WO2022059971A1 - 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체 - Google Patents

플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체 Download PDF

Info

Publication number
WO2022059971A1
WO2022059971A1 PCT/KR2021/011747 KR2021011747W WO2022059971A1 WO 2022059971 A1 WO2022059971 A1 WO 2022059971A1 KR 2021011747 W KR2021011747 W KR 2021011747W WO 2022059971 A1 WO2022059971 A1 WO 2022059971A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
flexible display
manufacturing
resin layer
composite substrate
Prior art date
Application number
PCT/KR2021/011747
Other languages
English (en)
French (fr)
Inventor
홍예지
강미은
박채원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210115642A external-priority patent/KR102642298B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180015868.7A priority Critical patent/CN115210320A/zh
Priority to JP2022559466A priority patent/JP2023521590A/ja
Publication of WO2022059971A1 publication Critical patent/WO2022059971A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a composite substrate for manufacturing a flexible display device capable of manufacturing a flexible display device without damage through a simpler process, a method for manufacturing a flexible display device using the same, and a laminate for a flexible display device.
  • the display device market is rapidly changing mainly for flat panel displays (FPDs) that have a large area and can be thin and lightweight.
  • Such flat panel displays include a liquid crystal display (LCD), an organic light emitting display (OLED), or an electrophoretic display (EPD).
  • LCD liquid crystal display
  • OLED organic light emitting display
  • EPD electrophoretic display
  • a process of forming and handling a structure of a display device such as a thin film transistor (TFTs on Plastic: TOP) on a plastic substrate is a key process in manufacturing a flexible display device.
  • TFTs on Plastic: TOP thin film transistor
  • the manufacturing process of the display substrate is carried out in a state where the thin glass is placed on the support glass (carrier glass).
  • a sacrificial layer made of a-silicon or the like is formed on a carrier substrate such as a glass substrate, a flexible substrate is formed thereon. Thereafter, a device structure such as a thin film transistor is formed on a flexible substrate supported by a carrier substrate through an existing device manufacturing process for a glass substrate. Then, the sacrificial layer is destroyed by irradiating the carrier substrate with laser or light, and the flexible substrate on which the device structure is formed is separated to finally manufacture a device having a flexible substrate such as a flexible display device.
  • the device structure is affected in the process of irradiating the laser or light, and there is a risk of defects, etc., as well as equipment and a separate process for irradiating the laser or light. Therefore, there is a disadvantage in that the overall device manufacturing process is complicated and the manufacturing cost is also greatly increased.
  • the present invention relates to a composite substrate for manufacturing a flexible display device capable of manufacturing a flexible display device without damage through a simple process.
  • Another aspect of the present invention is to provide a method of manufacturing a flexible display device, comprising peeling the flexible display device including the polyimide resin layer formed on the composite substrate for manufacturing the flexible display device and the flexible display device.
  • the present invention provides a composite substrate for manufacturing the flexible display device; a polyimide resin layer formed on the composite substrate for manufacturing the flexible display device; and a flexible display element formed on the polyimide resin layer.
  • a polymer resin layer containing polysiloxane and polyimide and having a haze of 1% or less; and a glass substrate; is provided, including a composite substrate for manufacturing a flexible display device.
  • a method of manufacturing a flexible display device which includes peeling the flexible display device including the polyimide resin layer and the flexible display device formed on the composite substrate for manufacturing the flexible display device.
  • a composite substrate for manufacturing the flexible display device a polyimide resin layer formed on the composite substrate for manufacturing the flexible display device; and a flexible display element formed on the polyimide resin layer.
  • flexible means a state having a degree of flexibility that does not generate cracks with a length of 3 mm or more when wound on a cylindrical mandrel having a diameter of 3 mm, and thus the present invention
  • the flexible display device may mean a bendable, flexible, rollable, or foldable display device.
  • first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • the (co)polymer is meant to include both polymers or copolymers, the polymer means a homopolymer consisting of a single repeating unit, and the copolymer means a composite polymer containing two or more kinds of repeating units.
  • substituted means that other functional groups are bonded instead of hydrogen atoms in the compound, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, the position where the substituent is substituted, is not limited, and when two or more substituted , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amide group; primary amino group; carboxyl group; sulfonic acid group; sulfonamide group; a phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; alkoxysilylalkyl group; an arylphosphine group; Or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • a direct bond refers to a case in which a separate atom does not exist in the portion represented by L .
  • aromatic is a characteristic that satisfies the Huckels Rule, and a case in which all of the following three conditions are satisfied according to the Huckels Rule may be defined as aromatic.
  • the alkyl group is a monovalent functional group derived from an alkane, and may be straight-chain or branched, and the number of carbon atoms in the straight-chain alkyl group is not particularly limited, but is preferably 1 to 20. In addition, the number of carbon atoms of the branched chain alkyl group is 3 to 20.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-non
  • the haloalkyl group refers to a functional group in which a halogen group is substituted with the aforementioned alkyl group, and examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the haloalkyl group may be substituted or unsubstituted, and when substituted, examples of the substituent are as described above.
  • a multivalent functional group is a residue in a form in which a plurality of hydrogen atoms bonded to an arbitrary compound are removed, and may include, for example, a divalent functional group, a trivalent functional group, and a tetravalent functional group.
  • the tetravalent functional group derived from cyclobutane refers to a residue in which 4 hydrogen atoms bonded to cyclobutane are removed.
  • the electron withdrawing group may include at least one selected from the group consisting of a haloalkyl group, a halogen group, a cyano group, a nitro group, a sulfonic acid group, a carbonyl group and a sulfonyl group, preferably
  • it may be a haloalkyl group such as a trifluoromethyl group (-CF 3 ).
  • a direct bond or a single bond means that no atom or group of atoms is present at the corresponding position, and thus is connected by a bonding line. Specifically, it means a case in which a separate atom does not exist in the portion represented by L 1 and L 2 in the formula.
  • the weight average molecular weight means the weight average molecular weight in terms of polystyrene measured by the GPC method.
  • a commonly known analyzer a detector such as a differential refraction detector, and a column for analysis may be used, and the temperature at which it is normally applied Conditions, solvents, and flow rates can be applied.
  • the evaluation temperature is 160 ° C.
  • the flow rate was 1 mL/min, and the sample was prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 ⁇ L, and the value of Mw can be obtained using a calibration curve formed using a polystyrene standard.
  • the molecular weight of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • a polymer resin layer comprising polysiloxane and polyimide and having a haze of 1% or less; and a glass substrate; may be provided, including a composite substrate for manufacturing a flexible display device.
  • the composite substrate for manufacturing a flexible display device of the embodiment includes a polymer resin layer containing polysiloxane and polyimide and having a haze of 1% or less, when manufacturing a flexible display device, on the composite substrate for manufacturing a flexible display device
  • the peeling strength from the laminated polyimide layer is low, so it is easy to peel, and no additional cost is incurred in the peeling process, but also transfer and curling does not occur in the polyimide resin layer after peeling, confirming that it is easy to manufacture a flexible display device It was confirmed through experiments and the invention was completed.
  • the composite substrate for manufacturing a flexible display device includes a polymer resin layer functioning as a peeling aid layer, and the peel strength from the flexible display device is low, so that when the flexible display device is manufactured, the laminated flexible display device is destroyed Since the exfoliation process using a high-performance laser is unnecessary, the cost can be reduced, and the polyimide layer is not induced by the laser.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of one embodiment has a haze of 1% or less, or 0.001% or more and 1% or less, 0.1% or more and 1% or less, 0.1% or more and 0.6% or less, or 0.2% or more and 0.6%. can have
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment has a low haze of 1% or less, the optical properties of the composite substrate for manufacturing a flexible display device are excellent, so that the polyimide resin layer is used in manufacturing the flexible display device. There may be little to no fighting.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment has a haze of more than 1%, transfer occurs to the polyimide resin layer during manufacturing the flexible display device, which may be unsuitable for use in manufacturing a flexible display device there is.
  • Examples of the method and equipment for measuring the haze of the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment are not specifically limited, and various methods conventionally used for haze measurement may be applied without limitation.
  • haze may be measured for the polymer resin layer using a HAZE METER (model name: NDH7000, Nippon Denshoku Co., Ltd.) according to the measurement method of ASTM D1003.
  • the haze of the polymer resin layer of the composite substrate for manufacturing a flexible display device according to the embodiment may be realized as the polymer resin layer includes polysiloxane and polyimide.
  • the haze of the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment may be realized as the polymer resin layer uses polysiloxane and polyimide in a specific content ratio, as will be described later.
  • the thickness of the polymer resin layer which is a measurement target of the haze, is not particularly limited, but can be freely adjusted within, for example, 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the polymer resin layer increases or decreases by a specific value, physical properties measured in the polymer resin layer may also change by a specific value.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment has a peel strength of 1 g/cm or more and 30 g/cm or less, 2 g/cm or more and 30 g/cm when peeled at 90 degrees with respect to the polyimide resin layer. or less, 3 g/cm or more and 30 g/cm or less, or 3.5 g/cm or more and 30 g/cm or less.
  • the composite substrate for manufacturing a flexible display device of the embodiment has a small peel strength of 1 g/cm or more and 30 g/cm or less. there is.
  • the polymer resin layer and the polyimide resin layer mean different resin layers, specifically, the polymer resin layer means a resin layer included in the composite substrate for manufacturing a flexible display device of the embodiment, and the polyimide resin layer is It may mean a resin layer included in the flexible display device.
  • the flexible display device may have a structure in which a device protection layer, a transparent electrode layer, a silicon oxide layer, a polyimide resin layer, a silicon oxide layer, and a hard coating layer are sequentially stacked.
  • the peel strength measured when the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment is peeled at 90 degrees with respect to the polyimide resin layer is less than 1 g/cm
  • the polyimide resin layer on the composite substrate for manufacturing a flexible display device Since it cannot be formed, the polymer resin layer of the composite substrate for manufacturing a flexible display device may not function as a peeling aid layer, and thus may be unsuitable for use in manufacturing a flexible display device.
  • Examples of the method and equipment for measuring the peel strength of the polymer resin layer and the polyimide resin layer of the composite substrate for manufacturing a flexible display device of the embodiment are not specifically limited, and various methods used for measuring peel strength in the prior art are applied without limitation.
  • the peel strength of the polymer resin layer and the polyimide resin layer of the composite substrate for manufacturing a flexible display device of the embodiment can be realized as the composite substrate for manufacturing a flexible display device of the embodiment includes the polymer resin layer described above.
  • the polymer resin layer may be implemented by using polysiloxane and polyimide in a specific content ratio, as will be described later.
  • the thickness of the polyimide resin layer to be measured for the peel strength may be 10 ⁇ m.
  • physical properties measured in the polyimide resin layer may also change by a specific value.
  • the thickness of the polymer resin layer which is the measurement target of the peel strength, is not particularly limited, but can be freely adjusted within, for example, 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the polymer resin layer increases or decreases by a specific value, physical properties measured in the polymer resin layer may also change by a specific value.
  • the degree of transfer to the polyimide resin layer may be 50% or less, 0% or more and 50% or less, or 0%. there is.
  • the transfer degree refers to the degree to which the polyimide resin layer is separated from the composite substrate for manufacturing a flexible display device during manufacturing of the flexible display device and then transferred to the polyimide resin layer from which the composite substrate for manufacturing a flexible display device is peeled, according to the following criteria can be evaluated.
  • the polymer resin layer and the polyimide resin layer mean different resin layers, specifically, the polymer resin layer means a resin layer included in the composite substrate for manufacturing a flexible display device of the embodiment, and the polyimide resin layer is It may mean a resin layer included in the flexible display device.
  • the flexible display device may have a structure in which a device protection layer, a transparent electrode layer, a silicon oxide layer, a polyimide resin layer, a silicon oxide layer, and a hard coating layer are sequentially stacked.
  • the composite substrate for manufacturing a flexible display device of one embodiment includes the above-described polymer resin layer, transfer to the polyimide resin layer peeled from the composite substrate for manufacturing a flexible display device in the manufacturing process of the flexible display device occurs partially, or preferably does not occur at all, so it may be suitable for use in manufacturing a flexible display device.
  • the transfer degree of the composite substrate for manufacturing a flexible display device of the embodiment may be realized by including the polymer resin layer having excellent optical properties and having a haze of 1% or less.
  • An example of the method of measuring the transfer degree of the composite substrate for manufacturing a flexible display device of the embodiment is not specifically limited, and for example, a polyimide precursor composition is coated to form a polyimide resin layer with respect to the polymer resin layer, and a curing process is performed. After the process, the polyimide film is peeled off with respect to an area of 2.5 cm * 5 cm, and the degree of transfer can be measured with the naked eye.
  • the thickness of the polyimide resin layer to be measured for the degree of transfer may be 10 ⁇ m.
  • physical properties measured in the polyimide resin layer may also change by a specific value.
  • the thickness of the polymer resin layer which is a measurement target of the transfer degree, is not particularly limited, but can be freely adjusted within, for example, 0.001 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the polymer resin layer increases or decreases by a specific value, physical properties measured in the polymer resin layer may also change by a specific value.
  • the type of the polysiloxane is not particularly limited, for example, polyether dimethylpolysiloxane-based polysiloxane, polyether hydroxy polydimethylsiloxane-based polysiloxane, polymethylalkylsiloxane-based polysiloxane, polyether polymethylalkylsiloxane-based polysiloxane, polyether polymethylalkylsiloxane-based polysiloxane Ester polymethylalkylsiloxane-based polysiloxane, alkyl polymethylalkylsiloxane-based polysiloxane, polyester hydroxy polydimethylsiloxane-based polysiloxane, polyester acrylic polydimethylsiloxane-based polysiloxane, polyether-polyester hydroxy polydimethylsiloxane-based polysiloxane, poly Ether polydimethylsiloxane nonionic polyacrylic polys
  • the polyether dimethylpolysiloxane-based polysiloxane is BYK-300, BYK-301, BYK-302, BYK-331, BYK-335, BYK-306, BYK-330, BYK-341, BYK-344, BYK-307, BYK-333, BYK-310, etc. may be used, and as the polyether hydroxy polydimethylsiloxane-based polysiloxane, BYK-308, BYK-373, etc. manufactured by BYK may be used, and the polymethylalkylsiloxane-based polysiloxane may be used.
  • polysiloxane BYK-077 or BYK-085 manufactured by BYK may be used, and the polyether polymethylalkylsiloxane-based polysiloxane may be BYK-320 or BYK-325 manufactured by BYK, and the polyester polymethylalkyl
  • the siloxane-based polysiloxane BYK-315 manufactured by BYK may be used, and the alkyl polymethylalkylsiloxane-based polysiloxane may be BYK-322 or BYK-323 manufactured by BYK, and the polyester hydroxy polydimethylsiloxane may be used.
  • the acid-based polysiloxane may be BYK-370 manufactured by BYK, and the polyester acrylic polydimethylsiloxane-based polysiloxane may be BYK-371 or BYK-UV 3570 manufactured by BYK, and the polyether-polyester hydroxy
  • BYK-375 manufactured by BYK may be used
  • the polyether polydimethylsiloxane-based polysiloxane may include BYK-345, BYK-348, BYK-346, BYK-UV3510, BYK-332, BYK-337 may be used
  • the nonionic polyacrylic polysiloxane may be BYK-380 manufactured by BYK, and BYK-381 manufactured by BYK may be used as the ionic polyacrylic polysiloxane.
  • BYK-353, BYK-356, BYK-354, BYK-355, BYK-359, BYK-361 N, BYK-357, BYK-358 N, BYK-352, etc. of BYK can be used
  • the polymer As the other acrylate-based polysiloxane, BYK-390 manufactured by BYK may be used
  • the polyether acrylic polydimethylsiloxane-based polysiloxane may be BYK-UV 3500 or BYK-UV3530 manufactured by BYK
  • the polyether siloxane-based polysiloxane may be used.
  • the polysiloxane BYK-347 manufactured by BYK may be used, the alcohol alkoxylate-based polysiloxane may be BYK-DYNWET 800 manufactured by BYK, and the acrylate-based polysiloxane may be BYK-392 manufactured by BYK.
  • the hydroxy silicone polyacrylate-based polysiloxane BYK-Silclean 3700 manufactured by BYK may be used.
  • the polysiloxane may include polysiloxane to which a reactive functional group is bonded.
  • the reactive functional group may be an OH group, an NH 2 group, or a double bond. More specifically, the reactive functional group may be an OH group.
  • the polysiloxane to which the reactive functional group is bonded is specifically, polyether hydroxy polydimethylsiloxane-based polysiloxane, polyester hydroxy polydimethylsiloxane-based polysiloxane, polyether-polyester hydroxy polydimethylsiloxane-based polysiloxane, hydroxy silicone polyacrylate-based It may include any one or more of polysiloxane. As a specific example, BYK-308, BYK-373, BYK-370, BYK-375, BYK-Silclean 3700, etc. manufactured by BYK may be used.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment contains 20 wt% or more and 45 wt% or less, or 20 wt% or more and 40 wt% or less of the solid content of the polysiloxane with respect to the total weight of the polymer resin layer.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of one embodiment contains 20 wt% or more and 45 wt% or less of the solid content of the polysiloxane with respect to the total weight of the polymer resin layer.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment contains less than 20 wt % of the solid content of the polysiloxane with respect to the total weight of the polymer resin layer, the surface of the substrate is not sufficiently hydrophobically substituted with the polyimide resin layer and There may be technical problems in that the peeling force of the is not reduced.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of one embodiment contains more than 45 wt % of the solid content of the polysiloxane with respect to the total weight of the polymer resin layer, the hydrophilic polyimide and the hydrophobic additive are phase-separated, and the flexible
  • the adhesive force of the composite substrate for manufacturing a flexible display device to the polyimide resin layer is too high, and curling or transfer occurs in the peeled polyimide resin layer, thereby destroying the flexible display device, etc., and additional cost in the peeling process This can happen.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment contains 0.1 wt % or more and 2.5 wt % or less, 0.5 wt % or more and 2.5 wt % or less, 1 weight of the solid content of the polyimide with respect to the total weight of the polymer resin layer. % or more and 2.5 wt% or less, or 1 wt% or more and 2 wt% or less.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of one embodiment contains 0.1 wt% or more and 2.5 wt% or less of the solid content of the polyimide with respect to the total weight of the polymer resin layer, the flexible display device for manufacturing the flexible display device
  • the peeling strength with the polyimide layer laminated on the composite substrate is low, so peeling is easy and there is no additional cost in the peeling process, and since transfer and curling do not occur in the polyimide resin layer after peeling, flexible display device manufacturing can be easy
  • the support layer is not formed, so that the polymer polyimide resin layer for the upper substrate Since the bonding strength with the flexible display device is decreased, the adhesive force of the composite substrate for manufacturing the flexible display device to the polyimide resin layer is too low, and the polymer resin layer does not function as a peeling aid layer, so it is used for manufacturing the flexible display device may be unsuitable.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of one embodiment contains more than 2.5 wt % of the solid content of the polyimide with respect to the total weight of the polymer resin layer, the polysiloxane that is mutually insoluble is excessively present, Due to the precipitated polyimide, the haze of the polymer resin layer is more than 1%, and the optical properties are poor, so that transfer occurs in the peeled polyimide resin layer when the flexible display device is manufactured. Not only will the film break, but the peeling process may incur additional costs.
  • the solid content of the polyimide is 2 parts by weight or more and 20 parts by weight or less, 2 parts by weight or more and 15 parts by weight or less, 2.5 parts by weight based on 100 parts by weight of the polysiloxane solid content. It may be included in an amount of not less than 15 parts by weight and not more than 2.5 parts by weight and not more than 10 parts by weight.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment contains 2 parts by weight or more and 20 parts by weight or less of the solid content of the polyimide based on 100 parts by weight of the polysiloxane solid content, the flexible display device is manufactured when the flexible display device is manufactured.
  • the peeling strength with the polyimide layer laminated on the composite substrate for manufacturing is low, so peeling is easy, and additional costs are not incurred in the peeling process, and also the transfer and curling do not occur in the polyimide resin layer after peeling, so a flexible display device It may be easy to manufacture.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment contains less than 2 parts by weight of the solid content of the polyimide with respect to 100 parts by weight of the solid content of the polysiloxane, when manufacturing the flexible display device, Adhesion to the polyimide resin layer is too low, the polymer resin layer may not function as a peeling aid layer, and thus may be unsuitable for use in manufacturing a flexible display device.
  • the polymer resin layer of the composite substrate for manufacturing a flexible display device of the embodiment contains more than 20 parts by weight of the solid content of the polyimide based on 100 parts by weight of the solid content of the polysiloxane, the haze of the polymer resin layer is greater than 1% optical properties Due to this defect, transfer occurs in the peeled polyimide resin layer when the flexible display device is manufactured, and accordingly, the laminated inorganic element and the film are destroyed when the flexible display device is manufactured, and additional costs may occur in the peeling process.
  • the polymer resin layer may include polyimide.
  • the polymer resin layer may include both polyamic acid and polyamic acid ester, which are precursor polymers thereof, in addition to polyimide.
  • the polymer resin layer may include at least one selected from the group consisting of a polyamic acid repeating unit, a polyamic acid ester repeating unit, and a polyimide repeating unit. That is, the polymer resin layer may include one polyamic acid repeating unit, one polyamic acid ester repeating unit, one polyimide repeating unit, or a copolymer in which two or more repeating units thereof are mixed.
  • At least one repeating unit selected from the group consisting of the polyamic acid repeating unit, the polyamic acid ester repeating unit, and the polyimide repeating unit may form the main chain of the polyimide-based polymer.
  • the polymer resin layer may include a cured product of a polyimide-based resin.
  • the cured product of the polyimide-based resin means a product obtained through a curing process of the polyimide-based resin.
  • the polyimide may include a reaction product between an aromatic tetracarboxylic acid or anhydride thereof and an aromatic diamine, or a repeating unit derived therefrom.
  • the types of the aromatic tetracarboxylic acid or anhydride thereof and the aromatic diamine are not particularly limited.
  • the polyimide may include a repeating unit represented by the following formula (1).
  • X 1 is an aromatic tetravalent functional group containing a multi-ring
  • Y 1 is an aromatic divalent functional group having 10 or less carbon atoms.
  • X 1 is an aromatic tetravalent functional group containing multiple rings, and X 1 is a functional group derived from a tetracarboxylic dianhydride compound used for synthesizing a polyimide-based resin.
  • the tetravalent functional group of X 1 may include a tetravalent functional group represented by Formula 2 below.
  • Ar is a polycyclic aromatic divalent functional group.
  • the polycyclic aromatic divalent functional group is a polycyclic aromatic hydrocarbon compound or a divalent functional group derived from a derivative compound thereof, and may include a fluorenylene group.
  • the derivative compound includes all compounds in which one or more substituents are introduced or carbon atoms are replaced with heteroatoms.
  • the polycyclic aromatic divalent functional group may include a fused cyclic divalent functional group containing at least two or more aromatic ring compounds. That is, in the multicyclic aromatic divalent functional group, at least two or more aromatic ring compounds may be contained in the functional group structure, and the functional group may have a fused ring structure.
  • the aromatic ring compound may include an arene compound containing one or more benzene rings, or a hetero arene compound in which a carbon atom in the arene compound is replaced with a hetero atom.
  • the aromatic ring compound may be contained in at least two or more of the polycyclic aromatic divalent functional group, and each of the two or more aromatic ring compounds may form a directly fused ring or a fused ring through another ring structure.
  • each of the two or more aromatic ring compounds may form a directly fused ring or a fused ring through another ring structure.
  • two benzene rings are each joined to a cycloalkyl ring structure, it can be defined that two benzene rings form a fused ring through the cycloalkyl ring.
  • the fused cyclic divalent functional group containing at least two or more aromatic ring compounds is a divalent functional group derived from a fused cyclic compound containing at least two or more aromatic ring compounds or a derivative compound thereof, wherein the derivative compound has one or more substituents introduced therein. or a compound in which a carbon atom is replaced by a hetero atom.
  • the tetravalent functional group represented by Formula 2 may include a functional group represented by Formula 2-1 below.
  • Y 1 is an aromatic divalent functional group having 10 or less carbon atoms, and Y 1 may be a functional group derived from polyamic acid, polyamic acid ester, or a diamine compound used in synthesizing polyimide.
  • the aromatic divalent functional group having 10 or less carbon atoms may include an aromatic divalent functional group having 10 or less carbon atoms in which at least one fluorine-based functional group is substituted. More specifically, the aromatic divalent functional group having 10 or less carbon atoms of Y 1 may include a functional group represented by Formula 3 below.
  • the polyimide-based resin may include a combination of a tetracarboxylic dianhydride represented by the following Chemical Formula 2-2 and an aromatic diamine having 10 or less carbon atoms.
  • Ar ' is a polycyclic aromatic divalent functional group.
  • the polycyclic aromatic divalent functional group is a divalent functional group derived from a polycyclic aromatic hydrocarbon compound, and is a divalent functional group derived from a fluorenylene group or a derivative compound thereof, and may include a fluorenylene group.
  • the derivative compound includes all compounds in which one or more substituents are introduced or carbon atoms are replaced with heteroatoms.
  • tetracarboxylic dianhydride represented by Formula 2-2 examples include 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (9,9-Bis (3,4-dicarboxyphenyl) fluorene Dianhydride, BPAF ) can be mentioned.
  • the aromatic diamine having 10 or less carbon atoms is a compound in which amino groups (-NH 2 ) are bonded to both terminals of the aforementioned aromatic divalent functional group having 10 or less carbon atoms, and the description of the aromatic divalent functional group having 10 or less carbon atoms is as described above.
  • aromatic diamine having 10 or less carbon atoms include diamines represented by the following formula (a).
  • the polyimide-based resin includes a terminal anhydride group (-OC-O-CO-) of tetracarboxylic dianhydride represented by Formula 2-2, and a terminal amino group (-NH 2 ) of an aromatic diamine having 10 or less carbon atoms.
  • a bond between the nitrogen atom of the amino group and the carbon atom of the anhydride group may be formed by the reaction.
  • polyimide may further include a polyimide repeating unit represented by the following Chemical Formula 4 in addition to the polyimide repeating unit represented by Chemical Formula 1 above.
  • X 2 is a tetravalent functional group different from that of X 1
  • Y 2 is an aromatic divalent functional group having 10 or less carbon atoms.
  • X 2 may be one of the tetravalent functional groups represented by Formula 5 below.
  • R 1 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • L 3 is a single bond, -O-, -CO-, -COO-, -S-, -SO-, -SO 2 -, -CR 7 R 8 -, -(CH 2 ) t -, -O(CH 2 ) t O-, -COO(CH 2 ) t OCO-, -CONH-, phenylene, or their Any one selected from the group consisting of combinations, wherein R 7 and R 8 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, or a halo alkyl group having 1 to 10 carbon atoms, and t is an integer of 1 to 10 .
  • the polyimide may include a first repeating unit containing a repeating unit represented by Chemical Formula 1, wherein the repeating unit derived from tetracarboxylic dianhydride is a functional group represented by Chemical Formula 2; and a second repeating unit containing a repeating unit represented by Chemical Formula 4, wherein the tetracarboxylic dianhydride-derived repeating unit is a functional group represented by Chemical Formula 5.
  • the first repeating unit and the second repeating unit may be randomly arranged in the polyimide polymer to form a random copolymer, or a block between the first repeating units and a block between the second repeating units may be formed to form a block copolymer. there is.
  • the polyimide-based polymer including the repeating unit represented by Formula 1 and the repeating unit represented by Formula 4 may be prepared by reacting two or more different tetracarboxylic dianhydride compounds with a diamine compound, A random copolymer may be synthesized by simultaneously adding tetracarboxylic dianhydride, or a block copolymer may be synthesized by sequential addition.
  • the polyimide contains less than 50 mol%, 1 mol% or more and 49 mol% or less, 10 mol% or more and 49 mol% or less, 15 mol% or more and 40 mol% or less, or 20 mol% of the polyimide repeating unit represented by Formula 1 It may contain more than 30 mol% or less.
  • the polyimide-based resin contains more than 50 mol% of the polyimide repeating unit represented by Formula 4, 51 mol% or more and 99 mol% or less, 51 mol% or more and 90 mol% or less, 60 mol% or more and 85 mol% or less , or 70 mol% or more and 80 mol% or less.
  • the weight average molecular weight (GPC measurement) of the polyimide is not particularly limited, but may be, for example, 1000 g/mol or more and 200000 g/mol or less, or 10000 g/mol or more and 200000 g/mol or less.
  • the polyimide according to the present invention can exhibit excellent colorless and transparent properties while maintaining properties such as heat resistance and mechanical strength due to a rigid structure, and thus a substrate for a device, a cover substrate for a display, an optical film, an IC It can be used in various fields such as (integrated circuit) package, electrodeposition film, multi-layer flexible printed circuit (FRC), tape, touch panel, protective film for optical disk, etc. It can be particularly suitable for a composite substrate for manufacturing flexible display devices. there is.
  • examples of the method of synthesizing the polyimide for forming the polymer resin layer are not particularly limited, for example, forming a coating film by applying a resin composition containing the polyimide to a substrate (step 1); drying the coating film (step 2); A method for producing a film, including the step of curing the dried coating film by heat treatment (step 3), may be used.
  • Step 1 is a step of forming a coating film by applying the above-described resin composition containing polyimide to a substrate.
  • a method of applying the resin composition containing the polyimide to the substrate is not particularly limited, and for example, methods such as screen printing, offset printing, flexographic printing, and inkjet printing may be used.
  • the resin composition containing the polyimide may be dissolved or dispersed in an organic solvent.
  • an organic solvent for example, when polyimide is synthesize
  • polyimide when polyimide is obtained as powder, what was made to melt
  • organic solvent examples include toluene, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl Pyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, gamma-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3- Ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoa Milk ketone, methyl isopropyl ketone, cyclohexanone, ethylene
  • Step 2 is a step of drying the coating film formed by applying the resin composition containing the polyimide-based resin to the substrate.
  • the drying step of the coating film may be carried out by a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, and may be performed at a temperature of 50 °C or more and 150 °C or less, or 50 °C or more and 100 °C or less.
  • a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, and may be performed at a temperature of 50 °C or more and 150 °C or less, or 50 °C or more and 100 °C or less.
  • Step 3 is a step of curing the dried coating film by heat treatment.
  • the heat treatment may be performed by a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, and may be performed at a temperature of 200 °C or higher, or 200 °C or higher and 300 °C or lower.
  • the thickness of the polyimide-based resin film is not particularly limited, but can be freely adjusted within, for example, 0.01 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the display device manufactured from the composite substrate for manufacturing the flexible display device may have various structures according to the field of application and specific form, for example, a cover plastic window, a touch panel, a polarizing plate, a barrier film, a light emitting device (OLED device, etc.) ), and may have a structure including a transparent substrate.
  • Manufacturing of a flexible display device comprising the step of peeling the flexible display device including the polyimide resin layer and the flexible display device formed on the composite substrate for manufacturing the flexible display device of the embodiment.
  • the peeling is performed at 25° C., 1.0 mm/s, 0.0001 kg, etc. under the conditions of the device Texture Analyzer ( Model name: TA.XT plus100, Stable micro systems) can be used.
  • the method of manufacturing the flexible display device according to the embodiment may further include laminating a polyimide resin layer on the composite substrate for manufacturing the flexible display device and laminating the flexible display device.
  • the method of manufacturing a flexible display device includes: laminating a polyimide resin layer on a composite substrate for manufacturing a flexible display device; and laminating a flexible display device; and peeling off the flexible display device including the polyimide resin layer formed on the composite substrate for manufacturing the flexible display device and the flexible display device.
  • the method for manufacturing the flexible display device of the embodiment after sequentially laminating the polyimide resin layer and the flexible display device on the composite substrate for manufacturing the flexible display device is performed, polyimide formed on the composite substrate for manufacturing the flexible display device As the step of peeling the flexible display device including the resin layer and the flexible display element is performed, a flexible display element laminate in which the flexible display element is laminated on the polyimide resin layer and based on the polyimide resin layer may be formed. .
  • the example of the method of laminating the polyimide resin layer on the composite substrate for manufacturing a flexible display device is not particularly limited.
  • the resin composition containing the polyimide is applied to the composite substrate for manufacturing a flexible display device.
  • forming a coating film step 1
  • drying the coating film step 2
  • a manufacturing method comprising the step of curing the dried coating film by heat treatment (step 3) may be used.
  • Step 1 is a step of forming a coating film by applying a resin composition containing polyimide to a composite substrate for manufacturing a flexible display device.
  • a method of applying the resin composition containing polyimide to the substrate is not particularly limited, and for example, methods such as screen printing, offset printing, flexographic printing, and inkjet printing may be used.
  • the resin composition containing the polyimide may be dissolved or dispersed in an organic solvent.
  • an organic solvent for example, when polyimide is synthesize
  • polyimide when polyimide is obtained as powder, what was made to melt
  • organic solvent examples include toluene, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl Pyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, gamma-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3- Ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoa Milk ketone, methyl isopropyl ketone, cyclohexanone, ethylene
  • Step 2 is a step of drying a coating film formed by applying a resin composition containing polyimide to a substrate.
  • the drying step of the coating film may be carried out by a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, and may be performed at a temperature of 50 °C or more and 150 °C or less, or 50 °C or more and 100 °C or less.
  • a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, and may be performed at a temperature of 50 °C or more and 150 °C or less, or 50 °C or more and 100 °C or less.
  • Step 3 is a step of curing the dried coating film by heat treatment.
  • the heat treatment may be performed by a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, and may be performed at a temperature of 200 °C or higher, or 200 °C or higher and 300 °C or lower.
  • the thickness of the polyimide resin layer is not particularly limited, but can be freely adjusted within, for example, 0.01 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the polyimide resin layer increases or decreases by a specific value, physical properties measured in the polyimide resin layer may also change by a specific value.
  • examples of the method of stacking the flexible display device are not particularly limited, and techniques known in the art may be used.
  • the method of manufacturing the flexible display device of the embodiment may include a low temperature polysilicon (LTPS) thin film manufacturing process, an ITO thin film manufacturing process, or an oxide thin film manufacturing process.
  • LTPS low temperature polysilicon
  • a blocking layer including SiO 2 on the polyimide resin layer For example, after laminating the polyimide resin layer, forming a blocking layer including SiO 2 on the polyimide resin layer;
  • a-Si amorphous silicon
  • It may include a LTPS thin film manufacturing process including crystallizing the a-Si thin film with an excimer laser or the like.
  • the display device manufactured from the composite substrate for manufacturing the flexible display device may have various structures according to the field of application and specific form, for example, a cover plastic window, a touch panel, a polarizing plate, a barrier film, a light emitting device (OLED device, etc.) ), and may have a structure including a transparent substrate.
  • the content of the composite substrate for manufacturing the flexible display device includes all of the content described above in the embodiment.
  • the composite substrate for manufacturing the flexible display device includes the above-mentioned polymer resin layer, so the peeling strength is low It is easy to peel and no additional cost is incurred in the peeling process, and transfer and curling may not occur in the polyimide resin layer after peeling.
  • the composite substrate for manufacturing the flexible display device of the embodiment a polyimide resin layer formed on the composite substrate for manufacturing the flexible display device; and a flexible display device formed on the polyimide resin layer.
  • the contents of the composite substrate for manufacturing the flexible display device, the polyimide resin layer, and the flexible display device include all the contents described above in the embodiment.
  • a composite substrate for manufacturing the flexible display device As in the embodiment, a composite substrate for manufacturing the flexible display device; a polyimide resin layer formed on the composite substrate for manufacturing the flexible display device; and a flexible display device formed on the polyimide resin layer, wherein in the case of a laminate for a flexible display device, a composite substrate for manufacturing a flexible display device having a low peel strength with the polyimide resin layer is included.
  • a composite substrate for manufacturing a flexible display device having a low peel strength with the polyimide resin layer is included.
  • transfer and curling do not occur in the polyimide resin layer after peeling, the flexible display device may be easily manufactured.
  • the method of laminating the polyimide resin layer on the composite substrate for manufacturing a flexible display device includes all of the above-described methods.
  • the method of laminating the flexible display device on the polyimide resin layer includes all of the above-described methods.
  • a flexible display device may be manufactured by peeling the composite substrate for manufacturing a flexible display device from the polyimide resin layer in the flexible display device laminate on which the flexible display device is laminated.
  • the composite substrate for manufacturing a flexible display device has a peel strength of 1 g/cm or more and 30 g/cm or less, 2 g/cm when peeled at 90 degrees with respect to the polyimide resin layer. cm or more and 30 g/cm or less, 3 g/cm or more and 30 g/cm or less, or 3.5 g/cm or more and 30 g/cm or less.
  • the laminate for a flexible display device of the embodiment includes a composite substrate for manufacturing a flexible display device having a small peel strength of 1 g/cm or more and 30 g/cm or less with respect to the polyimide resin layer. Excellent peeling force can be realized.
  • the peel strength measured when the composite substrate for manufacturing the flexible display device is peeled at 90 degrees with respect to the polyimide resin layer is less than 1 g/cm, the polyimide resin layer cannot be formed on the composite substrate for manufacturing the flexible display device, so that the flexible display The device laminate may be unsuitable for use in manufacturing flexible display devices.
  • the adhesive force with the polyimide resin layer is too strong when manufacturing the flexible display device. Tearing and curling may occur in the polyimide resin layer, which may cause destruction of the flexible display device and the polyimide resin layer, or a separate peeling process such as a laser may be required to peel it, resulting in process costs.
  • Examples of the method and equipment for measuring the peel strength of the composite substrate and the polyimide resin layer for manufacturing the flexible display device of the embodiment are not specifically limited, and various methods used for measuring the peel strength in the prior art can be applied without limitation.
  • a polyimide precursor composition is coated to form a polyimide resin layer on the composite substrate for manufacturing a flexible display device included in a laminate for a flexible display device and a curing process is performed, and then the polyimide film is peeled off at 90 degrees Therefore, it is possible to measure the peel strength value according to the measurement method of ASTM D6862 using a measuring device: Texture Analyzer (model name: TA.XT plus100, Stable micro systems).
  • the thickness of the polyimide resin layer to be measured for the peel strength may be 10 ⁇ m.
  • physical properties measured in the polyimide resin layer may also change by a specific value.
  • the composite substrate for manufacturing the flexible display device is used for the above-mentioned purpose.
  • the flexible display device includes a curved, bendable, flexible, rollable, or foldable mobile communication terminal, a touch panel of a smart phone or a tablet PC, and All types of displays are included.
  • An example of the flexible display device may be a flexible light emitting device display device.
  • a cover window of the flexible display device may be positioned on an outer portion in a direction in which light or a screen is emitted, and a cathode providing electrons and an electron transporting layer (Eletron)
  • a transport layer, an emission layer, a hole transport layer, and an anode providing holes may be sequentially formed.
  • the organic light emitting diode (OLED) display may further include a hole injection layer (HIL) and an electron injection layer (EIL).
  • HIL hole injection layer
  • EIL electron injection layer
  • cathode and anode electrodes and each component may be used as a material having predetermined elasticity.
  • Another example of the flexible display device may be a rollable display or foldable display.
  • the retractable display device may have various structures depending on the field of application and specific form, and for example, a structure including a cover plastic window, a touch panel, a polarizing plate, a barrier film, a light emitting device (OLED device, etc.), a transparent substrate, etc. can be
  • a composite substrate for manufacturing a flexible display device capable of manufacturing a flexible display device without damage through a simpler process, a method for manufacturing a flexible display device using the same, and a laminate for a flexible display device can be provided.
  • p-phenylenediamine 0.0940 while maintaining the temperature of the reactor at 25 ° C. Moles were added at the same temperature to dissolve.
  • 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride, BPDA) 0.0952 mol was added at the same temperature and stirred for 24 hours to polymerize the polyimide precursor.
  • polyimide precursor solid content and the polysiloxane (BYK-373) solid content were dissolved in the organic solvent methylpyrrolidone (NMP) in a ratio of 10% at the weight shown in Table 1 below to obtain a polyimide precursor composition.
  • NMP organic solvent methylpyrrolidone
  • the polyimide precursor composition was spin-coated on a glass substrate to a thickness of 1 ⁇ m or less.
  • the glass substrate coated with the polyimide precursor composition was placed in an oven and dried at 260° C. for 30 minutes to prepare a composite substrate for manufacturing a flexible display device having a thickness of 0.01 ⁇ m or less.
  • p-phenylenediamine 0.0940 while maintaining the temperature of the reactor at 25 ° C. Moles were added at the same temperature to dissolve.
  • 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride, BPDA) 0.0952 mol was added at the same temperature and stirred for 24 hours to polymerize the polyimide precursor.
  • the polyimide precursor solid content was dissolved in an organic solvent methylpyrrolidone (NMP) at a ratio of 10% to obtain a polyimide precursor composition.
  • the polyimide precursor composition prepared on the composite substrate for manufacturing a flexible display device was spin-coated to a thickness of 1 ⁇ m or less.
  • a composite substrate for manufacturing a flexible display device coated with a polyimide precursor composition was placed in an oven and heated at a rate of 5 °C/min, and the curing process was carried out by holding at 80 °C for 30 minutes and at 260 °C for 60 minutes.
  • a polyimide resin layer was laminated on the composite substrate.
  • the flexible display device was laminated, and the flexible display device on which the polyimide resin layer and the flexible display device were laminated was naturally peeled off from the composite substrate for manufacturing the flexible display device, thus manufacturing the flexible display device.
  • NMP N-methyl-2-pyrrolidone
  • the 2,2'-bis (trifluoromethyl) benzidine (2,2'-Bis (trifluoromethyl) benzidine, TFMB) is added to the solution as an acid dianhydride, and 9,9-bis (3, 0.0230 mol of 4-dicarboxyphenyl) fluorene dianhydride (9,9-Bis (3,4-dicarboxyphenyl) fluorene Dianhydride, BPAF) and 0.0688 mol of Pyromellitic Dianhydride (PMDA) were added at the same temperature.
  • the polyimide precursor was polymerized by stirring for 24 hours.
  • polyimide precursor solid content and the polysiloxane (BYK-373) solid content were dissolved in 10 wt% of the organic solvent methylpyrrolidone (NMP) at the weights shown in Table 1 below to obtain a polyimide precursor composition.
  • NMP organic solvent methylpyrrolidone
  • the polyimide precursor composition was spin-coated on a glass substrate to a thickness of 1 ⁇ m or less.
  • the glass substrate coated with the polyimide precursor composition was placed in an oven and dried at 260° C. for 30 minutes to prepare a composite substrate for manufacturing a flexible display device having a thickness of 0.01 ⁇ m or less.
  • p-phenylenediamine 0.0940 while maintaining the temperature of the reactor at 25 ° C. Moles were added at the same temperature to dissolve.
  • 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride, BPDA) 0.0952 mol was added at the same temperature and stirred for 24 hours to polymerize the polyimide precursor.
  • the polyimide precursor solid content was dissolved in an organic solvent methylpyrrolidone (NMP) at a ratio of 10% to obtain a polyimide precursor composition.
  • the polyimide precursor composition prepared on the composite substrate for manufacturing a flexible display device was spin-coated to a thickness of 1 ⁇ m or less.
  • the composite substrate for manufacturing a flexible display device coated with the polyimide precursor composition was placed in an oven and dried at 260° C. for 30 minutes to laminate a polyimide resin layer on the composite substrate for manufacturing a flexible display device.
  • the flexible display device was laminated, and the flexible display device on which the polyimide resin layer and the flexible display device were laminated was naturally peeled off from the composite substrate for manufacturing the flexible display device, thus manufacturing the flexible display device.
  • a flexible display device was manufactured in the same manner as in Example 1, except that a glass substrate was used as a substrate for manufacturing the flexible display device.
  • a flexible display device was manufactured in the same manner as in Example 1, except that the soda lime substrate was used as a substrate for manufacturing the flexible display device.
  • a polyimide precursor composition, a composite substrate for manufacturing a flexible display device, and a flexible display device were prepared in the same manner as in Example 1, except that polysiloxane (BYK-373) was not added.
  • a polyimide precursor composition, a composite substrate for manufacturing a flexible display device, and a flexible display device were prepared in the same manner as in Example 11, except that polysiloxane (BYK-373) was not added.
  • a composite substrate for manufacturing a flexible display device and a flexible display device were prepared in the same manner as in Example 1, except that the polyimide precursor was not added.
  • Example 2 The same as in Example 1, except that the polyimide precursor solid content and the polysiloxane (BYK-373) solid content were dissolved in the organic solvent methylpyrrolidone (NMP) at the weights shown in Table 1 below to prepare a polyimide precursor composition A composite substrate for manufacturing a flexible display device and a flexible display device were manufactured.
  • NMP organic solvent methylpyrrolidone
  • the polyimide film laminated on the glass substrate was separated from the composite substrate for manufacturing a flexible display device, and haze values were measured according to the measurement method of ASTM D1003 using a HAZE METER (model name: NDH7000, Nippon denshoku).
  • the polyimide resin layer formed on the composite substrate for manufacturing the flexible display device from the composite substrate for manufacturing the flexible display device is peeled at 90 degrees.
  • Measurement device The peel strength value was measured according to the ASTM D6862 measurement method using a Texture Analyzer (model name: TA.XT plus100, Stable micro systems).
  • the polyimide film formed on the composite substrate for manufacturing the flexible display device from the composite substrate for manufacturing the flexible display device is 2.5 cm * 5 cm
  • the polyimide film formed on the composite substrate for manufacturing the flexible display device from the composite substrate for manufacturing the flexible display device is 2.5 cm * 5 cm
  • Example 1 10 One 0.2 20 0.4 14.1 0 0 Example 2 10 One 0.25 25 0.5 10.5 0 0 Example 3 10 One 0.3 30 0.5 9.7 0 0 Example 4 10 One 0.33 33 0.4 4.0 0 0 Example 5 10 One 0.35 35 0.3 3.7 0 0 Example 6 10 One 0.37 37 0.4 3.7 0 0 Example 7 10 One 0.4 40 0.4 4.3 0 0 Example 8 20 2 0.2 20 0.4 15.8 0 0 Example 9 20 2 0.3 30 0.3 12.0 0 0 Example 10 20 2 0.4 40 0.3 4.6 0 0 Example 11 10 One 0.2 20 0.4 8.4 0 0 Example 12 10 One 0.25 25 0.3 6.3 0 0 Example 13 10 One 0.3 30 0.5 8.5 0 0 Example 14 10 One 0.33 33 33
  • the composite substrate for manufacturing a flexible display device obtained in Examples includes a glass substrate and a polymer resin layer containing polysiloxane and polyimide laminated on the glass substrate and having a haze of 1% or less.
  • the peel strength satisfies 1 g/cm or more and 30 g/cm or less.
  • Comparative Examples 1 and 2 since the polymer resin layer was not included, the adhesion to the polyimide resin layer was too high, and it was transferred to the polyimide resin layer. And curling may occur to not only destroy the laminated inorganic element and destroy the film when manufacturing the flexible display device, but also incur additional costs in the peeling process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리실록산과 폴리이미드를 포함하고 1 % 이하의 헤이즈를 갖는 고분자 수지층; 및 유리 기판;을 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체에 관한 것이다.

Description

플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체
관련 출원(들)과의 상호 인용
본 출원은 2020년 9월 21일자 한국 특허 출원 제10-2020-0121717호 및 2021년 8월 31일자 한국 특허 출원 제10-2021-0115642호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 보다 간단한 공정으로 손상 없이 플렉서블 디스플레이 장치를 제조할 수 있는 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체에 관한 것이다.
표시 장치 시장은 대면적이 용이하고 박형 및 경량화가 가능한 평판디스플레이(Flat Panel Display; FPD) 위주로 급속히 변화하고 있다. 이러한 평판디스플레이에는 액정 표시 장치(Liquid Crystal Display; LCD), 유기 발광 표시 장치(Organic Light Emitting Display; OLED) 또는 전기 영동 표시 장치(electrophoretic display; EPD) 등이 있다.
특히, 최근 들어서는 이러한 평판 디스플레이의 응용과 용도를 더욱확장하기 위해, 상기 평판 디스플레이에 가요성 기판을 적용한 소위 플렉서블 디스플레이 소자 등에 관한 관심이 집중되고 있다. 이러한 플렉서블 디스플레이 소자는 주로 스마트 폰 등 모바일 기기를 중심으로 적용이 검토되고 있으며, 점차로 그 응용 분야가 확장되고 있다.
그런데, 플라스틱 기판 위에 박막 트랜지스터(TFTs on Plastic: TOP) 등의 디스플레이 소자 구조를 형성 및 핸들링하는 공정은 플렉서블 디스플레이 소자 제조에 있어서 핵심 공정이다. 그러나, 기존 유리 기판용 소자 제조 공정에 직접 가요성 플라스틱 기판을 대체 적용하여 소자 구조를 형성함에 있어서는 아직도 많은 공정상의 문제가 있다.
특히 가요성 기판 내에 포함되는 박막 유리의 경우 충격에 의해 쉽게 깨어지기 때문에 지지 유리(carrier glass) 위에 박막 유리가 올려진 상태로 디스플레이용 기판의 제조공정이 실시된다.
종래 기술에 따르면 유리 기판 등의 캐리어 기판 상에 a-실리콘 등으로 이루어진 희생층을 형성한 후, 그 위에 가요성 기판을 형성한다. 이후, 캐리어 기판에 의해 지지되는 가요성 기판 상에 기존 유리 기판용 소자 제조 공정을 통해 박막 트랜지스터 등의 소자 구조를 형성한다. 그리고 나서, 캐리어 기판 등을 레이저 또는 광을 조사함으로써 상기 희생층을 파괴하고 상기 소자 구조가 형성된 가요성 기판을 분리하여 최종적으로 플렉서블 디스플레이 소자 등의 가요성 기판을 갖는 소자를 제조한다.
그런데, 이러한 종래 기술에 의한 제조 방법에서는, 상기 레이저 또는 광을 조사하는 과정에서 소자 구조가 영향을 받아 불량 등이 발생할 우려가 있을 뿐 아니라, 상기 레이저 또는 광 조사를 위한 장비 및 별도의 공정 진행이 필요하여 전체적인 소자 제조 공정이 복잡해지고 제조 단가 역시 크게 높아지는 단점이 있다.
더구나, a-Si 등으로 이루어진 희생층과, 가요성 기판 간의 접착력이 충분치 않아 상기 희생층과 가요성 기판 사이에 별도의 접착층 등의 형성이 필요한 경우가 많으며, 이는 전체 공정을 더욱 복잡하게 할 뿐 아니라, 더욱 가혹한 조건 하에 레이저 또는 광 조사가 필요하게 되어 소자의 신뢰성에 악영향을 미칠 수 있는 우려가 더욱 증가하였다.
본 발명은 간단한 공정으로 손상 없이 플렉서블 디스플레이 장치를 제조할 수 있는 플렉서블 디스플레이 장치 제조용 복합 기판에 관한 것이다.
또한, 본 발명은 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계를 포함하는, 플렉서블 디스플레이 장치의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 플렉서블 디스플레이 장치 제조용 복합 기판; 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층; 및 상기 폴리이미드 수지층 상에 형성된 플렉서블 디스플레이 소자;를 포함하는, 플렉서블 디스플레이 장치용 적층체를 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 명세서에서는, 폴리실록산과 폴리이미드를 포함하고 1 % 이하의 헤이즈를 갖는 고분자 수지층; 및 유리 기판;을 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판이 제공된다.
본 명세서에서는 또한, 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계를 포함하는, 플렉서블 디스플레이 장치의 제조 방법이 제공된다.
본 명세서에서는 또한, 상기 플렉서블 디스플레이 장치 제조용 복합 기판; 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층; 및 상기 폴리이미드 수지층 상에 형성된 플렉서블 디스플레이 소자;를 포함하는, 플렉서블 디스플레이 장치용 적층체가 제공된다.
이하 발명의 구체적인 구현예에 따른 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체에 대하여 보다 상세하게 설명하기로 한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서, "플렉시블(flexible)" 이란, 직경이 3mm의 원통형 만드렐(mandrel)에 감았을 때 길이 3mm 이상의 크랙(crack)이 발생하지 않는 정도의 유연성을 갖는 상태를 의미하며, 따라서 본 발명의 플렉서블 디스플레이 장치는 벤더블(bendable), 플렉시블(flexible), 롤러블(rollable), 또는 폴더블(foldable) 디스플레이 장치를 의미할 수 있다.
다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
그리고, 본 명세서에서 '제 1' 및 '제 2'와 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용되며, 상기 서수에 의해 한정되지 않는다. 예를 들어, 본 발명의 권리 범위 내에서 제 1 구성요소는 제 2 구성요소로도 명명될 수 있고, 유사하게 제 2 구성요소는 제 1 구성요소로 명명될 수 있다.
본 명세서에서 (공)중합체는 중합체 또는 공중합체를 모두 포함하는 의미이며, 상기 중합체는 단일 반복단위로 이루어진 단독중합체를 의미하고, 공중합체는 2종 이상의 반복단위를 함유한 복합중합체를 의미한다.
본 명세서에서, 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에서, "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정되지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 1차 아미노기; 카르복시기; 술폰산기; 술폰아미드기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알콕시실릴알킬기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서,
Figure PCTKR2021011747-appb-img-000001
, 또는
Figure PCTKR2021011747-appb-img-000002
는 다른 치환기에 연결되는 결합을 의미하고, 직접결합은 L 로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다.
본 명세서에 있어서, 방향족(aromatic)은 휘켈 규칙(Huckels Rule)을 만족하는 특성으로서, 상기 휘켈 규칙에 따라 다음 3가지 조건을 모두 만족하는 경우를 방향족이라고 정의할 수 있다.
1) 비어있는 p-오비탈, 불포화 결합, 홀전자쌍 등에 의하여 완전히 콘주게이션을 이루고 있는 4n+2개의 전자가 존재하여야 한다.
2) 4n+2개의 전자는 평면 형태 이성질체를 구성하여야 하고, 고리 구조를 이루어야 한다.
3) 고리의 모든 원자가 콘주게이션에 참여할 수 있어야 한다.
본 명세서에 있어서, 알킬기는 알케인(alkane)으로부터 유래한 1가의 작용기로, 직쇄 또는 분지쇄일 수 있고, 상기 직쇄 알킬기의 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 또한, 상기 분지쇄 알킬기의 탄소수는 3 내지 20이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실, 2,6-디메틸헵탄-4-일 등이 있으나, 이들에 한정되지 않는다. 상기 알킬기는 치환 또는 비치환될 수 있으며, 치환되는 경우 치환기의 예시는 상술한 바와 같다.
본 명세서에 있어서, 할로 알킬기는 상술한 알킬기에 할로겐기가 치환된 작용기를 의미하며, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다. 상기 할로알킬기는 치환 또는 비치환될 수 있으며, 치환되는 경우 치환기의 예시는 상술한 바와 같다.
본 명세서에 있어서, 다가 작용기(multivalent functional group)는 임의의 화합물에 결합된 복수의 수소 원자가 제거된 형태의 잔기로 예를 들어 2가 작용기, 3가 작용기, 4가 작용기를 들 수 있다. 일 예로, 사이클로부탄에서 유래한 4가의 작용기는 사이클로부탄에 결합된 임의의 수소 원자 4개가 제거된 형태의 잔기를 의미한다.
본 명세서에서, 전자끌개 작용기(Electro-withdrawing group)는, 할로알킬기, 할로겐기, 시아노기, 니트로기, 술폰산기, 카보닐기 및 술포닐기로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 트리플루오루메틸기(-CF3) 등의 할로알킬기 일 수 있다.
본 명세서에서, 직접결합 또는 단일결합은 해당 위치에 어떠한 원자 또는 원자단도 존재하지 않아, 결합선으로 연결되는 것을 의미한다. 구체적으로, 화학식 중 L1, L2로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다.
본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
이하, 본 발명을 보다 상세히 설명한다.
발명의 일 구현예에 따르면, 폴리실록산과 폴리이미드를 포함하고 1 % 이하의 헤이즈를 갖는 고분자 수지층; 및 유리 기판;을 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판이 제공될 수 있다.
본 발명자들은 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판과 같이 폴리실록산과 폴리이미드를 포함하고 1 % 이하의 헤이즈를 갖는 고분자 수지층을 포함함에 따라, 플렉서블 디스플레이 장치 제조 시 플렉서블 디스플레이 장치 제조용 복합 기판 상에 적층되는 폴리이미드 층과의 박리강도가 낮아 박리가 용이하고 박리 공정에 추가적인 비용이 발생하지 않을 뿐만 아니라, 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하지 않아 플렉서블 디스플레이 장치 제조가 용이함을 확인함을 실험을 통해 확인하고 발명을 완성하였다.
구체적으로, 본 발명에 따른 플렉서블 디스플레이 장치 제조용 복합 기판은박리 조력층으로 기능하는 고분자 수지층을 포함하여, 플렉서블 디스플레이 소자와의 박리 강도가 낮아 플렉서블 디스플레이 장치 제조시 적층된 플렉서블 디스플레이 장치의 파괴가 발생하지 않으며, 고성능 레이저를 이용한 박리 공정이 불필요 하므로 비용을 절감할 수 있으며, 레이저에 의한 폴리이미드 층의 변성이 유발 되지 않는다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 1 % 이하, 또는 0.001% 이상 1 % 이하, 0.1 % 이상 1 % 이하, 0.1 % 이상 0.6 % 이하, 또는 0.2 % 이상 0.6 % 의 헤이즈를 가질 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층이 1 % 이하의 낮은 헤이즈를 가짐에 따라, 플렉서블 디스플레이 장치 제조용 복합 기판의 광학적 특성이 우수하여, 플렉서블 디스플레이 장치 제조시 폴리이미드 수지층으로의 전사가 거의 일어나지 않을 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층이 1% 초과의 헤이즈를 가질 경우, 플렉서블 디스플레이 장치 제조시 폴리이미드 수지층으로 전사가 발생하여 플렉서블 디스플레이 장치 제조 용도로 사용하기에 부적합할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층의 헤이즈의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 헤이즈 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, 고분자 수지층에 대하여 HAZE METER(모델명: NDH7000, Nippon denshoku 社)를 이용하여 ASTM D1003의 측정법에 따라 헤이즈를 측정할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층의 헤이즈는 고분자 수지층이 폴리실록산과 폴리이미드를 포함함에 따라 구현될 수 있다. 구체적으로, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층의 헤이즈는 고분자 수지층이 후술하는 바와 같이 폴리실록산과 폴리이미드를 특정 함량비로 사용함에 따라 구현될 수 있다.
상기 헤이즈의 측정 대상인 고분자 수지층의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1 ㎛ 이하 범위 내에서 자유롭게 조절 가능하다. 상기 고분자 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 고분자 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 폴리이미드 수지층에 대해 90도 박리시 박리 강도가 1 g/cm 이상 30 g/cm 이하, 2 g/cm 이상 30 g/cm 이하, 3 g/cm 이상 30 g/cm 이하 또는 3.5 g/cm 이상 30 g/cm 이하 일 수 있다. 이처럼, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판은 1 g/cm 이상 30 g/cm 이하의 작은 박리 강도를 가짐에 따라 플렉서블 디스플레이 장치 제조시 적층되는 폴리이미드 수지층과의 우수한 박리력을 구현할 수 있다.
상기 고분자 수지층과 폴리이미드 수지층은 각각 상이한 수지층을 의미하며, 구체적으로 상기 고분자 수지층은 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판에 포함되는 수지층을 의미하고, 상기 폴리이미드 수지층은 플렉서블 디스플레이 장치에 포함되는 수지층을 의미할 수 있다.
보다 구체적으로 상기 플렉서블 디스플레이 장치는 소자보호층, 투명 전극층, 실리콘 산화물층, 폴리이미드 수지층, 실리콘 산화물층 및 하드 코팅층이 순차적으로 적층된 구조를 구비할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층을 폴리이미드 수지층에 대해 90도 박리 시 측정되는 박리 강도가 1 g/cm 미만일 경우, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층이 형성될 수 없어 상기 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층이 박리 조력층으로 기능하지 못하여 플렉서블 디스플레이 장치 제조 용도로 사용하기에 부적합할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층을 폴리이미드 수지층에 대해 90도 박리시 측정되는 박리 강도가 30 g/cm 초과일 경우, 플렉서블 디스플레이 장치 제조시 폴리이미드 수지층과의 접착력이 지나치게 강해 박리된 폴리이미드 수지층에 찢김 및 컬링이 발생하여, 플렉서블 디스플레이 소자 및 폴리이미드 수지층의 파괴가 일어나거나, 이를 박리하기 위하여 레이저 등의 별도의 박리 공정이 수반되어 공정 비용이 발생할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층 및 폴리이미드 수지층의 박리강도의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 박리강도 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, 고분자 수지층에 대하여 폴리이미드 수지층 형성을 위하여 폴리이미드 전구체 조성물을 코팅하고 경화 공정을 진행한 이후, 폴리이미드 필름을 90 도로 박리하여 측정기기: Texture Analyzer (모델명: TA.XT plus100, Stable micro systems 社)를 이용하여 ASTM D6862의 측정법에 따라 박리 강도 값을 측정할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층 및 폴리이미드 수지층의 박리강도는 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판이 상술한 고분자 수지층을 포함함에 따라 구현될 수 있다. 구체적으로, 상기 고분자 수지층이 후술하는 바와 같이 폴리실록산과 폴리이미드를 특정 함량비로 사용함에 따라 구현될 수 있다.
상기 박리강도의 측정 대상인 폴리이미드 수지층의 두께는 10 ㎛ 일 수 있다. 상기 폴리이미드 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
또한, 상기 박리강도의 측정 대상인 고분자 수지층의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1 ㎛ 이하 범위 내에서 자유롭게 조절 가능하다. 상기 고분자 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 고분자 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 폴리이미드 수지층에 대해 박리시 폴리이미드 수지층에 대한 전사도가 50% 이하, 0 % 이상 50 % 이하, 또는 0% 일 수 있다.
상기 전사도란, 플렉서블 디스플레이 장치 제조시 폴리이미드 수지층이 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 박리된 이후, 플렉서블 디스플레이 장치 제조용 복합 기판이 박리된 폴리이미드 수지층에 전사되는 정도를 의미하며, 하기 기준에 의하여 평가될 수 있다.
100 %: 폴리이미드 필름에 동일하게 전사
50 %: 폴리이미드 필름의 일부에 전사
0 %: 전사 미발생
상기 고분자 수지층과 폴리이미드 수지층은 각각 상이한 수지층을 의미하며, 구체적으로 상기 고분자 수지층은 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판에 포함되는 수지층을 의미하고, 상기 폴리이미드 수지층은 플렉서블 디스플레이 장치에 포함되는 수지층을 의미할 수 있다.
보다 구체적으로 상기 플렉서블 디스플레이 장치는 소자보호층, 투명 전극층, 실리콘 산화물층, 폴리이미드 수지층, 실리콘 산화물층 및 하드 코팅층이 순차적으로 적층된 구조를 구비할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판은 상술한 고분자 수지층을 포함함에 따라, 플렉서블 디스플레이 장치 제조 공정에서 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 박리된 폴리이미드 수지층으로 전사가 부분적으로 일어나거나, 바람직하게는 전혀 발생하지 않아 플렉서블 디스플레이 장치 제조 용도로 사용하기에 적합할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 전사도는 상술한 바와 같이, 1 % 이하의 헤이즈를 갖는 광학적 특성이 우수한 고분자 수지층을 포함함에 따라 구현될 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 전사도의 측정방법의 예는 구체적으로 한정되지 않고, 예를 들어 고분자 수지층에 대하여 폴리이미드 수지층 형성을 위하여 폴리이미드 전구체 조성물을 코팅하고 경화 공정을 진행한 이후, 폴리이미드 필름을 2.5 cm * 5 cm 의 영역에 대하여 박리하여, 육안으로 전사되는 정도를 측정할 수 있다.
상기 전사도의 측정 대상인 폴리이미드 수지층의 두께는 10 ㎛ 일 수 있다. 상기 폴리이미드 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
또한, 상기 전사도의 측정 대상인 고분자 수지층의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.001 ㎛ 이상 1 ㎛ 이하 범위 내에서 자유롭게 조절 가능하다. 상기 고분자 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 고분자 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 폴리실록산의 종류가 크게 제한되는 것은 아니나, 예를 들어 폴리에테르 디메틸폴리실록산계 폴리실록산, 폴리에테르 하이드록시 폴리디메틸실록산계 폴리실록산, 폴리메틸알킬실록산계 폴리실록산, 폴리에테르 폴리메틸알킬실록산계 폴리실록산, 폴리에스테르 폴리메틸알킬실록산계 폴리실록산, 알랄킬 폴리메틸알킬실록산계 폴리실록산, 폴리에스테르 하이드록시 폴리디메틸실록산계 폴리실록산, 폴리에스테르 아크릴 폴리디메틸실록산계 폴리실록산, 폴리에테르-폴리에스테르 하이드록시 폴리디메틸실록산계 폴리실록산, 폴리에테르 폴리디메틸실록산계 비이온 폴리아크릴계 폴리실록산, 이온성 폴리아크릴계 폴리실록산, 폴리아크릴레이트계 폴리실록산, 폴리메타아크릴레이트계 폴리실록산, 폴리에테르 아크릴 폴리디메틸실록산계 폴리실록산, 폴리에테르 실록산계 폴리실록산, 알코올 알콕시레이트계 폴리실록산, 아크릴레이트계 폴리실록산, 하이드록시 실리콘 폴리아크릴레이트계 폴리실록산 중 어느 하나 이상을 포함할 수 있다.
구체적으로, 상기 폴리에테르 디메틸폴리실록산계 폴리실록산은 BYK 社의 BYK-300, BYK-301, BYK-302, BYK-331, BYK-335, BYK-306, BYK-330, BYK-341, BYK-344, BYK-307, BYK-333, BYK-310 등을 사용할 수 있고, 상기 폴리에테르 하이드록시 폴리디메틸실록산계 폴리실록산은 BYK 社의 BYK-308, BYK-373 등을 사용할 수 있고, 상기 폴리메틸알킬실록산계 폴리실록산은 BYK 社의 BYK-077, BYK-085 등을 사용할 수 있고, 상기 폴리에테르 폴리메틸알킬실록산계 폴리실록산은 BYK 社의 BYK-320, BYK-325 등을 사용할 수 있고, 상기 폴리에스테르 폴리메틸알킬실록산계 폴리실록산은 BYK 社의 BYK-315 등을 사용할 수 있고, 상기 알랄킬 폴리메틸알킬실록산계 폴리실록산은 BYK 社의 BYK-322, BYK-323 등을 사용할 수 있고, 상기 폴리에스테르 하이드록시 폴리디메틸실록산계 폴리실록산은 BYK 社의 BYK-370 등을 사용할 수 있고, 상기 폴리에스테르 아크릴 폴리디메틸실록산계 폴리실록산은 BYK 社의 BYK-371, BYK-UV 3570 등을 사용할 수 있고, 상기 폴리에테르-폴리에스테르 하이드록시 폴리디메틸실록산계 폴리실록산은 BYK 社의 BYK-375 등을 사용할 수 있고, 상기 폴리에테르 폴리디메틸실록산계 폴리실록산은 BYK 社의 BYK-345, BYK-348, BYK-346, BYK-UV3510, BYK-332, BYK-337 등을 사용할 수 있고, 상기 비이온 폴리아크릴계 폴리실록산은 BYK 社의 BYK-380 등을 사용할 수 있고, 상기 이온성 폴리아크릴계 폴리실록산은 BYK 社의 BYK-381 등을 사용할 수 있고, 상기 폴리아크릴레이트계 폴리실록산은 BYK 社의 BYK-353, BYK-356, BYK-354, BYK-355, BYK-359, BYK-361 N, BYK-357, BYK-358 N, BYK-352 등을 사용할 수 있고, 상기 폴리메타아크릴레이트계 폴리실록산은 BYK 社의 BYK-390 등을 사용할 수 있고, 상기 폴리에테르 아크릴 폴리디메틸실록산계 폴리실록산은 BYK 社의 BYK-UV 3500, BYK-UV3530 등을 사용할 수 있고, 상기 폴리에테르 실록산계 폴리실록산은 BYK 社의 BYK-347 등을 사용할 수 있고, 상기 알코올 알콕시레이트계 폴리실록산은 BYK 社의 BYK-DYNWET 800 등을 사용할 수 있고, 상기 아크릴레이트계 폴리실록산은 BYK 社의 BYK-392 등을 사용할 수 있고, 상기 하이드록시 실리콘 폴리아크릴레이트계 폴리실록산은 BYK 社의 BYK-Silclean 3700 등을 사용할 수 있다.
구체적으로, 상기 폴리실록산은 반응성 작용기가 결합한 폴리실록산을 포함할 수 있다. 상기 반응성 작용기는 구체적으로, OH기, NH2기 또는 이중결합일 수 있다. 보다 구체적으로 상기 반응성 작용기는 OH기 일 수 있다.
상기 반응성 작용기가 결합한 폴리실록산은 구체적으로, 폴리에테르 하이드록시 폴리디메틸실록산계 폴리실록산, 폴리에스테르 하이드록시 폴리디메틸실록산계 폴리실록산, 폴리에테르-폴리에스테르 하이드록시 폴리디메틸실록산계 폴리실록산, 하이드록시 실리콘 폴리아크릴레이트계 폴리실록산 중 어느 하나 이상을 포함할 수 있다. 구체적인 예로, BYK 社의 BYK-308, BYK-373, BYK-370, BYK-375 BYK-Silclean 3700 등을 사용할 수 있다.
한편, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리실록산의 고형분을 20 중량% 이상 45 중량% 이하, 또는 20 중량% 이상 40 중량% 이하로 포함할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리실록산의 고형분을 20 중량% 이상 45 중량% 이하로 포함함에 따라, 소수성기 치환으로 물리 화학적 원인에 의하여, 플렉서블 디스플레이 장치 제조 시 플렉서블 디스플레이 장치 제조용 복합 기판 상에 적층되는 폴리이미드 층과의 박리강도가 낮아 박리가 용이하고 박리 공정에 추가적인 비용이 발생하지 않을 뿐만 아니라, 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하지 않아 플렉서블 디스플레이 장치 제조가 용이할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리실록산의 고형분을 20 중량% 미만으로 포함할 경우, 기판 표면이 충분히 소수성으로 치환되지 못하여 폴리이미드 수지층과의 박리력이 감소하지 못하는 기술적 문제점이 발생할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리실록산의 고형분을 45 중량% 초과로 포함할 경우, 친수성의 폴리이미드와 소수성의 첨가제가 상분리가 일어나며, 플렉서블 디스플레이 장치 제조시 플렉서블 디스플레이 장치 제조용 복합기판의 폴리이미드 수지층에 대한 접착력이 지나치게 높아, 박리된 폴리이미드 수지층에 컬링 또는 전사가 발생하여 플렉서블 디스플레이 소자 등이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
한편, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리이미드의 고형분을 0.1 중량 % 이상 2.5 중량% 이하, 0.5 중량 % 이상 2.5 중량% 이하, 1 중량 % 이상 2.5 중량% 이하, 또는 1 중량 % 이상 2 중량% 이하 로 포함할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리이미드의 고형분을 0.1 중량 % 이상 2.5 중량% 이하로 포함함에 따라, 플렉서블 디스플레이 장치 제조 시 플렉서블 디스플레이 장치 제조용 복합 기판 상에 적층되는 폴리이미드 층과의 박리강도가 낮아 박리가 용이하고 박리 공정에 추가적인 비용이 발생하지 않을 뿐만 아니라, 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하지 않아 플렉서블 디스플레이 장치 제조가 용이할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리이미드의 고형분을 0.1 중량 % 미만으로 포함할 경우, 지지층이 형성되지 않아 상부 기판용 고분자 폴리이미드 수지층과의 결합력이 떨어지게 되어, 플렉서블 디스플레이 장치 제조시 플렉서블 디스플레이 장치 제조용 복합기판의 폴리이미드 수지층에 대한 접착력이 지나치게 낮아, 고분자 수지층이 박리 조력층으로 기능하지 못하여 플렉서블 디스플레이 장치 제조 용도로 사용되기에 부적합할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리이미드의 고형분을 2.5 중량% 초과로 포함할 경우, 상호 불용성인 폴리실록산의 내에서 과량으로 존재하게 되어, 침전된 폴리이미드 의하여 고분자 수지층의 헤이즈가 1 % 초과로 광학적 특성이 불량하여 플렉서블 디스플레이 장치 제조시 박리된 폴리이미드 수지층에 전사가 발생하고, 이에 따라 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
한편, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 상기 폴리실록산 고형분 100 중량부에 대하여 상기 폴리이미드의 고형분을 2 중량부 이상 20 중량부 이하, 2중량부 이상 15 중량부 이하, 2.5 중량부 이상 15 중량부 이하, 2.5 중량부 이상 10ㅇ 중량부 이하로 포함할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 상기 폴리실록산 고형분 100 중량부에 대하여 상기 폴리이미드의 고형분을 2 중량부 이상 20 중량부 이하로 포함함에 따라, 플렉서블 디스플레이 장치 제조 시 플렉서블 디스플레이 장치 제조용 복합 기판 상에 적층되는 폴리이미드 층과의 박리강도가 낮아 박리가 용이하고 박리 공정에 추가적인 비용이 발생하지 않을 뿐만 아니라, 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하지 않아 플렉서블 디스플레이 장치 제조가 용이할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 상기 폴리실록산 고형분 100 중량부에 대하여 상기 폴리이미드의 고형분을 2 중량부 미만으로 포함할 경우, 플렉서블 디스플레이 장치 제조시 플렉서블 디스플레이 장치 제조용 복합기판의 폴리이미드 수지층에 대한 접착력이 지나치게 낮아, 고분자 수지층이 박리 조력층으로 기능하지 못하여 플렉서블 디스플레이 장치 제조 용도로 사용되기에 부적합할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판의 고분자 수지층은 상기 폴리실록산 고형분 100 중량부에 대하여 상기 폴리이미드의 고형분을 20 중량부 초과로 포함할 경우, 고분자 수지층의 헤이즈가 1 % 초과로 광학적 특성이 불량하여 플렉서블 디스플레이 장치 제조시 박리된 폴리이미드 수지층에 전사가 발생하고, 이에 따라 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
한편, 상기 고분자 수지층은 폴리이미드를 포함할 수 있다. 상기 고분자 수지층은 폴리이미드 이외에도 그리고 이의 전구체 중합체인 폴리아믹산, 폴리아믹산 에스테르를 모두 포함할 수 있다.
즉, 상기 고분자 수지층은 폴리아믹산 반복단위, 폴리아믹산에스테르 반복단위, 및 폴리이미드 반복단위로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 즉, 상기 고분자 수지층은 폴리아믹산 반복단위 1종, 폴리아믹산에스테르 반복단위 1종, 폴리이미드 반복단위 1종, 또는 이들의 2종 이상의 반복단위가 혼합된 공중합체를 포함할 수 있다.
상기 폴리아믹산 반복단위, 폴리아믹산에스테르 반복단위, 및 폴리이미드 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위는 상기 폴리이미드계 고분자의 주쇄를 형성할 수 있다.
상기 고분자 수지층은 폴리이미드계 수지의 경화물을 포함할 수 있다. 상기 폴리이미드계 수지의 경화물은 폴리이미드계 수지의 경화공정을 거쳐 얻어지는 생성물을 의미한다.
구체적으로, 상기 폴리이미드는 방향족 테트라카르복실산 또는 이의 무수물과 방향족 디아민 간의 반응물 또는 이로부터 유래한 반복 단위를 포함할 수 있다.
상기 방향족 테트라카르복실산 또는 이의 무수물과 방향족 디아민의 종류는 크게 제한 되지 않는다.
특히, 상기 폴리이미드는 하기 화학식1로 표시되는 반복단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2021011747-appb-img-000003
상기 화학식1에서, X1은 다중고리를 함유한 방향족 4가 작용기이며, Y1은 탄소수 10 이하의 방향족 2가 작용기이다.
상기 화학식1에서, X1은 다중고리를 함유한 방향족 4가 작용기이며, 상기 X1은 폴리이미드계 수지 합성에 사용되는 테트라카르복시산 이무수물 화합물로부터 유도된 작용기이다.
상기 다중고리를 함유한 방향족 4가 작용기를 상기 X1에 포함하게 되면, 다중고리에 의해 입체장애가 증가된 비대칭성 구조가 폴리이미드 사슬 구조에 도입됨으로써, 열에 의한 변형을 완화시켜 내열성을 향상시킬 수 있다.
보다 구체적으로, 상기 X1은 4가의 작용기는 하기 화학식2로 표시되는 4가의 작용기를 포함할 수 있다.
[화학식2]
Figure PCTKR2021011747-appb-img-000004
상기 화학식2에서, Ar은 다중고리 방향족 2가 작용기이다. 상기 다중고리 방향족 2가 작용기는 다중고리 방향족 탄화수소(polycyclic aromatic hydrocarbon) 화합물로 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 플루오레닐렌기를 포함할 수 있다. 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
보다 구체적으로, 상기 화학식2의 Ar에서, 다중고리 방향족 2가 작용기는 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기를 포함할 수 있다. 즉, 상기 다중고리 방향족 2가 작용기는, 작용기 구조내에 적어도 2이상의 방향족 고리 화합물이 함유되고, 뿐만 아니라 작용기가 접합 고리(fused ring) 구조를 가질 수 있다.
상기 방향족 고리 화합물은 1이상의 벤젠고리를 함유한 아렌 화합물, 또는 상기 아렌 화합물 내 탄소원자가 헤테로원자로 대체된 헤테로 아렌 화합물을 포함할 수 있다.
상기 방향족 고리 화합물은 다중고리 방향족 2가 작용기 내에 적어도 2이상 함유될 수 있으며, 상기 2이상의 방향족 고리 화합물 각각은 직접 접합 고리를 형성하거나, 혹은 다른 고리 구조를 매개로 접합고리를 형성할 수 있다. 일례로 2개의 벤젠고리가 시클로알킬고리구조에 각각 접합되는 경우, 시클로알킬 고리를 매 개로 2개의 벤젠고리가 접합고리를 형성했다고 정의할 수 있다.
상기 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기는 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리 화합물 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
일례로서 상기 화학식2로 표시되는 4가의 작용기는 하기 화학식2-1로 표시되는 작용기를 들 수 있다.
[화학식 2-1]
Figure PCTKR2021011747-appb-img-000005
한편, 상기 화학식1에서, Y1은 탄소수 10 이하의 방향족 2가 작용기이고, 상기 Y1은 폴리아믹산, 폴리아믹산에스테르, 또는 폴리이미드 합성시 사용되는 디아민 화합물로부터 유래한 작용기일 수 있다.
상기 탄소수 10 이하의 방향족 2가 작용기는 불소계 작용기가 적어도 1이상 치환된 탄소수 10 이하의 방향족 2가 작용기를 포함할 수 있다. 보다 구체적으로, 상기 Y1의 탄소수 10 이하의 방향족 2가 작용기는 하기 화학식3으로 표시되는 작용기를 포함할 수 있다.
[화학식 3]
Figure PCTKR2021011747-appb-img-000006
.
상기 폴리이미드계 수지는 하기 화학식2-2로 표시되는 테트라카르복시산 이무수물 및 탄소수 10 이하의 방향족 디아민의 결합물을 포함할 수 있다.
[화학식2-2]
Figure PCTKR2021011747-appb-img-000007
상기 화학식2-2에서, Ar '는 다중고리 방향족 2가 작용기이다. 상기 다중고리 방향족 2가 작용기는 다중고리 방향족 탄화수소(polycyclic aromatic hydrocarbon) 화합물로부터 유래된 2가의 작용기로서, 플루오레닐렌기 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 플루오레닐렌기를 포함할 수 있다. 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
상기 화학식2-2로 표시되는 테트라카르복시산 이무수물의 구체적인 예로는 9,9-비스(3,4-디카복시페닐)플루오렌이무수물(9,9-Bis(3,4-dicarboxyphenyl) fluorene Dianhydride, BPAF)를 들 수 있다.
상기 탄소수 10 이하의 방향족 디아민은 상술한 탄소수 10 이하의 방향족 2가 작용기의 양말단에 아미노기(-NH2)가 결합한 화합물로서, 탄소수 10 이하의 방향족 2가 작용기에 대한 설명은 상술한 바와 같다.
상기 탄소수 10 이하의 방향족 디아민의 구체적인 예로는 하기 화학식 a로 표시되는 디아민을 들 수 있다.
[화학식a]
Figure PCTKR2021011747-appb-img-000008
보다 구체적으로, 상기 폴리이미드계 수지는 상기 화학식2-2로 표시되는 테트라카르복시산 이무수물의 말단 무수물기(-OC-O-CO-)와, 탄소수 10 이하의 방향족 디아민의 말단 아미노기(-NH2)의 반응으로 아미노기의 질소원자와 무수물기의 탄소원자간 결합이 형성될 수 있다.
또한, 상기 폴리이미드는 상기 화학식1로 표시되는 폴리이미드 반복단위 이외에, 하기 화학식 4로 표시되는 폴리이미드 반복단위를 더 포함할 수 있다.
[화학식 4]
Figure PCTKR2021011747-appb-img-000009
상기 화학식 4에서, X2는 상기 X1과 상이한 4가의 작용기이며, Y2은 탄소수 10 이하의 방향족 2가 작용기이다.
상기 X2는 하기 화학식5로 표시되는 4가의 작용기 중 하나일 수 있다.
[화학식5]
Figure PCTKR2021011747-appb-img-000010
상기 화학식 5에서, R1 내지 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이고, L3는 단일결합, -O-, -CO-, -COO-, -S-, -SO-, -SO2-, -CR7R8-, -(CH2)t-, -O(CH2)tO-, -COO(CH2)tOCO-, -CONH-, 페닐렌, 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며, 상기에서 R7 및 R8는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 또는 탄소수 1 내지 10의 할로 알킬기 중 하나이고, t는 1 내지 10의 정수이다.
상기 화학식5로 표시되는 작용기의 구체적인 예로는 하기 화학식5-1로 표시되는 작용기를 들 수 있다.
[화학식5-1]
Figure PCTKR2021011747-appb-img-000011
.
즉, 상기 폴리이미드는, 테트라카르복시산 이무수물 유래 반복단위가 상기 화학식2로 표시되는 작용기인 화학식1로 표시되는 반복단위를 함유하는 제 1 반복 단위; 및 테트라카르복시산 이무수물 유래 반복단위가 상기 화학식5로 표시되는 작용기인 화학식4로 표시되는 반복단위를 함유한 제 2 반복 단위;를 포함할 수 있다. 상기 제1 반복 단위 및 제 2 반복 단위는 상기 폴리이미드 고분자 내에서 랜덤하게 배열하여 랜덤 공중합체를 이루거나, 제1 반복단위 간의 블록, 제2 반복단위 간의 블록을 형성하며 블록 공중합체를 이룰 수 있다.
상기 화학식 1로 표시되는 반복 단위 및 상기 화학식 4로 표시되는 반복 단위를 포함한 폴리이미드계 고분자는 디아민 화합물과 함께 서로 다른 2종 이상의 테트라카르복시산 이무수물 화합물을 반응시켜 제조할 수 있으며, 상기 2종의 테트라카르복시산 이무수물을 동시에 첨가하여 랜덤 공중합체를 합성하거나, 순차적으로 첨가하여 블록 공중합체를 합성할 수 있다.
상기 폴리이미드는 화학식1로 표시되는 폴리이미드 반복단위를 50 몰% 미만, 1 몰% 이상 49 몰% 이하, 10 몰% 이상 49몰% 이하, 15 몰% 이상 40몰% 이하, 또는 20 몰% 이상 30몰% 이하로 포함할 수 있다. 또한, 상기 폴리이미드계 수지는 상기 화학식4로 표시되는 폴리이미드 반복단위를 50 몰% 초과, 51 몰% 이상 99 몰% 이하, 51 몰% 이상 90 몰% 이하, 60 몰% 이상 85몰% 이하, 또는 70 몰% 이상 80몰% 이하 로 포함할 수 있다.
상기 폴리이미드의 중량평균 분자량(GPC측정)이 크게 한정되는 것은 아니나, 예를 들어, 1000 g/mol 이상 200000 g/mol 이하, 또는 10000 g/mol 이상 200000 g/mol 이하일 수 있다.
본 발명에 따른 폴리이미드는 강직한 구조에 의한 내열성, 기계적 강도 등의 특성을 그대로 유지하면서, 우수한 무색 투명한 특성을 나타낼 수 있어, 소자용 기판, 디스플레이용 커버기판, 광학 필름(optical film), IC(integrated circuit) 패키지, 전착 필름(adhesive film), 다층 FRC(flexible printed circuit), 테이프, 터치패널, 광디스크용 보호필름 등과 같은 다양한 분야에 사용될 수 있으며, 특히 플렉서블 디스플레이 장치 제조용 복합 기판에 적합할 수 있다.
보다 구체적으로 상기 고분자 수지층을 형성 폴리이미드를 합성하는 방법의 예가 크게 한정되는 것은 아니며, 예를 들어, 상기 폴리이미드를 함유한 수지 조성물을 기판에 도포하여 도막을 형성하는 단계(단계 1); 상기 도막을 건조하는 단계(단계 2); 상기 건조된 도막을 열처리하여 경화하는 단계(단계 3)를 포함하는, 필름의 제조 방법을 사용할 수 있다.
상기 단계 1은, 상술한 폴리이미드를 함유한 수지 조성물을 기판에 도포하여 도막을 형성하는 단계이다. 상기 폴리이미드를 함유한 수지 조성물을 기판에 도포하는 방법은 특별히 제한되지 않으며, 예컨대 스크린 인쇄, 오프셋 인쇄, 플렉소 인쇄, 잉크젯 등의 방법이 이용될 수 있다.
그리고, 상기 폴리이미드를 함유한 수지 조성물은 유기 용매에 용해 또는 분산시킨 것일 수 있다. 이러한 형태를 갖는 경우, 예를 들어 폴리이미드를 유기 용매 중에서 합성한 경우에는, 용액은 얻어지는 반응 용액 그 자체여도 되고, 또 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드를 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 한 것이어도 된다.
상기 유기 용매의 구체적인 예로는 톨루엔, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, N-메틸카프로락탐, 2-피롤리돈, N-에틸피롤리돈, N-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 헥사메틸술폭사이드, 감마-부티로락톤, 3-메톡시-N,N-디메틸프로판아미드, 3-에톡시-N,N-디메틸프로판아미드, 3-부톡시-N,N-디메틸프로판아미드, 1,3-디메틸-이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로헥사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4-하이드록시-4-메틸-2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트 등을 들 수 있다. 이들은 단독으로 사용될 수도 있고, 혼합하여 사용될 수도 있다.
상기 단계 2는, 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 형성된 도막을 건조하는 단계이다.
상기 도막의 건조 단계는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 50 ℃ 이상 150 ℃ 이하, 또는 50 ℃ 이상 100 ℃이하 온도로 수행할 수 있다.
상기 단계 3은, 상기 건조된 도막을 열처리하여 경화하는 단계이다. 이때, 상기 열처리는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 200 ℃ 이상, 또는 200 ℃ 이상 300 ℃ 이하의 온도로 수행할 수 있다.
상기 폴리이미드계 수지 필름의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1000 ㎛ 이하 범위내에서 자유롭게 조절 가능하다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 제조되는 디스플레이 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계를 포함하는, 플렉서블 디스플레이 장치의 제조 방법이 제공될 수 있다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계에서, 박리는 25℃, 1.0 mm/s, 0.0001kg 등의 조건에서 장치 Texture Analyzer (모델명: TA.XT plus100, Stable micro systems 社)를 이용하여 수행될 수 있다.
또한, 상기 일 구현예의 플렉서블 디스플레이 장치의 제조 방법은 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층하는 단계 및 플렉서블 디스플레이 소자를 적층하는 단계를 더 포함할 수 있다.
즉, 상기 일 구현예의 플렉서블 디스플레이 장치의 제조 방법은 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층하는 단계 및 플렉서블 디스플레이 소자를 적층하는 단계; 및 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계를 포함할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치의 제조 방법에서, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 순차적으로 적층하는 단계가 수행된 이후, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계가 수행됨에 따라, 폴리이미드 수지층을 기재로 하고 폴리이미드 수지층 상에 플렉서블 디스플레이 소자가 적층된 플렉서블 디스플레이 소자 적층체가 형성될 수 있다.
보다 구체적으로 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층하는 방법의 예가 크게 한정되는 것은 아니며, 예를 들어, 상기 폴리이미드를 함유한 수지 조성물을 플렉서블 디스플레이 장치 제조용 복합 기판 에 도포하여 도막을 형성하는 단계(단계 1); 상기 도막을 건조하는 단계(단계 2); 상기 건조된 도막을 열처리하여 경화하는 단계(단계 3)를 포함하는, 제조 방법을 사용할 수 있다.
상기 단계 1은, 폴리이미드를 함유한 수지 조성물을 플렉서블 디스플레이 장치 제조용 복합 기판에 도포하여 도막을 형성하는 단계이다. 폴리이미드를 함유한 수지 조성물을 기판에 도포하는 방법은 특별히 제한되지 않으며, 예컨대 스크린 인쇄, 오프셋 인쇄, 플렉소 인쇄, 잉크젯 등의 방법이 이용될 수 있다.
그리고, 폴리이미드를 함유한 수지 조성물은 유기 용매에 용해 또는 분산시킨 것일 수 있다. 이러한 형태를 갖는 경우, 예를 들어 폴리이미드를 유기 용매 중에서 합성한 경우에는, 용액은 얻어지는 반응 용액 그 자체여도 되고, 또 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드를 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 한 것이어도 된다.
상기 유기 용매의 구체적인 예로는 톨루엔, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, N-메틸카프로락탐, 2-피롤리돈, N-에틸피롤리돈, N-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 헥사메틸술폭사이드, 감마-부티로락톤, 3-메톡시-N,N-디메틸프로판아미드, 3-에톡시-N,N-디메틸프로판아미드, 3-부톡시-N,N-디메틸프로판아미드, 1,3-디메틸-이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로헥사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4-하이드록시-4-메틸-2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트 등을 들 수 있다. 이들은 단독으로 사용될 수도 있고, 혼합하여 사용될 수도 있다.
상기 단계 2는, 폴리이미드를 함유한 수지 조성물을 기판에 도포하여 형성된 도막을 건조하는 단계이다.
상기 도막의 건조 단계는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 50 ℃ 이상 150 ℃ 이하, 또는 50 ℃ 이상 100 ℃이하 온도로 수행할 수 있다.
상기 단계 3은, 상기 건조된 도막을 열처리하여 경화하는 단계이다. 이때, 상기 열처리는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 200 ℃ 이상, 또는 200 ℃ 이상 300 ℃ 이하의 온도로 수행할 수 있다.
상기 폴리이미드 수지층의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1000 ㎛ 이하 범위 내에서 자유롭게 조절 가능하다. 상기 폴리이미드 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
보다 구체적으로 상기 폴리이미드 수지층을 적층하는 단계 이후 플렉서블 디스플레이 소자를 적층하는 단계에서, 플렉서블 디스플레이 소자를 적층하는 방법의 예가 크게 한정되는 것은 아니며, 당 기술 분야에 알려진 기술을 이용할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치의 제조 방법은 LTPS(low temperature polysilicon) 박막 제조공정, ITO 박막 제조공정 또는 Oxide 박막 제조공정을 포함할 수 있다.
예를 들면, 폴리이미드 수지층을 적층하는 단계 이후 폴리이미드 수지층상에 SiO2를 포함하는 차단층을 형성하는 단계;
상기 차단층 상에 a-Si(Amorphous silicon)박막을 증착하는 단계;
상기 증착된 a-Si박막을 450±50℃의 온도에서 열처리하는 탈수소 어닐링단계; 및
상기 a-Si 박막을 엑시머 레이저 등으로 결정화시키는 단계를 포함하는 LTPS 박막 제조공정을 포함할 수 있다.
한편, 상기 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 제조되는 디스플레이 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판에 대한 내용은 상기 일 구현예에서 상술한 모든 내용을 포함한다.
플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계에서, 상기 플렉서블 디스플레이 장치 제조용 복합 기판이 상술한 고분자 수지층을 포함함에 따라 박리강도가 낮아 박리가 용이하고 박리 공정에 추가적인 비용이 발생하지 않을 뿐만 아니라, 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하지 않을 수 있다.
발명의 다른 일 구현예에 따르면, 상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판; 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층; 및 상기 폴리이미드 수지층 상에 형성된 플렉서블 디스플레이 소자;를 포함하는, 플렉서블 디스플레이 장치용 적층체가 제공될 수 있다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판, 상기 폴리이미드 수지층, 및 상기 플렉서블 디스플레이 소자에 대한 내용은 상기 일 구현예에서 상술한 모든 내용을 포함한다.
종래에는 유리 기판 상에 폴리이미드 수지층을 적층하여 기판과 폴리이미드 수지층 사이의 박리 강도가 커서 박리가 용이하지 않고, 박리 공정에 추가적인 비용이 발생할 뿐만 아니라 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하는 문제점이 있었다.
상기 일 구현예와 같이, 상기 플렉서블 디스플레이 장치 제조용 복합 기판; 상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층; 및 상기 폴리이미드 수지층 상에 형성된 플렉서블 디스플레이 소자를 포함하는, 플렉서블 디스플레이 장치용 적층체의 경우 폴리이미드 수지층과의 박리 강도가 낮은 플렉서블 디스플레이 장치 제조용 복합 기판을 포함함에 따라 박리 공정에 추가적인 비용이 발생하지 않을 뿐만 아니라, 박리 이후에 폴리이미드 수지층에 전사 및 컬링이 발생하지 않아 플렉서블 디스플레이 장치 제조가 용이할 수 있다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 상기 폴리이미드 수지층을 적층시키는 방법은 상술한 방법을 모두 포함한다.
또한, 상기 폴리이미드 수지층 상에 상기 플렉서블 디스플레이 소자를 적층시키는 방법은 상술한 방법을 모두 포함한다.
상기 플렉서블 디스플레이 소자가 적층된 플렉서블 디스플레이 장치용 적층체에서 플렉서블 디스플레이 장치 제조용 복합 기판을 상기 폴리이미드 수지층으로부터 박리하여, 플렉서블 디스플레이 장치가 제조될 수 있다.
구체적으로, 상기 일 구현예의 플렉서블 디스플레이 장치용 적층체에서 상기 플렉서블 디스플레이 장치 제조용 복합 기판은 상기 폴리이미드 수지층에 대해 90도 박리시 박리 강도가 1 g/cm 이상 30 g/cm 이하, 2 g/cm 이상 30 g/cm 이하, 3 g/cm 이상 30 g/cm 이하 또는 3.5 g/cm 이상 30 g/cm 이하 일 수 있다. 이처럼, 상기 일 구현예의 플렉서블 디스플레이 장치용 적층체는 폴리이미드 수지층에 대하여 1 g/cm 이상 30 g/cm 이하의 작은 박리 강도를 가지는 플렉서블 디스플레이 장치 제조용 복합 기판을 포함함에 따라 플렉서블 디스플레이 장치 제조시 우수한 박리력을 구현할 수 있다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판을 폴리이미드 수지층에 대해 90도 박리 시 측정되는 박리 강도가 1 g/cm 미만일 경우, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층이 형성될 수 없어 상기 플렉서블 디스플레이 장치용 적층체가 플렉서블 디스플레이 장치 제조 용도로 사용하기에 부적합할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판을 폴리이미드 수지층에 대해 90도 박리시 측정되는 박리 강도가 30 g/cm 초과일 경우, 플렉서블 디스플레이 장치 제조시 폴리이미드 수지층과의 접착력이 지나치게 강해 박리된 폴리이미드 수지층에 찢김 및 컬링이 발생하여, 플렉서블 디스플레이 소자 및 폴리이미드 수지층의 파괴가 일어나거나, 이를 박리하기 위하여 레이저 등의 별도의 박리 공정이 수반되어 공정 비용이 발생할 수 있다.
상기 일 구현예의 플렉서블 디스플레이 장치 제조용 복합 기판 및 폴리이미드 수지층의 박리강도의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 박리강도 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다.
일례를 들면, 플렉서블 디스플레이 장치용 적층체에 포함되는 상기 플렉서블 디스플레이 장치 제조용 복합 기판에 대하여 폴리이미드 수지층 형성을 위하여 폴리이미드 전구체 조성물을 코팅하고 경화 공정을 진행한 이후, 폴리이미드 필름을 90 도로 박리하여 측정기기: Texture Analyzer (모델명: TA.XT plus100, Stable micro systems 社)를 이용하여 ASTM D6862의 측정법에 따라 박리 강도 값을 측정할 수 있다.
상기 박리강도의 측정 대상인 폴리이미드 수지층의 두께는 10 ㎛ 일 수 있다. 상기 폴리이미드 수지층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드 수지층에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 플렉서블 디스플레이 장치의 구성 및 제조 방법은 상기 플렉서블 디스플레이 장치 제조용 복합 기판이 상술한 용도로 사용하는 점을 제외하고는 당 기술 분야에 알려진 기술을 이용할 수 있다.
상기 플렉서블 디스플레이 장치는 커브드(curved), 벤더블(bendable), 플렉시블(flexible), 롤러블(rollable), 또는 폴더블(foldable) 형태의 이동통신 단말기, 스마트폰 또는 태블릿 PC의 터치패널, 및 각종 디스플레이를 모두 포함한다.
상기 플렉서블 디스플레이 장치의 일 예로 플렉서블 발광 소자 디스플레이 장치를 들 수 있다.
예를 들어, 상기 유기 발광 다이오드(OLED) 디스플레이는, 상기 플렉서블 디스플레이 장치의 커버 윈도우가 빛이나 화면이 나오는 방향의 외각부에 위치할 수 있으며, 전자를 제공하는 음극(cathode), 전자 수송층(Eletron Transport Layer), 발광층(Emission Layer), 정공 수송층(Hole Transport Layer), 정공을 제공하는 양극(anode)이 순차적으로 형성되어 있을 수 있다.
또한, 상기 유기 발광 다이오드(OLED) 디스플레이는 정공 주입층(HIL, Hole Injection Layer)와 전자주입층(EIL, Electron Injection Layer)을 더 포함할 수 도 있다.
상기 유기 발광 다이오드(OLED) 디스플레이가 플렉서블 디스플레이의 역할 및 작동을 하기 위해서는, 음극 및 양극의 전극과, 각 구성 성분을 소정의 탄성을 갖는 재료로 사용할 수 있다.
상기 플렉서블 디스플레이 장치의 다른 일 예로, 감김 가능 디스플레이 장치(rollable display or foldable display)를 들 수 있다.
상기 감김 가능 디스플레이 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
본 발명에 따르면, 보다 간단한 공정으로 손상 없이 플렉서블 디스플레이 장치를 제조할 수 있는 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체가 제공될 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 및 비교예: 폴리이미드 전구체 조성물 및 플렉서블 디스플레이 장치 제조용 복합 기판의 제조>
실시예1-10
(1) 폴리이미드 전구체 조성물의 제조
질소 기류가 흐르는 교반기 내에 유기용매 N-메틸-2-피롤리돈(NMP)를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 p-페닐렌디아민 (p-phenylenediamine, p-PDA) 0.0940 몰을 같은 온도에서 첨가하여 용해시켰다. 상기 p-페닐렌디아민 (pphenylenediamine, p-PDA)이 첨가된 용액에 산이무수물로 3,3′,4,4′-비페닐테트라카복시산 이무수물(3,3′,4,4′-Biphenyltetracarboxylic dianhydride, BPDA) 0.0952 몰을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체를 중합하였다. 상기 폴리이미드 전구체 고형분 및 폴리실록산(BYK-373) 고형분을 하기 표 1에 표시된 중량으로 유기용매 메틸피롤리돈(NMP) 10%비율로 용해시켜 폴리이미드 전구체 조성물을 얻었다.
(2) 플렉서블 디스플레이 장치 제조용 복합 기판의 제조
상기 폴리이미드 전구체 조성물을 유리기판 상에 1 ㎛이하의 두께로 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 유리 기판을 오븐에 넣고 260 ℃에서 30분 건조하여, 두께가 0.01 ㎛ 이하인 플렉서블 디스플레이 장치 제조용 복합 기판을 제조하였다.
(3) 플렉서블 디스플레이 장치의 제조
질소 기류가 흐르는 교반기 내에 유기용매 N-메틸-2-피롤리돈(NMP)를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 p-페닐렌디아민 (p-phenylenediamine, p-PDA) 0.0940 몰을 같은 온도에서 첨가하여 용해시켰다. 상기 p-페닐렌디아민 (pphenylenediamine, p-PDA)이 첨가된 용액에 산이무수물로 3,3′,4,4′-비페닐테트라카복시산 이무수물(3,3′,4,4′-Biphenyltetracarboxylic dianhydride, BPDA) 0.0952 몰을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체를 중합하였다. 상기 폴리이미드 전구체 고형분을 유기용매 메틸피롤리돈(NMP) 10%비율로 용해시켜 폴리이미드 전구체 조성물을 얻었다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 제조된 폴리이미드 전구체 조성물을 1 ㎛이하의 두께로 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 플렉서블 디스플레이 장치 제조용 복합 기판을 오븐에 넣고 5 ℃/min의 속도로 가열하였으며, 80 ℃에서 30분, 260 ℃에서 60분을 유지하여 경화 공정을 진행하여 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층하였다.
플렉서블 디스플레이 소자를 적층하고, 상기 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 폴리이미드 수지층 및 플렉서플 디스플레이 소자가 적층된 플렉서블 디스플레이 장치가 자연적으로 박리되며, 이에 따라 플렉서블 디스플레이 장치를 제조하였다.
실시예 11-20
(1) 폴리이미드 전구체 조성물의 제조
질소 기류가 흐르는 교반기 내에 유기용매 N-메틸-2-피롤리돈(NMP)를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 2,2'- 비스 (트리 플루오로 메틸) 벤지딘(2,2'-Bis(trifluoromethyl)benzidine, TFMB) 0.09055 몰을 같은 온도에서 첨가하여 용해시켰다. 상기 2,2'- 비스 (트리 플루오로 메틸) 벤지딘(2,2'-Bis(trifluoromethyl)benzidine, TFMB)이 첨가된 용액에 산이무수물로 하기 화학식 a로 표시되는 9,9-비스(3,4-디카복시페닐)플루오렌이무수물(9,9-Bis(3,4-dicarboxyphenyl)fluorene Dianhydride, BPAF) 0.0230몰 및 피로멜리트산 디무수물(Pyromellitic Dianhydride, PMDA) 0.0688몰을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체를 중합하였다. 상기 폴리이미드 전구체 고형분 및 폴리실록산(BYK-373) 고형분을 하기 표 1에 표시된 중량으로 유기용매 메틸피롤리돈(NMP) 10wt% 로 용해시켜 폴리이미드 전구체 조성물을 얻었다.
[화학식a]
Figure PCTKR2021011747-appb-img-000012
(2) 플렉서블 디스플레이 장치 제조용 복합 기판의 제조
상기 폴리이미드 전구체 조성물을 유리기판 상에 1 ㎛이하의 두께로 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 유리 기판을 오븐에 넣고 260 ℃에서 30분 건조하여, 두께가 0.01 ㎛이하 인 플렉서블 디스플레이 장치 제조용 복합 기판을 제조하였다.
(3) 플렉서블 디스플레이 장치의 제조
질소 기류가 흐르는 교반기 내에 유기용매 N-메틸-2-피롤리돈(NMP)를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 p-페닐렌디아민 (p-phenylenediamine, p-PDA) 0.0940 몰을 같은 온도에서 첨가하여 용해시켰다. 상기 p-페닐렌디아민 (pphenylenediamine, p-PDA)이 첨가된 용액에 산이무수물로 3,3′,4,4′-비페닐테트라카복시산 이무수물(3,3′,4,4′-Biphenyltetracarboxylic dianhydride, BPDA) 0.0952 몰을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체를 중합하였다. 상기 폴리이미드 전구체 고형분을 유기용매 메틸피롤리돈(NMP) 10%비율로 용해시켜 폴리이미드 전구체 조성물을 얻었다.
상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 제조된 폴리이미드 전구체 조성물을 1 ㎛이하의 두께로 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 플렉서블 디스플레이 장치 제조용 복합 기판을 오븐에 넣고 260 ℃에서 30분 건조하여, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층하였다.
플렉서블 디스플레이 소자를 적층하고, 상기 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 폴리이미드 수지층 및 플렉서플 디스플레이 소자가 적층된 플렉서블 디스플레이 장치가 자연적으로 박리되며, 이에 따라 플렉서블 디스플레이 장치를 제조하였다.
비교예 1
유리 기판을 플렉서블 디스플레이 장치 제조용 기판으로 사용한 것을 제외하고, 실시예 1 과 동일한 방법으로 플렉서블 디스플레이 장치를 제조하였다.
비교예 2
소다 라임 기판을 플렉서블 디스플레이 장치 제조용 기판으로 사용한 것을 제외하고, 실시예 1 과 동일한 방법으로 플렉서블 디스플레이 장치를 제조하였다.
비교예 3
폴리실록산(BYK-373)을 첨가하지 않는 것을 제외하고, 상기 실시예 1과 동일하게 폴리이미드 전구체 조성물, 플렉서블 디스플레이 장치 제조용 복합 기판, 및 플렉서블 디스플레이 장치를 제조하였다.
비교예 4
폴리실록산(BYK-373)을 첨가하지 않는 것을 제외하고, 상기 실시예 11과 동일하게 폴리이미드 전구체 조성물, 플렉서블 디스플레이 장치 제조용 복합 기판, 및 플렉서블 디스플레이 장치를 제조하였다.
비교예 5
폴리이미드 전구체를 첨가하지 않는 것을 제외하고, 상기 실시예 1과 동일하게 플렉서블 디스플레이 장치 제조용 복합 기판 및 플렉서블 디스플레이 장치를 제조하였다.
비교예 6-15
상기 폴리이미드 전구체 고형분 및 폴리실록산(BYK-373) 고형분을 하기 표 1에 표시된 중량으로 유기용매 메틸피롤리돈(NMP) 에 용해시켜 폴리이미드 전구체 조성물을 제조하는 것을 제외하고, 상기 실시예 1과 동일하게 플렉서블 디스플레이 장치 제조용 복합 기판 및 플렉서블 디스플레이 장치를 제조하였다.
<실험예>
상기 실시예 및 비교예에서 얻어진 폴리이미드 전구체 조성물 및 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 물성을 하기 방법으로 측정하였으며, 그 결과를 표1에 나타내었다.
1. 헤이즈
플렉서블 디스플레이 장치 제조용 복합 기판에서 유리 기판 상에 적층된 폴리이미드 필름을 분리하여, HAZE METER(모델명: NDH7000, Nippon denshoku 社)를 이용하여 ASTM D1003의 측정법에 따라 헤이즈 값을 측정하였다.
2. 박리강도
상기 플렉서블 디스플레이 장치의 제조공정에서, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층한 이후, 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 플렉서블 디스플레이 장치 제조용 복합 기판 위에 형성된 폴리이미드 수지층을 90 도로 박리하여, 측정기기: Texture Analyzer (모델명: TA.XT plus100, Stable micro systems 社)를 이용하여 ASTM D6862 측정법에 따라 박리 강도 값을 측정하였다.
3. 전사도
상기 플렉서블 디스플레이 장치의 제조공정에서, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층한 이후, 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 플렉서블 디스플레이 장치 제조용 복합 기판 위에 형성된 폴리이미드 필름을 2.5 cm * 5 cm 의 영역에 대하여 박리하여, 플렉서블 디스플레이 장치 제조용 복합 기판이 폴리이미드 필름에 전사되는 정도를 측정하고 하기 기준에 따라 그 결과를 평가하였다.
100 %: 폴리이미드 필름에 동일하게 전사
50 %: 폴리이미드 필름의 일부에 전사
0 %: 전사 미발생
4. 컬링
상기 플렉서블 디스플레이 장치의 제조공정에서, 플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층을 적층한 이후, 플렉서블 디스플레이 장치 제조용 복합 기판으로부터 플렉서블 디스플레이 장치 제조용 복합 기판 위에 형성된 폴리이미드 필름을 2.5 cm * 5 cm 의 영역에 대하여 박리하여, 박리된 폴리이미드 필름의 컬링 발생 정도를 측정하고 하기 기준에 따라 그 결과를 평가하였다.
0: 폴리이미드 필름에 발생한 컬링이 360 도 미만
∞: 폴리이미드 필름에 발생한 컬링이 360 도 이상으로 1바퀴 이상 회전
실시예 및 비교예의 실험예 측정 결과
구분 폴리이미드
고형분함량
폴리실록산
고형분함량
헤이즈
(%)
박리강도
(g/cm)
전사도
(%)
컬링
(g) (%) (g) (%)
실시예1 10 1 0.2 20 0.4 14.1 0 0
실시예2 10 1 0.25 25 0.5 10.5 0 0
실시예3 10 1 0.3 30 0.5 9.7 0 0
실시예4 10 1 0.33 33 0.4 4.0 0 0
실시예5 10 1 0.35 35 0.3 3.7 0 0
실시예6 10 1 0.37 37 0.4 3.7 0 0
실시예7 10 1 0.4 40 0.4 4.3 0 0
실시예8 20 2 0.2 20 0.4 15.8 0 0
실시예9 20 2 0.3 30 0.3 12.0 0 0
실시예10 20 2 0.4 40 0.3 4.6 0 0
실시예11 10 1 0.2 20 0.4 8.4 0 0
실시예12 10 1 0.25 25 0.3 6.3 0 0
실시예13 10 1 0.3 30 0.5 8.5 0 0
실시예14 10 1 0.33 33 0.2 19.8 0 0
실시예15 10 1 0.35 35 0.6 24.9 0 0
실시예16 10 1 0.37 37 0.4 28.0 0 0
실시예17 10 1 0.4 40 0.3 30 0 0
실시예18 20 2 0.2 20 0.5 7.0 0 0
실시예19 20 2 0.3 30 0.5 24.5 0 0
실시예20 20 2 0.4 40 0.5 28.9 0 0
비교예1 - - - - 0.4 450 -
비교예2 - - - - 0.7 718 -
비교예3 10 1 - - 0.6 222 0
비교예4 10 1 - - 0.5 181 0
비교예5 - - 0.5 50 0.5 0.8 0 0
비교예6 10 1 0.005 0.5 0.4 163.8 0 0
비교예7 10 1 0.01 1 0.3 180.5 0 0
비교예8 10 1 0.1 10 0.3 164.1 0 0
비교예9 10 1 0.15 15 0.3 85.0 0 0
비교예10 10 1 0.5 50 0.4 75 50
비교예11 10 1 0.7 70 0.4 110 50
비교예12 10 1 0.8 80 2.7 10.5 100 0
비교예13 10 1 0.9 90 3.9 6.9 100 0
비교예14 30 3 0.37 37 3.8 15.8 100 0
비교예15 50 5 0.37 37 3 12.0 100 0
상기 표1에 나타난 바와 같이, 실시예에서 얻어진 플렉서블 디스플레이 장치 제조용 복합 기판은 유리 기판 및 유리 기판 상에 적층된 폴리실록산과 폴리이미드를 포함하고 1 % 이하의 헤이즈를 갖는 고분자 수지층을 포함함에 따라, 폴리이미드 수지층에 대해 90도 박리시 박리 강도가 1g/cm 이상 30 g/cm 이하를 만족하면서, 박리 이후에 폴리이미드 수지층에 전사가 발생하지 않는 동시에, 박리 이후 폴리이미드 수지층에 컬링이 발생하지 않아 플렉서블 디스플레이 장치 제조가 용이함을 확인하였다.반면, 비교예1, 2의 경우, 고분자 수지층을 포함하지 않음에 따라, 폴리이미드 수지층에 대한 접착력이 지나치게 높아, 폴리이미드 수지층에 전사 및 컬링이 발생하여 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
또한 비교예 3,4의 경우, 고분자 수지층이 폴리실록산을 포함하지 않음에 따라, 폴리이미드 수지층에 대한 접착력이 지나치게 높아, 폴리이미드 수지층에 컬링이 발생하여 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
또한 비교예 5의 경우, 고분자 수지층이 폴리이미드를 포함하지 않음에 따라, 폴리이미드 수지층에 대한 접착력이 지나치게 낮아, 플렉서블 디스플레이 장치 제조가 불가능함을 확인할 수 있었다.
비교예 6-9의 경우, 고분자 수지층이 폴리실록산을 소량으로 포함함에 따라, 폴리이미드 수지층에 대한 접착력이 지나치게 높아, 폴리이미드 수지층에 컬링 또는 전사가 발생하여 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
또한 비교예 10-13의 경우, 고분자 수지층이 폴리실록산을 과량으로 포함함에 따라, 폴리이미드 수지층에 대한 접착력이 지나치게 높아, 폴리이미드 수지층에 컬링 또는 전사가 발생하여 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.
또한 비교예 14,15의 경우, 고분자 수지층이 폴리이미드를 과량으로 포함함에 따라, 고분자 수지층의 헤이즈가 불량하여 폴리이미드 수지층에 전사가 발생하고, 이에 따라 플렉서블 디스플레이 장치 제조시 적층 무기 소자의 파괴 및 필름이 파괴될 뿐만 아니라, 박리 공정에 추가적인 비용이 발생할 수 있다.

Claims (20)

  1. 폴리실록산과 폴리이미드를 포함하고 1 % 이하의 헤이즈를 갖는 고분자 수지층; 및
    유리 기판;을 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  2. 제1항에 있어서,
    상기 고분자 수지층은 폴리이미드 수지층에 대해 90도 박리시 박리 강도가 1g/cm 이상 30 g/cm 이하인, 플렉서블 디스플레이 장치 제조용 복합 기판.
  3. 제1항에 있어서,
    상기 고분자 수지층은 폴리이미드 수지층에 대해 박리시 폴리이미드 수지층에 대한 전사도가 50% 이하인, 플렉서블 디스플레이 장치 제조용 복합 기판.
  4. 제1항에 있어서,
    상기 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리실록산의 고형분을 20 중량% 이상 45 중량% 이하로 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  5. 제1항에 있어서,
    상기 고분자 수지층은 전체 고분자 수지층 중량에 대하여 상기 폴리이미드의 고형분을 0.1 중량 % 이상 2.5 중량% 이하로 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  6. 제1항에 있어서,
    상기 고분자 수지층은 상기 폴리실록산 고형분 100 중량부에 대하여 상기 폴리이미드의 고형분을 2 중량부 이상 20 중량부 이하로 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  7. 제1항에 있어서,
    상기 폴리이미드는 방향족 테트라카르복실산 또는 이의 무수물과 방향족 디아민 간의 반응물 또는 이로부터 유래한 반복 단위를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  8. 제1항에 있어서,
    상기 폴리이미드는 하기 화학식1로 표시되는 반복단위를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판:
    [화학식 1]
    Figure PCTKR2021011747-appb-img-000013
    상기 화학식1에서,
    X1은 다중고리를 함유한 방향족 4가 작용기이며,
    Y1은 탄소수 10 이하의 방향족 2가 작용기이다.
  9. 제8항에 있어서,
    상기 X1은 4가의 작용기는 하기 화학식2로 표시되는 4가의 작용기를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판:
    [화학식2]
    Figure PCTKR2021011747-appb-img-000014
    상기 화학식2에서, Ar은 다중고리 방향족 2가 작용기이다.
  10. 제9항에 있어서,
    상기 화학식2의 Ar에서, 다중고리 방향족 2가 작용기는
    적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  11. 제9항에 있어서,
    상기 화학식2의 Ar에서, 다중고리 방향족 2가 작용기는 플루오레닐렌기를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  12. 제9항에 있어서,
    상기 화학식2로 표시되는 4가의 작용기는 하기 화학식2-1로 표시되는 작용기를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판:
    [화학식 2-1]
    Figure PCTKR2021011747-appb-img-000015
    .
  13. 제8항에 있어서,
    상기 Y1의 탄소수 10 이하의 방향족 2가 작용기는,
    불소계 작용기가 적어도 1이상 치환된 탄소수 10 이하의 방향족 2가 작용기를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판.
  14. 제8항에 있어서,
    상기 Y1의 탄소수 10 이하의 방향족 2가 작용기는,
    하기 화학식3으로 표시되는 작용기를 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판:
    [화학식 3]
    Figure PCTKR2021011747-appb-img-000016
    .
  15. 제8항에 있어서,
    상기 폴리이미드는 하기 화학식 4로 표시되는 폴리이미드 반복단위를 더 포함하는, 플렉서블 디스플레이 장치 제조용 복합 기판:
    [화학식 4]
    Figure PCTKR2021011747-appb-img-000017
    상기 화학식 4에서,
    X2는 상기 X1과 상이한 4가의 작용기이며,
    Y2은 탄소수 10 이하의 방향족 2가 작용기이다.
  16. 제15항에 있어서,
    상기 X2는 하기 화학식5로 표시되는 4가의 작용기 중 하나인, 플렉서블 디스플레이 장치 제조용 복합 기판:
    [화학식5]
    Figure PCTKR2021011747-appb-img-000018
    상기 화학식 5에서, R1 내지 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이고, L3는 단일결합, -O-, -CO-, -COO-, -S-, -SO-, -SO2-, -CR7R8-, -(CH2)t-, -O(CH2)tO-, -COO(CH2)tOCO-, -CONH-, 페닐렌 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며, 상기에서 R7 및 R8는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 또는 탄소수 1 내지 10의 할로 알킬기 중 하나이고, t는 1 내지 10의 정수이다.
  17. 제1항의 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 포함하는 플렉서블 디스플레이 장치를 박리하는 단계를 포함하는, 플렉서블 디스플레이 장치의 제조 방법.
  18. 제17항에 있어서,
    플렉서블 디스플레이 장치 제조용 복합 기판 상에 폴리이미드 수지층 및 플렉서블 디스플레이 소자를 순차적으로 적층하는 단계를 더 포함하는, 플렉서블 디스플레이 장치의 제조 방법.
  19. 제1항의 플렉서블 디스플레이 장치 제조용 복합 기판;
    상기 플렉서블 디스플레이 장치 제조용 복합 기판 상에 형성된 폴리이미드 수지층; 및
    상기 폴리이미드 수지층 상에 형성된 플렉서블 디스플레이 소자;를 포함하는, 플렉서블 디스플레이 장치용 적층체.
  20. 제19항에 있어서,
    상기 플렉서블 디스플레이 장치 제조용 복합 기판은 상기 폴리이미드 수지층에 대해 90도 박리시 박리 강도가 1g/cm 이상 30 g/cm 이하인, 플렉서블 디스플레이 장치용 적층체.
PCT/KR2021/011747 2020-09-21 2021-09-01 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체 WO2022059971A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180015868.7A CN115210320A (zh) 2020-09-21 2021-09-01 制造柔性显示装置用复合基底、使用其的制造柔性显示装置的方法和柔性显示装置用层合体
JP2022559466A JP2023521590A (ja) 2020-09-21 2021-09-01 フレキシブルディスプレイ装置製造用複合基板、これを利用したフレキシブルディスプレイ装置の製造方法、およびフレキシブルディスプレイ装置用積層体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0121717 2020-09-21
KR20200121717 2020-09-21
KR1020210115642A KR102642298B1 (ko) 2020-09-21 2021-08-31 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체
KR10-2021-0115642 2021-08-31

Publications (1)

Publication Number Publication Date
WO2022059971A1 true WO2022059971A1 (ko) 2022-03-24

Family

ID=80776268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011747 WO2022059971A1 (ko) 2020-09-21 2021-09-01 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체

Country Status (4)

Country Link
JP (1) JP2023521590A (ko)
CN (1) CN115210320A (ko)
TW (1) TW202218877A (ko)
WO (1) WO2022059971A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302913A (ja) * 2000-04-21 2001-10-31 Unitika Ltd ポリイミド前駆体溶液及びそれから得られるポリイミド被膜
US20100129618A1 (en) * 2006-11-30 2010-05-27 Toray Industries, Inc. Photosensitive siloxane composition, cured film formed therefrom and device having the cured film
KR20150126887A (ko) * 2013-04-04 2015-11-13 미쓰이 가가쿠 가부시키가이샤 폴리아마이드산 및 이것을 포함하는 바니쉬, 및 폴리이미드 필름
KR20170102535A (ko) * 2015-02-09 2017-09-11 코니카 미놀타 가부시키가이샤 투명 내열성 적층 필름의 제조 방법, 투명 내열성 적층 필름, 플렉시블 프린트 기판, 플렉시블 디스플레이용 기판, 플렉시블 디스플레이용 전방면판, led 조명 장치 및 유기 일렉트로루미네센스 표시 장치
WO2020040209A1 (ja) * 2018-08-24 2020-02-27 株式会社カネカ ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置
KR20200052303A (ko) * 2017-09-26 2020-05-14 도레이 카부시키가이샤 폴리이미드 전구체 수지 조성물, 폴리이미드 수지 조성물, 폴리이미드 수지막, 적층체의 제조 방법, 컬러 필터의 제조 방법, 액정 소자의 제조 방법 및 유기 el 소자의 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474054B1 (en) * 1990-08-27 1995-12-06 E.I. Du Pont De Nemours And Company Flexible multi-layer polyimide film laminates and preparation thereof
CN102774077B (zh) * 2012-08-06 2016-02-17 广东生益科技股份有限公司 二层法双面挠性覆铜板及其制作方法
WO2014050878A1 (ja) * 2012-09-25 2014-04-03 東レ株式会社 樹脂組成物、硬化膜、積層フィルム、および半導体装置の製造方法
CN106574163B (zh) * 2014-08-08 2019-12-03 东丽株式会社 临时粘接用粘合剂、粘合剂层、晶片加工体及使用其的半导体器件的制造方法、聚酰亚胺共聚物、聚酰亚胺混合树脂以及树脂组合物
US10431753B2 (en) * 2014-09-30 2019-10-01 Toray Industries, Inc. Substrate for display, color filter using the same and method for the production thereof, organic EL element and method for the production thereof, and flexible organic EL display
KR102035378B1 (ko) * 2015-06-08 2019-11-18 주식회사 엘지화학 금속배선층이 형성된 적층체 및 이를 제조하는 방법
KR101751904B1 (ko) * 2015-12-31 2017-07-12 엘티씨 (주) 유연기판용 폴리실세스퀴옥산 수지 조성물
CN106252269A (zh) * 2016-09-07 2016-12-21 达迈科技股份有限公司 可离型的柔性基板及其制造方法
JP6944785B2 (ja) * 2017-02-03 2021-10-06 東京応化工業株式会社 積層体、フレキシブルデバイス及び積層体の製造方法
CN112004858B (zh) * 2018-03-30 2023-06-30 株式会社钟化 聚酰胺酸、聚酰胺酸溶液、聚酰亚胺、聚酰亚胺膜、层叠体及柔性装置、以及聚酰亚胺膜的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302913A (ja) * 2000-04-21 2001-10-31 Unitika Ltd ポリイミド前駆体溶液及びそれから得られるポリイミド被膜
US20100129618A1 (en) * 2006-11-30 2010-05-27 Toray Industries, Inc. Photosensitive siloxane composition, cured film formed therefrom and device having the cured film
KR20150126887A (ko) * 2013-04-04 2015-11-13 미쓰이 가가쿠 가부시키가이샤 폴리아마이드산 및 이것을 포함하는 바니쉬, 및 폴리이미드 필름
KR20170102535A (ko) * 2015-02-09 2017-09-11 코니카 미놀타 가부시키가이샤 투명 내열성 적층 필름의 제조 방법, 투명 내열성 적층 필름, 플렉시블 프린트 기판, 플렉시블 디스플레이용 기판, 플렉시블 디스플레이용 전방면판, led 조명 장치 및 유기 일렉트로루미네센스 표시 장치
KR20200052303A (ko) * 2017-09-26 2020-05-14 도레이 카부시키가이샤 폴리이미드 전구체 수지 조성물, 폴리이미드 수지 조성물, 폴리이미드 수지막, 적층체의 제조 방법, 컬러 필터의 제조 방법, 액정 소자의 제조 방법 및 유기 el 소자의 제조 방법
WO2020040209A1 (ja) * 2018-08-24 2020-02-27 株式会社カネカ ハードコート組成物、ハードコート付きポリイミドフィルムおよびその製造方法、ならびに画像表示装置

Also Published As

Publication number Publication date
CN115210320A (zh) 2022-10-18
JP2023521590A (ja) 2023-05-25
TW202218877A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2014168400A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022059971A1 (ko) 플렉서블 디스플레이 장치 제조용 복합 기판, 이를 이용한 플렉서블 디스플레이 장치의 제조 방법, 및 플렉서블 디스플레이 장치용 적층체
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2021071152A1 (ko) 플렉서블 윈도우 필름 및 이를 포함하는 디스플레이 장치
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2023106571A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023172103A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869593

Country of ref document: EP

Kind code of ref document: A1