WO2023106571A1 - 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치 - Google Patents

폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치 Download PDF

Info

Publication number
WO2023106571A1
WO2023106571A1 PCT/KR2022/013676 KR2022013676W WO2023106571A1 WO 2023106571 A1 WO2023106571 A1 WO 2023106571A1 KR 2022013676 W KR2022013676 W KR 2022013676W WO 2023106571 A1 WO2023106571 A1 WO 2023106571A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
based resin
resin film
functional group
formula
Prior art date
Application number
PCT/KR2022/013676
Other languages
English (en)
French (fr)
Inventor
강미은
박찬효
박진영
박채원
이민욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220110024A external-priority patent/KR20230086570A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US18/254,543 priority Critical patent/US20240092974A1/en
Priority to JP2023526936A priority patent/JP2024503967A/ja
Priority to CN202280007575.9A priority patent/CN116583553A/zh
Priority to EP22879628.0A priority patent/EP4219606A4/en
Publication of WO2023106571A1 publication Critical patent/WO2023106571A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide-based resin film capable of implementing excellent warpage characteristics and low retardation, a substrate for a display device using the same, and an optical device.
  • a flat panel display includes a liquid crystal display (LCD), an organic light emitting display (OLED), or an electrophoretic display (EPD).
  • LCD liquid crystal display
  • OLED organic light emitting display
  • EPD electrophoretic display
  • a multi-layered inorganic film such as a buffer layer, an active layer, and a gate insulator is formed on cured polyimide to manufacture a TFT device.
  • polyimide resins have a high refractive index in the surface direction and a large difference from the refractive index in the thickness direction. Due to this, as polyimide has an anisotropic property, there is a limit in significantly deteriorating visibility due to a light distortion phenomenon.
  • the present invention relates to a polyimide-based resin film capable of realizing excellent optical characteristics, warpage characteristics, and low retardation.
  • the present invention is to provide a substrate for a display device using the polyimide-based resin film, and an optical device.
  • a polyimide-based resin film including a polyimide-based resin including a polyimide repeating unit represented by the following Chemical Formula 1 and a polyimide repeating unit represented by the following Chemical Formula 2 is provided.
  • X 1 is an aromatic tetravalent functional group containing a single ring
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms
  • X 2 is an aromatic tetravalent functional group containing a polycyclic ring
  • Y 2 is an aromatic divalent functional group having 6 to 10 carbon atoms.
  • a substrate for a display device including the polyimide-based resin film is also provided.
  • an optical device including the polyimide-based resin film is also provided.
  • first element may also be termed a second element, and similarly, a second element may be termed a first element.
  • a (co)polymer refers to a polymer or a copolymer, and the polymer refers to a homopolymer composed of a single repeating unit, and the copolymer refers to a multipolymer containing two or more types of repeating units.
  • substitution means that another functional group is bonded instead of a hydrogen atom in a compound, and the position to be substituted is not limited as long as the position where the hydrogen atom is substituted, that is, the position where the substituent can be substituted, and when two or more are substituted , Two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted means deuterium; halogen group; cyano group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amide group; primary amino group; carboxy group; sulfonic acid group; sulfonamide group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; an alkoxysilylalkyl group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing at least one of N, O,
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • aromatic is a property that satisfies the Huckels Rule, and a case that satisfies all of the following three conditions according to the Huckels Rule can be defined as aromatic.
  • a multivalent functional group is a residue in which a plurality of hydrogen atoms bonded to any compound are removed, and examples thereof include a divalent functional group, a trivalent functional group, and a tetravalent functional group.
  • a tetravalent functional group derived from cyclobutane refers to a residue in which 4 arbitrary hydrogen atoms bonded to cyclobutane are removed.
  • the aryl group is a monovalent functional group derived from arene, and is not particularly limited, but preferably has 6 to 20 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the aryl group may be substituted or unsubstituted, and examples of substituents in the case of substitution are as described above.
  • a direct bond or a single bond means that no atom or group of atoms is present at the corresponding position and is connected by a bond line. Specifically, it means the case where no additional atom exists in the part represented by L 1 and L 2 in the formula.
  • a weight average molecular weight means the weight average molecular weight of polystyrene conversion measured by the GPC method.
  • a conventionally known analyzer and a detector such as a differential refraction detector (Refractive Index Detector) and an analysis column may be used, and a commonly applied temperature Conditions, solvents, and flow rates can be applied.
  • a specific example of the measurement conditions using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm long column, the evaluation temperature is 160 ° C, and 1,2,4-trichlorobenzene is used as a solvent.
  • the flow rate was 1 mL / min, the sample was prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 ⁇ L, and the value of Mw could be obtained using a calibration curve formed using a polystyrene standard.
  • a polystyrene standard Nine kinds of molecular weight of polystyrene standards were used: 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • a polyimide-based resin film including a polyimide-based resin including a polyimide repeating unit represented by Formula 1 below and a polyimide repeating unit represented by Formula 2 below may be provided.
  • X 1 is an aromatic tetravalent functional group containing a single ring
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms
  • X 2 is an aromatic tetravalent functional group containing a polycyclic ring
  • Y 2 is an aromatic divalent functional group having 6 to 10 carbon atoms.
  • the present inventors simultaneously include the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2, like the polyimide-based resin film of the embodiment, curing was performed at a high temperature of 400 ° C. or higher. By minimizing warpage in the polyimide resin film, it has high flatness and dimensional stability, so it can solve defects caused by lifting during panel processing. At the same time, as the refractive index in the thickness direction increases, the difference in refractive index between By realizing a low retardation due to increased optical isotropy, it was confirmed through experiments that a diagonal viewing angle of a display applied with a polyimide-based resin film can be secured to prevent deterioration in visibility due to light distortion, and the present invention was completed.
  • the polyimide-based resin includes a reaction product obtained through an imidation reaction of an aromatic tetracarboxylic dianhydride containing a polycyclic ring and an aromatic diamine having 6 to 10 carbon atoms, as shown in the structure represented by Formula 2 above, High heat resistance is ensured by physical and chemical actions according to the structure of aromatic tetracarboxylic dianhydride containing polycyclics, and not only in the cured film through heat treatment at a high temperature of 400 ° C or higher, but also in the cured film at an additional high temperature of 400 ° C or higher It seems that excellent flatness is achieved even during heat treatment in In addition, by introducing an asymmetric structure in which steric hindrance is increased by multiple rings into the polyimide chain structure, a difference in refractive index between the surface direction and the thickness direction is reduced, thereby realizing a low phase difference.
  • the low phase difference is achieved by reducing the difference in refractive index between the surface direction and the thickness direction by the aromatic diamine having 6 to 10 carbon atoms having a bent asymmetric structure.
  • the polyimide-based resin includes a reaction product obtained through an imidation reaction of an aromatic tetracarboxylic dianhydride containing a single ring and an aromatic diamine having 6 to 10 carbon atoms, as shown in the structure represented by Formula 1, It seems to be achieved by reducing the difference in refractive index between the surface direction and the thickness direction by using an aromatic diamine having 6 to 10 carbon atoms having a bent asymmetric structure.
  • the refractive index in the thickness direction is low because the polyimides are packed side by side and piled up, but as an asymmetric structure in a bent form is introduced into the polyimide chain structure, it is arranged in the thickness direction. can be maintained, and a low phase difference can be implemented by reducing the difference in refractive index between the plane direction and the thickness direction.
  • the polyimide-based resin film according to the present invention can increase the refractive index and can be used as a substrate layer in a flexible display device to reduce the difference in refractive index with each layer constituting the device. By reducing the amount of light emitted, the light emission (bottom emission) efficiency can be effectively increased.
  • the polyimide-based resin film may include a polyimide-based resin.
  • the polyimide-based resin means to include both polyimide and its precursor polymers, polyamic acid and polyamic acid ester. That is, the polyimide-based polymer may include at least one selected from the group consisting of a polyamic acid repeating unit, a polyamic acid ester repeating unit, and a polyimide repeating unit. That is, the polyimide-based polymer may include one type of polyamic acid repeating unit, one type of polyamic acid ester repeating unit, one type of polyimide repeating unit, or a copolymer in which two or more types of repeating units thereof are mixed.
  • At least one repeating unit selected from the group consisting of the polyamic acid repeating unit, the polyamic acid ester repeating unit, and the polyimide repeating unit may form the main chain of the polyimide-based polymer.
  • the polyimide-based resin film may include a cured product of a polyimide-based resin.
  • the cured product of the polyimide-based resin refers to a product obtained through a curing process of the polyimide-based resin.
  • the polyimide-based resin may include a polyimide repeating unit represented by Chemical Formula 1 below.
  • X 1 is an aromatic tetravalent functional group containing a single ring
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms.
  • X 1 is an aromatic tetravalent functional group containing a single ring, and X 1 is a functional group derived from a tetracarboxylic dianhydride compound used in synthesizing a polyimide-based resin.
  • the aromatic tetravalent functional group containing a single ring of X 1 may include a functional group represented by the following Chemical Formula 5 derived from pyromellitic dianhydride (PMDA).
  • the aromatic 4 containing the single ring includes the functional group represented by Chemical Formula 5 as a functional group, high heat resistance and high mechanical properties can be realized by increasing the packing density of the polymer chain in a flat structure.
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms, and Y 1 may be a functional group derived from polyamic acid, polyamic acid ester, or a diamine compound used in synthesizing polyimide.
  • the aromatic divalent functional group having 6 to 10 carbon atoms may include a phenylene group. More specifically, the divalent aromatic functional group having 6 to 10 carbon atoms of Y 1 may include a functional group represented by Formula 3 below.
  • Chemical Formula 3 Specific examples of the functional group represented by the following Chemical Formula 3 include a functional group represented by the following Chemical Formula 3-1 derived from m-phenylenediamine (1,3-phenylenediamine, m-PDA).
  • the polyimide-based resin may further include a polyimide repeating unit represented by the following Chemical Formula 2 in addition to the polyimide repeating unit represented by Chemical Formula 1. That is, the polyimide-based resin may include a polyimide repeating unit represented by Chemical Formula 1 and a polyimide repeating unit represented by Chemical Formula 2 below.
  • X 2 is an aromatic tetravalent functional group containing a polycyclic ring
  • Y 2 is an aromatic divalent functional group having 6 to 10 carbon atoms.
  • Y 2 is the same as Y 1 in Chemical Formula 1 above.
  • X 2 is an aromatic tetravalent functional group containing a polycyclic ring, and X 2 is a functional group derived from a tetracarboxylic dianhydride compound used in synthesizing a polyimide-based resin.
  • the tetravalent functional group of X 2 may include a divalent functional group represented by Chemical Formula 4 below.
  • Ar is a polycyclic aromatic divalent functional group.
  • the polycyclic aromatic divalent functional group is a divalent functional group derived from a polycyclic aromatic hydrocarbon compound or a derivative compound thereof, wherein the derivative compound is a compound in which one or more substituents are introduced or a carbon atom is replaced with a heteroatom. All inclusive.
  • the multi-cyclic aromatic divalent functional group may include a fused cyclic divalent functional group containing at least two or more aromatic ring compounds. That is, the multi-cyclic aromatic divalent functional group contains at least two or more aromatic ring compounds in the functional group structure, and the functional group may have a fused ring structure.
  • the aromatic ring compound may include an arene compound containing at least one benzene ring or a hetero arene compound in which a carbon atom in the arene compound is replaced with a hetero atom.
  • the aromatic ring compound may contain at least two or more in a polycyclic aromatic divalent functional group, and each of the two or more aromatic ring compounds may form a bonded ring directly or form a bonded ring through another ring structure.
  • each of the two or more aromatic ring compounds may form a bonded ring directly or form a bonded ring through another ring structure.
  • two benzene rings are each bonded to a cycloalkyl ring structure, it can be defined that two benzene rings form a bonded ring through a cycloalkyl ring.
  • the fused cyclic divalent functional group containing at least two or more aromatic ring compounds is a divalent functional group derived from a fused ring compound containing at least two or more aromatic ring compounds or a derivative compound thereof, wherein the derivative compound has one or more substituents introduced therein. or a compound in which a carbon atom is replaced with a heteroatom.
  • the multicyclic aromatic divalent functional group may include a fluorenylene group.
  • a specific example of the functional group represented by Formula 4 is derived from 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (BPAF). and a functional group represented by Chemical Formula 4-1 below.
  • a symmetrical structure in which steric hindrance is increased by the multi-ring is introduced into the polyimide chain structure, thereby relieving heat-induced deformation and improving heat resistance.
  • the refractive index in the thickness direction is increased and the difference in refractive index between the plane and the thickness direction is reduced, thereby realizing low phase difference and intermolecular packing. can be suppressed to realize high transmittance.
  • the polyimide-based resin may include a combination of single-ring aromatic tetracarboxylic dianhydride, multi-ring aromatic tetracarboxylic dianhydride, and aromatic diamine having 6 to 10 carbon atoms.
  • the aromatic tetracarboxylic dianhydride containing a single ring is a compound in which an anhydride group (-OC-O-CO-) is introduced at both ends of the above-mentioned aromatic tetravalent functional group containing a single ring, and is an aromatic compound containing a single ring.
  • anhydride group -OC-O-CO-
  • Description of the tetravalent functional group is as described above.
  • aromatic tetracarboxylic acid dianhydride containing the single ring may be pyromellitic dianhydride (PMDA).
  • the aromatic tetracarboxylic dianhydride containing a multi-ring is a compound in which an anhydride group (-OC-O-CO-) is introduced at both terminals of the above-mentioned aromatic tetravalent functional group containing a multi-ring, and is an aromatic compound containing a multi-ring.
  • anhydride group -OC-O-CO-
  • Description of the tetravalent functional group is as described above.
  • polycyclic aromatic tetracarboxylic acid dianhydride is 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (BPAF) can be heard
  • the aromatic diamine having 6 to 10 carbon atoms is a compound in which an amino group (—NH 2 ) is introduced at both ends of the aforementioned divalent aromatic functional group having 6 to 10 carbon atoms, and the description of the divalent aromatic functional group having 6 to 10 carbon atoms is described above. It's like a bar.
  • Specific examples of the aromatic diamine having 6 to 10 carbon atoms include m-phenylenediamine (m-PDA).
  • the polyimide-based resin includes the aromatic tetracarboxylic dianhydride, the terminal anhydride group (-OC-O-CO-) of the aromatic tetracarboxylic dianhydride containing a multi-ring, and the terminal of an aromatic diamine having 6 to 10 carbon atoms.
  • a bond between the nitrogen atom of the amino group and the carbon atom of the anhydride group may be formed by the reaction of the amino group (-NH 2 ).
  • the polyimide-based polymer may include a first repeating unit containing a repeating unit represented by Chemical Formula 1, wherein the anhydride-derived repeating unit is a functional group represented by Chemical Formula 5; and a second repeating unit containing a repeating unit represented by Formula 2, wherein the anhydride-derived repeating unit is a functional group represented by Formula 4 above.
  • the first repeating unit and the second repeating unit are randomly arranged in the polyimide-based polymer to form a random copolymer, or a block between the first repeating units and a block between the second repeating units are formed to form a block copolymer.
  • the polyimide-based polymer including the repeating unit represented by Formula 1 and the repeating unit represented by Formula 2 can be prepared by reacting two or more different tetracarboxylic dianhydride compounds together with a diamine compound, A random copolymer may be synthesized by simultaneously adding the tetracarboxylic dianhydride compound, or a block copolymer may be synthesized by sequentially adding the tetracarboxylic acid dianhydride compound.
  • the molar ratio between the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2 is 85:15 to 15:85, or 80:20 to 20:80, or 75:25 to 25:75 , or 60:40 to 40:60, or 60:40 to 70:30, or 70:30 to 85:15.
  • the molar ratio of the polyimide repeating unit represented by Chemical Formula 2 to 1 mole of the polyimide repeating unit represented by Chemical Formula 1 is 0.17 to 6 moles, or 0.25 to 4 moles, or 0.33 to 4 moles. 3 moles, or 0.6 to 1.5 moles, or 0.4 to 0.7 moles, or 0.17 to 0.5 moles.
  • the polyimide-based resin film of one embodiment may include a cured product in which the polyimide-based resin is cured at a temperature of 400° C. or higher.
  • the cured product refers to a material obtained through a curing process of the resin composition containing the polyimide-based resin, and the curing process may be performed at a temperature of 400 °C or higher, or 400 °C or higher and 500 °C or lower.
  • the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2 are 70 mol% or more, or 80 mol% or more, or 90 mol% or more, based on the total repeating units contained in the polyimide-based resin. 70 mol% or more and 100 mol% or less, 80 mol% or more and 100 mol% or less, 70 mol% or more and 90 mol% or less, 70 mol% or more and 99 mol% or less, 80 mol% or more and 99 mol% or less, 90 mol% or more 99 It may be contained in mol% or less.
  • the polyimide-based resin is composed of only the polyimide repeating unit represented by Chemical Formula 1 and the polyimide repeating unit represented by Chemical Formula 2, or most of the polyimide repeating unit represented by Chemical Formula 1 and the polyimide repeating unit represented by Chemical Formula 2 It may consist of polyimide repeating units.
  • the weight average molecular weight (measured by GPC) of the polyimide-based resin is not particularly limited, but may be, for example, 1000 g/mol or more and 200000 g/mol or less, or 10000 g/mol or more and 200000 g/mol or less.
  • the polyimide-based resin according to the present invention can exhibit excellent colorless and transparent properties while maintaining properties such as heat resistance and mechanical strength due to its rigid structure, and thus can be used as device substrates, display cover substrates, and optical films.
  • IC integrated circuit
  • electrodeposited film adheresive film
  • multi-layer FRC flexible printed circuit
  • tape touch panel
  • an example of a method of synthesizing the polyimide-based resin film is not greatly limited, and, for example, applying a resin composition containing the polyimide-based resin to a substrate to form a coating film (step 1); drying the coating film (step 2); A method for producing a film including the step (step 3) of curing the dried coating film by heat treatment may be used.
  • Step 1 is a step of forming a coating film by applying the resin composition containing the above-described polyimide-based resin to a substrate.
  • a method of applying the resin composition containing the polyimide-based resin to the substrate is not particularly limited, and for example, screen printing, offset printing, flexographic printing, or inkjet printing may be used.
  • the resin composition containing the polyimide-based resin may be dissolved or dispersed in an organic solvent.
  • the solution may be the obtained reaction solution itself or a solution obtained by diluting this reaction solution with another solvent.
  • polyimide-type resin was obtained as powder, what was made into the solution by dissolving this in the organic solvent may be used.
  • organic solvent examples include toluene, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl Pyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, gamma-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3- Ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoa Mil ketone, methyl isopropyl ketone, cyclohexanone, ethylene
  • the resin composition containing the polyimide-based resin may include a solid content in an amount to have an appropriate viscosity in consideration of processability such as coatability during the film forming process.
  • the content of the composition may be adjusted so that the total resin content is 5% by weight or more and 25% by weight or less, or 5% by weight or more and 20% by weight or less, or 5% by weight or more and 15% by weight or less. .
  • the resin composition containing the polyimide-based resin may further include other components in addition to the organic solvent.
  • the film thickness uniformity or surface smoothness may be improved, or adhesion to a substrate may be improved, or permittivity or conductivity may be changed.
  • additives capable of increasing compaction may be additionally included.
  • Such additives may include surfactants, silane-based compounds, dielectric or cross-linkable compounds, and the like.
  • Step 2 is a step of drying a coating film formed by applying the resin composition containing the polyimide-based resin to a substrate.
  • the drying step of the coating film may be performed by a heating means such as a hot plate, a hot air circulation furnace, or an infrared furnace, and may be performed at a temperature of 50 ° C. to 150 ° C., or 50 ° C. to 100 ° C.
  • a heating means such as a hot plate, a hot air circulation furnace, or an infrared furnace
  • Step 3 is a step of curing the dried coating film by heat treatment.
  • the heat treatment may be performed by a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, or the like, at a temperature of 200 ° C or more, or 200 ° C or more and 300 ° C or less, or 400 ° C or more, or 400 ° C or more and 500 ° C or less. can be done with a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, or the like.
  • a heating means such as a hot plate, a hot air circulation furnace, an infrared furnace, or the like
  • the thickness of the polyimide-based resin film is not particularly limited, but may be freely adjusted within a range of, for example, 0.01 ⁇ m or more and 1000 ⁇ m or less. When the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the polyimide-based resin film of one embodiment has a residual stress of 46 MPa or less, or 45 MPa or less, or 40 MPa or less, or 35 MPa or less, or 30 MPa or less, or 1 MPa or more, or 1 MPa to 46 MPa, or 10 MPa to 46 MPa, or 20 MPa to 46 MPa, or 1 MPa to 46 MPa, or 1 MPa to 40 MPa, or 1 MPa to 35 MPa, or 1 MPa to 30 MPa, or 10 MPa to 45 MPa, or 20 MPa to 45 MPa, or 28.7 MPa to 45 MPa.
  • the polyimide-based resin film according to the embodiment reduces the residual stress, thereby solving defects caused by lifting during panel processing.
  • Examples of the method and equipment for measuring the residual stress are not specifically limited, and various methods conventionally used for measuring residual stress may be applied without limitation.
  • the residual stress of the polyimide-based resin film may be measured using a residual stress measuring instrument.
  • a wafer substrate may be mentioned.
  • the residual stress may be measured from the polyimide-based resin film sample having a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the polyimide-based resin film of one embodiment has a retardation value in the thickness direction at a thickness of 10 ⁇ m of 300 nm or less, or 200 nm or less, or 100 nm or less, or 70 nm or less, or 30 nm or less, or 20 nm or less than or equal to 1 nm, or 1 nm to 300 nm, or 1 nm to 200 nm, or 1 nm to 100 nm, or 1 nm to 70 nm, or 1 nm to 30 nm, or 1 nm to 20 nm there is.
  • optical isotropy is increased through the low thickness direction retardation (R th ) characteristics, and excellent visibility can be implemented by securing a diagonal viewing angle of the display to which the polyimide-based resin film is applied.
  • m-PDA m-Phenylenediamine
  • the refractive index in the thickness direction is low because the polyimides are packed side by side and piled up, whereas the polyimide having a bent main chain structure does not pack well with each other.
  • the refractive index in the thickness direction may increase.
  • the retardation in the thickness direction may be measured for a wavelength of 532 nm, and examples of measurement methods and equipment are not specifically limited, and various methods conventionally used for measuring retardation in the thickness direction may be applied without limitation.
  • the retardation in the thickness direction may be measured from the polyimide-based resin film sample having a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the thickness direction retardation R th can be calculated through Equation 1 below.
  • the thickness direction retardation R th is a value obtained by multiplying the absolute value of the difference between the thickness direction refractive index value (n z ) and the average value of the plane refractive index value [(n x +n y ) / 2] by the film thickness, The smaller the difference between the refractive index value (n z ) and the average value of the plane refractive index value [(n x +n y )/2], the lower the value may be indicated.
  • the average value of the refractive index value (n z ) and the plane refractive index value in the thickness direction on the display to which the polyimide-based resin film is applied As the difference of [(n x +n y )/2] decreases, excellent visibility can be realized.
  • the polyimide-based resin film excessively increases the retardation value in the thickness direction at a thickness of 10 ⁇ m to more than 100 nm, etc., distortion occurs when light passes through a structure in which polyimide is present on the top when implementing a transparent display. , there is a technical limitation that the refraction of transmitted light cannot be corrected even with a compensation film that technically compensates for up to 45 nm.
  • the polyimide-based resin film has a refractive index in the thickness direction for a wavelength of 532 nm at a thickness of 10 ⁇ m of 1.71 or more, or 1.7103 or more, or 1.7120 or more, or 1.7130 or more, or 1.72 or less, or 1.71 to 1.72, or 1.7103 to 1.72, or 1.7120 to 1.72, or 1.7130 to 1.72, or 1.71 to 1.715, or 1.7102 to 1.7136.
  • the polyimide-based resin film may have a refractive index of 1.71 to 1.73 with respect to a 532 nm wavelength at a thickness of 10 ⁇ m.
  • Examples of the method and equipment for measuring the refractive index in the plane direction and the refractive index in the thickness direction are not specifically limited, and various methods used in the conventional refractive index measurement can be applied without limitation.
  • a refractive index in a plane direction and a refractive index in a thickness direction may be measured at a wavelength of 532 nm using a prism coupler.
  • the refractive index may be measured from the polyimide-based resin film sample having a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the phase difference increases due to the increase in the difference between the refractive index in the plane direction and the refractive index in the thickness direction, so as to implement a transparent display. Distortion occurs when light passes through, and there is a technical limitation of poor visibility.
  • the polyimide-based resin film has an average refractive index of 1.7135 or more, or 1.7140 or more, or 1.7150 or more, or 1.7180 or more, or 1.72 or less, or 1.7135 to 1.72, or 1.7136 to 1.7182, or 1.7140 to 1.72, or 1.7150 to 1.72, or 1.7180 to 1.72.
  • the refractive index in the plane direction (TE) and thickness direction (TM) was measured at a wavelength of 532 nm using a prism coupler, and the average refractive index was calculated through Equation 2 below.
  • n x is the largest refractive index among in-plane refractive indices of the polyimide resin film measured with light having a wavelength of 532 nm
  • n y is the refractive index perpendicular to n x among the in-plane refractive indices of the polyimide resin film measured with light having a wavelength of 532 nm
  • n z is the refractive index in the thickness direction of the polyimide resin film measured with light having a wavelength of 532 nm.
  • the average refractive index may be measured from the polyimide-based resin film sample having a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the polyimide-based resin film may have a haze value of less than 1.0%, or greater than or equal to 0.1% and less than 1.0% at a thickness of 10 ⁇ m.
  • the haze may be measured from the polyimide-based resin film sample having a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • the polyimide-based resin film has a Bow value of 48 ⁇ m or less, or 45 ⁇ m or less, or 40 ⁇ m or less, or 35 ⁇ m or less, or 30 ⁇ m or less, or 1 ⁇ m or more, or 1 ⁇ m to 48 ⁇ m at a thickness of 10 ⁇ m. , or 1 ⁇ m to 45 ⁇ m, or 1 ⁇ m to 40 ⁇ m, or 1 ⁇ m to 35 ⁇ m, or 1 ⁇ m to 30 ⁇ m, or 10 ⁇ m to 48 ⁇ m, or 20 ⁇ m to 48 ⁇ m, or 28.35 ⁇ m to 45.62 ⁇ m.
  • the Bow is also referred to as a bend or a bow, and is a kind of surface flatness characteristic of a material, and a detailed description thereof, for example, a specific measurement method, etc., can be applied without limitation to various methods widely known in the semiconductor wafer substrate manufacturing field.
  • the Bow (3) is a central axis between the thickness central plane (1) and the reference plane (2) (Best fit plane of thickness central plane), as shown in Figure 1 below. 4) It can be defined as phase distance.
  • the thickness center plane 1 means a plane connecting points that are half (t/2) of the thickness t in the measurement target.
  • the reference plane 2 means a cross-section formed by a straight line connecting the thickness center points of both ends of the measurement object.
  • the central axis 4 means a straight line perpendicular to the horizontal plane passing through the center of gravity of the object to be measured.
  • a laser stress analyzer may be used, and the stress analyzer measures the intensity of light reflected from the back of the measurement sample and mathematically analyzes it. It can be obtained by automatically calculating the Bow value.
  • the Bow may be measured for the polyimide-based resin film sample of the embodiment having a thickness of 10 ⁇ 1 ⁇ m.
  • the polyimide-based resin film sample used for the Bow measurement is a pure polyimide-based resin film; or a laminate including a base film and a polyimide-based resin film coated on the base film.
  • Examples of the base film are not particularly limited, and a glass substrate, a wafer substrate, or a mixture thereof may be used without limitation.
  • the Bow is automatically measured through the analysis result of the polyimide-based resin film sample with a laser stress analyzer.
  • a pure polyimide-based resin film may be secured through a process of peeling the base film from a laminate including the base film and the polyimide-based resin film coated on the base film.
  • the polyimide-based resin film may have a yellow index of 25 or less, or 1 or more, or 1 to 25, or 6.27 to 22.8 at a thickness of 10 ⁇ m.
  • the yellow index of the polyimide-based resin film is excessively increased to more than 25 at a thickness of 10 ⁇ m, the degree of yellow discoloration of the polyimide-based resin film increases, and thus, it is difficult to manufacture a colorless and transparent film.
  • Examples of the yellow index measuring method and equipment of the embodiment are not specifically limited, and various methods used in the conventional YI measurement can be applied without limitation. For example, it can be measured using a color meter (GRETAGMACBETH's Color-Eye 7000A).
  • the yellowness index may be measured from the polyimide-based resin film sample having a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a specific value, physical properties measured in the polyimide-based resin film may also change by a specific value.
  • a substrate for a display device including the polyimide-based resin film of the other embodiment may be provided.
  • Information regarding the polyimide-based resin film may include all of the above-described information in the embodiment.
  • a display device including the substrate is a liquid crystal display device (LCD), an organic light emitting diode (OLED), a flexible display, or a rollable display or foldable display ), etc., but is not limited thereto.
  • LCD liquid crystal display device
  • OLED organic light emitting diode
  • flexible display or a rollable display or foldable display ), etc., but is not limited thereto.
  • the display device may have various structures depending on application fields and specific shapes. For example, it may have a structure including a cover plastic window, a touch panel, a polarizer, a barrier film, a light emitting device (OLED device, etc.), a transparent substrate, and the like. there is.
  • the above-described polyimide-based resin film of another embodiment may be used for various purposes such as a substrate, an external protective film, or a cover window in various display devices, and more specifically, may be applied as a substrate.
  • the display device substrate may have a structure in which a device protection layer, a transparent electrode layer, a silicon oxide layer, a polyimide-based resin film, a silicon oxide layer, and a hard coating layer are sequentially stacked.
  • the transparent polyimide substrate may include a silicon oxide layer formed between the transparent polyimide-based resin film and the cured layer in order to further improve solvent resistance, moisture permeability, and optical properties, and the silicon oxide layer may include polyimide. It may be produced by curing silazane.
  • the silicon oxide layer is formed by coating and drying a solution containing polysilazane before forming a coating layer on at least one surface of the transparent polyimide-based resin film, and then curing the coated polysilazane. It could be
  • the substrate for a display device includes the above-described device protection layer, thereby providing a transparent polyimide cover substrate having excellent bending characteristics and impact resistance, as well as solvent resistance, optical characteristics, moisture permeability and scratch resistance. there is.
  • an optical device including the polyimide-based resin film of the other embodiment may be provided.
  • Information regarding the polyimide-based resin film may include all of the above-described information in the embodiment.
  • the optical device may include all kinds of devices using properties realized by light, and examples thereof include a display device.
  • the display device include a liquid crystal display device (LCD), an organic light emitting diode (OLED), a flexible display, or a rollable display or foldable display and the like, but is not limited thereto.
  • the optical device may have various structures depending on application fields and specific shapes. For example, it may have a structure including a cover plastic window, a touch panel, a polarizer, a barrier film, a light emitting device (OLED device, etc.), a transparent substrate, and the like. there is.
  • the above-described polyimide-based resin film of another embodiment may be used for various purposes such as a substrate, an external protective film, or a cover window in various optical devices, and more specifically, may be applied to a substrate.
  • the present invention relates to a polyimide-based resin film capable of realizing excellent optical characteristics, warpage characteristics, and low retardation, a substrate for a display device using the same, and an optical device.
  • 1 is a cross-sectional view for measuring the bow of polyimide-based resin films obtained in Examples and Comparative Examples.
  • m-phenylenediamine (1,3-phenylenediamine, m-PDA) was added at the same temperature to dissolve it.
  • the polyimide precursor composition was spin-coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor composition was placed in an oven and heated at a rate of 5° C./min, and a curing process was performed by maintaining the temperature at 80° C. for 30 minutes , at 250° C. for 30 minutes, and at 400° C. for 30 minutes.
  • the glass substrate was immersed in water, the film formed on the glass substrate was removed, and dried in an oven at 100 ° C. to prepare a polyimide film having a thickness of 10 ⁇ m (including ⁇ 1 ⁇ m error).
  • a polyimide precursor composition and a polyimide film were prepared in the same manner as in the above Example, except that the molar ratios of m-PDA, PMDA, and BPAF were changed as shown in Table 3 below.
  • the yellowness index of the polyimide films prepared in Examples and Comparative Examples was measured using a color meter (GRETAGMACBETH Color-Eye 7000A).
  • the haze value of the polyimide film was measured using a hazemeter (NDH-5000).
  • the thickness direction retardation R th was calculated through Equation 1 below.
  • the composition was coated by a spin coater on a 6-inch silicon wafer having a thickness of 525 um, on which the warpage amount of the wafer was measured in advance using a residual stress meter (TENCOR's FLX2320) (manufactured by Koyo Lindbergh Co., Ltd.) using an oven, and subjected to heat curing treatment at 250 ° C. for 30 min and 400 ° C. for 30 min in a nitrogen atmosphere, and after curing, a silicon wafer with a resin film was produced.
  • a residual stress meter THCOR's FLX2320
  • the amount of warpage of the silicon wafer attached with the resin film was measured with a residual stress measuring instrument, and the absolute value of the difference between the warping amount of the wafer and the real bow value was expressed as a Real Bow value, and the residual stress generated between the silicon wafer and the resin film was measured using a residual stress measuring instrument was measured.
  • the Bow is defined as the central axis distance between the thickness central plane and the reference plane (Best fit plane of thickness central plane) of the measurement sample, and Bow measurement is performed at room temperature.
  • the samples were measured using a stress analyzer (TENCOR FLX-2320).
  • the refractive indices of the polyimide films prepared in Examples and Comparative Examples were measured in the plane direction (TE) and thickness direction (TM) at a wavelength of 532 nm using a prism coupler, and the average refractive index was calculated through Equation 2 below.
  • Example 1 Example 2
  • Example 3 Example 4 monomer molar ratio 20/80/99.8 (PMDA/BPAF/m-PDA) 50/50/99.8 (PMDA/BPAF/m-PDA) 65/35/99.8 (PMDA/BPAF/m-PDA) 80/20/99.8 (PMDA/BPAF/m-PDA)
  • Solid content (%) 20.5 17.48 17.95 19.69 YI 6.27 12.61 22.8 20.03 HAZE (%) 0.45 0.84 0.37 0.36
  • R th (nm) 13 28 63 100 Residual stress(MPa) 45 38.9 33 28.7 Bow( ⁇ m) 45.62 38.44 33.66 28.35 Planar refractive index (nTE)@532nm 1.7141 1.7158 1.7166 1.7222
  • the polyimide films (based on a thickness of 10 ⁇ m) obtained in Examples 1 to 4 had a thickness direction retardation R th value of 13 nm to 100 nm, a haze of 0.36% to 0.84%, and a YI of 6.27 to 22.8, residual stress is 28.7 MPa to 45 MPa, Bow is 28.35 ⁇ m to 45.62 ⁇ m, plane direction refractive index (nTE) at 532 nm is 1.7141 to 1.7222, thickness direction refractive index (nTM) is 1.7102 to 1.7136, It was confirmed that the average refractive index at 532 nm was 1.7136 to 1.7182.
  • the polyimide films (based on the thickness of 10 ⁇ m) obtained in Comparative Examples 1 to 5 had a thickness direction refractive index (nTM) of 1.5773 to 1.7030 at 532 nm and an average refractive index of 1.6114 to 1.7130 at 532 nm. It was confirmed that the polyimide films obtained in Comparative Examples 1 to 3 (based on a thickness of 10 ⁇ m) had a residual stress of 49.1 MPa to 54.5 MPa, which was increased compared to the examples, resulting in failure to realize flatness.
  • nTM thickness direction refractive index
  • the polyimide film (based on the thickness of 10 ⁇ m) obtained in Comparative Example 4 had a thickness direction retardation R th value of 319 nm, which was rapidly increased compared to the Example, so that low retardation could not be realized, and YI increased to 27.42, making it transparent. It was confirmed that the properties were degraded.
  • the polyimide film (based on the thickness of 10 ⁇ m) obtained in Reference Example 1 has a thickness direction refractive index (nTM) of 1.6903 at 532 nm and an average refractive index of 1.7100 at 532 nm, which is smaller than that of the Example. It was confirmed to have.
  • the polyimide film (based on the thickness of 10 ⁇ m) obtained in Reference Example 1 did not implement a low phase difference because the thickness direction retardation R th value rapidly increased to 307 nm compared to the example, and YI increased to 28.90, resulting in deterioration in transparency characteristics
  • the polyimide films (based on the thickness of 10 ⁇ m) obtained in Reference Examples 2 to 3 had a residual stress of 48 MPa to 48.5 MPa and a Bow of 48.9 ⁇ m to 49.5 ⁇ m, which increased compared to the examples, resulting in a high level of flatness. There was a problem that could not be implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 화학식1로 표시되는 폴리이미드 반복단위 및 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하는 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 관한 것이다.

Description

폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
관련 출원(들)과의 상호 인용
본 출원은 2021년 12월 8일자 한국 특허 출원 제10-2021-0174999호 및 2022년 8월 31일자 한국 특허 출원 제10-2022-0110024호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 휨 특성 및 낮은 위상차를 구현할 수 있는 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 관한 것이다.
표시 장치 시장은 대면적이 용이하고 박형 및 경량화가 가능한 평판디스플레이(Flat Panel Display; FPD) 위주로 급속히 변화하고 있다. 이러한 평판디스플레이에는 액정 표시 장치(Liquid Crystal Display; LCD), 유기 발광 표시 장치(Organic Light Emitting Display; OLED) 또는 전기 영동 표시 장치(electrophoretic display; EPD) 등이 있다.
특히, 최근 들어서는 이러한 평판 디스플레이의 응용과 용도를 더욱확장하기 위해, 상기 평판 디스플레이에 가요성 기판을 적용한 소위 플렉서블 디스플레이 소자 등에 관한 관심이 집중되고 있다. 이러한 플렉서블 디스플레이 소자는 주로 스마트 폰 등 모바일 기기를 중심으로 적용이 검토되고 있으며, 점차로 그 응용 분야가 확장되고 있다.
일반적으로, 플렉스블 디스플레이 소자 및 조명 소자를 제작함에 있어서 경화된 폴리이미드 위에 buffer layer, active layer, gate insulator등 다층의 무기막을 성막하여 TFT 소자를 제조하고 있다.
그러나, 기존에 사용되는 폴리이미드 수지는 면방향의 굴절율이 크고 두께방향의 굴절율과 큰 차이가 존재한다. 이로 인해 폴리이미드는 이방성 성질을 가짐에 따라, 빛의 왜곡현상이 생겨 시감성을 크게 저하시키는 한계가 있다.
또한, 폴리이미드층(기판층)에 포함되는 폴리이미드 재료는 400 ℃ 이상의 고온에서 경화시 폴리이미드의 열화에 따른 광학특성 감소가 발생하거나, 물리적으로 비틀어지는 휨 특성으로 인해 평탄성을 확보하기 어려운 한계가 있었다.
이에, 면방향, 두께방향의 굴절율 차이를 줄여 시감성을 향상시키면서 우수한 휨 특성을 만족할 수 있는 새로운 폴리이미드 개발이 요구되고 있다.
본 발명은 우수한 광학특성과 휨 특성 및 낮은 위상차를 구현할 수 있는 폴리이미드계 수지 필름에 관한 것이다.
또한, 본 발명은 상기 폴리이미드계 수지 필름을 이용한 디스플레이 장치용 기판, 및 광학 장치를 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 명세서에서는, 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하는 폴리이미드계 수지 필름이 제공된다.
[화학식 1]
Figure PCTKR2022013676-appb-img-000001
상기 화학식1에서, X1은 단일고리를 함유한 방향족 4가의 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
[화학식 2]
Figure PCTKR2022013676-appb-img-000002
상기 화학식2에서, X2은 다중고리를 함유한 방향족 4가 작용기이며, Y2은 탄소수 6 내지 10의 방향족 2가 작용기이다.
본 명세서에서는 또한, 상기 폴리이미드계 수지 필름을 포함하는, 디스플레이 장치용 기판이 제공된다.
본 명세서에서는 또한, 상기 폴리이미드계 수지 필름을 포함하는, 광학 장치 가 제공된다.
이하 발명의 구체적인 구현예에 따른 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 대하여 보다 상세하게 설명하기로 한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
그리고, 본 명세서에서 '제 1' 및 '제 2'와 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용되며, 상기 서수에 의해 한정되지 않는다. 예를 들어, 본 발명의 권리 범위 내에서 제 1 구성요소는 제 2 구성요소로도 명명될 수 있고, 유사하게 제 2 구성요소는 제 1 구성요소로 명명될 수 있다.
본 명세서에서 (공)중합체는 중합체 또는 공중합체를 모두 포함하는 의미이며, 상기 중합체는 단일 반복단위로 이루어진 단독중합체를 의미하고, 공중합체는 2종 이상의 반복단위를 함유한 복합중합체를 의미한다.
본 명세서에서, 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에서, "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정되지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 1차 아미노기; 카르복시기; 술폰산기; 술폰아미드기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알콕시실릴알킬기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서,
Figure PCTKR2022013676-appb-img-000003
, 또는
Figure PCTKR2022013676-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미하고, 직접결합은 L 로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다.
본 명세서에 있어서, 방향족(aromatic)은 휘켈 규칙(Huckels Rule)을 만족하는 특성으로서, 상기 휘켈 규칙에 따라 다음 3가지 조건을 모두 만족하는 경우를 방향족이라고 정의할 수 있다.
1) 비어있는 p-오비탈, 불포화 결합, 홀전자쌍 등에 의하여 완전히 콘주게이션을 이루고 있는 4n+2개의 전자가 존재하여야 한다.
2) 4n+2개의 전자는 평면 형태 이성질체를 구성하여야 하고, 고리 구조를 이루어야 한다.
3) 고리의 모든 원자가 콘주게이션에 참여할 수 있어야 한다.
본 명세서에 있어서, 다가 작용기(multivalent functional group)는 임의의 화합물에 결합된 복수의 수소 원자가 제거된 형태의 잔기로 예를 들어 2가 작용기, 3가 작용기, 4가 작용기를 들 수 있다. 일 예로, 사이클로부탄에서 유래한 4가의 작용기는 사이클로부탄에 결합된 임의의 수소 원자 4개가 제거된 형태의 잔기를 의미한다.
본 명세서에 있어서, 아릴기는 아렌(arene)으로부터 유래한 1가의 작용기로, 특별히 한정되지 않으나 탄소수 6 내지 20인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 아릴기는 치환 또는 비치환될 수 있으며, 치환되는 경우 치환기의 예시는 상술한 바와 같다.
본 명세서에서, 직접결합 또는 단일결합은 해당 위치에 어떠한 원자 또는 원자단도 존재하지 않아, 결합선으로 연결되는 것을 의미한다. 구체적으로, 화학식 중 L1, L2로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다.
본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
이하, 본 발명을 보다 상세히 설명한다.
1. 폴리이미드계 수지 필름
발명의 일 구현예에 따르면, 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하는 폴리이미드계 수지 필름이 제공될 수 있다.
[화학식 1]
Figure PCTKR2022013676-appb-img-000005
상기 화학식1에서, X1은 단일고리를 함유한 방향족 4가의 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
[화학식 2]
Figure PCTKR2022013676-appb-img-000006
상기 화학식2에서, X2은 다중고리를 함유한 방향족 4가 작용기이며, Y2은 탄소수 6 내지 10의 방향족 2가 작용기이다.
본 발명자들은 상기 일 구현예의 폴리이미드계 수지 필름과 같이 상기 화학식1로 표시되는 폴리이미드 반복단위 및 상기 화학식2로 표시되는 폴리이미드 반복단위를 동시에 포함하게 되면, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생을 최소화하여 평탄성 및 치수안정성이 높아 패널공정시 들뜸현상에 의한 불량을 해결할 수 있으며, 동시에 두께방향으로의 굴절률이 증가함에 따라 두께방향과 면방향의 굴절률 차이가 감소하여 광학적 등방성이 높아져 낮은 위상차를 구현함으로서, 폴리이미드계 수지 필름이 적용된 디스플레이 대각 시야각을 확보하여 빛의 왜곡 현상으로 인한 시감성 저하를 막을 수 있음을 실험을 통해 확인하고 발명을 완성하였다.
특히, 상기 폴리이미드계 수지는 상기 화학식2로 표시되는 구조와 같이, 다중고리를 함유한 방향족 테트라카르복시산 이무수물, 및 탄소수 6 내지 10의 방향족 디아민의 이미드화 반응을 통해 얻어지는 반응 생성물을 포함하여, 다중고리를 함유한 방향족 테트라카르복시산 이무수물의 구조에 따른 물리, 화학적 작용에 의해 고내열성을 확보하여, 400 ℃ 이상의 고온에서 열처리를 통한 경화된 필름에서 뿐만 아니라, 경화된 필름에 대해 추가적인 400 ℃ 이상의 고온에서 열처리시에도 우수한, 평탄성이 달성되는 것으로 보인다. 또한, 다중고리에 의해 입체장애가 증가된 비대칭성 구조가 폴리이미드 사슬 구조에 도입됨으로써, 면 방향과 두께 방향의 굴절률 차이를 줄임으로서 저위상차를 구현할 수 있다.
또한, 굽은 형태의 비대칭성 구조를 갖는 탄소수 6 내지 10의 방향족 디아민에 의해 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 저위상차가 달성되는 것으로 보인다.
또한, 상기 폴리이미드계 수지는 상기 화학식1로 표시되는 구조와 같이, 단일고리를 함유한 방향족 테트라카르복시산 이무수물, 및 탄소수 6 내지 10의 방향족 디아민의 이미드화 반응을 통해 얻어지는 반응 생성물을 포함하여, 굽은 형태의 비대칭성 구조를 갖는 탄소수 6 내지 10의 방향족 디아민에 의해 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 달성되는 것으로 보인다.
보다 구체적으로, 평면 직선형 주사슬 구조를 갖는 폴리이미드의 경우 폴리이미드끼리 나란히 packing 되어 쌓이기 때문에 두께방향 굴절률이 낮은 반면, 굽은 형태로 비대칭성 구조가 폴리이미드 사슬 구조에 도입됨에 따라 두께방향으로 배열을 유지할 수 있어, 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 저위상차를 구현할 수 있다.
본 발명에 따른 폴리이미드계 수지 필름은 굴절율을 상승시킬 수 있으며, 플렉서블 디스플레이 소자에서 기판층으로서 사용되어, 소자를 구성하는 각 층과의 굴절율의 차이를 감소시킬 수 있으며, 이로부터, 내부에서 소멸되는 빛의 양을 줄여주어, 빛의 방출(bottom emission) 효율을 효과적으로 증대시킬 수 있다.
구체적으로, 상기 폴리이미드계 수지 필름은 폴리이미드계 수지를 포함할 수 있다. 상기 폴리이미드계 수지는 폴리이미드, 그리고 이의 전구체 중합체인 폴리아믹산, 폴리아믹산 에스테르를 모두 포함한 것을 의미한다. 즉, 상기 폴리이미드계 고분자는 폴리아믹산 반복단위, 폴리아믹산에스테르 반복단위, 및 폴리이미드 반복단위로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 즉, 상기 폴리이미드계 고분자는 폴리아믹산 반복단위 1종, 폴리아믹산에스테르 반복단위 1종, 폴리이미드 반복단위 1종, 또는 이들의 2종 이상의 반복단위가 혼합된 공중합체를 포함할 수 있다.
상기 폴리아믹산 반복단위, 폴리아믹산에스테르 반복단위, 및 폴리이미드 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위는 상기 폴리이미드계 고분자의 주쇄를 형성할 수 있다.
상기 폴리이미드계 수지 필름은 폴리이미드계 수지의 경화물을 포함할 수 있다. 상기 폴리이미드계 수지의 경화물은 상기 폴리이미드계 수지의 경화공정을 거쳐 얻어지는 생성물을 의미한다.
특히, 상기 폴리이미드계 수지는 하기 화학식1로 표시되는 폴리이미드 반복단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2022013676-appb-img-000007
상기 화학식1에서, X1은 단일고리를 함유한 방향족 4가의 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이다.
상기 화학식1에서, X1은 단일고리를 함유한 방향족 4가 작용기이며, 상기 X1은 폴리이미드계 수지 합성에 사용되는 테트라카르복시산 이무수물 화합물로부터 유도된 작용기이다.
상기 X1의 단일고리를 함유한 방향족 4가의 작용기는 피로멜리트산 이무수물(Pyromellitic Dianhydride, PMDA)로부터 유래한 하기 화학식5로 표시되는 작용기를 포함할 수 있다.
[화학식5]
Figure PCTKR2022013676-appb-img-000008
상기 단일고리를 함유한 방향족 4가 작용기로 상기 화학식5로 표시되는 작용기를 포함하게 되면, 평평한 구조로 고분자사슬의 packing density를 높여 높은 내열성 및 높은 기계적 특성이 구현될 수 있다.
한편, 상기 화학식1에서, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고, 상기 Y1은 폴리아믹산, 폴리아믹산에스테르, 또는 폴리이미드 합성시 사용되는 디아민 화합물로부터 유래한 작용기일 수 있다.
상기 탄소수 6 내지 10의 방향족 2가 작용기는 페닐렌기를 포함할 수 있다. 보다 구체적으로, 상기 Y1의 탄소수 6 내지 10의 방향족 2가 작용기는 하기 화학식3으로 표시되는 작용기를 포함할 수 있다.
[화학식 3]
Figure PCTKR2022013676-appb-img-000009
하기 화학식3으로 표시되는 작용기의 구체적인 예로는 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA)로부터 유래한 하기 화학식 3-1로 표시되는 작용기를 들 수 있다.
[화학식 3-1]
Figure PCTKR2022013676-appb-img-000010
상기 화학식 3-1로 표시되는 작용기를 상기 Y1에 포함하게 되면, 굽은 형태로 비대칭성 구조가 폴리이미드 사슬 구조에 도입됨에 따라 두께방향으로 배열을 유지할 수 있어, 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 저위상차를 구현할 수 있다.
반면, 굽은 형태의 비대칭 구조를 갖지 않는 p-페닐렌디아민 (1,4-phenylenediamine, p-PDA)로부터 유래한 작용기를 상기 Y1에 포함하게 되면, 상술한 굽은 비대칭성 구조 구현이 어려워 평면 일직선 방향으로 폴리이미드가 중합되면서 고분자가 면방향으로만 성장하기 때문에 고분자끼리 packing이 잘 되면서 두께 방향의 굴절율이 감소하여, 면 방향과 두께 방향의 굴절율 차이가 증가하는 문제가 발생할 수 있다.
한편, 상기 폴리이미드계 수지는 상기 화학식1로 표시되는 폴리이미드 반복단위 이외에, 하기 화학식 2로 표시되는 폴리이미드 반복단위를 더 포함할 수 있다. 즉, 상기 폴리이미드계 수지는 상기 화학식1로 표시되는 폴리이미드 반복단위 및, 하기 화학식 2로 표시되는 폴리이미드 반복단위를 포함할 수 있다.
[화학식 2]
Figure PCTKR2022013676-appb-img-000011
상기 화학식 4 에서, X2은 다중고리를 함유한 방향족 4가 작용기이며, Y2은 탄소수 6 내지 10의 방향족 2가 작용기이다.
상기 Y2는 상기 화학식1의 Y1과 동일하다.
상기 화학식2에서, X2은 다중고리를 함유한 방향족 4가 작용기이며, 상기 X2은 폴리이미드계 수지 합성에 사용되는 테트라카르복시산 이무수물 화합물로부터 유도된 작용기이다.
보다 구체적으로, 상기 X2의 4가의 작용기는 하기 화학식4로 표시되는 2가의 작용기를 포함할 수 있다.
[화학식4]
Figure PCTKR2022013676-appb-img-000012
상기 화학식4에서, Ar은 다중고리 방향족 2가 작용기이다. 상기 다중고리 방향족 2가 작용기는 다중고리 방향족 탄화수소(polycyclic aromatic hydrocarbon) 화합물로 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
보다 구체적으로, 상기 화학식4의 Ar에서, 다중고리 방향족 2가 작용기는 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기를 포함할 수 있다. 즉, 상기 다중고리 방향족 2가 작용기는, 작용기 구조내에 적어도 2이상의 방향족 고리 화합물이 함유되고, 뿐만 아니라 작용기가 접합 고리(fused ring) 구조를 가질 수 있다.
상기 방향족 고리 화합물은 1이상의 벤젠고리를 함유한 아렌 화합물, 또는 상기 아렌 화합물 내 탄소원자가 헤테로원자로 대체된 헤테로 아렌 화합물을 포함할 수 있다.
상기 방향족 고리 화합물은 다중고리 방향족 2가 작용기 내에 적어도 2이상 함유될 수 있으며, 상기 2이상의 방향족 고리 화합물 각각은 직접 접합 고리를 형성하거나, 혹은 다른 고리 구조를 매개로 접합고리를 형성할 수 있다. 일례로 2개의 벤젠고리가 시클로알킬고리구조에 각각 접합되는 경우, 시클로알킬 고리를 매 개로 2개의 벤젠고리가 접합고리를 형성했다고 정의할 수 있다.
상기 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기는 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리 화합물 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
상기 화학식4의 Ar에서, 다중고리 방향족 2가 작용기는 플루오레닐렌기를 포함할 수 있다. 상기 화학식4로 표시되는 작용기의 구체적인 예로는 9,9-비스(3,4-디카복시페닐)플루오렌이무수물(9,9-Bis(3,4-dicarboxyphenyl)fluorene Dianhydride, BPAF)로부터 유래한 하기 화학식 4-1로 표시되는 작용기를 들 수 있다.
[화학식 4-1]
Figure PCTKR2022013676-appb-img-000013
상기 다중고리를 함유한 방향족 4가 작용기를 상기 X2에 포함하게 되면, 다중고리에 의해 입체장애가 증가된 대칭성 구조가 폴리이미드 사슬 구조에 도입됨으로써, 열에 의한 변형을 완화시켜 내열성을 향상시킬 수 있으며, 다중고리에 의해 두께방향으로 입체장애가 증가된 bulky한 구조가 폴리이미드 사슬 구조에 도입됨으로써, 두께방향으로 굴절률을 높여 면 방향과 두께 방향의 굴절률 차이를 줄임으로서 저위상차를 구현할 수 있고, 분자간 packing을 억제하여 높은 투과도를 구현할 수 있다.
상기 폴리이미드계 수지는 단일고리를 함유한 방향족 테트라카르복시산 이무수물, 다중고리를 함유한 방향족 테트라카르복시산 이무수물, 및 탄소수 6 내지 10의 방향족 디아민의 결합물을 포함할 수 있다.
상기 단일고리를 함유한 방향족 테트라카르복시산 이무수물은 상술한 단일고리를 함유한 방향족 4가 작용기의 양말단에 무수물기(-OC-O-CO-)가 도입된 화합물로서, 단일고리를 함유한 방향족 4가 작용기에 대한 설명은 상술한 바와 같다.
상기 단일고리를 함유한 방향족 테트라카르복시산 이무수물의 구체적인 예로는 피로멜리트산 이무수물(Pyromellitic Dianhydride, PMDA)를 들 수 있다.
상기 다중고리를 함유한 방향족 테트라카르복시산 이무수물은 상술한 다중고리를 함유한 방향족 4가 작용기의 양말단에 무수물기(-OC-O-CO-)가 도입된 화합물로서, 다중고리를 함유한 방향족 4가 작용기에 대한 설명은 상술한 바와 같다.
상기 다중고리를 함유한 방향족 테트라카르복시산 이무수물의 구체적인 예로는 9,9-비스(3,4-디카복시페닐)플루오렌이무수물(9,9-Bis(3,4-dicarboxyphenyl)fluorene Dianhydride, BPAF)를 들 수 있다.
상기 탄소수 6 내지 10의 방향족 디아민은 상술한 탄소수 6 내지 10의 방향족 2가 작용기의 양말단에 아미노기(-NH2)가 도입된 화합물로서, 탄소수 6 내지 10의 방향족 2가 작용기에 대한 설명은 상술한 바와 같다. 상기 탄소수 6 내지 10의 방향족 디아민의 구체적인 예로는 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA)을 들 수 있다.
보다 구체적으로, 상기 폴리이미드계 수지는 상기 방향족 테트라카르복시산 이무수물, 다중고리를 함유한 방향족 테트라카르복시산 이무수물의 말단 무수물기(-OC-O-CO-)와, 탄소수 6 내지 10의 방향족 디아민의 말단 아미노기(-NH2)의 반응으로 아미노기의 질소원자와 무수물기의 탄소원자간 결합이 형성될 수 있다.
한편, 상기 폴리이미드계 고분자는, 무수물 유래 반복단위가 상기 화학식5로 표시되는 작용기인 화학식1로 표시되는 반복단위를 함유하는 제 1 반복 단위; 및 무수물 유래 반복단위가 상기 화학식4로 표시되는 작용기인 화학식2로 표시되는 반복단위를 함유한 제 2 반복 단위;를 포함할 수 있다. 상기 제1 반복 단위 및 제 2 반복 단위는 상기 폴리이미드계 고분자 내에서 랜덤하게 배열하여 랜덤 공중합체를 이루거나, 제1 반복단위 간의 블록, 제2 반복단위 간의 블록을 형성하며 블록 공중합체를 이룰 수 있다.
상기 화학식 1로 표시되는 반복 단위 및 상기 화학식 2로 표시되는 반복 단위를 포함한 폴리이미드계 고분자는 디아민 화합물과 함께 서로 다른 2종 이상의 테트라카르복시산 이무수물 화합물을 반응시켜 제조할 수 있으며, 상기 2종의 테트라카르복시산 이무수물 화합물을 동시에 첨가하여 랜덤 공중합체를 합성하거나, 순차적으로 첨가하여 블록 공중합체를 합성할 수 있다.
상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 85:15 내지 15:85, 또는 80:20 내지 20:80, 또는 75:25 내지 25:75, 또는 60:40 내지 40:60, 또는 60:40 내지 70:30, 또는 70:30 내지 85:15일 수 있다.
보다 구체적으로, 상기 화학식1로 표시되는 폴리이미드 반복단위 1몰에 대하여, 상기 화학식2로 표시되는 폴리이미드 반복단위의 몰 비율이 0.17몰 내지 6몰, 또는 0.25몰 내지 4몰, 또는 0.33몰 내지 3몰, 또는 0.6몰 내지 1.5몰, 또는 0.4몰 내지 0.7몰, 또는 0.17몰 내지 0.5몰일 수 있다.
우수한 휨 특성 및 무색 투명의 우수한 광학특성을 구현할 수 있으며, 동시에 두께방향으로의 굴절률이 증가함에 따라 낮은 두께 방향의 위상차(Rth) 특성을 통해 광학적 등방성이 높아져, 상기 폴리이미드계 수지 필름이 적용된 디스플레이 대각 시야각을 확보함에 따라, 빛의 왜곡 현상으로 인한 시감성 저하를 막을 수 있다.
반면, 상기 화학식1로 표시되는 폴리이미드 반복단위가 지나치게 소량 함유되어 상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 15:85를 벗어나는 경우, 유리전이온도 감소로 내열성이 감소하며, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생이 커짐으로 인해 필름 상에 소자를 적층하기 어려워지므로 후속 공정이 불가능해질 수 있다.
또한, 상기 화학식2로 표시되는 폴리이미드 반복단위가 지나치게 소량 함유되어 상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 85:15를 벗어나는 경우, 두께 방향 위상차 Rth값이 증가하면서 위상차 증가에 따른 빛의 왜곡 현상으로 인해 시감성이 저하되는 문제가 있고, 황색도가 증가하면서 투명특성이 저하되고 두께방향굴절율이나 평균굴절율이 감소하는 등 광학 특성이 불량해질 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 상기 폴리이미드계 수지가 400 ℃ 이상의 온도에서 경화된 경화물을 포함할 수 있다. 상기 경화물은 상기 폴리이미드계 수지가 함유된 수지 조성물의 경화공정을 거쳐 얻어진 물질을 의미하며, 상기 경화공정은 400 ℃ 이상, 또는 400 ℃ 이상 500 ℃ 이하의 온도에서 진행될 수 있다.
상기 화학식 1로 표시되는 폴리이미드 반복단위 및 화학식 2로 표시되는 폴리이미드 반복단위는 폴리이미드계 수지에 함유된 전체 반복단위 대비 70몰% 이상, 또는 80몰% 이상, 또는 90몰% 이상, 또는 70몰% 이상 100몰%이하, 80몰% 이상 100몰%이하, 70몰% 이상 90몰%이하, 70몰% 이상 99몰%이하, 80몰% 이상 99몰%이하, 90몰% 이상 99몰%이하로 함유될 수 있다.
즉, 상기 폴리이미드계 수지는 상기 화학식 1로 표시되는 폴리이미드 반복단위 및 화학식 2로 표시되는 폴리이미드 반복단위만으로 이루어져 있거나, 대부분이 상기 화학식 1로 표시되는 폴리이미드 반복단위 및 화학식 2로 표시되는 폴리이미드 반복단위로 이루어질 수 있다.
상기 폴리이미드계 수지의 중량평균 분자량(GPC측정)이 크게 한정되는 것은 아니나, 예를 들어, 1000 g/mol 이상 200000 g/mol 이하, 또는 10000 g/mol 이상 200000 g/mol 이하일 수 있다.
본 발명에 따른 폴리이미드계 수지는 강직한 구조에 의한 내열성, 기계적 강도 등의 특성을 그대로 유지하면서, 우수한 무색 투명한 특성을 나타낼 수 있어, 소자용 기판, 디스플레이용 커버기판, 광학 필름(optical film), IC(integrated circuit) 패키지, 전착 필름(adhesive film), 다층 FRC(flexible printed circuit), 테이프, 터치패널, 광디스크용 보호필름 등과 같은 다양한 분야에 사용될 수 있으며, 특히 디스플레이용 커버기판에 적합할 수 있다.
보다 구체적으로 상기 폴리이미드계 수지 필름을 합성하는 방법의 예가 크게 한정되는 것은 아니며, 예를 들어, 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 도막을 형성하는 단계(단계 1); 상기 도막을 건조하는 단계(단계 2); 상기 건조된 도막을 열처리하여 경화하는 단계(단계 3)를 포함하는, 필름의 제조 방법을 사용할 수 있다.
상기 단계 1은, 상술한 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 도막을 형성하는 단계이다. 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하는 방법은 특별히 제한되지 않으며, 예컨대 스크린 인쇄, 오프셋 인쇄, 플렉소 인쇄, 잉크젯 등의 방법이 이용될 수 있다.
그리고, 상기 폴리이미드계 수지를 함유한 수지 조성물은 유기 용매에 용해 또는 분산시킨 것일 수 있다. 이러한 형태를 갖는 경우, 예를 들어 폴리이미드계 수지를 유기 용매 중에서 합성한 경우에는, 용액은 얻어지는 반응 용액 그 자체여도 되고, 또 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드계 수지를 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 한 것이어도 된다.
상기 유기 용매의 구체적인 예로는 톨루엔, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, N-메틸카프로락탐, 2-피롤리돈, N-에틸피롤리돈, N-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 헥사메틸술폭사이드, 감마-부티로락톤, 3-메톡시-N,N-디메틸프로판아미드, 3-에톡시-N,N-디메틸프로판아미드, 3-부톡시-N,N-디메틸프로판아미드, 1,3-디메틸-이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로헥사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4-하이드록시-4-메틸-2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트 등을 들 수 있다. 이들은 단독으로 사용될 수도 있고, 혼합하여 사용될 수도 있다.
상기 폴리이미드계 수지를 함유한 수지 조성물은 필름 형성 공정시의 도포성 등의 공정성을 고려하여 적절한 점도를 갖도록 하는 양으로 고형분을 포함할 수 있다. 예를 들어, 전체 수지의 함량이 5 중량% 이상 25 중량% 이하가 되도록 조성물의 함량을 조절할 수 있으며, 또는 5 중량% 이상 20 중량% 이하, 또는 5 중량% 이상 15 중량% 이하로 조절할 수 있다.
또한, 상기 폴리이미드계 수지를 함유한 수지 조성물은 유기 용매 외에 다른 성분을 추가로 포함할 수 있다. 비제한적인 예로, 상기 폴리이미드계 수지를 함유한 수지 조성물이 도포되었을 때, 막 두께의 균일성이나 표면 평활성을 향상시키거나, 혹은 기판과의 밀착성을 향상시키거나, 혹은 유전율이나 도전성을 변화시키거나, 혹은 치밀성을 증가시킬 수 있는 첨가제가 추가로 포함될 수 있다. 이러한 첨가제로는 계면 활성제, 실란계 화합물, 유전체 또는 가교성 화합물 등이 예시될 수 있다.
상기 단계 2는, 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 형성된 도막을 건조하는 단계이다.
상기 도막의 건조 단계는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 50 ℃ 이상 150 ℃ 이하, 또는 50 ℃ 이상 100 ℃이하 온도로 수행할 수 있다.
상기 단계 3은, 상기 건조된 도막을 열처리하여 경화하는 단계이다. 이때, 상기 열처리는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 200 ℃ 이상, 또는 200 ℃ 이상 300 ℃ 이하, 또는 400 ℃ 이상, 또는 400 ℃ 이상 500 ℃ 이하의 온도로 수행할 수 있다.
상기 폴리이미드계 수지 필름의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1000 ㎛ 이하 범위내에서 자유롭게 조절 가능하다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 46 MPa 이하, 또는 45 MPa 이하, 또는 40 MPa 이하, 또는 35 MPa 이하, 또는 30 MPa 이하, 또는 1 MPa 이상, 또는 1 MPa 내지 46 MPa, 또는 10 MPa 내지 46 MPa, 또는 20 MPa 내지 46 MPa, 또는 1 MPa 내지 46 MPa, 또는 1 MPa 내지 40 MPa, 또는 1 MPa 내지 35 MPa, 또는 1 MPa 내지 30 MPa, 또는 10 MPa 내지 45 MPa, 또는 20 MPa 내지 45 MPa, 또는 28.7 MPa 내지 45 MPa일 수 있다. 이처럼, 무기소재 기판과의 잔류 응력이 낮아짐에 따라 상기 일 구현예의 폴리이미드계 수지 필름은 잔류응력을 감소시킴으로써 패널공정시 들뜸현상에 의한 불량을 해결할 수 있다.
상기 잔류 응력의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 잔류 응력 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, 폴리이미드계 수지 필름에 대하여 잔류응력 측정기를 이용하여 잔류 응력을 측정할 수 있다. 또한 상기 무기소재 기판의 일례로는 웨이퍼 기판을 들 수 있다.
상기 잔류 응력은 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 폴리이미드계 수지 필름의 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 48 MPa 초과 등으로 지나치게 증가하면, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생으로 인해 패널공정시 들뜸현상에 의한 불량이 발생할 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 두께방향의 위상차 값이 300 nm 이하, 또는 200 nm 이하, 또는 100 nm 이하, 또는 70 nm 이하, 또는 30 nm 이하, 또는 20 nm 이하, 또는 1 nm 이상, 또는 1 nm 내지 300 nm, 또는 1 nm 내지 200 nm, 또는 1 nm 내지 100 nm, 또는 1 nm 내지 70 nm, 또는 1 nm 내지 30 nm, 또는 1 nm 내지 20 nm일 수 있다. 이처럼, 낮은 두께 방향의 위상차(Rth) 특성을 통해 광학적 등방성이 높아져, 상기 폴리이미드계 수지 필름이 적용된 디스플레이 대각 시야각을 확보하여 우수한 시감성이 구현될 수 있다.
이러한 저위상차는 후술하는 바와 같이 폴리이미드계 수지 필름 제조에 사용되는 단량체로 비대칭성 구조를 갖는 디아민인 m-PDA(m-Phenylenediamine)를 사용하여 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 달성되는 것으로 보인다.
보다 구체적으로, 평면 직선형 주사슬 구조를 갖는 폴리이미드의 경우 폴리이미드끼리 나란히 packing 되어 쌓이기 때문에 두께방향 굴절률이 낮은 반면, 굽은형의 꺾인 주사슬 구조를 가진 폴리이미드는 분자끼리 packing이 잘 되지 않기 때문에 두께방향으로의 굴절률이 증가할 수 있다.
상기 두께방향의 위상차는 532 nm 파장에 대해 측정한 것일 수 있고, 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 두께방향의 위상차 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다.
상기 두께방향의 위상차는 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
구체적으로, 두께 방향 위상차 Rth는 다음의 수학식1를 통해 계산할 수 있다.
[수학식1]
Rth (nm) = |[(nx + ny) / 2] - nz | ×d
상기 수학식1에서, nx 는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율이며; ny는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드계 수지 필름의 두께이다.
즉, 상기 두께 방향 위상차 Rth는 두께방향 굴절율 값(nz)과 평면굴절율 값의 평균값 [(nx+ny)/2]의 차이의 절대값을 필름 두께에 곱하여 얻은 값으로서, 두께방향 굴절율 값(nz)과 평면굴절율 값의 평균값 [(nx+ny)/2]의 차이가 작을수록 낮은 값을 나타낼 수 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 이하를 만족함에 따라, 상기 폴리이미드계 수지 필름이 적용된 디스플레이 상에서 두께방향 굴절율 값(nz)과 평면굴절율 값의 평균값 [(nx+ny)/2]의 차이가 적어짐에 따라 우수한 시감성이 구현될 수 있다.
상기 폴리이미드계 수지 필름이 10 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 초과 등으로 지나치게 증가하게 되면, 투명한 디스플레이 구현 시 상부에 폴리이미드가 존재하는 구조에서 빛이 투과 시 왜곡 현상이 발생하여, 기술적으로 최대 45nm까지 보상하는 보상필름으로도 투과되는 빛의 굴절을 보정할 수 없는 기술적 한계가 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 두께방향 굴절율이 1.71 이상, 또는 1.7103 이상, 또는 1.7120 이상, 또는 1.7130 이상, 또는 1.72 이하, 또는 1.71 내지 1.72, 또는 1.7103 내지 1.72, 또는 1.7120 내지 1.72, 또는 1.7130 내지 1.72, 또는 1.71 내지 1.715, 또는 1.7102 내지 1.7136일 수 있다. 또한, 상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 면방향 굴절율이 1.71 내지 1.73일 수 있다.
상기 면방향 굴절율과 두께방향 굴절율의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 굴절율 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, 프리즘 커플러를 이용하여 파장 532nm에서 면방향 굴절율과 두께방향 굴절율을 측정할 수 있다.
상기 굴절율은 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 두께방향 굴절율이 1.71 미만 등으로 지나치게 감소하면, 상기 면방향 굴절율과 두께방향 굴절율의 차이 증가로 인해 위상차가 증가함에 따라 투명한 디스플레이 구현 시 빛이 투과 시 왜곡 현상이 발생하며 시감성이 불량한 기술적 한계가 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 평균 굴절율이 1.7135 이상, 또는 1.7140 이상, 또는 1.7150 이상, 또는 1.7180 이상, 또는 1.72 이하, 또는 1.7135 내지 1.72, 또는 1.7136 내지 1.7182, 또는 1.7140 내지 1.72, 또는 1.7150 내지 1.72, 또는 1.7180 내지 1.72일 수 있다. 상기 평균 굴절율을 측정하는 방법의 예로는 프리즘 커플러를 이용하여 파장 532nm에서 면방향(TE) 및 두께방향(TM) 굴절율을 측정하고, 다음 수학식2을 통해 평균 굴절율을 계산하였다.
[수학식2]
평균굴절율 = (nx + ny + nz) / 3
상기 수학식2에서, nx는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율이며; ny는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이다.
상기 평균굴절율은 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 헤이즈 값이 1.0% 미만, 또는 0.1% 이상 1.0% 미만일수 있다. 상기 헤이즈는 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 Bow 값이 48 ㎛ 이하, 또는 45 ㎛ 이하, 또는 40 ㎛ 이하, 또는 35 ㎛ 이하, 또는 30 ㎛ 이하, 또는 1 ㎛ 이상, 또는 1 ㎛ 내지 48 ㎛, 또는 1 ㎛ 내지 45 ㎛, 또는 1 ㎛ 내지 40 ㎛, 또는 1 ㎛ 내지 35 ㎛, 또는 1 ㎛ 내지 30 ㎛, 또는 10 ㎛ 내지 48 ㎛, 또는 20 ㎛ 내지 48 ㎛, 또는 28.35 ㎛ 내지 45.62 ㎛일 수 있다. 상기 Bow는 구부러짐 혹은 보우로 지칭하기도 하며, 재료의 표면 평탄성 특성의 일종으로 이에 대한 구체적인 설명, 예를 들어 구체적인 측정방법 등은 반도체 웨이퍼 기판 제조분야에서 널리 알려진 다양한 방법을 제한없이 적용할 수 있다.
구체적으로, 상기 Bow(3)는 하기 도면1에 나타난 바와 같이 두께 중심 면(1)(thickness central plane)과 기준면(2)(reference plane(Best fit plane of thickness central plane)) 사이의 중심축(4)상 거리로 정의될 수 있다.
상기 두께 중심면(1)은 하기 도면1에 나타난 바와 같이, 측정 대상에서 두께(t)의 절반(t/2)이 되는 지점을 연결한 면을 의미한다.
상기 기준면(2)은 하기 도면1에 나타난 바와 같이, 측정 대상 양 말단의 두께 중심점을 연결한 직선에 의한 단면을 의미한다.
상기 중심축(4)은 하기 도면1에 나타난 바와 같이, 측정 대상의 무게중심점을 지나는 지평면에 수직한 직선을 의미한다.
상기 Bow(3)를 측정하는 방법의 일례로는 응력 분석기(laser stress analyzer)를 사용할 수 있으며, 상기 응력 분석기는 측정 시료 후면에서 반사된 빛의 강도를 측정하고, 이를 수학적으로 분석하는 방법을 통해 Bow 값을 자동으로 계산하여 구할 수 있다.
상기 Bow는 10±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것일 수 있다.
상기 Bow 측정에 사용되는 폴리이미드계 수지 필름 시료는, 순수한 폴리이미드계 수지 필름; 또는 기재필름 및 상기 기재필름 상에 코팅된 폴리이미드계 수지 필름을 포함한 적층체;를 포함할 수 있다. 상기 기재필름의 예가 크게 한정되는 것은 아니며, 유리기판, 웨이퍼기판, 또는 이들의 혼합물 등이 제한없이 사용될 수 있다.
상기 Bow 측정에 사용되는 폴리이미드계 수지 필름 시료가, 순수한 폴리이미드계 수지 필름만으로 이루어질 경우, 상기 Bow는 폴리이미드계 수지 필름 시료를 응력 분석기(laser stress analyzer)로 분석한 결과를 통해 자동으로 측정가능하다. 예를 들어, 상기 기재필름 및 상기 기재필름 상에 코팅된 폴리이미드계 수지 필름을 포함한 적층체에서 기재필름을 박리하는 공정을 통해, 순수한 폴리이미드계 수지 필름을 확보할 수 있다.
상기 폴리이미드계 수지 필름의 Bow 값이 48 ㎛ 초과 등으로 지나치게 증가하면, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생으로 인해 패널공정시 들뜸현상에 의한 불량이 발생할 수 있다.
한편, 상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 황색 지수가 25 이하, 또는 1 이상, 또는 1 내지 25, 또는 6.27 내지 22.8일 수 있다. 상기 폴리이미드계 수지 필름의 10 ㎛ 두께에서의 황색 지수가 25 초과 등으로 지나치게 증가하면, 폴리이미드계 수지 필름의 황색 변색도가 증가하여 무색 투명한 필름제조가 어려워지는 한계가 있다.
상기 일 구현예의 황색 지수의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 YI 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, color meter(GRETAGMACBETH사의 Color-Eye 7000A)를 이용하여 측정할 수 있다.
상기 황색 지수는 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
2. 디스플레이 장치용 기판
한편, 발명의 또 다른 구현예에 따르면, 상기 다른 구현예의 폴리이미드계 수지 필름을 포함하는 디스플레이 장치용 기판이 제공될 수 있다. 상기 폴리이미드계 수지 필름에 관한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함할 수 있다.
상기 기판을 포함하는 디스플레이 장치는 액정 표시 장치(liquid crystal display device, LCD), 유기발광다이오드(organic light emitting diode, OLED), 플렉서블 디스플레이(Flexible Display), 또는 감김 가능 디스플레이 장치(rollable display or foldable display) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 디스플레이 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
상술한 다른 구현예의 폴리이미드계 수지 필름은 이러한 다양한 디스플레이 장치에서 기판, 외부 보호 필름 또는 커버 윈도우 등의 다양한 용도로 사용될 수 있으며, 보다 구체적으로는 기판으로 적용될 수 있다.
예를 들면, 상기 디스플레이 장치용 기판은 소자보호층, 투명 전극층, 실리콘 산화물층, 폴리이미드계 수지 필름, 실리콘 산화물층 및 하드 코팅층이 순차적으로 적층된 구조를 구비할 수 있다.
상기 투명 폴리이미드 기판은 내용제성 내지 수분투과성 및 광학적 특성을 보다 향상시킬 수 있는 측면에서 투명 폴리이미드계 수지 필름과 경화층 사이에 형성된, 실리콘산화물층을 포함할 수 있으며, 상기 실리콘산화물층은 폴리실라잔을 경화시켜 생성되는 것일 수 있다.
구체적으로, 상기 실리콘산화물층은 상기 투명 폴리이미드계 수지 필름의 적어도 일면상에 코팅층을 형성하는 단계 이전에 폴리실라잔을 포함하는 용액을 코팅 및 건조한 후 상기 코팅된 폴리실라잔을 경화시켜 형성되는 것일 수 있다.
본 발명에 따른 디스플레이 장치용 기판은 상술한 소자보호층을 포함함으로써 우수한 휨특성 및 내충격성을 가지면서, 내용제성, 광학특성, 수분투과도 및 내스크래치성을 갖는 투명 폴리이미드 커버기판을 제공할 수 있다.
3. 광학 장치
한편, 발명의 또 다른 구현예에 따르면, 상기 다른 구현예의 폴리이미드계 수지 필름을 포함하는 광학 장치가 제공될 수 있다. 상기 폴리이미드계 수지 필름에 관한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함할 수 있다.
상기 광학 장치는 빛에 의해 구현되는 성질을 이용한 각종 장치가 모두 포함될 수 있으며, 예를 들어, 디스플레이 장치를 들 수 있다. 상기 디스플레이 장치의 구체적인 예로는 액정 표시 장치(liquid crystal display device, LCD), 유기발광다이오드(organic light emitting diode, OLED), 플렉서블 디스플레이(Flexible Display), 또는 감김 가능 디스플레이 장치(rollable display or foldable display) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 광학 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
상술한 다른 구현예의 폴리이미드계 수지 필름은 이러한 다양한 광학 장치에서 기판, 외부 보호 필름 또는 커버 윈도우 등의 다양한 용도로 사용될 수 있으며, 보다 구체적으로는 기판에 적용될 수 있다.
본 발명에 따르면, 우수한 광학특성과 휨 특성 및 낮은 위상차를 구현할 수 있는 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 관한 것이다.
도 1은 실시예 및 비교예에서 얻어진 폴리이미드계 수지 필름의 구부러짐(Bow)을 측정하는 단면도를 나타낸 것이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 및 비교예: 폴리이미드 전구체 조성물 및 폴리이미드 필름의 제조>
실시예1-4
(1) 폴리이미드 전구체 조성물의 제조
질소 기류가 흐르는 교반기 내에 유기용매 DMAc를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA)을 같은 온도에서 첨가하여 용해시켰다. 상기 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA) 이 첨가된 용액에 산이무수물로 피로멜리트산 이무수물(Pyromellitic Dianhydride, PMDA), 및 9,9-비스(3,4-디카복시페닐)플루오렌이무수물(9,9-Bis(3,4-dicarboxyphenyl)fluorene Dianhydride, BPAF)을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체 조성물을 제조하였다. 이때, m-PDA, PMDA, BPAF의 몰비율은 하기 표1에 기재한 바와 같다.
(2) 폴리이미드 필름의 제조
상기 폴리이미드 전구체 조성물을 유리기판 상에 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 유리 기판을 오븐에 넣고 5 ℃ /min의 속도로 가열하였으며, 80 ℃에서 30분, 250 ℃에서 30분, 400 ℃에서 30분을 유지하여 경화 공정을 진행하였다. 경화공정 완료 후에, 유리 기판을 물에 담구어 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100 ℃로 건조하여, 두께가 10 ㎛(±1 ㎛ 오차 포함)인 폴리이미드 필름을 제조하였다.
비교예1-5
m-PDA, p-PDA(1,4-phenylenediamine), TFMB(2,2'-비스(트리플루오로메틸) 벤지딘), PMDA, BPAF의 몰비율을 하기 표2에 기재한 바와 같이 변경한 것을 제외하고는 상기 실시예와 동일한 방법으로 폴리이미드 전구체 조성물 및 폴리이미드 필름을 제조하였다.
참고예1-3
m-PDA, PMDA, BPAF의 몰비율을 하기 표3에 기재한 바와 같이 변경한 것을 제외하고는 상기 실시예와 동일한 방법으로 폴리이미드 전구체 조성물 및 폴리이미드 필름을 제조하였다.
<실험예: 실시예 및 비교예에서 얻어진 폴리이미드 전구체 조성물 및 폴리이미드 필름의 물성 측정>
상기 실시예 및 비교예에서 얻어진 폴리이미드 전구체 조성물 및 폴리이미드 필름으로부터 물성을 하기 방법으로 측정하였으며, 그 결과를 표1 내지 표3에 나타내었다.
1. 황색지수(YI)
실시예 및 비교예에서 제조된 폴리이미드 필름에 대하여 color meter(GRETAGMACBETH사의 Color-Eye 7000A)를 이용하여 황색 지수를 측정하였다.
2. Haze
Hazemeter(NDH-5000)를 이용하여 폴리이미드 필름의 헤이즈 값을 측정하였다.
3. 두께 방향 위상차(Rth )
측정 장치로서 AXOMETRICS사제의 상품명 「엑소스캔(AxoScan)」을 사용하여, 실시예 및 비교예에서 제조한 폴리이미드 필름의 532nm의 광에 대한 굴절율의 값을 인풋한 후, 온도: 25 ℃, 습도: 40%의 조건 하 파장 532nm의 광을 사용하여, 두께 방향, 면방향의 리타데이션을 측정한 후, 구해진 두께 방향의 리타데이션 측정값(측정 장치의 자동 측정에 의한 측정값)을 사용하여, 필름의 두께 10㎛당 리타데이션값으로 환산함으로써 구하고, 하기 표 1에 나타내었다.
구체적으로, 두께 방향 위상차 Rth는 다음의 수학식1를 통해 계산되었다.
[수학식1]
Rth (nm) = |[(nx + ny) / 2] - nz | ×d
(상기 수학식1에서, nx 는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율이며; ny는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드 필름의 두께이다.)
4. 잔류 응력(Residual stress) 및 Bow(구부러짐)
실시예 및 비교예에서 제조된 폴리이미드 전구체 조성물에 대하여 잔류응력 측정기(TENCOR사의 FLX2320)를 사용하여 미리 웨이퍼의 휨량을 측정해 둔, 두께 525um의 6in 실리콘 웨이퍼 상에, 조성물을 스핀코터에 의해 도포하고 (코요 린드버그사 제조) 오븐을 사용하여, 질소 분위기하 250 ℃ 30min, 400 ℃ 30min의 가열경화 처리를 실시하고 경화 후 수지막이 부착된 실리콘웨이퍼를 제조하였다. 상기 수지막이 부착된 실리콘웨이퍼의 휨량을 잔류응력 측정기로 측정하고, 미리 웨이퍼의 휨량과의 차이값의 절대값을 Real Bow 값으로 나타내었으며, 실리콘웨이퍼와 수지막 사이에 발생한 잔류응력을 잔류응력 측정기로 측정하였다.
상기 Bow는 하기 도면1에 나타난 바와 같이, 측정 시료의 두께 중심 면(thickness central plane)과 기준면(reference plane(Best fit plane of thickness central plane)) 사이의 중심축상 거리로 정의되며, Bow 측정은 상온에서 시료에 대해 응력 분석기(stress analyzer 장비; TENCOR FLX-2320)를 이용하여 측정하였다.
5. 굴절율
실시예 및 비교예에서 제조된 폴리이미드 필름에 대하여 프리즘 커플러를 이용하여 파장 532nm에서 면방향(TE) 및 두께방향(TM) 굴절율을 측정하고, 다음 수학식2를 통해 평균 굴절율을 계산하였다.
[수학식2]
평균굴절율 = (nx + ny + nz) / 3
(상기 수학식2에서, nx는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율이며; ny는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이다.)
실시예의 실험예 측정 결과
구분 실시예1 실시예2 실시예3 실시예4
단량체 몰비율 20/80/99.8(PMDA/BPAF/m-PDA) 50/50/99.8
(PMDA/BPAF/m-PDA)
65/35/99.8
(PMDA/BPAF/m-PDA)
80/20/99.8
(PMDA/BPAF/m-PDA)
고형분함량(%) 20.5 17.48 17.95 19.69
YI 6.27 12.61 22.8 20.03
HAZE(%) 0.45 0.84 0.37 0.36
Rth (nm) 13 28 63 100
Residual stress(MPa) 45 38.9 33 28.7
Bow(㎛) 45.62 38.44 33.66 28.35
면방향굴절율(nTE)@532nm 1.7141 1.7158 1.7166 1.7222
두께방향굴절율(nTM)@532nm 1.7125 1.7136 1.7104 1.7102
평균굴절율@532nm 1.7136 1.7151 1.7145 1.7182
상기 표1에 나타난 바와 같이, 실시예1 내지 4에서 얻어진 폴리이미드 필름(두께 10㎛ 기준)은 두께 방향 위상차 Rth값이 13 nm 내지 100 nm이고, 헤이즈가 0.36% 내지 0.84% 이고, YI가 6.27 내지 22.8이며, 잔류 응력이 28.7 MPa 내지 45 MPa이고, Bow가 28.35 ㎛ 내지 45.62 ㎛이며, 532nm에서의 면방향굴절율(nTE)이 1.7141 내지 1.7222, 두께방향굴절율(nTM)이 1.7102 내지 1.7136이고, 532nm에서의 평균굴절율이 1.7136 내지 1.7182임을 확인하였다.
비교예의 실험예 측정 결과
구분 비교예1 비교예2 비교예3 비교예4 비교예5
단량체 몰비율 100/98.75(BPAF/p-PDA) 20/80/98.75
(PMDA/BPAF/p-PDA)
0/100/98.75
(PMDA/BPAF/m-PDA)
100/0/98.75
(PMDA/BPAF/m-PDA)
80/20/100
(PMDA/BPAF/TFMB)
고형분함량(wt%) 13.26 13.23 19.94 16.62 10.3
YI 4.16 13.00 8.05 27.42 9.03
HAZE(%) 0.26 0.40 0.30 0.30 0.17
Rth (nm) 35 74 7 319 508
Residual stress(MPa) 54.5 49.7 49.1 27.4 26
Bow(㎛) 51.37 47.48 49.75 38.44 25
면방향굴절율(nTE)@532nm 1.7171 1.7084 1.7180 1.7210 1.6282
두께방향굴절율(nTM)@532nm 1.6993 1.6990 1.7030 1.6877 1.5773
평균굴절율@532nm 1.7112 1.7053 1.7130 1.7100 1.6114
상기 표2에 나타난 바와 같이, 비교예1 내지 5에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 532nm에서의 두께방향굴절율(nTM)이 1.5773 내지 1.7030이고, 532nm에서의 평균굴절율이 1.6114 내지 1.7130으로 실시예 대비 작은 값을 가짐을 확인하였다.특히, 비교예 1 내지 3에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 잔류 응력이 49.1 MPa 내지 54.5 MPa 로 실시예 대비 증가하여 평탄성을 구현하지 못한 문제가 있었다.또한, 비교예 4에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 두께 방향 위상차 Rth값이 319 nm 로 실시예 대비 급격히 증가하여 저위상차를 구현하지 못했고, YI가 27.42로 증가하여 투명특성이 저하됨을 확인하였다.
또한, 비교예 5에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 두께 방향 위상차 Rth값이 508 nm 로 실시예 대비 급격히 증가하여 저위상차를 구현하지 못함을 확인하였다.
참고예의 실험예 측정 결과
구분 참고예1 참고예2 참고예3
단량체 몰비율 98/2/98.75(PMDA/BPAF/m-PDA) 2/98/98.75(PMDA/BPAF/m-PDA) 10/90/99.8(PMDA/BPAF/m-PDA)
고형분함량(wt%) 19.66 20.1 20
YI 28.90 8.0 7.64
HAZE(%) 0.14 0.18 0.38
Rth (nm) 307 10 11
Residual stress(MPa) 24.4 48.5 48
Bow(㎛) 23.71 48.9 49.5
면방향굴절율(nTE)@532nm 1.7198 1.7173 1.7138
두께방향굴절율(nTM)@532nm 1.6903 1.7039 1.7121
평균굴절율@532nm 1.7100 1.7128 1.7132
상기 표3에 나타난 바와 같이, 참고예1에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 532nm에서의 두께방향굴절율(nTM)이 1.6903이고, 532nm에서의 평균굴절율이 1.7100으로 실시예 대비 작은 값을 가짐을 확인하였다. 또한, 참고예 1에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 두께 방향 위상차 Rth값이 307 nm로 실시예 대비 급격히 증가하여 저위상차를 구현하지 못했고, YI가 28.90으로 증가하여 투명특성이 저하됨을 확인하였다.한편, 참고예 2 내지 3에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 잔류 응력이 48 MPa 내지 48.5 MPa, Bow가 48.9 ㎛ 내지 49.5 ㎛로 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.

Claims (20)

  1. 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하는, 폴리이미드계 수지 필름:
    [화학식 1]
    Figure PCTKR2022013676-appb-img-000014
    상기 화학식1에서,
    X1은 단일고리를 함유한 방향족 4가의 작용기이며,
    Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
    [화학식 2]
    Figure PCTKR2022013676-appb-img-000015
    상기 화학식2에서,
    X2은 다중고리를 함유한 방향족 4가 작용기이며,
    Y2은 탄소수 6 내지 10의 방향족 2가 작용기이다.
  2. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 46 MPa 이하인, 폴리이미드계 수지 필름.
  3. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 300 nm 이하인, 폴리이미드계 수지 필름.
  4. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 두께방향 굴절율이 1.71 이상인, 폴리이미드계 수지 필름.
  5. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 헤이즈 값이 1.0% 미만인, 폴리이미드계 수지 필름.
  6. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 Bow 값이 48 ㎛ 이하인, 폴리이미드계 수지 필름.
  7. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 황색 지수가 25 이하인, 폴리이미드계 수지 필름.
  8. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 평균 굴절율이 1.7135 이상인, 폴리이미드계 수지 필름.
  9. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 532 nm 파장에 대한 면방향 굴절율이 1.71 내지 1.73인, 폴리이미드계 수지 필름.
  10. 제1항에 있어서,
    상기 탄소수 6 내지 10의 방향족 2가 작용기는 하기 화학식3으로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 3]
    Figure PCTKR2022013676-appb-img-000016
    .
  11. 제10항에 있어서,
    상기 화학식3으로 표시되는 작용기는 하기 화학식 3-1로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 3-1]
    Figure PCTKR2022013676-appb-img-000017
    .
  12. 제1항에 있어서,
    상기 X2의 다중고리를 함유한 방향족 4가 작용기는 하기 화학식4로 표시되는 4가의 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식4]
    Figure PCTKR2022013676-appb-img-000018
    상기 화학식4에서, Ar은 다중고리 방향족 2가 작용기이다.
  13. 제12항에 있어서,
    상기 화학식4의 Ar에서, 다중고리 방향족 2가 작용기는
    적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기를 포함하는, 폴리이미드계 수지 필름.
  14. 제12항에 있어서,
    상기 화학식4의 Ar에서, 다중고리 방향족 2가 작용기는 플루오레닐렌기를 포함하는, 폴리이미드계 수지 필름.
  15. 제12항에 있어서,
    상기 화학식4로 표시되는 4가의 작용기는 하기 화학식4-1로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 4-1]
    Figure PCTKR2022013676-appb-img-000019
    .
  16. 제1항에 있어서,
    상기 X1의 단일고리를 함유한 방향족 4가의 작용기는 하기 화학식5로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 5]
    Figure PCTKR2022013676-appb-img-000020
    .
  17. 제1항에 있어서,
    상기 폴리이미드계 수지는 단일고리를 함유한 방향족 테트라카르복시산 이무수물, 다중고리를 함유한 방향족 테트라카르복시산 이무수물, 및 탄소수 6 내지 10의 방향족 디아민의 결합물을 포함하는, 폴리이미드계 수지 필름.
  18. 제1항에 있어서,
    상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 85:15 내지 15:85인, 폴리이미드계 수지 필름.
  19. 제1항의 폴리이미드계 수지 필름을 포함하는, 디스플레이 장치용 기판.
  20. 제1항의 폴리이미드계 수지 필름을 포함하는, 광학 장치.
PCT/KR2022/013676 2021-12-08 2022-09-14 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치 WO2023106571A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/254,543 US20240092974A1 (en) 2021-12-08 2022-09-14 Polyimide-based polymer film, substrate for display device, and optical device using the same
JP2023526936A JP2024503967A (ja) 2021-12-08 2022-09-14 ポリイミド系樹脂フィルムおよびこれを用いたディスプレイ装置用基板、および光学装置
CN202280007575.9A CN116583553A (zh) 2021-12-08 2022-09-14 基于聚酰亚胺的树脂膜、使用其的用于显示装置的基底和光学装置
EP22879628.0A EP4219606A4 (en) 2021-12-08 2022-09-14 POLYIMIDE RESIN FILM, SUBSTRATE FOR DISPLAY DEVICE THEREOF, AND OPTICAL DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210174999 2021-12-08
KR10-2021-0174999 2021-12-08
KR10-2022-0110024 2022-08-31
KR1020220110024A KR20230086570A (ko) 2021-12-08 2022-08-31 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Publications (1)

Publication Number Publication Date
WO2023106571A1 true WO2023106571A1 (ko) 2023-06-15

Family

ID=86730551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013676 WO2023106571A1 (ko) 2021-12-08 2022-09-14 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Country Status (5)

Country Link
US (1) US20240092974A1 (ko)
EP (1) EP4219606A4 (ko)
JP (1) JP2024503967A (ko)
TW (1) TWI826017B (ko)
WO (1) WO2023106571A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000035259A (ko) * 1998-11-05 2000-06-26 다케다 마사토시 폴리이미드 필름 및 이를 사용한 전기/전자 기기용 기판
JP2005082726A (ja) * 2003-09-09 2005-03-31 Yamaguchi Technology Licensing Organization Ltd 架橋スルホン化ポリイミド、その製造法及び用途
KR20110010009A (ko) * 2009-07-23 2011-01-31 코오롱인더스트리 주식회사 폴리이미드 제조 방법, 이에 의해 제조된 폴리이미드 및 상기 폴리이미드로 제조된 필름
KR20130050373A (ko) * 2010-09-07 2013-05-15 제이에프이 케미칼 가부시키가이샤 폴리이미드 및 폴리이미드 필름
KR101796875B1 (ko) * 2016-09-23 2017-11-10 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695276B2 (ja) * 2012-07-02 2015-04-01 株式会社カネカ ポリアミド酸、ポリイミド、ポリアミド酸溶液、およびポリイミドの利用
TWI503610B (zh) * 2013-05-03 2015-10-11 Chi Mei Corp 液晶配向劑、液晶配向膜及液晶顯示元件
KR101840977B1 (ko) * 2017-09-14 2018-03-21 주식회사 엘지화학 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2019188380A1 (ja) * 2018-03-30 2019-10-03 株式会社カネカ ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
KR102551047B1 (ko) * 2019-02-01 2023-07-04 주식회사 엘지화학 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
CN113613904A (zh) * 2019-03-20 2021-11-05 株式会社钟化 聚酰胺酸组合物及其制造方法、聚酰胺酸溶液、聚酰亚胺、聚酰亚胺膜、层叠体及其制造方法、以及柔性器件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000035259A (ko) * 1998-11-05 2000-06-26 다케다 마사토시 폴리이미드 필름 및 이를 사용한 전기/전자 기기용 기판
JP2005082726A (ja) * 2003-09-09 2005-03-31 Yamaguchi Technology Licensing Organization Ltd 架橋スルホン化ポリイミド、その製造法及び用途
KR20110010009A (ko) * 2009-07-23 2011-01-31 코오롱인더스트리 주식회사 폴리이미드 제조 방법, 이에 의해 제조된 폴리이미드 및 상기 폴리이미드로 제조된 필름
KR20130050373A (ko) * 2010-09-07 2013-05-15 제이에프이 케미칼 가부시키가이샤 폴리이미드 및 폴리이미드 필름
KR101796875B1 (ko) * 2016-09-23 2017-11-10 주식회사 엘지화학 폴리이미드 전구체 용액 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219606A4 *

Also Published As

Publication number Publication date
EP4219606A4 (en) 2024-05-29
JP2024503967A (ja) 2024-01-30
TWI826017B (zh) 2023-12-11
US20240092974A1 (en) 2024-03-21
TW202323386A (zh) 2023-06-16
EP4219606A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2014168400A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2010002182A2 (en) Plastic substrate and device including the same
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020209625A1 (ko) 폴리아미드-이미드 블록 공중합체, 이의 제조방법 및 이를 포함하는 폴리아미드-이미드 필름
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2023106571A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2023172103A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023080369A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023120862A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022108063A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 회로 기판, 광학 장치 및 전자 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023526936

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280007575.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022879628

Country of ref document: EP

Effective date: 20230427

WWE Wipo information: entry into national phase

Ref document number: 18254543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE