WO2022111580A1 - 锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池 - Google Patents

锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池 Download PDF

Info

Publication number
WO2022111580A1
WO2022111580A1 PCT/CN2021/133138 CN2021133138W WO2022111580A1 WO 2022111580 A1 WO2022111580 A1 WO 2022111580A1 CN 2021133138 W CN2021133138 W CN 2021133138W WO 2022111580 A1 WO2022111580 A1 WO 2022111580A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersant
positive electrode
monomer
lithium ion
structural unit
Prior art date
Application number
PCT/CN2021/133138
Other languages
English (en)
French (fr)
Inventor
杨吉祥
陈永坤
唐富兰
郝嵘
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020237020965A priority Critical patent/KR20230110775A/ko
Priority to JP2023532446A priority patent/JP2023552150A/ja
Priority to EP21897080.4A priority patent/EP4250403A1/en
Priority to CA3200243A priority patent/CA3200243A1/en
Publication of WO2022111580A1 publication Critical patent/WO2022111580A1/zh
Priority to US18/324,741 priority patent/US20230295410A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/12Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08L39/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium ion batteries, in particular to a dispersant for lithium ion batteries and a preparation method thereof, a positive electrode slurry and a lithium ion battery.
  • the components of the positive electrode slurry of lithium ion batteries mainly include positive electrode active materials, conductive agents, binders and solvents.
  • positive electrode active materials conductive agents, binders and solvents.
  • adding a dispersing aid to the positive electrode slurry has become the mainstream means in the industry to improve the dispersion effect of the positive electrode slurry.
  • dispersants available in existing lithium-ion batteries, mainly polyvinylpyrrolidone (PVP), polyacrylamide (PAM) and the like.
  • PVP polyvinylpyrrolidone
  • PAM polyacrylamide
  • these dispersants have limited dispersing ability to the positive electrode slurry, and their addition amount is usually large, but this will correspondingly reduce the mass proportion of the positive electrode active material in the positive electrode material layer formed by the positive electrode slurry, thereby reducing the proportion of the battery. capacity. Therefore, it is necessary to develop a dispersant with excellent dispersing ability for the positive electrode slurry, so as to achieve a better slurry dispersion effect with less dispersant dosage.
  • the embodiments of the present application provide a dispersant for lithium ion batteries and a preparation method thereof, a positive electrode slurry and a lithium ion battery.
  • the dispersant for lithium ion batteries can have both the functions of a binder and a dispersant, and can Reducing the amount of the binder in the existing positive electrode slurry can meet the high dispersion requirements of the positive electrode slurry while avoiding the problem of reducing the specific capacity of the battery caused by the decrease in the content of the positive electrode active material.
  • the present application provides a dispersant for lithium ion batteries, the dispersant comprising a structural unit A derived from a solvophilic monomer, a structural unit B derived from a conjugated diene-based monomer, and a source Structural unit C from a high-adhesion monomer; wherein, the solvophilic monomer includes one or both of N-vinylpyrrolidone and acrylamide monomers; the high-adhesion monomer includes no One or both of saturated vinyl nitrile monomers and acrylate monomers.
  • the conjugated diene monomer is used to provide the dispersant with the structural unit B of its molecular skeleton, and to make the molecular chain of the dispersant have a certain flexibility, so that the dispersant has a relatively high Low electrolyte swellability.
  • the solvophilic monomer is used to provide the dispersant with a solvent (such as N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), etc.) that can be used for the positive electrode slurry.
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • the affinity structural unit A increases the compatibility of the dispersant with the positive electrode slurry solvent.
  • the high-adhesion monomer is used to make the dispersant have a structural unit C of a nitrile group and/or an ester-based polar group, so that the dispersant has a strong effect on the dispersed particles (positive electrode active material particles, conductive agent particles, etc.) produce strong intermolecular interactions, so that the dispersant can be easily adsorbed on the interface between the surface of the dispersed particles and the solvent, so that they can achieve excellent dispersion in the positive electrode slurry of lithium ion batteries, and Prevent the dispersed particles from agglomerating again, and the dispersion time is short and the amount of dispersing agent is small; in addition, when the positive electrode slurry is dried, the dispersing agent can be used between the dispersed particles and between the dispersed particles and the current collector. Bonding, plays the role of a binder, and avoids reducing the mass proportion of the positive electrode active material in the positive electrode slurry.
  • the above-mentioned dispersing agent has both the functions of dispersing and binding, which can ensure that the positive electrode active material and conductive agent can achieve excellent dispersion effect in the positive electrode slurry of lithium ion batteries, and at the same time, the dispersing agent can also partially or completely replace the positive electrode
  • the binder in the slurry keeps the content of the positive active material in the positive electrode sheet prepared from the positive electrode slurry basically unchanged, avoiding the problem of reducing the energy density of the battery due to the addition of a dispersant.
  • the dispersant includes a copolymer containing the above-mentioned structural unit A, structural unit B and structural unit C at the same time.
  • the copolymer may comprise any one or more of random, block, alternating and graft copolymerized structures and the like.
  • the molar ratio of the structural unit A is 5%-50%
  • the molar ratio of the structural unit B is 30%-90%
  • the molar ratio of the structural unit B is 30%-90%.
  • the molar proportion of the structural unit C is 1%-30%.
  • the acrylamide-based monomers include acrylamide, methacrylamide, N,N-dimethylacrylamide, N-methylol acrylamide, and N-butoxymethacrylamide , one or more of N-methylolmethacrylamide and N-butoxymethylmethacrylamide.
  • the solvophilic monomer is N-vinylpyrrolidone.
  • N-vinylpyrrolidone Compared with acrylamide-based monomers, N-vinylpyrrolidone has higher structural stability and higher affinity for NMP, the most common solvent in cathode slurries.
  • the number of carbon atoms of the conjugated diene monomer is not less than 4, for example, 4-12.
  • exemplary conjugated diene-based monomers may include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3- One or more of butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-decadiene, 2-methyl-1,5-heptadiene, and the like.
  • the unsaturated vinyl nitrile monomers include acrylonitrile, ⁇ -methacrylonitrile, ⁇ -ethylacrylonitrile, and crotonitrile (eg, 3-butenenitrile, 2-butenenitrile) , 2-methyl-2-butenenitrile, 2-methyl-3-butenenitrile, 4-methyl-3-valeronitrile, ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, 2-ethoxy One or more of acrylonitrile, 3,3-dimethoxy-2-acrylonitrile, and the like.
  • the acrylate monomers include one or more of alkyl acrylate, alkyl methacrylate, hydroxyalkyl acrylate, hydroxyalkyl methacrylate, and the like.
  • exemplary acrylate-based monomers may include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, methacrylic acid Butyl, tert-butyl acrylate, tert-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, acrylic acid 2-hydroxyethyl ester, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, glycidyl acrylate,
  • the high-adhesion monomer is an unsaturated vinyl nitrile monomer. Compared with acrylate monomers, unsaturated vinyl nitrile monomers have stronger polarity, and have better dispersing and binding effects on positive electrode active material particles and conductive agent particles.
  • the dispersant is obtained by polymerizing monomer raw materials including the above-mentioned solvophilic monomer, conjugated diene-based monomer and high-adhesion monomer.
  • the dispersant can be obtained by sequentially polymerizing and hydrogenating the monomer raw materials. The hydrogenation of the polymer obtained by polymerizing the monomer raw materials can reduce the double bonds in the polymer obtained by polymerizing the monomer raw materials, thereby enhancing the anti-oxidation ability of the dispersant under high voltage.
  • the weight average molecular weight of the dispersant is 100,000-600,000.
  • the dispersant with weight average molecular weight in this range can make the dispersant have good mechanical properties such as certain strength and good toughness, which is convenient for subsequent processing and utilization.
  • the weight average molecular weight of the dispersant may be 150,000, 200,000, 300,000, 350,000, 400,000, 450,000, 500,000, 550,000, or 600,000.
  • the dispersant provided in the first aspect of the present application has both the functions of dispersing and binding, which can ensure that the positive electrode active material and the conductive agent can achieve a good dispersion effect in the positive electrode slurry of the lithium ion battery in a short time, and make the positive electrode
  • the slurry has a high solid content, which can improve the preparation efficiency and product yield of the positive electrode sheet; at the same time, the dispersant can also partially or completely replace the existing binder in the positive electrode slurry, without reducing the positive electrode active material in the positive electrode sheet. In order to ensure the battery capacity, it can also improve the flexibility of the positive electrode sheet.
  • the application provides a method for preparing a dispersant for lithium ion batteries, comprising:
  • the monomer raw material including solvophilic monomer, conjugated diene monomer and high-adhesion monomer is polymerized; wherein, the solvophilic monomer includes N-vinylpyrrolidone and acrylamide monomers.
  • the high-adhesion monomers include one or both of unsaturated vinyl nitrile monomers and acrylate monomers.
  • the preparation method further comprises: performing a hydrogenation reaction on the polymer formed by the polymerization reaction of the monomer raw material.
  • the preparation method of the dispersant includes: subjecting the monomer raw materials to a polymerization reaction to obtain a dispersant precursor, and performing a hydrogenation reaction on the dispersant precursor. Through the hydrogenation reaction, the monomer raw material can be polymerized to obtain part or all of the double bond reduction in the dispersant precursor, so as to enhance the anti-oxidation ability of the dispersant under high voltage.
  • the hydrogenation reaction may be carried out using a noble metal such as Pt as a catalyst and hydrogen as a reducing agent.
  • solvophilic monomers account for 5%-50%, conjugated diene monomers account for 40%-90%, and high-adhesion monomers account for 40%-90%. than 1%-20%. In other embodiments of the present application, based on the total mass of the monomer raw materials: solvophilic monomers account for 5%-30%, conjugated diene monomers account for 50%-80%, high-adhesion monomers Account for 5%-20%.
  • the method of the above-mentioned polymerization reaction is not particularly limited, for example, solution polymerization method, emulsion polymerization method, suspension polymerization method or bulk polymerization method, etc. can be used.
  • the above-mentioned polymerization reaction adopts solution polymerization method.
  • the solution polymerization method includes: dissolving the above-mentioned monomer raw materials and an initiator in a solvent, carrying out polymerization at a certain temperature, and obtaining the obtained reaction liquid through solid-liquid separation and drying.
  • the initiator may be a thermal initiator and/or a photoinitiator; for example, a thermal initiator.
  • a thermal initiator one or more of aqueous initiators such as potassium persulfate, sodium persulfate, and ammonium persulfate can be used, or azobisisobutyronitrile, azobisisoheptanenitrile, benzoyl peroxide, etc.
  • One or more of the oil-based initiators At this time, the temperature of the polymerization reaction may be 40°C-80°C, and the time of the polymerization reaction may be 2h-24h.
  • the water-based initiator or the oil-based initiator can be selected according to the monomer raw materials and the solvent used.
  • a chain transfer agent may also be added to the solvent to control the molecular chain length of the resulting polymer.
  • exemplary chain transfer agents can be exemplified by ethyl acetate, butyl acetate, acetone, diethyl carbonate, methyl tert-butyl ether, isopropanol, ethanol, methanol, dodecanethiol, and the like.
  • the method for preparing a dispersant provided in the second aspect of the present application is simple and easy to operate, low in energy consumption, controllable in the degree of reaction, and can be industrially produced.
  • a third aspect of the present application also provides a positive electrode slurry, the positive electrode slurry includes a positive electrode active material, a conductive agent, a dispersant, and a solvent, and the dispersant is the dispersant described in the first aspect of the present application, or by The dispersant prepared by the preparation method described in the second aspect of the present application.
  • the positive electrode slurry may not contain conventional binders in the battery field. At this time, it can be understood that the above-mentioned dispersants are all substituted for the binder. In some embodiments of the present application, the mass fraction of the dispersant in the positive electrode slurry does not exceed 5%.
  • the positive electrode slurry may also include a binder.
  • the sum of the mass fractions of the dispersant and the binder in the positive electrode slurry does not exceed 5%.
  • the binder can be selected from polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polyimide ( One or more of PI), polyacrylic acid (PAA), polyacrylate, polyolefin, sodium carboxymethylcellulose (CMC) and sodium alginate.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVA polyvinyl alcohol
  • SBR styrene butadiene rubber
  • PAN polyacrylonitrile
  • PAA polyacrylic acid
  • CMC sodium carboxymethylcellulose
  • alginate sodium alginate
  • the positive electrode active material can be lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium cobalt phosphate, lithium cobalt oxide (LiCoO 2 ), lithium manganate, lithium nickelate, lithium nickel cobaltate , lithium nickel manganate, and at least one of nickel-cobalt-manganese (NCM) ternary materials and nickel-cobalt-aluminum (NCA) ternary materials.
  • the conductive agent may include at least one of carbon nanotubes, carbon black, and graphene, but is not limited thereto.
  • the surface of the conductive agent may have functional groups, such as carboxyl groups, hydroxyl groups, etc., so as to be dispersed in the positive electrode slurry.
  • the above-mentioned dispersant has good affinity for both the positive electrode active material particles and the conductive agent particles.
  • the positive electrode slurry provided by the third aspect of the present application has a high solid content, especially a high positive electrode active material content, and the positive electrode slurry has good dispersibility, is not easy to settle, and can be placed for a long time.
  • a fourth aspect of the present application further provides a lithium ion battery
  • the lithium ion battery includes a positive electrode sheet
  • the positive electrode sheet includes a current collector and a positive electrode material layer disposed on the current collector
  • the positive electrode material layer includes a positive electrode Active material, conductive agent, binder and dispersant, wherein the dispersant is the dispersant described in the first aspect of the present application or the dispersant prepared by the preparation method described in the second aspect of the present application.
  • the lithium ion battery further includes a negative electrode sheet, a separator and an electrolyte located between the positive electrode sheet and the negative electrode sheet. It should be noted that the negative electrode sheet, the separator, and the electrolyte are all conventional structures of the battery, and will not be repeated here.
  • the positive electrode material layer in the lithium ion battery can be formed by coating and drying the positive electrode slurry described in the third aspect of the present application.
  • the positive electrode slurry has a high solid content and a small amount of solvent, and can be dried to obtain a positive electrode sheet in a relatively short time, thereby improving the preparation efficiency of the positive electrode sheet; due to the short drying time, the positive electrode sheet is not easy to crack and has a high yield.
  • the positive electrode sheet also has good flexibility and is easy to be assembled into a battery.
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • Dispersant 1 Dissolve N-vinylpyrrolidone, 1,3-butadiene and acrylonitrile in N,N-dimethylformamide (DMF) in a mass ratio of 40:40:20, add initiator-azobisisobutyl Nitrile, chain transfer agent-dodecanethiol, polymerized at 60°C for 4h under 4MPa pressure, cooled to terminate the reaction, the obtained reactant was washed and dried to obtain dispersant 1', which was subjected to hydrogenation to obtain Dispersant 1. The weight average molecular weight of the dispersant 1 was measured to be 500,000.
  • DMF N,N-dimethylformamide
  • a method for preparing a positive electrode sheet comprising: dissolving 1.5g of binder PVDF in 40g of NMP (N-methylpyrrolidone), fully dissolving, adding 0.5g of the above dispersant 1, stirring for 20min; then adding 20g The carbon nanotube dispersion liquid (solvent is NMP, solid content is 5wt%) was stirred for 20min; finally, 97g of lithium iron phosphate positive active material was added, and the stirring was continued for 1.5h to obtain a positive electrode slurry; the positive electrode slurry was coated on On the aluminum foil, drying at 130° C. for 30 minutes forms a positive electrode material layer, and completes the fabrication of a lithium iron phosphate positive electrode sheet.
  • NMP N-methylpyrrolidone
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • the weight average molecular weight of Dispersant 2 was measured to be 600,000.
  • a method for preparing a positive electrode sheet 0.5g of dispersant 1 in Example 1 is replaced with 1.5g of dispersant 2, 1.5g of binder PVDF is replaced with 0.5g of PVDF, and others are the same as in Example 1.
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • a method for preparing a positive electrode sheet 0.5g of dispersant 1 in Example 1 is replaced with 1g of dispersant 3, 1.5g of binder PVDF is replaced with 1g of PVDF, and others are the same as in Example 1.
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • the weight average molecular weight of Dispersant 4 was measured to be 550,000.
  • a method for preparing a positive electrode sheet 0.5g of dispersant 1 in Example 1 is replaced with 1.5g of dispersant 4, 1.5g of binder PVDF is replaced with 0.5g of PVDF, and others are the same as in Example 1.
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • the weight average molecular weight of Dispersant 5 was measured to be 400,000.
  • a method for preparing a positive electrode sheet comprising: dissolving 0.8g of binder PVDF in 30g of NMP, fully dissolving, adding 0.4g of dispersant 5, stirring for 20min; then adding 10g of carbon nanotube dispersion (solvent) NMP, solid content of 5wt%) and 1.3g of carbon black as conductive agent, stirring for 20min; finally, 97g of positive active material NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) was added, and stirring was continued for 2 hours to obtain positive electrode slurry; The positive electrode slurry was coated on aluminum foil, and dried at 130° C. for 30 min to form a positive electrode material layer, thereby completing the fabrication of an NCM ternary positive electrode sheet.
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • the mercaptan was polymerized at 60°C for 4 hours under a pressure of 4 MPa, cooled to terminate the reaction, and the obtained reactant was washed and dried to obtain dispersant 6', which was subjected to hydrogenation to obtain dispersant 6.
  • the weight average molecular weight of Dispersant 6 was measured to be 300,000.
  • a method for preparing a positive electrode sheet 0.4g of dispersant 5 in Example 5 is replaced with 0.6g of dispersant 6, 0.8g of binder PVDF is replaced with 0.6g of PVDF, and the others are the same as in Example 5.
  • a method for preparing a dispersant for lithium ion batteries comprising:
  • the weight average molecular weight of Dispersant 7 was measured to be 600,000.
  • a method for preparing a positive electrode sheet 0.4g of dispersant 5 in Example 5 is replaced with 0.8g of dispersant 7, 0.8g of binder PVDF is replaced with 0.4g of PVDF, and the others are the same as in Example 5.
  • the main difference between the positive electrode sheet in Comparative Example 1 and Example 1 is that when preparing the lithium iron phosphate positive electrode sheet, no dispersant was added, and the amount of PVDF was 2 g, but the amount of solvent was increased.
  • the preparation method of the lithium iron phosphate cathode sheet in Comparative Example 1 includes: dissolving 2g of PVDF as a binder in 50g of NMP, and fully dissolving; then adding 20g of NMP dispersion of carbon nanotubes (solid content of 5wt% ), and stirred for 20 min; finally, 97 g of lithium iron phosphate positive active material was added, and stirring was continued for 3 h to obtain a positive electrode slurry; the positive electrode slurry was coated on aluminum foil, and dried at 130 ° C for 30 min to form a positive electrode material layer, complete The production of lithium iron phosphate cathode sheet.
  • the main difference between the ternary cathode sheet in Comparative Example 2 and Example 2 is that when preparing the NCM ternary cathode sheet, no dispersant was added, and the amount of PVDF was 1.2 g, but the amount of solvent was increased.
  • the preparation method of the ternary positive electrode sheet in Comparative Example 2 includes: dissolving 1.2 g of the binder PVDF in 40 g of NMP, and fully dissolving; then adding 10 g of carbon nanotube dispersion (solid content of 5 wt %) and 1.3g of carbon black was used as a conductive agent, stirred for 20min; finally, 97g of positive electrode active material NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) was added and stirred for 3 hours to obtain a positive electrode slurry; the positive electrode slurry was coated on aluminum foil , and dried at 130 °C for 30 min to form a positive electrode material layer and complete the fabrication of NCM ternary positive electrode sheets.
  • the viscosity of the positive electrode slurry in the above table 1 is through the rheometer, and the reference model is MCR 302 of Anton Paar Company.
  • the flexibility of the positive electrode sheet is obtained by folding the positive electrode sheet in half and observing with the naked eye.
  • the peeling force of the positive electrode sheet is tested by the pressure-sensitive adhesive tape peeling test method, referring to the standard GB/T 2792-1998.
  • the positive electrode slurry of the dispersant provided has a relatively high solid content, and the time for preparing the positive electrode slurry with good dispersion effect is shorter; and the amount of the binder PVDF is less, which shows that the dispersant provided by the present application can also partially Instead of PVDF, it plays a role in bonding.
  • the peeling force of the positive electrode sheets of the examples of the present application is also greater than the peeling force of the positive electrode sheets of the corresponding comparative examples.
  • Example 4 From the comparison between Example 1 and Example 4, it can be seen that under the condition that the mass ratio of each component in the monomer raw material is the same, the effect of the dispersant prepared by using acrylonitrile is higher than that prepared by using acrylate positive electrode sheet The peeling force is slightly larger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

提供了一种锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池,该分散剂包括源自亲溶剂单体的结构单元A、源自共轭二烯类单体的结构单元B和源自高粘接力单体的结构单元C;其中,所述亲溶剂单体包括N-乙烯基吡咯烷酮和丙烯酰胺类单体中的一种或两种;所述高粘接力单体包括不饱和烯腈类单体和丙烯酸酯类单体中的一种或两种。

Description

锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池
优先权信息
本申请请求于2020年11月28日向中国国家知识产权局提交的、专利申请号为202011361699.6、申请名称为“一种锂离子电池用分散剂及其制备方法、正极浆料、正极片和锂离子电池”的中国专利申请的优先权,并且其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池技术领域,具体涉及一种锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池。
背景技术
锂离子电池的正极浆料的组分主要包括正极活性材料、导电剂、粘结剂和溶剂,随着对电池性能要求的不断提高,对其正极浆料的工艺制程的要求也不断提高,一方面需要提高正极活性材料和导电剂等在其中的分散效果以提高正极片的均匀性,另一方面需要提高正极浆料的固含量以改善正极浆料的涂布性能、提升正极片的良率和产能。其中,向正极浆料中添加分散助剂成为业界提高正极浆料的分散效果的主流手段。
现有的锂离子电池中可用的分散剂种类较少,主要为聚乙烯吡咯烷酮(PVP)、聚丙烯酰胺(PAM)等。然而,这些分散剂对正极浆料的分散能力有限,其添加量通常较大,但这会相应减少正极活性材料在由正极浆料形成的正极材料层中的质量占比,进而降低电池的比容量。因此,有必要开发对正极浆料具有优异分散能力的分散剂,以实现通过较少的分散剂用量达到较好的浆料分散效果。
公开内容
鉴于此,本申请实施例提供了一种锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池,该锂离子电池用分散剂可兼具粘结剂和分散剂的功能,能够减少现有正极浆料中粘结剂的用量,可在满足正极浆料高分散需求的同时避免因正极活性材料的含量下降带来的电池比容量降低的问题。
具体地,第一方面本申请提供了一种锂离子电池用分散剂,所述分散剂包括源自亲溶剂单体的结构单元A、源自共轭二烯类单体的结构单元B和源自高粘接力单体的结构单元C;其中,所述亲溶剂单体包括N-乙烯基吡咯烷酮和丙烯酰胺类单体中的一种或两种;所述高粘接力单体包括不饱和烯腈类单体和丙烯酸酯类单体中的一种或两种。
其中,所述共轭二烯类单体用于为所述分散剂提供其分子骨架作用的结构单元B,并使所述分散剂的分子链具有一定的柔韧性,使所述分散剂具有较低的电解液溶胀性。而所述亲溶剂单体用于为所述分散剂提供能与正极浆料的溶剂(如N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)等)有较强亲和力的结构单元A,增加所述分散剂与正极浆料溶剂的相溶性。而所述高粘接力单体用于使所述分散剂具有腈基和/或酯基极性基团的结构单元C,以使该分散剂对被分散颗粒(正极活性材料颗粒、导电剂颗粒等)产生较强的分子间相互作用,使得该分散剂可较容易地吸附在被分散颗粒的表面与溶剂的界面上,使它们在锂离子电池正极浆料中达到优异的分散效果,并阻止被分散颗粒再次团聚,且分散时间短、分散剂用量少;此外,当该正极浆料在经干燥时,各分散颗粒之间及各分散颗粒与集流体之间可通过该分散剂进行粘接,发挥粘结剂的作用,避免降低正极活性材料在正极浆料中的质量占比。
因此,上述分散剂兼具分散和粘结的作用,可在保证正极活性材料和导电剂等在锂离子电池正极浆料中达到优异的分散效果的同时,该分散剂还可部分或全部取代正极浆料中的粘结剂,保持由正极浆料制得的正极片中正极活性物质含量基本不变,避免了分散剂的加入而导致电池能量密度降低的问题。
本申请一些实施方式中,所述分散剂包括同时含有上述结构单元A、结构单元B和结构单元C的共聚物。该共聚物可以包含无规、嵌段、交替和接枝共聚结构等中的任意一种或多种结构。
本申请一些实施方式中,基于所述分散剂的总量,所述结构单元A的摩尔占比为5%-50%,所述结构单元B的摩尔占比为30%-90%,所述结构单元C的摩尔占比为1%-30%。这样可以使该分散剂具有一定的亲溶剂性、亲待分散颗粒性及柔韧性,以起到较好的分散效果。
本申请一些实施方式中,所述丙烯酰胺类单体包括丙烯酰胺、甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N-羟甲基丙烯酰胺、N-丁氧基甲基丙烯酰胺、N-羟甲基甲基丙烯酰胺和N-丁氧基甲基甲基丙烯酰胺等中的一种或多种。
本申请另一些实施方式,所述亲溶剂单体为N-乙烯基吡咯烷酮。相较于丙烯酰胺类单体,N-乙烯基吡咯烷酮具有较高的结构稳定性和对正极浆料中最常见溶剂-NMP的更高亲和力。
本申请实施方式中,所述共轭二烯类单体的碳原子数不低于4,例如为4-12。作为示例性的共轭二烯类单体可以包括1,3-丁二烯、异戊二烯、2,3-二甲基-1,3-丁二烯、2-氯-1,3-丁二烯、1,3-戊二烯、1,3-己二烯、1,3-癸二烯、2-甲基-1,5-庚二烯等中的一种或多种。
本申请实施方式中,所述不饱和烯腈类单体包括丙烯腈、α-甲基丙烯腈、α-乙基丙烯腈、 丁烯腈(如3-丁烯腈、2-丁烯腈)、2-甲基-2-丁烯腈、2-甲基-3-丁烯腈、4-甲基-3-戊腈、α-氯丙烯腈、α-溴丙烯腈、2-乙氧基丙烯腈、3,3-二甲氧基-2-丙烯腈等中的一种或多种。
本申请实施方式中,所述丙烯酸酯类单体包括丙烯酸烷基酯、甲基丙烯酸烷基酯、丙烯酸羟烷基酯、甲基丙烯酸羟烷基酯等中的一种或多种。具体地,示例性的丙烯酸酯类单体可以包括丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸乙酯、丙烯酸丙酯、甲基丙烯酸丙酯、丙烯酸丁酯、甲基丙烯酸丁酯、丙烯酸叔丁酯、甲基丙烯酸叔丁酯、丙烯酸2-乙基己酯、甲基丙烯酸2-乙基己酯、丙烯酸十二烷基酯、甲基丙烯酸十二烷基酯、丙烯酸2-羟乙酯、甲基丙烯酸2-羟乙酯、丙烯酸2-羟丙酯、甲基丙烯酸2-羟丙酯、丙烯酸缩水甘油酯、甲基丙烯酸缩水甘油酯等,但不限于此。
本申请一些实施方式中,所述高粘接力单体为不饱和烯腈类单体。相较于丙烯酸酯类单体不饱和烯腈类单体的极性更强,对正极活性材料颗粒、导电剂颗粒等具有更好的分散作用和粘结作用。
本申请一些实施方式中,所述分散剂通过包括上述亲溶剂单体、共轭二烯类单体和高粘接力单体的单体原料聚合而成。本申请另一些实施方式中,所述分散剂可以通过所述单体原料依次经聚合、氢化得到。对所述单体原料聚合成的聚合物进行氢化,可以将单体原料聚合成的聚合物中的双键还原,增强所述分散剂在高电压下的抗氧化能力。
本申请实施方式中,所述分散剂的重均分子量为10万-60万。该范围重均分子量的分散剂可以使分散剂具有一定的强度和良好韧性等良好力学性能,便于后续加工利用。例如,所述分散剂的重均分子量可以为15万、20万、30万、35万、40万、45万、50万、55万或60万。
本申请第一方面提供的所述分散剂兼具分散和粘结的作用,可保证正极活性材料和导电剂等在锂离子电池正极浆料中短时间内达到较好的分散效果,并使正极浆料具有较高的固含量,可提升正极片的制备效率和产品良率;同时,该分散剂还部分或全部取代正极浆料中的现有粘结剂,不降低正极活性材料在正极片中的质量占比以保证电池容量,还可以提高正极片的柔韧性。
第二方面,本申请提供了一种制备锂离子电池用分散剂的方法,包括:
将包括亲溶剂单体、共轭二烯类单体和高粘接力单体的单体原料进行聚合反应;其中,所述亲溶剂单体包括N-乙烯基吡咯烷酮和丙烯酰胺类单体中的一种或两种;所述高粘接力单体包括不饱和烯腈类单体和丙烯酸酯类单体中的一种或两种。
本申请一些实施方式中,所述制备方法还包括:对所述单体原料经聚合反应形成的聚合物进行氢化反应。换句话说,此时,所述分散剂的制备方法包括:将所述单体原料进行聚合反应得到分散剂前驱体,对所述分散剂前驱体进行氢化反应。通过氢化反应可以将单 体原料进行聚合反应得到分散剂前驱体中部分或全部的双键还原,增强所述分散剂在高电压下的抗氧化能力。
本申请一些实施方式中,所述氢化反应可采用Pt等贵金属作催化剂、氢气作还原剂来进行。
本申请一些实施方式中,基于所述单体原料的总质量:亲溶剂单体占比5%-50%,共轭二烯单体占比40%-90%,高粘接力单体占比1%-20%。本申请另一些实施方式中,基于所述单体原料的总质量:亲溶剂单体占比5%-30%,共轭二烯单体占比50%-80%,高粘接力单体占比5%-20%。
上述聚合反应的方法没有特殊限定,例如可采用溶液聚合法、乳液聚合法、悬浮聚合法或本体聚合法等,本申请一些实施方式中,上述聚合反应采用溶液聚合法。其中,所述溶液聚合法包括:将上述单体原料与引发剂溶于溶剂中,在一定的温度下进行聚合,将得到的反应液经固液分离、干燥得到。
其中,所述引发剂可以为热引发剂和/或光引发剂;例如为热引发剂。对于热引发剂可以采用过硫酸钾、过硫酸钠、过硫酸铵等水性引发剂中的一种或多种,或者偶氮二异丁腈、偶氮二异庚腈、过氧化苯甲酰等油性引发剂中的一种或多种。此时,聚合反应的温度可以是40℃-80℃,聚合反应的时间可以是2h-24h。水性引发剂或油性引发剂可根据单体原料及所用溶剂进行选择。
本申请的一些实施方式中,在溶液聚合工艺中,还可以向溶剂中加入链转移剂,以控制所得聚合物的分子链长度。示例性的链转移剂可以列举乙酸乙酯、乙酸丁酯、丙酮、碳酸二乙酯、甲基叔丁基醚、异丙醇、乙醇、甲醇、十二硫醇等。
本申请第二方面提供的制备分散剂的方法,简便易操作,能耗低,反应程度可控,可工业化生产。
本申请第三方面还提供了一种正极浆料,所述正极浆料包括正极活性材料、导电剂、分散剂和溶剂,所述分散剂如本申请第一方面所述的分散剂,或者通过本申请第二方面所述的制备方法制备得到的分散剂。
基于上述分散剂兼具分散和粘结作用,因此该正极浆料中可以不含有电池领域的常规粘结剂。此时,可以理解为上述分散剂全部替代了粘结剂。本申请一些实施方式中,分散剂在所述正极浆料中的质量分数不超过5%。
当然,在本申请其他实施方式中,所述正极浆料也可以包括粘结剂。为避免降低正极活性材料在正极材料层中的质量占比,上述分散剂与粘结剂在所述正极浆料中的质量分数之和不超过5%。
上述正极活性材料、粘结剂和导电剂为电池领域的常规选择。其中,粘结剂可以选自 聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚乙烯醇(PVA)、丁苯橡胶(SBR)、聚丙烯腈(PAN)、聚酰亚胺(PI)、聚丙烯酸(PAA)、聚丙烯酸酯、聚烯烃、羧甲基纤维素钠(CMC)和海藻酸钠中的一种或多种。其中,所述正极活性材料可以为磷酸铁锂、磷酸锰锂、磷酸锰铁锂、磷酸钒锂、磷酸钴锂、钴酸锂(LiCoO 2)、锰酸锂、镍酸锂、镍钴酸锂、镍锰酸锂,以及镍钴锰(NCM)三元材料、镍钴铝(NCA)三元材料中的至少一种。导电剂可以包括碳纳米管、炭黑以及石墨烯中的至少一种,但不限于此。其中,导电剂的表面可以具有功能化基团,如羧基、羟基等,以便在正极浆料中分散。上述分散剂对正极活性材料颗粒和导电剂颗粒均具有良好的亲和力。
本申请第三方面提供的正极浆料的固含量高,特别是正极活性材料的含量较高,且该正极浆料的分散性好,不易沉降,可放置较长时间。
本申请第四方面还提供了一种锂离子电池,所述锂离子电池包括正极片,所述正极片包括集流体和设置在所述集流体上的正极材料层,所述正极材料层包括正极活性材料、导电剂、粘结剂和分散剂,其中,所述分散剂如本申请第一方面所述的分散剂或者通过本申请第二方面所述的制备方法制备得到的分散剂。其中,所述锂离子电池还包括负极片,以及位于正极片、负极片之间的隔膜和电解液。需要说明的是,负极片、隔膜和电解液等均为电池的常规结构,此处不再赘述。
进一步地,所述锂离子电池中的正极材料层可以通过本申请第三方面所述的正极浆料经涂覆、干燥而成。该正极浆料中的固含量高、溶剂量少,可在较短时间内干燥得到正极片,提高正极片的制备效率;由于干燥处理的时间短,正极片不易开裂、良品率高。此外,该正极片还具有良好的柔韧性,便于组装成电池。
具体实施方式
以下所述是本申请的示例性实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。
下面通过具体的实施例对本申请进行进一步的说明。
实施例1
一种制备锂离子电池用分散剂的方法,包括:
将N-乙烯基吡咯烷酮、1,3-丁二烯、丙烯腈按质量比40:40:20溶于N,N-二甲基甲酰胺(DMF)中,加入引发剂-偶氮二异丁腈,链转移剂-十二硫醇,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂1’,对其进行氢化处理,得到分散剂1。其中,测得该分散剂1的重均分子量为50万。
一种制备正极片的方法,包括:将1.5g的粘结剂PVDF溶于40g的NMP(N-甲基吡咯烷酮)中,充分溶解后加入0.5g的上述分散剂1,搅拌20min;再加入20g的碳纳米管分散液(溶剂为NMP,固含量为5wt%),搅拌20min;最后加入97g的磷酸铁锂正极活性材料,继续搅拌1.5h,得到正极浆料;将该正极浆料涂布于铝箔上,在130℃下烘干30min,形成正极材料层,完成磷酸铁锂正极片的制作。
实施例2
一种制备锂离子电池用分散剂的方法,包括:
将N-乙烯基吡咯烷酮、1,3-二烯、2-甲基-2-丁烯腈按质量比5:80:15溶于DMF中,加入引发剂-偶氮二异丁腈,链转移剂-十二硫醇,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂2’,对其进行氢化处理,得到分散剂2。测得分散剂2的重均分子量为60万。
一种制备正极片的方法:将实施例1中0.5g的分散剂1替换为1.5g的分散剂2,将1.5g的粘结剂PVDF替换为0.5g的PVDF,其他同于实施例1。
实施例3
一种制备锂离子电池用分散剂的方法,包括:
将N-乙烯基吡咯烷酮、1,3-丁二烯、丙烯酸丁酯按质量比30:65:5溶于DMF中,加入引发剂-偶氮二异丁腈,链转移剂-异丁醇,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂3。测得分散剂3的重均分子量为15万。
一种制备正极片的方法:将实施例1中0.5g的分散剂1替换为1g的分散剂3,将1.5g的粘结剂PVDF替换为1g的PVDF,其他同于实施例1。
实施例4
一种制备锂离子电池用分散剂的方法,包括:
将N-乙烯基吡咯烷酮、1,3-丁二烯、丙烯酸丁酯按质量比40:40:20溶于DMF中,加入引发剂-偶氮二异丁腈,链转移剂-异丁醇,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂4’,对其进行氢化处理,得到分散剂4。测得分散剂4的重均分子量为55万。
一种制备正极片的方法:将实施例1中0.5g的分散剂1替换为1.5g的分散剂4,将1.5g的粘结剂PVDF替换为0.5g的PVDF,其他同于实施例1。
实施例5
一种制备锂离子电池用分散剂的方法,包括:
将丙烯酰胺、异戊二烯、α-乙基丙烯腈按质量比10:80:10溶于DMF中,加入引发剂-偶氮二异丁腈,链转移剂-乙酸乙酯,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂5’,对其进行氢化处理,得到分散剂5。测得分散剂5的重均分子量为40万。
一种制备正极片的方法,包括:将0.8g的粘结剂PVDF溶于30g的NMP中,充分溶解后加入0.4g的分散剂5,搅拌20min;再加入10g的碳纳米管分散液(溶剂为NMP,固含量为5wt%)和1.3g的炭黑作导电剂,搅拌20min;最后加入97g的正极活性材料NCM811(LiNi 0.8Co 0.1Mn 0.1O 2),继续搅拌2h,得到正极浆料;将该正极浆料涂布于铝箔上,在130℃下烘干30min,形成正极材料层,完成NCM三元正极片的制作。
实施例6
一种制备锂离子电池用分散剂的方法,包括:
将N-乙烯基吡咯烷酮、1,3-己二烯、丙烯腈按质量比15:80:5溶于二氧六环中,加入引发剂-偶氮二异丁腈,链转移剂-十二硫醇,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂6’,对其进行氢化处理,得到分散剂6。测得分散剂6的重均分子量为30万。
一种制备正极片的方法:将实施例5中0.4g的分散剂5替换为0.6g的分散剂6,将0.8g的粘结剂PVDF替换为0.6g的PVDF,其他同于实施例5。
实施例7
一种制备锂离子电池用分散剂的方法,包括:
将N-羟甲基丙烯酰胺、1,3-丁二烯、丙烯腈按质量比10:75:15溶于DMF中,加入引发剂-偶氮二异丁腈,链转移剂-乙酸乙酯,在4MPa压力下,于60℃聚合4h,冷却以终止反应,将所得反应物经洗涤、干燥后,得到分散剂7’,对其进行氢化处理,得到分散剂7。测得分散剂7的重均分子量为60万。
一种制备正极片的方法:将实施例5中0.4g的分散剂5替换为0.8g的分散剂7,将0.8g的粘结剂PVDF替换为0.4g的PVDF,其他同于实施例5。
为突出本申请的有益效果,设置以下对比例1-2。
对比例1
对比例1与实施例1中正极片的主要区别在于:在制备磷酸铁锂正极片时,未加入分散剂,PVDF的用量为2g,但溶剂用量增多。
具体地,对比例1中磷酸铁锂正极片的制备方法包括:将2g的粘结剂PVDF溶于50g的NMP中,充分溶解;再加入20g的碳纳米管的NMP分散液(固含量5wt%),搅拌20min;最后加入97g的磷酸铁锂正极活性材料,继续搅拌3h,得到正极浆料;将该正极浆料涂布于铝箔上,在130℃下烘干30min,形成正极材料层,完成磷酸铁锂正极片的制作。
对比例2
对比例2与实施例2中三元正极片的主要区别在于:在制备NCM三元正极片时,未加入分散剂,PVDF的用量为1.2g,但溶剂用量增多。
具体地,对比例2中三元正极片的制备方法包括:将1.2g的粘结剂PVDF溶于40g的NMP中,充分溶解;再加入10g的碳纳米管分散液(固含量5wt%)和1.3g的炭黑作导电剂,搅拌20min;最后加入97g的正极活性材料NCM811(LiNi 0.8Co 0.1Mn 0.1O 2),继续搅拌3h,得到正极浆料;将该正极浆料涂布于铝箔上,在130℃下烘干30min,形成正极材料层,完成NCM三元正极片的制作。
为对本申请的有益效果进行有利支持,现将各实施例及对比例中正极浆料的粘度及固含量的结果、正极材料层中正极活性材料含量、正极片剥离力的测试结果汇总在下表1中。
表1 各实施例及对比例的结果汇总
Figure PCTCN2021133138-appb-000001
Figure PCTCN2021133138-appb-000002
其中,上表1中正极浆料的粘度是通过流变仪,参考型号为Anton Paar公司MCR 302。其中,正极片的柔韧性是通过将正极片进行对折后,肉眼观察得到。正极片的剥离力是通过压敏胶粘带剥离实验方法进行测试,参考标准GB/T 2792-1998。
由表1可以获知,实施例1-4与对比例1的正极浆料的粘度接近、实施例5-7与对比例2正极浆料的粘度接近,均可符合对应极片的制备要求。由实施例1-4与对比例1的对比,以及由实施例5-7与对比例2的对比可以获知,在正极材料层中正极活性材料含量保持不变的情况下,含有本申请实施例提供的分散剂的正极浆料的固含量较高,制得分散效果好的正极浆料的时间较短;而且粘结剂PVDF的用量较少,这表明,本申请提供的分散剂还可部分替代PVDF,发挥粘结作用。此外,本申请实施例的正极片的剥离力也大于对应的对比例的正极片剥离力。
另外,由实施例1分别与实施例4的对比可知,在单体原料中各组分的质量比相同的情况下,采用丙烯腈制备的分散剂比采用丙烯酸酯制备的分散剂的效果正极片的剥离力略大。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种锂离子电池用分散剂,其中,所述分散剂包括源自亲溶剂单体的结构单元A、源自共轭二烯类单体的结构单元B和源自高粘接力单体的结构单元C;其中,所述亲溶剂单体包括N-乙烯基吡咯烷酮和丙烯酰胺类单体中的一种或两种;所述高粘接力单体包括不饱和烯腈类单体和丙烯酸酯类单体中的一种或两种。
  2. 如权利要求1所述的分散剂,其中,基于所述分散剂的总量,所述结构单元A的摩尔占比为5%-50%,所述结构单元B的摩尔占比为30%-90%,所述结构单元C的摩尔占比为1%-30%。
  3. 如权利要求1或2所述的分散剂,其中,所述丙烯酰胺类单体包括丙烯酰胺、甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N-羟甲基丙烯酰胺、N-丁氧基甲基丙烯酰胺、N-羟甲基甲基丙烯酰胺和N-丁氧基甲基甲基丙烯酰胺中的一种或多种。
  4. 如权利要求1-3中任一项所述的分散剂,其中,所述不饱和烯腈类单体包括丙烯腈、α-甲基丙烯腈、α-乙基丙烯腈、丁烯腈、2-甲基-2-丁烯腈、2-甲基-3-丁烯腈、4-甲基-3-戊腈、α-氯丙烯腈、α-溴丙烯腈、2-乙氧基丙烯腈和3,3-二甲氧基-2-丙烯腈中的一种或多种;
    所述丙烯酸酯类单体包括丙烯酸烷基酯、甲基丙烯酸烷基酯、丙烯酸羟烷基酯和甲基丙烯酸羟烷基酯中的一种或多种;
    所述共轭二烯类单体包括1,3-丁二烯、异戊二烯、2,3-二甲基-1,3-丁二烯、2-氯-1,3-丁二烯、1,3-戊二烯、1,3-己二烯、1,3-癸二烯和2-甲基-1,5-庚二烯中的一种或多种。
  5. 如权利要求1-4任一项所述的分散剂,其中,所述分散剂的重均分子量为10万-60万。
  6. 一种制备锂离子电池用分散剂的方法,其中,包括:
    将包括亲溶剂单体、共轭二烯类单体和高粘接力单体的单体原料进行聚合反应,以便得到锂离子电池用分散剂;其中,所述亲溶剂单体包括N-乙烯基吡咯烷酮和丙烯酰胺类单体中的一种或两种;所述高粘接力单体包括不饱和烯腈类单体和丙烯酸酯类单体中的一种或两种。
  7. 如权利要求6所述的方法,其中,所述制备方法还包括:对所述单体原料经聚合反应形成的聚合物进行氢化反应。
  8. 如权利要求6或7所述的方法,其中,基于所述单体原料的总质量,所述亲溶剂单体占比5%-50%的,所述共轭二烯单体占比40%-90%,所述高粘接力单体占比为1%-20%。
  9. 一种正极浆料,其中,包括正极活性材料、导电剂、分散剂和溶剂,所述分散剂如权利要求1-5中任一项所述的分散剂或者通过权利要求6-8中任一项所述的方法制备得到的 分散剂。。
  10. 如权利要求9所述的正极浆料,其中,所述分散剂在所述正极浆料中的质量分数不超过5%。
  11. 一种锂离子电池,其中,所述锂离子电池包括正极片,所述正极片包括集流体和设置在所述集流体上的正极材料层,其中,所述正极材料层包括正极活性材料、导电剂和分散剂,所述分散剂如权利要求1-5中任一项所述的分散剂或者通过权利要求6-8中任一项所述的方法制备得到的分散剂。
PCT/CN2021/133138 2020-11-28 2021-11-25 锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池 WO2022111580A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237020965A KR20230110775A (ko) 2020-11-28 2021-11-25 리튬 이온 배터리용 분산제, 그의 제조 방법, 양극 슬러리 및 리튬 이온 배터리
JP2023532446A JP2023552150A (ja) 2020-11-28 2021-11-25 リチウムイオン電池用分散剤及びその製造方法、正極スラリー及びリチウムイオン電池
EP21897080.4A EP4250403A1 (en) 2020-11-28 2021-11-25 Dispersant for lithium ion battery, preparation method therefor, positive electrode slurry and lithium ion battery
CA3200243A CA3200243A1 (en) 2020-11-28 2021-11-25 Dispersant for lithium ion battery and preparation method thereof, positive slurry, and lithium ion battery
US18/324,741 US20230295410A1 (en) 2020-11-28 2023-05-26 Dispersant for lithium ion battery and preparation method thereof, positive slurry, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011361699.6 2020-11-28
CN202011361699.6A CN114573751B (zh) 2020-11-28 2020-11-28 一种锂离子电池用分散剂及其制备方法、正极浆料、正极片和锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,741 Continuation US20230295410A1 (en) 2020-11-28 2023-05-26 Dispersant for lithium ion battery and preparation method thereof, positive slurry, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2022111580A1 true WO2022111580A1 (zh) 2022-06-02

Family

ID=81753741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133138 WO2022111580A1 (zh) 2020-11-28 2021-11-25 锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池

Country Status (7)

Country Link
US (1) US20230295410A1 (zh)
EP (1) EP4250403A1 (zh)
JP (1) JP2023552150A (zh)
KR (1) KR20230110775A (zh)
CN (1) CN114573751B (zh)
CA (1) CA3200243A1 (zh)
WO (1) WO2022111580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218113A1 (en) * 2018-02-06 2021-07-15 Byd Company Limited Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
WO2024055154A1 (zh) * 2022-09-13 2024-03-21 宁德时代新能源科技股份有限公司 一种嵌段聚合物及其制备方法和用途、组合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379941A1 (en) * 2022-09-27 2024-06-05 Contemporary Amperex Technology Co., Limited Binder and separator membrane comprising same
CN116003676B (zh) * 2022-12-23 2023-12-05 楚能新能源股份有限公司 分散剂、其制备方法及含有该分散剂的正极浆料
CN117209653B (zh) * 2023-11-09 2024-01-02 江苏一特新材料有限责任公司 一种三链段聚合物分散剂及其制备方法和磷酸锰铁锂正极浆料

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210094A (ja) * 1989-02-01 1990-08-21 Japan Synthetic Rubber Co Ltd 紙塗被用共重合体ラテックスおよび紙塗被用組成物
JP2002319403A (ja) * 2001-04-20 2002-10-31 Nippon A & L Kk 二次電池負極用バインダーおよび二次電池電極用組成物
JP2002329496A (ja) * 2001-04-27 2002-11-15 Nippon A & L Kk 二次電池負極用バインダー
JP2002329497A (ja) * 2001-04-27 2002-11-15 Nippon A & L Kk 二次電池負極用バインダー
KR20120014634A (ko) * 2010-08-10 2012-02-20 주식회사 엘지화학 접착력과 사이클 특성이 우수한 이차전지용 바인더
JP2014203804A (ja) * 2013-04-10 2014-10-27 日本ゼオン株式会社 リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN107338011A (zh) * 2016-08-16 2017-11-10 南京工业大学 一种水分散型聚合物微粒子乳液粘结剂及其制备方法
CN107868160A (zh) * 2016-09-22 2018-04-03 南京工业大学 一种锂离子二次电池负极用粘结剂的组成及其制备方法
CN110885650A (zh) * 2018-09-07 2020-03-17 荒川化学工业株式会社 锂离子电池用粘合剂水溶液、锂离子电池电极用浆料、锂离子电池电极以及锂离子电池
JP2021122751A (ja) * 2020-01-31 2021-08-30 東洋インキScホールディングス株式会社 分散剤、導電材分散体、及び電極膜用スラリー
WO2021187407A1 (ja) * 2020-03-19 2021-09-23 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211629A1 (de) * 1982-03-30 1983-10-06 Basf Ag Verfahren zum verfestigen der oberflaechen von koernigen adsorbentien
DE3525799A1 (de) * 1985-07-19 1987-01-22 Basf Ag Bindemittel fuer den pigmentdruck von textilgut
WO1998029487A1 (en) * 1997-01-02 1998-07-09 Medlogic Global Corporation Responsive polymer networks and methods of their use
JP4543442B2 (ja) * 1998-09-18 2010-09-15 日本ゼオン株式会社 ポリマー粒子、ポリマー分散組成物、電池電極用スラリー、電極及び電池
FR2835840B1 (fr) * 2002-02-08 2006-05-05 Coatex Sas Agent liant et modificateur de rheologie de suspensions aqueuses de matieres minerales. grains obtenus et leurs utilisations .
JP5487564B2 (ja) * 2007-06-21 2014-05-07 三菱化学株式会社 着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
WO2010013786A1 (ja) * 2008-07-30 2010-02-04 東洋インキ製造株式会社 リチウム二次電池用正極合剤ペースト
JP5428464B2 (ja) * 2009-03-31 2014-02-26 三洋電機株式会社 リチウム二次電池
JP5955496B2 (ja) * 2010-03-26 2016-07-20 日本ゼオン株式会社 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極、二次電池及び二次電池負極用バインダー組成物の製造方法
KR20140106301A (ko) * 2013-02-26 2014-09-03 삼성에스디아이 주식회사 2차전지용 바인더, 이를 채용한 음극과 리튬전지
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
CN103497543B (zh) * 2013-08-08 2015-04-01 京东方科技集团股份有限公司 改性纳米二氧化硅及其制备方法、颜料分散体、感光树脂组合物
WO2016104493A1 (ja) * 2014-12-24 2016-06-30 株式会社Dnpファインケミカル カラーフィルタ用色材分散液、カラーフィルタ用感光性着色樹脂組成物、カラーフィルタ、液晶表示装置、及び有機発光表示装置
CN107003448B (zh) * 2014-12-24 2020-02-14 Dnp精细化工股份有限公司 色材分散液、感光性着色树脂组合物、彩色滤光片、液晶显示设备、及有机发光显示设备
KR101848245B1 (ko) * 2015-03-27 2018-04-12 니폰 제온 가부시키가이샤 리튬 이온 이차 전지 정극용 바인더 조성물, 리튬 이온 이차 전지 정극용 슬러리 조성물, 리튬 이온 이차 전지용 정극 및 리튬 이온 이차 전지
JP2017110084A (ja) * 2015-12-16 2017-06-22 日本エイアンドエル株式会社 共役ジエン系共重合体ラテックス
CN106220779B (zh) * 2016-08-17 2018-08-31 四川茵地乐科技有限公司 丙烯腈共聚物粘合剂及其在锂离子电池中的应用
JP7020475B2 (ja) * 2017-03-10 2022-02-16 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP7167915B2 (ja) * 2017-06-19 2022-11-09 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用組成物、電気化学素子用電極、及び電気化学素子
JP6696534B2 (ja) * 2018-07-03 2020-05-20 日本ゼオン株式会社 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP7086760B2 (ja) * 2018-07-10 2022-06-20 株式会社Eneosマテリアル 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7043998B2 (ja) * 2018-07-10 2022-03-30 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
CN109167068B (zh) * 2018-09-17 2020-09-01 醒狮科技投资有限公司 一种锂电池正极浆料及其加工工艺
CN111933864B (zh) * 2019-04-25 2022-12-20 聚电材料股份有限公司 能量储存装置
JP2020187866A (ja) * 2019-05-10 2020-11-19 東洋インキScホールディングス株式会社 導電材分散体およびその利用
CN110229275B (zh) * 2019-06-19 2021-11-05 江苏塔菲尔新能源科技股份有限公司 一种粘结剂及其制备方法,以及包含其的极片和锂离子电池
CN110982008B (zh) * 2019-12-30 2022-01-07 浙江研一新能源科技有限公司 锂离子电池负极水性粘结剂
CN211700428U (zh) * 2020-03-09 2020-10-16 宁德新能源科技有限公司 电芯及具有该电芯的电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210094A (ja) * 1989-02-01 1990-08-21 Japan Synthetic Rubber Co Ltd 紙塗被用共重合体ラテックスおよび紙塗被用組成物
JP2002319403A (ja) * 2001-04-20 2002-10-31 Nippon A & L Kk 二次電池負極用バインダーおよび二次電池電極用組成物
JP2002329496A (ja) * 2001-04-27 2002-11-15 Nippon A & L Kk 二次電池負極用バインダー
JP2002329497A (ja) * 2001-04-27 2002-11-15 Nippon A & L Kk 二次電池負極用バインダー
KR20120014634A (ko) * 2010-08-10 2012-02-20 주식회사 엘지화학 접착력과 사이클 특성이 우수한 이차전지용 바인더
JP2014203804A (ja) * 2013-04-10 2014-10-27 日本ゼオン株式会社 リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN107338011A (zh) * 2016-08-16 2017-11-10 南京工业大学 一种水分散型聚合物微粒子乳液粘结剂及其制备方法
CN107868160A (zh) * 2016-09-22 2018-04-03 南京工业大学 一种锂离子二次电池负极用粘结剂的组成及其制备方法
CN110885650A (zh) * 2018-09-07 2020-03-17 荒川化学工业株式会社 锂离子电池用粘合剂水溶液、锂离子电池电极用浆料、锂离子电池电极以及锂离子电池
JP2021122751A (ja) * 2020-01-31 2021-08-30 東洋インキScホールディングス株式会社 分散剤、導電材分散体、及び電極膜用スラリー
WO2021187407A1 (ja) * 2020-03-19 2021-09-23 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210218113A1 (en) * 2018-02-06 2021-07-15 Byd Company Limited Polymer separator and preparation method and use thereof, lithium-ion battery and preparation method thereof
US11824225B2 (en) * 2018-02-06 2023-11-21 Byd Company Limited Separator including substrate, hydrophilic blocking layer, and polar polymer bonding with nodal structure, and method of preparing the same
WO2024055154A1 (zh) * 2022-09-13 2024-03-21 宁德时代新能源科技股份有限公司 一种嵌段聚合物及其制备方法和用途、组合物

Also Published As

Publication number Publication date
CN114573751B (zh) 2023-12-12
CA3200243A1 (en) 2022-06-02
KR20230110775A (ko) 2023-07-25
JP2023552150A (ja) 2023-12-14
US20230295410A1 (en) 2023-09-21
CN114573751A (zh) 2022-06-03
EP4250403A1 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
WO2022111580A1 (zh) 锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池
WO2022111590A1 (zh) 锂离子电池用分散剂及其制备方法、正极浆料和锂离子电池
CN111139002B (zh) 锂离子电池水溶型粘接剂及其制备方法、电极极片及电池
WO2017032320A1 (zh) 一种锂离子电池用水性粘合剂、制备方法及其用途
JP4461659B2 (ja) リチウムイオン二次電池電極用バインダー組成物、およびその利用
CN111825804A (zh) 一种锂离子二次电池负极用共聚物胶乳、制备方法及应用
CN111732684A (zh) 一种粘结剂用水性聚合物及其制备方法,水性粘结剂和硅负极锂离子电池
JP2010192434A (ja) 二次電池電極用バインダー
JP5809636B2 (ja) 二次電池電極用バインダー、二次電池電極用スラリー及び二次電池電極
JP5651346B2 (ja) 電池電極用組成物
CN116731241A (zh) 一种正极非氟锂电粘结剂及其制备方法和应用
JPH11167921A (ja) 電池用バインダー、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池
JP5805252B2 (ja) 電池電極用バインダーおよび電池電極用組成物
JP4552235B2 (ja) リチウムイオン二次電池用電極および二次電池
JP6363331B2 (ja) 電池電極用水系バインダー及びその製造方法
WO2024002199A1 (zh) 一种用于锂离子电池负极的粘结剂及其制备方法和用途
JP6029823B2 (ja) 二次電池電極用水系組成物および二次電池正極用電極
CN117343670A (zh) 一种水性锂离子电池负极用胶黏剂及其制备方法和应用
JP5651518B2 (ja) 電池電極用バインダー及び電池電極用組成物
CN117050237A (zh) 一种溶液型粘结剂及其制备方法和用途
JP7220216B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP5835682B2 (ja) 電池電極用組成物
JP4524907B2 (ja) ニッケル水素二次電池電極用バインダー、スラリーおよびニッケル水素二次電池
JP7137954B2 (ja) 電池電極用組成物の製造方法
JPH10270047A (ja) 電池用バインダー組成物、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3200243

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023532446

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237020965

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897080

Country of ref document: EP

Effective date: 20230621