后续证明过程中获得的虚拟控制量,x 1r是液压位置跟踪系统的指令信号,F(F=A 1x 3-A 2x 4)是作动器输出的主动力;z 1是位置跟踪误差,z i i=2...4是控制误差;为了解决跟踪误差的瞬态和稳态问题且顺利选取虚拟控制量,四个正的光滑递减函数
Figure PCTCN2021124567-appb-000123
被选做规定性能函数;定义标准化误差ζ i,对z i i=1...4做误差转换,转换后的误差
Figure PCTCN2021124567-appb-000124
如下:
Among them, α 1 , α 2 , α 3 are the virtual control quantities obtained in the subsequent proof process, x 1r is the command signal of the hydraulic position tracking system, and F (F=A 1 x 3 -A 2 x 4 ) is the actuator The main power of the output; z 1 is the position tracking error, zi i = 2...4 is the control error; in order to solve the transient and steady-state problems of the tracking error and smoothly select the virtual control variable, four positive smooth decreasing functions
Figure PCTCN2021124567-appb-000123
is selected as the specified performance function; define the normalized error ζ i , do error transformation for zi i = 1...4, the transformed error
Figure PCTCN2021124567-appb-000124
as follows:
Figure PCTCN2021124567-appb-000125
Figure PCTCN2021124567-appb-000125
Figure PCTCN2021124567-appb-000126
Figure PCTCN2021124567-appb-000126
Figure PCTCN2021124567-appb-000127
Figure PCTCN2021124567-appb-000127
选取虚拟控制函数如下:The virtual control function is selected as follows:
Figure PCTCN2021124567-appb-000128
Figure PCTCN2021124567-appb-000128
Figure PCTCN2021124567-appb-000129
Figure PCTCN2021124567-appb-000129
Figure PCTCN2021124567-appb-000130
Figure PCTCN2021124567-appb-000130
伺服液压系统的控制器为:The controller of the servo hydraulic system is:
Figure PCTCN2021124567-appb-000131
Figure PCTCN2021124567-appb-000131
进一步地,所述根据单出杆的伺服液压系统的控制器及单出杆的伺服液压系统模型,证明单出杆的伺服液压系统的稳定性的过程如下:S3-1:利用初值定理,证明标准化误差向量在时间段t∈[0,τ max)时,在非空开集合Ω ζ中存在最大解;S3-2:当标准化误差向量在时间段t∈[0,τ max)上,在非空开集合Ω ζ中存在最大解时,虚拟控制器以及伺服液压系统的控制器,对于t∈[0,τ max)能保证闭环信号有界;S3-3:利用初值提议证明当S3-2中的τ max=+∞时,所有闭环信号有界仍是正确的。为了顺利完成控制器稳定性证明,提出一项引理,并且证明该引理的正确性; Further, described according to the controller of the servo hydraulic system of the single output rod and the servo hydraulic system model of the single output rod, the process of proving the stability of the servo hydraulic system of the single output rod is as follows: S3-1: Utilize the initial value theorem, Prove that when the normalized error vector is in the time period t∈[0,τ max ), there is a maximum solution in the non-empty open set Ω ζ ; S3-2: When the normalized error vector is in the time period t∈[0,τ max ), When there is a maximum solution in the non-empty open set Ωζ , the virtual controller and the controller of the servo-hydraulic system can guarantee that the closed-loop signal is bounded for t∈[0,τ max ); S3-3: Use the initial value proposal to prove that when When τ max = +∞ in S3-2, it is still true that all closed-loop signals are bounded. In order to successfully complete the controller stability proof, a lemma is proposed, and the correctness of the lemma is proved;
所述不等式引理表达式如下:
Figure PCTCN2021124567-appb-000132
如果a有界(即
Figure PCTCN2021124567-appb-000133
|a|<A),
Figure PCTCN2021124567-appb-000134
那么x必有界且
Figure PCTCN2021124567-appb-000135
The inequality lemma expression is as follows:
Figure PCTCN2021124567-appb-000132
If a is bounded (i.e.
Figure PCTCN2021124567-appb-000133
|a|<A),
Figure PCTCN2021124567-appb-000134
then x must be bounded and
Figure PCTCN2021124567-appb-000135
证明:prove:
因为
Figure PCTCN2021124567-appb-000136
because
Figure PCTCN2021124567-appb-000136
所以
Figure PCTCN2021124567-appb-000137
so
Figure PCTCN2021124567-appb-000137
当|x|>A时,
Figure PCTCN2021124567-appb-000138
When |x|>A,
Figure PCTCN2021124567-appb-000138
所以
Figure PCTCN2021124567-appb-000139
so
Figure PCTCN2021124567-appb-000139
基于位置误差,误差变量(17)与标准化误差ζ i(18)的关系,x 1,x 2,F,x 5可以重新写成:x 1=ζ 1ρ 1+x r x 2=ζ 2ρ 21 F=ζ 3ρ 32 x 5=ζ 4ρ 43  (24) Based on the position error, the relationship between the error variable (17) and the normalized error ζ i (18), x 1 , x 2 , F, x 5 can be rewritten as: x 11 ρ 1 +x r x 22 ρ 21 F=ζ 3 ρ 32 x 54 ρ 43 (24)
对(18)中的ζ i(i=1...4)直接求导,可以得到: Direct derivation of ζ i (i=1...4) in (18), we can get:
Figure PCTCN2021124567-appb-000140
Figure PCTCN2021124567-appb-000140
Figure PCTCN2021124567-appb-000141
Figure PCTCN2021124567-appb-000141
Figure PCTCN2021124567-appb-000142
Figure PCTCN2021124567-appb-000142
其中:
Figure PCTCN2021124567-appb-000143
in:
Figure PCTCN2021124567-appb-000143
Figure PCTCN2021124567-appb-000144
Figure PCTCN2021124567-appb-000144
通过定义标准化误差向量ζ=[ζ 1234] T,(25)-(28)能够写成如下形式: By defining the normalized error vector ζ = [ζ 1 , ζ 2 , ζ 3 , ζ 4 ] T , (25)-(28) can be written as follows:
Figure PCTCN2021124567-appb-000145
Figure PCTCN2021124567-appb-000145
定义开集合:
Figure PCTCN2021124567-appb-000146
Define an open set:
Figure PCTCN2021124567-appb-000146
进一步地,利用初值定理,证明标准化误差向量在时间段t∈[0,τ max)时,在非空开 集合Ω ζ中存在最大解的过程如下:Ω ζ是非空的开集合,选择性能函数ρ i时满足ρ i(0)>min{δ -i- i}|z i(0)|,i=1...4由此可以推导出|ζ i(0)|<min{δ -i- i},i=1...4,因此,对于式(29)ζ(0)∈Ω ζ;此外,由于期望的追踪轨迹x r,性能函数ρ i(t),i=1...4,中间控制信号α i,i=1...3和控制率u是连续光滑可导的,阀芯死区位置跟踪系统的状态方程中的动力学变量是连续可导的函数,故式标准化误差向量中函数L(t,ζ)关于时间t是分段连续的,且在开集合Ω ζ中,ζ满足利普希茨条件;不等式引理中的条件都满足,所以在时间段[0,τ max)中,标准化误差向量存在唯一的最大解ζ(t)∈Ω ζ,对于
Figure PCTCN2021124567-appb-000147
都能保证ζ i(t)∈Ω ζ,i=1...4;
Further, using the initial value theorem, it is proved that when the normalized error vector is in the time period t∈[0,τ max ), there is a maximum solution in the non-empty open set Ω ζ as follows: Ω ζ is a non-empty open set, and the selection performance When the function ρ i satisfies ρ i (0)>min{δ -i- i }|z i (0)|, i=1...4, it can be deduced |ζ i (0)|<min {δ −i i }, i=1...4, therefore, for Eq. (29) ζ (0)∈Ωζ; furthermore, due to the desired tracking trajectory x r , the performance function ρ i (t) , i=1...4, the intermediate control signals α i , i=1...3 and the control rate u are continuously smooth and derivable, the dynamic variables in the state equation of the spool dead zone position tracking system are continuous It is a derivable function, so the function L(t,ζ) in the normalized error vector of the formula is piecewise continuous with respect to time t, and in the open set Ω ζ , ζ satisfies the Lipschitz condition; the conditions in the inequality lemma are all is satisfied, so in the time period [0,τ max ), there is a unique maximum solution ζ(t)∈Ω ζ for the normalized error vector, for
Figure PCTCN2021124567-appb-000147
can guarantee ζ i (t)∈Ω ζ , i=1...4;
进一步地,所述当标准化误差向量在时间段t∈[0,τ max)上,在非空开集合Ω ζ中存在最大解时,虚拟控制器以及伺服液压系统的控制器,对于t∈[0,τ max)能保证闭环信号有界的过程如下: Further, when the normalized error vector has a maximum solution in the non-empty open set Ω ζ in the time period t∈[0,τ max ), the virtual controller and the controller of the servo hydraulic system, for t∈[ 0,τ max ) can ensure that the closed-loop signal is bounded as follows:
S3-2-1:根据式(18)求出
Figure PCTCN2021124567-appb-000148
对时间的导数
Figure PCTCN2021124567-appb-000149
S3-2-1: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000148
Derivative to Time
Figure PCTCN2021124567-appb-000149
Figure PCTCN2021124567-appb-000150
Figure PCTCN2021124567-appb-000150
其中
Figure PCTCN2021124567-appb-000151
存在一个正常数r M1,使得0>r 1>r M1
in
Figure PCTCN2021124567-appb-000151
There is a constant r M1 such that 0>r 1 >r M1 ;
将式(10),(24)和(19)带入(30)中得:Substituting equations (10), (24) and (19) into (30), we get:
Figure PCTCN2021124567-appb-000152
Figure PCTCN2021124567-appb-000152
Figure PCTCN2021124567-appb-000153
1(t)=r 1k 1;(32)
remember
Figure PCTCN2021124567-appb-000153
1 (t)=r 1 k 1 ; (32)
考虑到
Figure PCTCN2021124567-appb-000154
Figure PCTCN2021124567-appb-000155
ρ 2是有界的,由极值定理可知a 1有界;由(31)和(32)得:
Figure PCTCN2021124567-appb-000156
considering
Figure PCTCN2021124567-appb-000154
and
Figure PCTCN2021124567-appb-000155
ρ 2 is bounded, according to the extreme value theorem, we know that a 1 is bounded; from (31) and (32) we get:
Figure PCTCN2021124567-appb-000156
选取李雅普诺夫函数:Choose a Lyapunov function:
Figure PCTCN2021124567-appb-000157
Figure PCTCN2021124567-appb-000157
(33)和(34)符合不等式引理形式,由不等式引理可知,因为a 1有界(
Figure PCTCN2021124567-appb-000158
|a 1|<A 1),0<△ 1(t)<r M1k 1,所以
Figure PCTCN2021124567-appb-000159
因为
Figure PCTCN2021124567-appb-000160
有界,由(13)和(14)可得-δ -1ρ 1(t)<z 1- 1ρ 1(t),所以对于
Figure PCTCN2021124567-appb-000161
跟踪误差z 1在规定的边界内衰减;所以能够保证在时间段t∈[0,τ max)跟踪误差z 1在规定性能边界中收敛,因为指令是有界正弦信号,所以状态变量x 1是有界的;S3-2-2:根据式(18)求出
Figure PCTCN2021124567-appb-000162
对时间的导数
Figure PCTCN2021124567-appb-000163
(33) and (34) conform to the form of the inequality lemma, which is known by the inequality lemma, because a 1 is bounded (
Figure PCTCN2021124567-appb-000158
|a 1 |<A 1 ), 0<△ 1 (t)<r M1 k 1 , so
Figure PCTCN2021124567-appb-000159
because
Figure PCTCN2021124567-appb-000160
Bounded, from (13) and (14) we can get -δ -1 ρ 1 (t)<z 1- 1 ρ 1 (t), so for
Figure PCTCN2021124567-appb-000161
The tracking error z 1 decays within the specified bounds; so it can be guaranteed that the tracking error z 1 converges within the specified performance bounds in the time period t∈[0,τ max ), since the command is a bounded sinusoidal signal, the state variable x 1 is Bounded; S3-2-2: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000162
Derivative to Time
Figure PCTCN2021124567-appb-000163
Figure PCTCN2021124567-appb-000164
Figure PCTCN2021124567-appb-000164
其中
Figure PCTCN2021124567-appb-000165
存在一个正常数r M2,使得0>r 2>r M2;将式(10),(24) 和(20)带入(35)中得:
in
Figure PCTCN2021124567-appb-000165
There is a constant r M2 such that 0>r 2 >r M2 ; taking equations (10), (24) and (20) into (35), we get:
Figure PCTCN2021124567-appb-000166
Figure PCTCN2021124567-appb-000166
Figure PCTCN2021124567-appb-000167
remember
Figure PCTCN2021124567-appb-000167
Figure PCTCN2021124567-appb-000168
Figure PCTCN2021124567-appb-000168
考虑到
Figure PCTCN2021124567-appb-000169
Figure PCTCN2021124567-appb-000170
ρ i,是有界的,f(t)是未知有界的扰动项,B是有界的不确定参数,由极值定理可知a 2有界;由(36)和(37)得:
considering
Figure PCTCN2021124567-appb-000169
and
Figure PCTCN2021124567-appb-000170
ρ i , is bounded, f(t) is an unknown and bounded disturbance term, B is a bounded uncertain parameter, it can be known from the extreme value theorem that a 2 is bounded; from (36) and (37) we get:
Figure PCTCN2021124567-appb-000171
Figure PCTCN2021124567-appb-000171
选取李雅普诺夫函数:
Figure PCTCN2021124567-appb-000172
Choose a Lyapunov function:
Figure PCTCN2021124567-appb-000172
(38)和(39)符合不等式引理形式,由不等式引理可知,因为a 2有界
Figure PCTCN2021124567-appb-000173
使得|a 2|<A 2
Figure PCTCN2021124567-appb-000174
所以
Figure PCTCN2021124567-appb-000175
由于
Figure PCTCN2021124567-appb-000176
有界,由(13)和(14)可得-δ -2ρ 2(t)<z 2- 2ρ 2(t),所以对于
Figure PCTCN2021124567-appb-000177
能够保证控制误差z 2有界和状态变量x 2有界;
(38) and (39) conform to the form of the inequality lemma, which is known by the inequality lemma, because a 2 is bounded
Figure PCTCN2021124567-appb-000173
such that |a 2 |<A 2 ,
Figure PCTCN2021124567-appb-000174
so
Figure PCTCN2021124567-appb-000175
because
Figure PCTCN2021124567-appb-000176
Bounded, from (13) and (14) we can get -δ -2 ρ 2 (t)<z 2- 2 ρ 2 (t), so for
Figure PCTCN2021124567-appb-000177
It can ensure that the control error z 2 is bounded and the state variable x 2 is bounded;
S3-2-3:根据式(18)求出
Figure PCTCN2021124567-appb-000178
对时间的导数
Figure PCTCN2021124567-appb-000179
S3-2-3: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000178
Derivative to Time
Figure PCTCN2021124567-appb-000179
Figure PCTCN2021124567-appb-000180
Figure PCTCN2021124567-appb-000180
其中:
Figure PCTCN2021124567-appb-000181
存在一个正常数r M3,使得0>r 3>r M3;将式(10),(24),(11)和(21)带入(40)中得:
in:
Figure PCTCN2021124567-appb-000181
There is a constant r M3 such that 0>r 3 >r M3 ; put equations (10), (24), (11) and (21) into (40), we get:
Figure PCTCN2021124567-appb-000182
Figure PCTCN2021124567-appb-000182
Figure PCTCN2021124567-appb-000183
Figure PCTCN2021124567-appb-000183
记:△ 3(t)=r 3m(t)k 3h 1  (42) Note: △ 3 (t)=r 3 m(t)k 3 h 1 (42)
其中:
Figure PCTCN2021124567-appb-000184
其中:V 1=V 01+ A 1x,V 2=V 02-A 2x;在实际问题中,考虑作动器的安全运行,留出安全裕度(即根据物理结构,液压缸在中位附近上下最大可波动12厘米,所给指令信号,一般不超过10厘米。),这样我们可以保证h 1h 2h 3有界,即分别存在三个正数
Figure PCTCN2021124567-appb-000185
使得
Figure PCTCN2021124567-appb-000186
考虑到
Figure PCTCN2021124567-appb-000187
且α 1
Figure PCTCN2021124567-appb-000188
ρ i是有界的,m(t)为阀芯死区的未知斜率,m(t)是有界的(即
Figure PCTCN2021124567-appb-000189
),由极值定理可知a 3有界;由(41)和(42)得:
in:
Figure PCTCN2021124567-appb-000184
Among them: V 1 =V 01 + A 1 x, V 2 =V 02 -A 2 x; in practical problems, consider the safe operation of the actuator and leave a safety margin (that is, according to the physical structure, the hydraulic cylinder is in the middle The maximum fluctuation of up and down near the bit is 12 cm, and the given command signal generally does not exceed 10 cm.), so we can ensure that h 1 h 2 h 3 is bounded, that is, there are three positive numbers respectively.
Figure PCTCN2021124567-appb-000185
make
Figure PCTCN2021124567-appb-000186
considering
Figure PCTCN2021124567-appb-000187
and α 1 ,
Figure PCTCN2021124567-appb-000188
ρ i is bounded, m(t) is the unknown slope of the spool dead zone, m(t) is bounded (ie
Figure PCTCN2021124567-appb-000189
), from the extreme value theorem we know that a 3 is bounded; from (41) and (42) we get:
Figure PCTCN2021124567-appb-000190
Figure PCTCN2021124567-appb-000190
选取李雅普诺夫函数:
Figure PCTCN2021124567-appb-000191
Choose a Lyapunov function:
Figure PCTCN2021124567-appb-000191
(43)和(44)符合不等式引理形式,由不等式引理可知,因为a 3有界
Figure PCTCN2021124567-appb-000192
使得|a 3|<A 3
Figure PCTCN2021124567-appb-000193
所以
Figure PCTCN2021124567-appb-000194
由于
Figure PCTCN2021124567-appb-000195
有界,由(13)和(14)可得-δ -3ρ 3(t)<z 3- 3ρ 3(t),所以对于
Figure PCTCN2021124567-appb-000196
能够保证控制误差z 3有界和主动力u a有界,从数学模型中H 1和H 2的数学表达式上看,状态变量x 3和x 4是有界的,并且它们都小于液压源P s的压力值;
(43) and (44) conform to the form of the inequality lemma, which is known by the inequality lemma, because a 3 is bounded
Figure PCTCN2021124567-appb-000192
such that |a 3 |<A 3 ,
Figure PCTCN2021124567-appb-000193
so
Figure PCTCN2021124567-appb-000194
because
Figure PCTCN2021124567-appb-000195
Bounded, from (13) and (14) we can get -δ -3 ρ 3 (t)<z 3- 3 ρ 3 (t), so for
Figure PCTCN2021124567-appb-000196
It can ensure that the control error z 3 is bounded and the active force u a is bounded. From the mathematical expressions of H 1 and H 2 in the mathematical model, the state variables x 3 and x 4 are bounded, and they are all smaller than the hydraulic source The pressure value of P s ;
S3-2-4:根据式(18)求出
Figure PCTCN2021124567-appb-000197
对时间的导数
Figure PCTCN2021124567-appb-000198
S3-2-4: Calculated according to formula (18)
Figure PCTCN2021124567-appb-000197
Derivative to Time
Figure PCTCN2021124567-appb-000198
Figure PCTCN2021124567-appb-000199
Figure PCTCN2021124567-appb-000199
其中
Figure PCTCN2021124567-appb-000200
存在一个正常数r M4,使得0>r 4>r M4
in
Figure PCTCN2021124567-appb-000200
There is a constant r M4 such that 0>r 4 >r M4 ;
将式(10),(24)和(22)带入(45)中得:Substituting equations (10), (24) and (22) into (45), we get:
Figure PCTCN2021124567-appb-000201
Figure PCTCN2021124567-appb-000201
记:remember:
Figure PCTCN2021124567-appb-000202
Figure PCTCN2021124567-appb-000202
考虑到
Figure PCTCN2021124567-appb-000203
且α i,
Figure PCTCN2021124567-appb-000204
ρ i是有界的,k 4为设计控制器时自选参数,故a 4有界;由(46)和(47)得:
considering
Figure PCTCN2021124567-appb-000203
and α i ,
Figure PCTCN2021124567-appb-000204
ρ i is bounded, k 4 is an optional parameter when designing the controller, so a 4 is bounded; from (46) and (47):
Figure PCTCN2021124567-appb-000205
Figure PCTCN2021124567-appb-000205
选取李雅普诺夫函数:
Figure PCTCN2021124567-appb-000206
Choose a Lyapunov function:
Figure PCTCN2021124567-appb-000206
(48)和(49)符合不等式引理形式,由不等式引理可知,因为a 4有界
Figure PCTCN2021124567-appb-000207
使得| a 4|<A 4
Figure PCTCN2021124567-appb-000208
所以
Figure PCTCN2021124567-appb-000209
由于
Figure PCTCN2021124567-appb-000210
有界,由(13)和(14)可得-δ -4ρ 4(t)<z 4- 4ρ 4(t),所以对于
Figure PCTCN2021124567-appb-000211
我们能够保证控制误差z 4有界和状态变量x 5有界。
(48) and (49) conform to the form of the inequality lemma, which is known by the inequality lemma, because a 4 is bounded
Figure PCTCN2021124567-appb-000207
such that |a 4 |<A 4 ,
Figure PCTCN2021124567-appb-000208
so
Figure PCTCN2021124567-appb-000209
because
Figure PCTCN2021124567-appb-000210
Bounded, from (13) and (14) we get -δ -4 ρ 4 (t)<z 4- 4 ρ 4 (t), so for
Figure PCTCN2021124567-appb-000211
We can guarantee that the control error z4 is bounded and the state variable x5 is bounded.
进一步地,所述利用初值提议证明当S3-2中的τ max=+∞时,所有闭环信号有界仍是正确的过程如下:从上证明中可知,
Figure PCTCN2021124567-appb-000212
是有界的,即
Figure PCTCN2021124567-appb-000213
从式(23)可知
Figure PCTCN2021124567-appb-000214
这是非空集合;很明显
Figure PCTCN2021124567-appb-000215
因此,假设τ max<+∞,初值提议中强调存在一个时间常数t 1∈[0,τ max)使得
Figure PCTCN2021124567-appb-000216
很明显造成矛盾。所以我们得出正确的假设是τ max=+∞,因此,对于任何t∈[0,+∞),所有闭环系统信号是有界的,并且能够保证跟踪误差在规定边界内收敛。
Further, the process of using the initial value proposal to prove that when τ max =+∞ in S3-2, all closed-loop signals are bounded is still correct as follows: From the above proof, we can see that,
Figure PCTCN2021124567-appb-000212
is bounded, i.e.
Figure PCTCN2021124567-appb-000213
From equation (23), it can be seen that
Figure PCTCN2021124567-appb-000214
This is a non-empty collection; obviously
Figure PCTCN2021124567-appb-000215
Therefore, assuming τ max <+∞, the initial value proposal emphasizes the existence of a time constant t 1 ∈ [0,τ max ) such that
Figure PCTCN2021124567-appb-000216
There is clearly a contradiction. So we arrive at the correct assumption that τ max = +∞, so for any t∈[0,+∞) all closed-loop system signals are bounded and the tracking error is guaranteed to converge within the specified bounds.
考虑初始值问题:ζ(t)=ν(t,ζ),ζ(0)=ζ 0∈Ω ζ  (50) Consider the initial value problem: ζ(t) = ν(t, ζ), ζ(0) = ζ 0 ∈Ω ζ (50)
其中ν:R+×Ω ζ→R n是连续函数向量,并且Ω ζ∈R n是非空的开集合。 where ν:R+×Ω ζ →R n is a continuous function vector, and Ω ζ ∈R n is a non-empty open set.
定义1:初值问题(50)的一个解ζ(t),没有适当的右扩展,则该解最大;Definition 1: A solution ζ(t) of the initial value problem (50), without proper right extension, the solution is the largest;
初值定理如下:对于初值问题(12),如果ν(t,ζ)满足:(1)在t>0时,关于ζ,ν(t,ζ)满足局部Lipschitz条件;(2)对于ζ(t)∈Ω ζ,ν(t,ζ)满足分段连续;(3)对于ζ(t)∈Ω ζ,ν(t,ζ)关于t满足局部可积;那么在时间段t∈[0,τ max)上,初值问题(50)存在一个解ζ(t)∈Ω ζ,其中τ max>0。初值提议如下:假设初值定理成立;对在时间段[0,τ max)上的最大解ζ(t)并且集合
Figure PCTCN2021124567-appb-000217
当τ max<∞时,存在时间常数t 1∈[0,τ max),使得
Figure PCTCN2021124567-appb-000218
The initial value theorem is as follows: For the initial value problem (12), if ν(t, ζ) satisfies: (1) when t>0, ν(t, ζ) satisfies the local Lipschitz condition for ζ; (2) for ζ (t)∈Ω ζ , ν(t,ζ) is piecewise continuous; (3) For ζ(t)∈Ω ζ , ν(t,ζ) is locally integrable with respect to t; then in the time period t∈[ 0, τ max ), there is a solution to the initial value problem (50) ζ(t)∈Ω ζ , where τ max >0. The initial value proposal is as follows: Assuming the initial value theorem holds; for the maximum solution ζ(t) on the time period [0, τ max ) and the set
Figure PCTCN2021124567-appb-000217
When τ max <∞, there exists a time constant t 1 ∈ [0, τ max ) such that
Figure PCTCN2021124567-appb-000218
进一步地,所述不等式引理表达式如下:
Figure PCTCN2021124567-appb-000219
Further, the inequality lemma is expressed as follows:
Figure PCTCN2021124567-appb-000219
如果a有界(即
Figure PCTCN2021124567-appb-000220
|a|<A),
Figure PCTCN2021124567-appb-000221
那么x必有界且
Figure PCTCN2021124567-appb-000222
If a is bounded (i.e.
Figure PCTCN2021124567-appb-000220
|a|<A),
Figure PCTCN2021124567-appb-000221
then x must be bounded and
Figure PCTCN2021124567-appb-000222
为了验证本发明控制器设计的正确性,搭建实验平台,进行实验软件程序调试,搭建实验平台主要分为软件设计和硬件线路连接两部分;图3(a)是实验平台结构组成图Ⅰ;图3(b)是实验平台结构组成图Ⅱ;图3(c)是实验平台结构组成图Ⅲ;图3(d)是实验平台结构组成图Ⅳ;实验平台的硬件主要分成三部分,第一部分是执行机构,主要包括液压源系统(如蓄能器,液压泵等),伺服阀和单出杆的液压缸作动器,本发明实验平台采用三位五通伺服阀,其型号为FD234-01K004VSX2A。第二部分是信号采集机构,信号采集机构硬件主要是信号转换板和A/D板卡,信号转换板的功能是电压电流信号相互转换,具体来说,将传感器信号4-20ma电流信号转换成1-5v电压信号,将±5v的电压信号转换到±10ma的电流信号,本发明实验平台采用的A/D板卡是ADT882,其功能是实现模拟量连续信号与数字量离散信号的相互转换。第三部分是控制机构,控制机构的核心是工业控制计算机,本发明实验平台采用工控机pc104,其功能实现软件平台的搭建以及控制算法的实现。硬件线路连接主要 指,各个传感器信号线以及伺服阀控制电流信号线与信号转换板的连接,信号转换板与ADT882板卡的连接。软件设计环境是VC++6.0,window操作系统,软件程序主要包括编写界面函数,配置A/D板卡,设置中断程序完成信号采集,控制量计算以及输出;In order to verify the correctness of the controller design of the present invention, an experimental platform is built, and the experimental software program is debugged. The experimental platform is mainly divided into two parts: software design and hardware circuit connection; Fig. 3 (a) is the structural composition diagram I of the experimental platform; Fig. 3(b) is the structural composition of the experimental platform II; Fig. 3(c) is the structural composition of the experimental platform III; Fig. 3(d) is the structural composition of the experimental platform IV; the hardware of the experimental platform is mainly divided into three parts, the first part is The actuator mainly includes a hydraulic source system (such as accumulator, hydraulic pump, etc.), a servo valve and a single-rod hydraulic cylinder actuator. The experimental platform of the present invention adopts a three-position five-way servo valve, and its model is FD234-01K004VSX2A . The second part is the signal acquisition mechanism. The hardware of the signal acquisition mechanism is mainly the signal conversion board and the A/D board. The function of the signal conversion board is to convert the voltage and current signals to each other. Specifically, the sensor signal 4-20ma current signal is converted into 1-5v voltage signal, convert the voltage signal of ±5v to the current signal of ±10ma, the A/D board used in the experiment platform of the present invention is ADT882, its function is to realize the mutual conversion of analog continuous signal and digital discrete signal . The third part is the control mechanism. The core of the control mechanism is the industrial control computer. The experimental platform of the present invention adopts the industrial computer pc104, and its function realizes the construction of the software platform and the realization of the control algorithm. The hardware line connection mainly refers to the connection between each sensor signal line and the servo valve control current signal line and the signal conversion board, and the connection between the signal conversion board and the ADT882 board. The software design environment is VC++6.0, window operating system, the software program mainly includes writing interface functions, configuring A/D board, setting interrupt program to complete signal acquisition, control quantity calculation and output;
进一步地,调试实验,优化参数,直到实验结果达到预期的控制效果;第一步:调节本发明算法中规定边界的边界初值ρ i0,误差收敛速率的上界h i以及收敛误差稳态残差集上界值ρ i∞,其中i=1...4。边界初值ρ i0尽量大,误差收敛速率上界h i尽量小,收敛误差稳态残差集上界值ρ i∞尽量大;第二步:调节虚拟控制率增益k 1,k 2,k 3,k 4,当控制率增益k i调到合适值后;第三步:慢慢适当缩小边界初值ρ i0,增大误差收敛速率的上界h i,减小收敛误差稳态残差集上界值ρ i∞,直到达到预期的控制效果。 Further, debug the experiment and optimize the parameters until the experimental results reach the expected control effect; the first step: adjust the initial value ρ i0 of the boundary specified in the algorithm of the present invention, the upper bound hi of the error convergence rate and the steady-state residual of the convergence error. Difference upper bound value ρ i∞ , where i=1...4. The initial value of the boundary ρ i0 should be as large as possible, the upper bound of the error convergence rate hi should be as small as possible, and the upper bound of the steady-state residual set of the convergence error should be as large as possible; the second step: adjust the virtual control rate gains k 1 , k 2 , k 3 , k 4 , when the control rate gain ki is adjusted to an appropriate value; the third step: slowly and appropriately reduce the initial value of the boundary ρ i0 , increase the upper bound hi of the error convergence rate, and reduce the steady-state residual error of the convergence error Set the upper bound value ρ i∞ until the desired control effect is achieved.
图4是本发明控制器作用下的误差收敛仿真曲线图,从图4中可以看出,本发明控制器可以保证位移跟踪误差的收敛速度和控制精度;图5是扰动作用下的跟踪误差收敛仿真曲线图;图5所示系统模型在强扰动f(t)=9000sin(10t)作用下的本发明控制器与反步控制器位移跟踪误差对比曲线,从图4和图5对比可以看出,强扰动的存在对反步控制器的控制效果影响很大,使得位移跟踪误差增大,波动频率变高。然而,从图4和图5中也可以看出,本发明控制器对强扰动具有很强的抑制作用,仍可以保证收敛误差的瞬态和稳态性能。Fig. 4 is the simulation curve diagram of error convergence under the action of the controller of the present invention, as can be seen from Fig. 4, the controller of the present invention can ensure the convergence speed and control accuracy of the displacement tracking error; Fig. 5 is the tracking error convergence under the disturbance action Simulation curve; the comparison curve of the displacement tracking error of the controller of the present invention and the backstepping controller under the action of the strong disturbance f(t)=9000sin(10t) of the system model shown in Fig. 5 can be seen from the comparison of Fig. 4 and Fig. 5 , the existence of strong disturbance has a great influence on the control effect of the backstep controller, which increases the displacement tracking error and the fluctuation frequency. However, it can also be seen from FIG. 4 and FIG. 5 that the controller of the present invention has a strong inhibitory effect on strong disturbances, and can still ensure the transient and steady-state performance of the convergence error.
图6是具有未知阀芯死区作用下的误差收敛仿真曲线图;图7是具有未知阀芯死区作用下的阀芯位移仿真曲线图;图6和图7验证本文提出的低复杂控制方案处理未知阀芯死区问题具有更好的鲁棒性。在系统模型中加入阀芯未知死区非线性,为了更好的体现出阀芯死区的未知非线性特性,本文采用时变的死区模型斜率m(t)=1+0.3sin(2t),时变死区模型的间断点bl=br=0.3|sin(2t)|,从图7中可以看出,本发明控制器可以有效的补偿阀芯未知死区的不利影响,从图6中可以看出,系统即使存在未知的阀芯死区问题,本发明控制器仍能很好的保证跟踪误差的收敛速度和稳态精度。Figure 6 is the simulation curve of error convergence under the action of unknown spool dead zone; Figure 7 is the simulation curve of spool displacement under the action of unknown spool dead zone; Figures 6 and 7 verify the low-complexity control scheme proposed in this paper It has better robustness to deal with unknown spool dead zone problem. The unknown dead zone nonlinearity of the valve core is added to the system model. In order to better reflect the unknown nonlinear characteristics of the valve core dead zone, this paper adopts the time-varying dead zone model slope m(t)=1+0.3sin(2t) , the discontinuous point bl=br=0.3|sin(2t)| of the time-varying dead zone model, it can be seen from Fig. 7 that the controller of the present invention can effectively compensate the adverse effects of the unknown dead zone of the spool. From Fig. 6 It can be seen that even if there is an unknown dead zone problem of the spool in the system, the controller of the present invention can still well guarantee the convergence speed and steady-state accuracy of the tracking error.
图8是本发明控制方法与满足规定性能的具有阀芯未知死区的自适应反步控制方式(SPPFBSA)的误差收敛对比仿真曲线图;图9是本发明控制方法与SPPFBSA仿真计算时间与误差调节时间统计图;从图8中可以看出两种控制器都可以保证位移跟踪误差的收敛速度和稳态精度,但是从图9中可以看出,在仿真运行时间上,本发明控制器与SPPFBSA控制器相比减少91.7%,在误差收敛调节时间上减少95.5%。由于本发明控制器设计对模型依赖程度低,与基于反步自适应基础上开发算法相比,计算量很小,并且不用在线学习,故便于实时控制,易于工程实现。Fig. 8 is a comparative simulation graph of error convergence between the control method of the present invention and the adaptive backstepping control method (SPPFBSA) with unknown dead zone of the spool that meets the specified performance; Fig. 9 is the simulation calculation time and error of the control method of the present invention and SPPFBSA Adjustment time statistics chart; it can be seen from Figure 8 that both controllers can ensure the convergence speed and steady-state accuracy of the displacement tracking error, but as can be seen from Figure 9, in the simulation running time, the controller of the present invention and Compared with the SPPFBSA controller, it is reduced by 91.7%, and the error convergence adjustment time is reduced by 95.5%. Because the controller design of the invention has low dependence on the model, compared with the algorithm developed on the basis of backstepping self-adaptation, the calculation amount is small, and online learning is not required, so it is convenient for real-time control and engineering realization.
图10是指令信号为TS=3s:x r=100sin((2*pi*t)/3)mm,本发明控制方法与pid对比位移跟踪实验图;图11是指令信号为TS=3s:x r=100sin((2*pi*t)/3)mm,本发明控制方法的跟踪误差实验图;图12是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图;图13是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法的跟踪误差实验图;图14是指令信号为TS=1s:x r=50sin(2*pi*t)mm,本发明控制方法与pid对比位移跟踪实验图;图15是指令信号为TS=1s:x r=50sin(2*pi*t)mm,本发明控制方法的跟踪误差实验图;图16是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图;图17是指令信号为TS=2s:x r=100sin(pi*t)mm,本发明控制方法的跟踪误差实验图;图18是指令信号为TS=2s:x r=80sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图;图19是指令信号为TS=2s:x r=80sin(pi*t)mm,本发明控制方 法的跟踪误差实验图;图20是指令信号为TS=2s:x r=60sin(pi*t)mm,本发明控制方法与pid对比位移跟踪实验图;图21是指令信号为TS=2s:x r=60sin(pi*t)mm,本发明控制方法的跟踪误差实验图;从图11,图13,图15,图17,图19和图21中可以看出,不论指令信号的频率和幅值如何变化,本发明控制器可以保证跟踪误差在规定的性能边界中收敛,因此本发明控制器可以保证跟踪误差的收敛速度和稳态精度。从图10,图12,图14,图16,图18和图20中任何一图中可以看出,本发明控制器得到的位移跟踪曲线在缸体上升过程中几乎只有很小的相位滞后,与缸体上升过程相比,在缸体下降时,位移跟踪曲线相位滞后程度较大,但是,本发明控制器的控制效果在位移跟踪的整个过程中,位移跟踪曲线都要比pid位移跟踪曲线相位滞后程度小。 Fig. 10 is the command signal TS=3s: x r =100sin((2*pi*t)/3) mm, the control method of the present invention is compared with the pid displacement tracking experiment diagram; Fig. 11 is the command signal TS=3s: x r =100sin((2*pi*t)/3)mm, the tracking error experimental diagram of the control method of the present invention; Fig. 12 is the command signal TS=2s: x r =100sin(pi*t)mm, the present invention controls Method and pid contrast displacement tracking experimental diagram; Figure 13 is the command signal is TS=2s: x r =100sin(pi*t)mm, the tracking error experimental diagram of the control method of the present invention; Figure 14 is the command signal is TS=1s: x r =50sin(2*pi*t)mm, the control method of the present invention is compared with the pid displacement tracking experimental diagram; Fig. 15 is the command signal is TS=1s: x r =50sin(2*pi*t)mm, the present invention The experimental diagram of the tracking error of the control method; Figure 16 is the command signal TS=2s: x r =100sin(pi*t)mm, the control method of the present invention is compared with the pid displacement tracking experimental diagram; Figure 17 is the command signal TS=2s : x r =100sin(pi*t)mm, the tracking error experimental diagram of the control method of the present invention; Fig. 18 is the command signal TS=2s: x r =80sin(pi*t)mm, the control method of the present invention is compared with pid Displacement tracking experiment diagram; Fig. 19 is the command signal TS=2s: x r =80sin(pi*t)mm, the tracking error experiment diagram of the control method of the present invention; Fig. 20 is the command signal TS=2s: x r =60sin (pi*t)mm, the control method of the present invention and pid contrast displacement tracking experimental diagram; Figure 21 is the command signal is TS=2s: x r =60sin (pi*t)mm, the tracking error experimental diagram of the control method of the present invention; It can be seen from Figure 11, Figure 13, Figure 15, Figure 17, Figure 19 and Figure 21 that no matter how the frequency and amplitude of the command signal change, the controller of the present invention can ensure that the tracking error converges within the specified performance boundary, Therefore, the controller of the present invention can ensure the convergence speed and steady-state accuracy of the tracking error. It can be seen from any one of Fig. 10, Fig. 12, Fig. 14, Fig. 16, Fig. 18 and Fig. 20 that the displacement tracking curve obtained by the controller of the present invention has almost only a small phase lag during the upward process of the cylinder, Compared with the ascending process of the cylinder block, when the cylinder block descends, the phase lag degree of the displacement tracking curve is larger, but the control effect of the controller of the present invention is in the whole process of the displacement tracking, the displacement tracking curve is higher than the pid displacement tracking curve. The degree of phase lag is small.
综合图10-图13来看,当指令信号频率越高时,pid跟踪曲线相位滞后程度越高,幅值衰减越大。在稳态时,本发明控制器控制效果,在缸体上升过程时,相位滞后程度基本不变,在缸体下降过程中,相位滞后程度越来越小,幅值基本无衰减。当指令信号频率越高时,pid跟踪误差越来越大,而本发明控制器的跟踪误差基本不变,并且在规定的性能边界中收敛。10-13, when the frequency of the command signal is higher, the phase lag degree of the pid tracking curve is higher, and the amplitude attenuation is larger. In the steady state, the control effect of the controller of the present invention is that the phase lag degree is basically unchanged during the cylinder body ascending process, and the phase lag degree is getting smaller and smaller during the cylinder body descending process, and the amplitude is basically not attenuated. When the frequency of the command signal is higher, the pid tracking error becomes larger and larger, while the tracking error of the controller of the present invention is basically unchanged and converges within the specified performance boundary.
综合图17,图19和图21来看,当指令信号频率越高时,pid跟踪误差越来越大,而本发明控制器的跟踪误差基本不变,并且在规定的性能边界中收敛。17, 19 and 21, when the command signal frequency is higher, the pid tracking error becomes larger and larger, while the tracking error of the controller of the present invention is basically unchanged and converges within the specified performance boundary.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.

Claims (8)

  1. 一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征在于:包括以下步骤:A low-complexity control method for an asymmetric servo-hydraulic position tracking system, characterized in that it comprises the following steps:
    S1:建立单出杆的伺服液压系统模型;S1: Establish a servo hydraulic system model of a single rod;
    S2:根据单出杆的伺服液压系统模型,采用低复杂控制策略设计出单出杆的伺服液压系统的控制器;S2: According to the model of the servo-hydraulic system of the single-rod, the controller of the servo-hydraulic system of the single-rod is designed with a low-complex control strategy;
    S3:根据单出杆的伺服液压系统的控制器及单出杆的伺服液压系统模型,证明单出杆的伺服液压系统的稳定性。S3: According to the controller of the single-rod servo-hydraulic system and the single-rod servo-hydraulic system model, the stability of the single-rod servo-hydraulic system is proved.
  2. 根据权利要求1所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:所述建立单出杆的伺服液压系统模型表达式的过程如下:A low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 1, further characterized in that: the process of establishing the model expression of the servo-hydraulic system with a single output rod is as follows:
    根据牛顿第二定律建立液压缸体的动力学模型:The dynamic model of the hydraulic cylinder is established according to Newton's second law:
    Figure PCTCN2021124567-appb-100001
    Figure PCTCN2021124567-appb-100001
    其中:f(t)表示各种干扰,x和m分别表示负载的位置和质量,B是粘性阻尼系数,K是负载的等效弹簧刚度,当负载是惯性负载时,K=0,F=A 1*P 1-A 2*P 2是液压作动器输出的主动力,其中P 1,P 2是液压缸大小腔压力,A 1,A 2是大小腔活塞的有效面积; Where: f(t) represents various disturbances, x and m represent the position and mass of the load respectively, B is the viscous damping coefficient, K is the equivalent spring stiffness of the load, when the load is an inertial load, K=0, F= A 1 *P 1 -A 2 * P 2 is the main power output by the hydraulic actuator, wherein P 1 and P 2 are the pressures of the large and small chambers of the hydraulic cylinder, and A 1 and A 2 are the effective areas of the pistons of the large and small chambers;
    采用三位五通伺服阀,负载压力动力学通过如下公式表示:Using a 5/3-way servo valve, the load pressure dynamics is expressed by the following formula:
    Figure PCTCN2021124567-appb-100002
    Figure PCTCN2021124567-appb-100002
    Figure PCTCN2021124567-appb-100003
    Figure PCTCN2021124567-appb-100003
    式中:V 1,V 2分别为有杆腔和无杆腔容积,V 1=V 01+A 1x,V 2=V 02-A 2x,V 01和V 02分别为活塞处于初始位置时,无杆腔和有杆腔容积,C t为液压缸内部的泄露系数,C e为液压缸的外泄露系数,β e为油液弹性模量;Q 1是有杆腔液压油流量,Q 2是无杆腔液压油流量; In the formula: V 1 and V 2 are the volumes of the rod cavity and the rodless cavity respectively, V 1 =V 01 +A 1 x, V 2 =V 02 -A 2 x, V 01 and V 02 are the initial positions of the piston, respectively When , the volume of the rodless cavity and the rod cavity, C t is the leakage coefficient inside the hydraulic cylinder, C e is the external leakage coefficient of the hydraulic cylinder, β e is the elastic modulus of the oil; Q 1 is the hydraulic oil flow rate in the rod cavity, Q 2 is the hydraulic oil flow in the rodless cavity;
    其中:
    Figure PCTCN2021124567-appb-100004
    in:
    Figure PCTCN2021124567-appb-100004
    Figure PCTCN2021124567-appb-100005
    Figure PCTCN2021124567-appb-100005
    其中,
    Figure PCTCN2021124567-appb-100006
    是流量增益,s(Γ(x v))表达式如下:
    in,
    Figure PCTCN2021124567-appb-100006
    is the flow gain, and s(Γ(x v )) is expressed as:
    Figure PCTCN2021124567-appb-100007
    Figure PCTCN2021124567-appb-100007
    P s为液压系统供油压力,P r为液压系统回油压力,C d为节流口的流量系数,w是滑阀面积梯度,ρ是油液密度,x v是伺服阀的阀芯; P s is the oil supply pressure of the hydraulic system, P r is the oil return pressure of the hydraulic system, C d is the flow coefficient of the orifice, w is the area gradient of the spool valve, ρ is the oil density, and x v is the spool of the servo valve;
    通过电压或电流输入u来控制伺服阀的阀芯位移x v,进而获得所需要的对应的力,伺服阀的动态特性如下所示: The spool displacement x v of the servo valve is controlled by the voltage or current input u to obtain the required corresponding force. The dynamic characteristics of the servo valve are as follows:
    Figure PCTCN2021124567-appb-100008
    Figure PCTCN2021124567-appb-100008
    τ是伺服阀动力学模型的时间常数,u(t)是电流输入;τ is the time constant of the servo valve dynamics model, u(t) is the current input;
    考虑了存在未知死区的阀芯位移Γ(x v),其表达式如下: Considering the spool displacement Γ(x v ) with unknown dead zone, its expression is as follows:
    Figure PCTCN2021124567-appb-100009
    Figure PCTCN2021124567-appb-100009
    参数m r和m l代表死区特性曲线的左右斜率,参数b r和b l代表输入非线性的断点; The parameters m r and m l represent the left and right slopes of the dead zone characteristic curve, and the parameters br and b l represent the breakpoints of the input nonlinearity;
    阀芯死区表示为Γ(x v)=m(t)x v+d(t),m(t),d(t)表达式如下所示: The spool dead zone is expressed as Γ(x v )=m(t)x v +d(t), m(t), d(t) expression is as follows:
    Figure PCTCN2021124567-appb-100010
    Figure PCTCN2021124567-appb-100010
    Figure PCTCN2021124567-appb-100011
    Figure PCTCN2021124567-appb-100011
    由于m r,m l,b r,b l有界,故d(t)有界,记d(t)上界为
    Figure PCTCN2021124567-appb-100012
    Since m r , ml , br , and b l are bounded, d(t) is bounded, and the upper bound of d(t) is written as
    Figure PCTCN2021124567-appb-100012
    定义状态变量如下:x 1=x,
    Figure PCTCN2021124567-appb-100013
    x 3=P 1,x 4=P 2,x 5=x v,获得具有未知阀芯死区位置跟踪系统的状态方程如下:
    The state variables are defined as follows: x 1 =x,
    Figure PCTCN2021124567-appb-100013
    x 3 =P 1 , x 4 =P 2 , x 5 =x v , the state equation of the tracking system with unknown spool dead zone position is obtained as follows:
    Figure PCTCN2021124567-appb-100014
    Figure PCTCN2021124567-appb-100014
    其中:
    Figure PCTCN2021124567-appb-100015
    in:
    Figure PCTCN2021124567-appb-100015
    Figure PCTCN2021124567-appb-100016
    Figure PCTCN2021124567-appb-100016
  3. 根据权利要求1所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:所述根据单出杆的伺服液压系统模型,采用低复杂控制策略设计出单出杆的伺服液压系统的控制器的过程如下:The low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 1, further characterized in that: the single-outlet rod is designed with a low-complexity control strategy according to the servo-hydraulic system model of the single-outlet rod The process of the controller of the servo hydraulic system is as follows:
    定义误差变量:Define the error variable:
    z 1=x 1-x r z 2=x 21 z 3=F-α 2 z 4=x 53  (17) z 1 =x 1 -x r z 2 =x 21 z 3 =F-α 2 z 4 =x 53 (17)
    其中,α 1,α 2,α 3是虚拟控制量,x 1r是液压位置跟踪系统的指令信号,F(F=A 1x 3-A 2x 4)是作动器输出的主动力,z 1是位置跟踪误差,z ii=2...4是控制误差,四个正的光滑递减函数
    Figure PCTCN2021124567-appb-100017
    选做规定性能函数,定义标准化误差ζ i,对z ii=1...4做误差转换,转换后的误差
    Figure PCTCN2021124567-appb-100018
    如下:
    Among them, α 1 , α 2 , α 3 are virtual control variables, x 1r is the command signal of the hydraulic position tracking system, F (F=A 1 x 3 -A 2 x 4 ) is the active force output by the actuator, z 1 is the position tracking error, z i i=2...4 is the control error, four positive smooth decreasing functions
    Figure PCTCN2021124567-appb-100017
    Select the specified performance function, define the standardized error ζ i , do error conversion for zi i = 1...4, the converted error
    Figure PCTCN2021124567-appb-100018
    as follows:
    Figure PCTCN2021124567-appb-100019
    Figure PCTCN2021124567-appb-100019
    选取虚拟控制器如下:Select the virtual controller as follows:
    Figure PCTCN2021124567-appb-100020
    Figure PCTCN2021124567-appb-100020
    Figure PCTCN2021124567-appb-100021
    Figure PCTCN2021124567-appb-100021
    Figure PCTCN2021124567-appb-100022
    Figure PCTCN2021124567-appb-100022
    伺服液压系统的控制器为
    Figure PCTCN2021124567-appb-100023
    The controller of the servo hydraulic system is
    Figure PCTCN2021124567-appb-100023
  4. 根据权利要求1所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:所述根据单出杆的伺服液压系统的控制器及单出杆的伺服液压系统模型,证明单出杆的伺服液压系统的稳定性的过程如下:The low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 1, further characterized in that: the controller of the servo-hydraulic system based on the single-rod and the servo-hydraulic system model of the single-rod , the process of proving the stability of the single-rod servo-hydraulic system is as follows:
    S3-1:利用初值定理,证明标准化误差向量在时间段t∈[0,τ max)时,在非空开集合Ω ζ中存在最大解; S3-1: Using the initial value theorem, prove that the standardized error vector has a maximum solution in the non-empty open set Ω ζ in the time period t∈[0,τ max );
    S3-2:当标准化误差向量在时间段t∈[0,τ max)上,在非空开集合Ω ζ中存在最大解时,虚拟控制器以及伺服液压系统的控制器,对于t∈[0,τ max)能保证闭环信号有界; S3-2: When the normalized error vector has a maximum solution in the non-empty open set Ω ζ over the time period t∈[0,τ max ), the virtual controller and the controller of the servo hydraulic system, for t∈[0 ,τ max ) can ensure that the closed-loop signal is bounded;
    S3-3:利用初值提议证明当S3-2中的τ max=+∞时,所有闭环信号有界仍是正确的。 S3-3: Prove that when τ max =+∞ in S3-2, it is still correct that all closed-loop signals are bounded by using the initial value proposal.
  5. 根据权利要求4所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:所述利用初值定理,证明标准化误差向量在时间段t∈[0,τ max)时,在非空开集合Ω ζ中存在最大解: A low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 4, further characterized in that: the initial value theorem is used to prove that the normalized error vector is in the time period t∈[0,τ max ) When , there is a maximum solution in the non-empty open set Ω ζ :
    非空的开集合Ω ζ,选择性能函数ρ i时,满足:ρ i(0)>min{δ -i- i}|z i(0)|,i=1...4由此可得:|ζ i(0)|<min{δ -i- i},i=1...4,因此,标准化误差向量ζ(0)∈Ω ζ;由于期望的追踪轨迹x r,性能函数ρ i(t),i=1...4,中间控制信号α i,i=1...3和控制率u是连续光滑可导的,阀芯死区位置跟踪系统的状态方程中的动力学变量是连续可导的函数,故式标准化误差向量中函数L(t,ζ)关于时间t是分段连续的,且在开集合Ω ζ中,ζ满足利普希茨条件;初值定理中的条件都满足,所以在时间段[0,τ max)中,标准化误差向量存在唯一的最大解ζ(t)∈Ω ζ,对于
    Figure PCTCN2021124567-appb-100024
    都能保证ζ i(t)∈Ω ζ,i=1...4。
    For the non-empty open set Ω ζ , when the performance function ρ i is selected, it satisfies: ρ i (0)>min{δ -i- i }|z i (0)|, i=1...4 thus It can be obtained: |ζ i (0)|<min{δ -i- i }, i=1...4, therefore, the normalized error vector ζ(0)∈Ω ζ ; due to the expected tracking trajectory x r , the performance function ρ i (t), i=1...4, the intermediate control signal α i , i=1...3 and the control rate u are continuously smooth and steerable, the spool dead zone position tracks the state of the system The dynamic variables in the equation are continuously derivable functions, so the function L(t,ζ) in the standardized error vector is piecewise continuous with respect to time t, and in the open set Ω ζ , ζ satisfies the Lipschitz condition ; the conditions in the initial value theorem are all satisfied, so in the time period [0,τ max ), the standardized error vector has a unique maximum solution ζ(t)∈Ω ζ , for
    Figure PCTCN2021124567-appb-100024
    can guarantee ζ i (t)∈Ω ζ , i=1...4.
  6. 根据权利要求4所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:所述当标准化误差向量在时间段t∈[0,τ max)上,在非空开集合Ω ζ中存在最大解时,虚拟控制器以及伺服液压系统的控制器,对于t∈[0,τ max)能保证闭环信号有界的的过程如下: The low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 4, further characterized in that: when the normalized error vector is in the time period t∈[0,τ max ), in a non-null When there is a maximum solution in the open set Ω ζ , the virtual controller and the controller of the servo hydraulic system can guarantee the bounded process of the closed-loop signal for t∈[0,τ max ) as follows:
    S3-2-1:根据式(18)求出
    Figure PCTCN2021124567-appb-100025
    对时间的导数
    Figure PCTCN2021124567-appb-100026
    S3-2-1: Calculated according to formula (18)
    Figure PCTCN2021124567-appb-100025
    Derivative to Time
    Figure PCTCN2021124567-appb-100026
    Figure PCTCN2021124567-appb-100027
    Figure PCTCN2021124567-appb-100027
    其中
    Figure PCTCN2021124567-appb-100028
    存在一个正常数r M1,使得0>r 1>r M1
    in
    Figure PCTCN2021124567-appb-100028
    There is a constant r M1 such that 0>r 1 >r M1 ;
    进一步可得:Further available:
    Figure PCTCN2021124567-appb-100029
    Figure PCTCN2021124567-appb-100029
    Figure PCTCN2021124567-appb-100030
    remember
    Figure PCTCN2021124567-appb-100030
    1(t)=r 1k 1(32) 1 (t)=r 1 k 1 (32)
    考虑到
    Figure PCTCN2021124567-appb-100031
    Figure PCTCN2021124567-appb-100032
    ρ 2是有界的,由极值定理可知a 1有界;
    considering
    Figure PCTCN2021124567-appb-100031
    and
    Figure PCTCN2021124567-appb-100032
    ρ 2 is bounded, and a 1 is bounded by the extreme value theorem;
    由(31)和(32)得:From (31) and (32) we get:
    Figure PCTCN2021124567-appb-100033
    Figure PCTCN2021124567-appb-100033
    选取李雅普诺夫函数
    Figure PCTCN2021124567-appb-100034
    Choose the Lyapunov function
    Figure PCTCN2021124567-appb-100034
    (33)和(34)符合不等式引理形式,由不等式引理可知,因为a 1有界,即
    Figure PCTCN2021124567-appb-100035
    |a 1|<A 1,0<△ 1(t)<r M1k 1,所以
    Figure PCTCN2021124567-appb-100036
    因为
    Figure PCTCN2021124567-appb-100037
    有界,可得-δ -1ρ 1(t)<z 1- 1ρ 1(t),所以对于
    Figure PCTCN2021124567-appb-100038
    跟踪误差z 1在规定的边界内衰减;保证在时间段t∈[0,τ max)跟踪误差z 1在规定性能边界中收敛,因为指令是有界正弦信号,所以状态变量x 1是有界的;
    (33) and (34) conform to the form of the inequality lemma, which can be known from the inequality lemma, because a 1 is bounded, that is
    Figure PCTCN2021124567-appb-100035
    |a 1 |<A 1 , 0<△ 1 (t)<r M1 k 1 , so
    Figure PCTCN2021124567-appb-100036
    because
    Figure PCTCN2021124567-appb-100037
    Bounded, we can get -δ -1 ρ 1 (t)<z 1- 1 ρ 1 (t), so for
    Figure PCTCN2021124567-appb-100038
    The tracking error z 1 decays within the specified bounds; it is guaranteed that the tracking error z 1 converges within the specified performance bounds in the time period t∈[0,τ max ), since the command is a bounded sinusoidal signal, the state variable x 1 is bounded of;
    S3-2-2:根据式(18)求出
    Figure PCTCN2021124567-appb-100039
    对时间的导数
    Figure PCTCN2021124567-appb-100040
    S3-2-2: Calculated according to formula (18)
    Figure PCTCN2021124567-appb-100039
    Derivative to Time
    Figure PCTCN2021124567-appb-100040
    Figure PCTCN2021124567-appb-100041
    Figure PCTCN2021124567-appb-100041
    其中
    Figure PCTCN2021124567-appb-100042
    存在一个正常数r M2,使得0>r 2>r M2
    in
    Figure PCTCN2021124567-appb-100042
    There is a constant r M2 such that 0>r 2 >r M2 ;
    进一步可得:Further available:
    Figure PCTCN2021124567-appb-100043
    Figure PCTCN2021124567-appb-100043
    记:
    Figure PCTCN2021124567-appb-100044
    remember:
    Figure PCTCN2021124567-appb-100044
    考虑到
    Figure PCTCN2021124567-appb-100045
    Figure PCTCN2021124567-appb-100046
    ρ i,是有界的,f(t)是未知有界的扰动项,B是有界的不确定参数,由极值定理可知a 2有界;
    considering
    Figure PCTCN2021124567-appb-100045
    and
    Figure PCTCN2021124567-appb-100046
    ρ i is bounded, f(t) is an unknown bounded disturbance term, B is a bounded uncertain parameter, and it can be known from the extreme value theorem that a 2 is bounded;
    由(36)和(37)得:From (36) and (37) we get:
    Figure PCTCN2021124567-appb-100047
    Figure PCTCN2021124567-appb-100047
    选取李雅普诺夫函数
    Figure PCTCN2021124567-appb-100048
    Choose the Lyapunov function
    Figure PCTCN2021124567-appb-100048
    (38)和(39)符合不等式引理形式,由不等式引理可知,因为a 2有界即
    Figure PCTCN2021124567-appb-100049
    使得|a 2|<A 2
    Figure PCTCN2021124567-appb-100050
    所以
    Figure PCTCN2021124567-appb-100051
    由于
    Figure PCTCN2021124567-appb-100052
    有界,可得-δ -2ρ 2(t)<z 2- 2ρ 2(t),所以对于
    Figure PCTCN2021124567-appb-100053
    保证控制误差z 2有界和状态变量x 2有界;
    (38) and (39) conform to the form of inequality lemma, which can be seen from the inequality lemma, because a 2 is bounded, i.e.
    Figure PCTCN2021124567-appb-100049
    such that |a 2 |<A 2 ,
    Figure PCTCN2021124567-appb-100050
    so
    Figure PCTCN2021124567-appb-100051
    because
    Figure PCTCN2021124567-appb-100052
    Bounded, we can get -δ -2 ρ 2 (t)<z 2- 2 ρ 2 (t), so for
    Figure PCTCN2021124567-appb-100053
    Ensure that the control error z 2 is bounded and the state variable x 2 is bounded;
    S3-2-3:根据式(18)求出
    Figure PCTCN2021124567-appb-100054
    对时间的导数
    Figure PCTCN2021124567-appb-100055
    S3-2-3: Calculated according to formula (18)
    Figure PCTCN2021124567-appb-100054
    Derivative to Time
    Figure PCTCN2021124567-appb-100055
    Figure PCTCN2021124567-appb-100056
    Figure PCTCN2021124567-appb-100056
    其中
    Figure PCTCN2021124567-appb-100057
    存在一个正常数r M3,使得0>r 3>r M3
    in
    Figure PCTCN2021124567-appb-100057
    There is a constant r M3 such that 0>r 3 >r M3 ;
    将式(10),(24),(11)和(21)带入(40)中得:Substituting equations (10), (24), (11) and (21) into (40), we get:
    Figure PCTCN2021124567-appb-100058
    Figure PCTCN2021124567-appb-100058
    Figure PCTCN2021124567-appb-100059
    remember
    Figure PCTCN2021124567-appb-100059
    Figure PCTCN2021124567-appb-100060
    Figure PCTCN2021124567-appb-100060
    其中V 1=V 01+A 1x,V 2=V 02-A 2x; where V 1 =V 01 +A 1 x, V 2 =V 02 -A 2 x;
    鉴于伺服液压系统作动器的安全运行,留出安全裕度,即根据物理结构,液压缸在中位附近上下最大可波动12厘米,指令信号的幅值小于等于10厘米保证了h 1 h 2 h 3有界,即分别存在三个正数
    Figure PCTCN2021124567-appb-100061
    使得
    Figure PCTCN2021124567-appb-100062
    In view of the safe operation of the servo hydraulic system actuator, a safety margin is reserved, that is, according to the physical structure, the hydraulic cylinder can fluctuate up to 12 cm up and down near the neutral position, and the amplitude of the command signal is less than or equal to 10 cm to ensure h 1 h 2 h 3 is bounded, that is, there are three positive numbers respectively
    Figure PCTCN2021124567-appb-100061
    make
    Figure PCTCN2021124567-appb-100062
    考虑到
    Figure PCTCN2021124567-appb-100063
    且α 1
    Figure PCTCN2021124567-appb-100064
    ρ i是有界的,m(t)为阀芯死区的未知斜率,m(t)是有界的(即
    Figure PCTCN2021124567-appb-100065
    ),由极值定理可知a 3有界;
    considering
    Figure PCTCN2021124567-appb-100063
    and α 1 ,
    Figure PCTCN2021124567-appb-100064
    ρ i is bounded, m(t) is the unknown slope of the spool dead zone, m(t) is bounded (ie
    Figure PCTCN2021124567-appb-100065
    ), from the extreme value theorem we know that a 3 is bounded;
    由(41)和(42)得:
    Figure PCTCN2021124567-appb-100066
    From (41) and (42) we get:
    Figure PCTCN2021124567-appb-100066
    选取李雅普诺夫函数
    Figure PCTCN2021124567-appb-100067
    Choose the Lyapunov function
    Figure PCTCN2021124567-appb-100067
    (43)和(44)符合不等式引理形式,由不等式引理可知,因为a 3有界,即
    Figure PCTCN2021124567-appb-100068
    使得|a 3|<A 3
    Figure PCTCN2021124567-appb-100069
    所以
    Figure PCTCN2021124567-appb-100070
    由于
    Figure PCTCN2021124567-appb-100071
    有界,可得- δ -3ρ 3(t)<z 3- 3ρ 3(t),所以对于
    Figure PCTCN2021124567-appb-100072
    保证控制误差z 3有界和主动力u a有界,从状态方程的数学表达式上看,状态变量x 3和x 4是有界的,并且它们都小于液压源P s的压力值;
    (43) and (44) conform to the form of the inequality lemma, which can be known from the inequality lemma, because a 3 is bounded, namely
    Figure PCTCN2021124567-appb-100068
    such that |a 3 |<A 3 ,
    Figure PCTCN2021124567-appb-100069
    so
    Figure PCTCN2021124567-appb-100070
    because
    Figure PCTCN2021124567-appb-100071
    Bounded, we get - δ -3 ρ 3 (t)<z 3- 3 ρ 3 (t), so for
    Figure PCTCN2021124567-appb-100072
    Ensure that the control error z 3 is bounded and the active force u a is bounded. From the mathematical expression of the state equation, the state variables x 3 and x 4 are bounded, and they are both less than the pressure value of the hydraulic source P s ;
    S3-2-4:根据式(18)求出
    Figure PCTCN2021124567-appb-100073
    对时间的导数
    Figure PCTCN2021124567-appb-100074
    S3-2-4: Calculated according to formula (18)
    Figure PCTCN2021124567-appb-100073
    Derivative to Time
    Figure PCTCN2021124567-appb-100074
    Figure PCTCN2021124567-appb-100075
    Figure PCTCN2021124567-appb-100075
    其中
    Figure PCTCN2021124567-appb-100076
    存在一个正常数r M4,使得0>r 4>r M4
    in
    Figure PCTCN2021124567-appb-100076
    There is a constant r M4 such that 0>r 4 >r M4 ;
    进一步得:Further get:
    Figure PCTCN2021124567-appb-100077
    Figure PCTCN2021124567-appb-100077
    Figure PCTCN2021124567-appb-100078
    remember
    Figure PCTCN2021124567-appb-100078
    考虑到
    Figure PCTCN2021124567-appb-100079
    且α i,
    Figure PCTCN2021124567-appb-100080
    ρ i是有界的,k 4为设计控制器时自选参数,故a 4有界;
    considering
    Figure PCTCN2021124567-appb-100079
    and α i ,
    Figure PCTCN2021124567-appb-100080
    ρ i is bounded, k 4 is an optional parameter when designing the controller, so a 4 is bounded;
    由(46)和(47)得:
    Figure PCTCN2021124567-appb-100081
    From (46) and (47) we get:
    Figure PCTCN2021124567-appb-100081
    选取李雅普诺夫函数:
    Figure PCTCN2021124567-appb-100082
    Choose a Lyapunov function:
    Figure PCTCN2021124567-appb-100082
    (48)和(49)符合不等式引理形式,由不等式引理可知,因为a 4有界,即
    Figure PCTCN2021124567-appb-100083
    使得|a 4|<A 4
    Figure PCTCN2021124567-appb-100084
    所以
    Figure PCTCN2021124567-appb-100085
    由于
    Figure PCTCN2021124567-appb-100086
    有界,可得-δ -4ρ 4(t)<z 4- 4ρ 4(t),所以对于
    Figure PCTCN2021124567-appb-100087
    保证控制误差z 4有界和状态变量x 5有界。
    (48) and (49) conform to the form of the inequality lemma, which can be known from the inequality lemma, because a 4 is bounded, namely
    Figure PCTCN2021124567-appb-100083
    such that |a 4 |<A 4 ,
    Figure PCTCN2021124567-appb-100084
    so
    Figure PCTCN2021124567-appb-100085
    because
    Figure PCTCN2021124567-appb-100086
    Bounded, we get -δ -4 ρ 4 (t)<z 4- 4 ρ 4 (t), so for
    Figure PCTCN2021124567-appb-100087
    It is guaranteed that the control error z4 is bounded and the state variable x5 is bounded.
  7. 根据权利要求6所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:A low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 6, further characterized in that:
    所述不等式引理表达式如下:The inequality lemma expression is as follows:
    Figure PCTCN2021124567-appb-100088
    Figure PCTCN2021124567-appb-100088
    如果a有界(即
    Figure PCTCN2021124567-appb-100089
    ),
    Figure PCTCN2021124567-appb-100090
    那么x必有界且
    Figure PCTCN2021124567-appb-100091
    If a is bounded (i.e.
    Figure PCTCN2021124567-appb-100089
    ),
    Figure PCTCN2021124567-appb-100090
    then x must be bounded and
    Figure PCTCN2021124567-appb-100091
  8. 根据权利要求4所述的一种针对非对称伺服液压位置跟踪系统的低复杂控制方法,其特征还在于:所述利用初值提议证明当S3-2中的τ max=+∞时,所有闭环信号有界仍是正确的过程如下: The low-complexity control method for an asymmetric servo-hydraulic position tracking system according to claim 4, further characterized in that: the initial value proposal is used to prove that when τ max =+∞ in S3-2, all closed loops The signal is still bounded and the correct procedure is as follows:
    因为
    Figure PCTCN2021124567-appb-100092
    because
    Figure PCTCN2021124567-appb-100092
    所以
    Figure PCTCN2021124567-appb-100093
    是非空集合;
    so
    Figure PCTCN2021124567-appb-100093
    is a non-empty set;
    Figure PCTCN2021124567-appb-100094
    Figure PCTCN2021124567-appb-100094
    假设τ max<+∞,初值提议中强调存在一个时间常数t 1∈[0,τ max)使得
    Figure PCTCN2021124567-appb-100095
    造成矛盾,得出的假设是τ max=+∞,对于任何t∈[0,+∞),所有闭环系统信号是有界的,并且能够保证跟踪误差在规定边界内收敛。
    Assuming τ max <+∞, the initial value proposal emphasizes the existence of a time constant t 1 ∈ [0,τ max ) such that
    Figure PCTCN2021124567-appb-100095
    Contradicting, the resulting assumption is that τ max = +∞, for any t∈[0,+∞), all closed-loop system signals are bounded and the tracking error is guaranteed to converge within specified bounds.
PCT/CN2021/124567 2020-12-07 2021-10-19 Low-complexity control method for asymmetric servo hydraulic position tracking system WO2022121507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579147A JP7448692B2 (en) 2020-12-07 2021-10-19 Low complexity control method for asymmetric servohydraulic position tracking system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011438457.2A CN112486021B (en) 2020-12-07 2020-12-07 Low-complexity control method for asymmetric servo hydraulic position tracking system
CN202011438457.2 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022121507A1 true WO2022121507A1 (en) 2022-06-16

Family

ID=74941242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124567 WO2022121507A1 (en) 2020-12-07 2021-10-19 Low-complexity control method for asymmetric servo hydraulic position tracking system

Country Status (3)

Country Link
JP (1) JP7448692B2 (en)
CN (1) CN112486021B (en)
WO (1) WO2022121507A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629543A (en) * 2022-10-21 2023-01-20 东北林业大学 Interventional MDF continuous flat pressing three-branch decision cooperative control method, system and storage medium
CN115903748A (en) * 2022-12-14 2023-04-04 燕山大学 Electro-hydraulic servo displacement tracking test device based on reference model and control method
CN116300420A (en) * 2022-12-13 2023-06-23 南方海洋科学与工程广东省实验室(湛江) Servo control method, system, device, terminal equipment and storage medium
CN116300565A (en) * 2022-12-27 2023-06-23 南京理工大学 Preset performance control method with boundary crossing preventing function
CN117389156A (en) * 2023-12-09 2024-01-12 中信重工机械股份有限公司 Hydraulic mechanical arm self-adaptive integral robust control method based on friction compensation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112486021B (en) * 2020-12-07 2021-10-08 燕山大学 Low-complexity control method for asymmetric servo hydraulic position tracking system
CN113942354B (en) * 2021-10-09 2023-09-22 燕山大学 State feedback control method for active suspension of whole vehicle with electro-hydraulic actuator

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192594A (en) * 2002-12-09 2004-07-08 Takara Sangyo:Kk Servo cylinder feeder
JP2004209523A (en) * 2003-01-06 2004-07-29 Nippon Steel Corp Method for identifying parameter in hydraulic servo system
CN104635490A (en) * 2014-12-15 2015-05-20 南京理工大学 Output feedback control method for asymmetric servo cylinder positional servo system
CN105697463A (en) * 2016-03-22 2016-06-22 西安理工大学 Self-adaptation control method for output feedback of hydraulic position servo system
CN106406088A (en) * 2016-08-30 2017-02-15 上海交通大学 Switching MMSLA-based hydraulic servo system control method and control system
CN106640809A (en) * 2016-11-07 2017-05-10 同济大学 Variable displacement variable pressure adjustment load matching electro-hydraulic position tracking control method
CN110081046A (en) * 2019-05-27 2019-08-02 电子科技大学 A kind of more electro-hydraulic servo actuators tracking synchronisation control means based on Reverse Step Control
CN110703608A (en) * 2019-11-18 2020-01-17 南京工业大学 Intelligent motion control method for hydraulic servo actuator
CN110794687A (en) * 2019-12-02 2020-02-14 安徽工业大学 Electro-hydraulic servo system self-adaptive state constraint control method based on interference compensation
CN110928182A (en) * 2019-11-05 2020-03-27 南京理工大学 Robust self-adaptive repetitive control method of hydraulic servo system based on state estimation
CN111577711A (en) * 2020-04-30 2020-08-25 南京理工大学 Active-disturbance-rejection robust control method for double-rod hydraulic cylinder position servo system
CN112486021A (en) * 2020-12-07 2021-03-12 燕山大学 Low-complexity control method for asymmetric servo hydraulic position tracking system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000415A (en) * 1998-06-16 2000-01-07 Mitsubishi Heavy Ind Ltd Seal structure of ceramic filter
JP4247699B2 (en) 2001-02-28 2009-04-02 富士電機システムズ株式会社 Feedback control method for nonlinear control object
AT502348B1 (en) 2005-08-17 2008-09-15 Voest Alpine Ind Anlagen CONTROL METHOD AND REGULATOR FOR A MECHANICAL-HYDRAULIC SYSTEM WITH A MECHANICAL FREEDOM DEGREE PER HYDRAULIC ACTUATOR
BRPI0615846A2 (en) * 2005-09-16 2012-12-18 Halliburton Energy Serv Inc treatment fluid, and method of treating a portion of an underground formation
CN101216695B (en) * 2007-12-26 2010-06-02 燕山大学 Pressure setting, prediction and self learning method for temper rolling
NL2003800C2 (en) * 2009-11-13 2011-05-16 Baggerwerken Decloedt & Zn N V Device for dredging soil material under water.
NZ603034A (en) * 2010-04-12 2013-09-27 Mark Anthony Kuchel Method for treating soil
CN104698844B (en) * 2015-02-09 2017-04-19 南京理工大学 Uncertainty compensatory sliding-mode control method of hydraulic position servo system
CN105068426B (en) * 2015-08-24 2018-03-09 南京理工大学 The continuous sliding-mode control of electro-hydraulic position servo system based on interference compensation
JP6487872B2 (en) * 2016-03-30 2019-03-20 日立建機株式会社 Drive control device for work machine
JP6544408B2 (en) * 2017-03-03 2019-07-17 日亜化学工業株式会社 Optical component and method of manufacturing optical component
CN109901387B (en) * 2017-12-11 2023-01-10 上海航空电器有限公司 Self-adaptive flight trajectory prediction method for aircraft automatic near-ground collision avoidance system
CN108995495B (en) * 2018-08-09 2020-04-03 燕山大学 Anti-saturation self-adaptive control method and system for nonlinear active suspension
CN110262232B (en) * 2019-05-30 2021-12-17 中国矿业大学 Control method for high tracking precision of underwater missile launching manhole cover opening device
CN110397634B (en) * 2019-07-17 2020-07-07 太原理工大学 Low-energy-consumption high-dynamic pump valve combined position servo system and control method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192594A (en) * 2002-12-09 2004-07-08 Takara Sangyo:Kk Servo cylinder feeder
JP2004209523A (en) * 2003-01-06 2004-07-29 Nippon Steel Corp Method for identifying parameter in hydraulic servo system
CN104635490A (en) * 2014-12-15 2015-05-20 南京理工大学 Output feedback control method for asymmetric servo cylinder positional servo system
CN105697463A (en) * 2016-03-22 2016-06-22 西安理工大学 Self-adaptation control method for output feedback of hydraulic position servo system
CN106406088A (en) * 2016-08-30 2017-02-15 上海交通大学 Switching MMSLA-based hydraulic servo system control method and control system
CN106640809A (en) * 2016-11-07 2017-05-10 同济大学 Variable displacement variable pressure adjustment load matching electro-hydraulic position tracking control method
CN110081046A (en) * 2019-05-27 2019-08-02 电子科技大学 A kind of more electro-hydraulic servo actuators tracking synchronisation control means based on Reverse Step Control
CN110928182A (en) * 2019-11-05 2020-03-27 南京理工大学 Robust self-adaptive repetitive control method of hydraulic servo system based on state estimation
CN110703608A (en) * 2019-11-18 2020-01-17 南京工业大学 Intelligent motion control method for hydraulic servo actuator
CN110794687A (en) * 2019-12-02 2020-02-14 安徽工业大学 Electro-hydraulic servo system self-adaptive state constraint control method based on interference compensation
CN111577711A (en) * 2020-04-30 2020-08-25 南京理工大学 Active-disturbance-rejection robust control method for double-rod hydraulic cylinder position servo system
CN112486021A (en) * 2020-12-07 2021-03-12 燕山大学 Low-complexity control method for asymmetric servo hydraulic position tracking system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629543A (en) * 2022-10-21 2023-01-20 东北林业大学 Interventional MDF continuous flat pressing three-branch decision cooperative control method, system and storage medium
CN115629543B (en) * 2022-10-21 2023-04-07 东北林业大学 Interventional MDF continuous flat pressing three-branch decision cooperative control method, system and storage medium
CN116300420A (en) * 2022-12-13 2023-06-23 南方海洋科学与工程广东省实验室(湛江) Servo control method, system, device, terminal equipment and storage medium
CN116300420B (en) * 2022-12-13 2024-03-15 南方海洋科学与工程广东省实验室(湛江) Servo control method, system, device, terminal equipment and storage medium
CN115903748A (en) * 2022-12-14 2023-04-04 燕山大学 Electro-hydraulic servo displacement tracking test device based on reference model and control method
CN116300565A (en) * 2022-12-27 2023-06-23 南京理工大学 Preset performance control method with boundary crossing preventing function
CN117389156A (en) * 2023-12-09 2024-01-12 中信重工机械股份有限公司 Hydraulic mechanical arm self-adaptive integral robust control method based on friction compensation
CN117389156B (en) * 2023-12-09 2024-03-22 中信重工机械股份有限公司 Hydraulic mechanical arm self-adaptive integral robust control method based on friction compensation

Also Published As

Publication number Publication date
JP2023517140A (en) 2023-04-21
JP7448692B2 (en) 2024-03-12
CN112486021B (en) 2021-10-08
CN112486021A (en) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2022121507A1 (en) Low-complexity control method for asymmetric servo hydraulic position tracking system
Feng et al. A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system
CN104317198B (en) Electrohydraulic servo system non linear robust position control method with time-varying output constraint
Feng et al. Identification and compensation of non-linear friction for a electro-hydraulic system
CN104345638B (en) A kind of active disturbance rejection self-adaptation control method of hydraulic motor positional servosystem
CN112415891B (en) Adaptive output feedback asymptotic control method for electro-hydraulic servo system
CN108181813A (en) A kind of fractional order sliding-mode control of flexible joint mechanical arm
CN104698844A (en) Uncertainty compensatory sliding-mode control method of hydraulic position servo system
CN108181818A (en) Containing not modeling the dynamic electro-hydraulic position servo system Robust Adaptive Control method of friction
CN110794687A (en) Electro-hydraulic servo system self-adaptive state constraint control method based on interference compensation
CN110308651A (en) Electrohydraulic servo system total state about beam control method based on extended state observer
CN113110037A (en) Intelligent self-learning PID control method of electro-hydraulic servo system
Li et al. Adaptive robust H∞ control for double support balance systems
CN102063061A (en) Adaptive compensation method of friction in pneumatic servo system
Yao et al. Energy-saving control of single-rod hydraulic cylinders with programmable valves and improved working mode selection
CN114545779B (en) Self-adjusting integral robust control method of quick erection system based on direct-driven pump
Niu et al. Neural network-based finite-time command-filtered adaptive backstepping control of electro-hydraulic servo system with a three-stage valve
CN112068447A (en) High-precision robust position control method for electro-hydraulic system of large equipment
Gao et al. Using fuzzy switching to achieve the smooth switching of force and position
Liang et al. State-observer-based asymptotic tracking control for electro-hydraulic actuator systems with uncertainties and unmeasurable velocity
Feng et al. Nonlinear adaptive robust control of valve-controlled symmetrical cylinder system
Yin et al. An Adaptive Control Method for Robot Constant Force Polishing Device
Yang et al. Adaptive backstepping control of uncertain electro-hydrostatic actuator with unknown dead-zone nonlinearity
CN117289612B (en) Hydraulic mechanical arm self-adaptive neural network control method
Shi et al. Research on hydraulic motor control system based on fuzzy neural network combing sliding mode control and time delay estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902214

Country of ref document: EP

Kind code of ref document: A1