WO2023172103A1 - 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치 - Google Patents

폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치 Download PDF

Info

Publication number
WO2023172103A1
WO2023172103A1 PCT/KR2023/003301 KR2023003301W WO2023172103A1 WO 2023172103 A1 WO2023172103 A1 WO 2023172103A1 KR 2023003301 W KR2023003301 W KR 2023003301W WO 2023172103 A1 WO2023172103 A1 WO 2023172103A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
based resin
resin film
thickness
less
Prior art date
Application number
PCT/KR2023/003301
Other languages
English (en)
French (fr)
Inventor
강미은
박찬효
박진영
박채원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230031292A external-priority patent/KR20230133232A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023569636A priority Critical patent/JP2024518952A/ja
Priority to EP23767204.3A priority patent/EP4321563A1/en
Priority to US18/567,576 priority patent/US20240287266A1/en
Priority to CN202380011735.1A priority patent/CN117355562A/zh
Publication of WO2023172103A1 publication Critical patent/WO2023172103A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide-based resin film capable of realizing excellent bending properties and low retardation, a substrate for a display device using the same, and an optical device.
  • the display device market is rapidly changing, focusing on flat panel displays (FPDs) that are easy to use in large areas and can be thin and lightweight.
  • Such flat panel displays include liquid crystal displays (LCD), organic light emitting displays (OLED), and electrophoretic displays (EPD).
  • TFT devices are manufactured by depositing multi-layer inorganic films such as a buffer layer, active layer, and gate insulator on cured polyimide.
  • the conventionally used polyimide resin has a large refractive index in the plane direction and there is a large difference from the refractive index in the thickness direction.
  • polyimide has anisotropic properties, which causes distortion of light and has a limitation that significantly reduces visibility.
  • the polyimide material included in the polyimide layer (substrate layer) is cured at a high temperature of 400 °C or higher, optical properties are reduced due to deterioration of the polyimide, or it is difficult to secure flatness due to physical twisting bending characteristics. There was.
  • the present invention relates to a polyimide-based resin film capable of realizing excellent bending properties and low retardation.
  • the present invention is to provide a substrate for a display device and an optical device using the polyimide-based resin film.
  • an inorganic material substrate comprising a polyimide-based resin containing a polyimide repeating unit represented by the following formula (1) and a polyimide repeating unit represented by the following formula (2), and having a thickness of 10 ⁇ m
  • a polyimide-based resin film having a residual stress of 55 MPa or less and a phase difference R th value in the thickness direction at a thickness of 10 ⁇ m of 100 nm or less is provided.
  • X 1 is an aromatic tetravalent functional group
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms
  • X 2 is an aromatic tetravalent functional group
  • Y 2 is an aromatic divalent functional group containing multiple rings.
  • it also includes a polyimide-based resin containing a polyimide repeating unit represented by the following formula (1) and a polyimide repeating unit represented by the following formula (2), the Bow value at a thickness of 5 ⁇ m is 25 ⁇ m or less, and 5 A polyimide-based resin film having a thickness-direction retardation R th value of 100 nm or less at a thickness of ⁇ m is provided.
  • X 1 is an aromatic tetravalent functional group
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms
  • X 2 is an aromatic tetravalent functional group
  • Y 2 is an aromatic divalent functional group containing multiple rings.
  • a substrate for a display device including the polyimide-based resin film is also provided.
  • optical device comprising the polyimide-based resin film.
  • 'comprise' is to specify a specific characteristic, area, integer, step, operation, element and/or component, and to specify another specific property, area, integer, step, operation, element, component and/or group. It does not exclude the existence or addition of .
  • first component may also be referred to as a second component, and similarly, the second component may be referred to as a first component.
  • (co)polymer refers to both polymers or copolymers.
  • the polymer refers to a homopolymer composed of a single repeating unit, and the copolymer refers to a complex polymer containing two or more types of repeating units.
  • substitution means bonding with another functional group in place of a hydrogen atom in a compound, and the position to be substituted is not limited as long as it is the position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, and if two or more substitutions are made, , two or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; Cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amide group; Primary amino group; carboxyl group; sulfonic acid group; sulfonamide group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkoxysilylalkyl group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atoms, or substituted or un
  • a substituent group in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • aromatic is a characteristic that satisfies the Huckels Rule. According to the Huckels Rule, a case that satisfies all of the following three conditions can be defined as aromatic.
  • a multivalent functional group is a residue in which a plurality of hydrogen atoms bonded to any compound have been removed, and examples include a divalent functional group, a trivalent functional group, and a tetravalent functional group.
  • a tetravalent functional group derived from cyclobutane refers to a residue in which any four hydrogen atoms bonded to cyclobutane have been removed.
  • the aryl group is a monovalent functional group derived from arene, and is not particularly limited, but preferably has 6 to 20 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, biphenyl group, or terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
  • the aryl group may be substituted or unsubstituted, and when substituted, examples of the substituent are as described above.
  • a direct bond or single bond means that no atom or atomic group exists at the corresponding position and is connected by a bond line. Specifically, it refers to the case where no separate atoms exist in the portions represented by L 1 and L 2 in the chemical formula.
  • the weight average molecular weight means the weight average molecular weight in terms of polystyrene measured by GPC method.
  • GPC method commonly known analysis devices, detectors such as differential refractive index detectors, and analytical columns can be used, and the commonly applied temperature Conditions, solvent, and flow rate can be applied.
  • a Waters PL-GPC220 instrument was used using a Polymer Laboratories PLgel MIX-B 300 mm long column, the evaluation temperature was 160°C, and 1,2,4-trichlorobenzene was used as a solvent.
  • the flow rate is 1 mL/min
  • the sample is prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 ⁇ L.
  • the value of Mw can be obtained using a calibration curve formed using a polystyrene standard.
  • Nine types of molecular weights of polystyrene standards were used: 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • it contains a polyimide-based resin containing a polyimide repeating unit represented by the following formula (1) and a polyimide repeating unit represented by the following formula (2), and the residue with the inorganic material substrate at a thickness of 10 ⁇ m
  • a polyimide-based resin film having a stress of 55 MPa or less and a phase difference R th value in the thickness direction at a thickness of 10 ⁇ m of 100 nm or less can be provided.
  • X 1 is an aromatic tetravalent functional group
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms
  • X 2 is an aromatic tetravalent functional group
  • Y 2 is an aromatic divalent functional group containing multiple rings.
  • the present inventors have found that when the polyimide-based resin film of the above embodiment simultaneously contains a polyimide repeating unit represented by Formula 1 and a polyimide repeating unit represented by Formula 2, curing is carried out at a high temperature of 400° C. or higher.
  • a polyimide repeating unit represented by Formula 1 By minimizing the occurrence of warping in the polyimide resin film, flatness and dimensional stability are high, which can solve defects caused by lifting phenomenon during panel processing.
  • optical isotropy is increased to realize low phase difference, so the diagonal viewing angle of the display with polyimide resin film is improved.
  • the invention was completed after confirming through experiments that it was possible to prevent deterioration of visibility due to light distortion by securing .
  • the polyimide-based resin includes a reaction product obtained through the imidization reaction of aromatic tetracarboxylic dianhydride and an aromatic diamine containing multiple rings, such as the structure represented by Chemical Formula 2, and contains multiple rings.
  • High heat resistance is secured through physical and chemical actions according to the structure of aromatic diamine, and excellent flatness is achieved not only in the film cured through heat treatment at a high temperature of 400 °C or higher, but also when the cured film is additionally heat treated at a high temperature of 400 °C or higher. It appears that this has been achieved.
  • a low phase difference can be realized by reducing the difference in refractive index in the plane direction and the thickness direction.
  • the polyimide resin includes a reaction product obtained through the imidization reaction of aromatic tetracarboxylic dianhydride and aromatic diamine having 6 to 10 carbon atoms, as shown in the structure represented by Chemical Formula 1, and has an asymmetry in a curved shape. It appears that low phase difference is achieved by reducing the difference in refractive index in the plane direction and thickness direction by aromatic diamine having a structure of 6 to 10 carbon atoms.
  • the refractive index in the thickness direction is low because the polyimides are packed and stacked side by side.
  • the polyimide is arranged in the thickness direction. It is possible to maintain a low phase difference by reducing the difference in refractive index between the plane direction and the thickness direction.
  • the polyimide-based resin film according to the present invention can increase the refractive index and can be used as a substrate layer in a flexible display device to reduce the difference in refractive index between each layer constituting the device, whereby it disappears internally. By reducing the amount of light, the bottom emission efficiency can be effectively increased.
  • the polyimide-based resin film may include polyimide-based resin.
  • the polyimide-based resin means that it includes both polyimide and its precursor polymers, polyamic acid and polyamic acid ester. That is, the polyimide-based polymer may include one or more types selected from the group consisting of polyamic acid repeating units, polyamic acid ester repeating units, and polyimide repeating units. That is, the polyimide-based polymer may include one type of polyamic acid repeating unit, one type of polyamic acid ester repeating unit, one type of polyimide repeating unit, or a copolymer in which two or more types of these repeating units are mixed.
  • One or more repeating units selected from the group consisting of polyamic acid repeating units, polyamic acid ester repeating units, and polyimide repeating units may form the main chain of the polyimide-based polymer.
  • the polyimide-based resin film may include a cured product of polyimide-based resin.
  • the cured product of the polyimide resin refers to a product obtained through a curing process of the polyimide resin.
  • the polyimide-based resin may include a polyimide repeating unit represented by the following formula (1).
  • X 1 is an aromatic tetravalent functional group
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms.
  • X 1 is an aromatic tetravalent functional group
  • X 1 is a functional group derived from a tetracarboxylic dianhydride compound used in polyimide resin synthesis.
  • the X 2 may be one of the tetravalent functional groups represented by the following formula (5).
  • R 1 to R 6 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • L 3 is a single bond, -O-, -CO-, -COO-, -S-, -SO-, -SO 2 -, -CR 7 R 8 -, -(CH 2 ) t -, -O(CH 2 ) t O-, -COO(CH 2 ) t OCO-, -CONH-, phenylene, or these It is any one selected from the group consisting of combinations, wherein R 7 and R 8 are each independently hydrogen, an alkyl group with 1 to 10 carbon atoms, or a halo alkyl group with 1 to 10 carbon atoms, and t is an integer of 1 to 10. .
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • the aromatic tetravalent functional group includes a functional group represented by Chemical Formula 5-1, it has a more linear structure than a functional group derived from anhydrides with other bulky structures (e.g., BPAF, 6FDA), so the thermal expansion coefficient ( By lowering the CTE) and suppressing the occurrence of warping when cured at high temperatures above 400°C, subsequent processes can be possible with appropriate flatness for stacking devices on the film.
  • a functional group represented by Chemical Formula 5-1 it has a more linear structure than a functional group derived from anhydrides with other bulky structures (e.g., BPAF, 6FDA), so the thermal expansion coefficient ( By lowering the CTE) and suppressing the occurrence of warping when cured at high temperatures above 400°C, subsequent processes can be possible with appropriate flatness for stacking devices on the film.
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms, and Y 1 may be a functional group derived from polyamic acid, polyamic acid ester, or a diamine compound used in polyimide synthesis.
  • the aromatic divalent functional group having 6 to 10 carbon atoms may include a phenylene group. More specifically, the aromatic divalent functional group having 6 to 10 carbon atoms of Y 1 may include a functional group represented by Formula 3 below.
  • the functional group represented by the following formula (3) include a functional group represented by the following formula (3-1) derived from m-phenylenediamine (1,3-phenylenediamine, m-PDA).
  • the arrangement in the thickness direction can be maintained as a curved asymmetric structure is introduced into the polyimide chain structure, resulting in a difference in refractive index between the plane direction and the thickness direction. By reducing , a low phase difference can be realized.
  • Y 1 includes a functional group derived from p-phenylenediamine (1,4-phenylenediamine, p-PDA), which does not have a curved asymmetric structure
  • p-PDA p-phenylenediamine
  • the polymer grows only in the plane direction.
  • the refractive index in the thickness direction decreases, which may cause the problem of an increase in the difference in refractive index between the plane direction and the thickness direction.
  • the polyimide-based resin may further include, in addition to the polyimide repeating unit represented by Formula 1, a polyimide repeating unit represented by Formula 2 below. That is, the polyimide-based resin may include a polyimide repeating unit represented by Formula 1 and a polyimide repeating unit represented by Formula 2 below.
  • X 2 is an aromatic tetravalent functional group
  • Y 2 is an aromatic divalent functional group containing multiple rings.
  • X 2 is the same as X 1 in Formula 1 above.
  • Y 2 is an aromatic divalent functional group containing multiple rings, and Y 2 is a functional group derived from a diamine compound used in polyimide resin synthesis.
  • the divalent functional group of Y 2 may include a divalent functional group represented by the following formula (4).
  • Ar is a multi-ring aromatic divalent functional group.
  • the polycyclic aromatic divalent functional group is a divalent functional group derived from a polycyclic aromatic hydrocarbon compound or a derivative thereof, and the derivative compound is a compound in which one or more substituents are introduced or a carbon atom is replaced with a heteroatom. Includes all.
  • the multi-ring aromatic divalent functional group may include a bonded cyclic divalent functional group containing at least two or more aromatic ring compounds. That is, the multi-ring aromatic divalent functional group contains at least two aromatic ring compounds in the functional group structure, and in addition, the functional group may have a fused ring structure.
  • the aromatic ring compound may include an arene compound containing one or more benzene rings, or a heteroarene compound in which carbon atoms in the arene compound are replaced with heteroatoms.
  • the aromatic ring compound may be contained in at least two or more multi-ring aromatic divalent functional groups, and each of the two or more aromatic ring compounds may form a fused ring directly or form a fused ring through another ring structure.
  • each of the two or more aromatic ring compounds may form a fused ring directly or form a fused ring through another ring structure.
  • two benzene rings are each bonded to a cycloalkyl ring structure, it can be defined that the two benzene rings form a bonded ring through the cycloalkyl ring.
  • the fused cyclic divalent functional group containing at least 2 or more aromatic ring compounds is a divalent functional group derived from a fused ring compound containing at least 2 or more aromatic ring compounds or a derivative thereof, and the derivative compound has one or more substituents introduced. It includes all compounds in which carbon atoms are replaced by heteroatoms.
  • the multicyclic aromatic divalent functional group may include a fluorenylene group.
  • Specific examples of the functional group represented by Formula 4 include the following Formula 4-1 derived from 9,9'-bis(4-aminophenyl)fluorene (FDA) The functional groups displayed can be mentioned.
  • a symmetrical structure with increased steric hindrance due to the multiple rings is introduced into the polyimide chain structure, thereby improving heat resistance by alleviating thermal deformation.
  • a bulky structure with increased steric hindrance in the thickness direction due to multiple rings into the polyimide chain structure, low phase difference can be realized by increasing the refractive index in the thickness direction and reducing the difference in refractive index in the plane direction and thickness direction, and intermolecular packing By suppressing , high transmittance can be achieved.
  • the polyimide-based resin may include a combination of aromatic tetracarboxylic dianhydride, aromatic diamine having 6 to 10 carbon atoms, and aromatic diamine containing multiple rings.
  • the aromatic tetracarboxylic dianhydride is a compound in which an anhydride group (-OC-O-CO-) is introduced at both ends of the aromatic tetravalent functional group described above, and the description of the aromatic tetravalent functional group is as described above.
  • aromatic tetracarboxylic dianhydride examples include 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA).
  • the aromatic diamine having 6 to 10 carbon atoms is a compound in which an amino group (-NH 2 ) is introduced at both ends of the aromatic divalent functional group having 6 to 10 carbon atoms.
  • the description of the aromatic divalent functional group having 6 to 10 carbon atoms is described above. It is the same as what was said.
  • Specific examples of the aromatic diamine having 6 to 10 carbon atoms include m-phenylenediamine (1,3-phenylenediamine, m-PDA).
  • the multi-ring-containing aromatic diamine is a compound in which amino groups (-NH 2 ) are introduced at both ends of the multi-ring aromatic divalent functional group described above.
  • the description of the multi-ring aromatic divalent functional group is as described above.
  • a specific example of the aromatic diamine containing the multiple rings includes 9,9'-bis(4-aminophenyl)fluorene (FDA).
  • the polyimide-based resin includes a terminal anhydride group (-OC-O-CO-) of the aromatic tetracarboxylic dianhydride, and a terminal amino group (- Through the reaction of NH 2 ), a bond can be formed between the nitrogen atom of the amino group and the carbon atom of the anhydride group.
  • the polyimide-based polymer includes a first repeating unit containing a repeating unit represented by Formula 1, wherein the diamine-derived repeating unit is a functional group represented by Formula 3; and a second repeating unit containing a repeating unit represented by Formula 2, wherein the diamine-derived repeating unit is a functional group represented by Formula 4.
  • the first repeating unit and the second repeating unit may be arranged randomly within the polyimide-based polymer to form a random copolymer, or may form a block between first repeating units and a block between second repeating units to form a block copolymer. You can.
  • a polyimide-based polymer containing a repeating unit represented by Formula 1 and a repeating unit represented by Formula 2 can be prepared by reacting two or more different diamine compounds with a tetracarboxylic dianhydride compound, and the two types of A random copolymer can be synthesized by adding diamine compounds simultaneously, or a block copolymer can be synthesized by adding them sequentially.
  • the molar ratio between the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2 is 9:1 to 1:9, or 9:1 to 2:1, or 6:1 to 2:1. , or 6:1 to 3.5:1, or 3.5:1 to 2:1, or 1:2 to 1:9, or 1:2 to 1:6, or 1:3 to 1:5.
  • Excellent bending characteristics and colorless transparency can be achieved, and at the same time, optical isotropy is increased through low thickness direction retardation (Rth) characteristics, thereby securing the diagonal viewing angle of the display to which the polyimide resin film is applied, thereby reducing the amount of light. Deterioration of visibility due to distortion can be prevented.
  • the polyimide-based resin film of one embodiment may include a cured product of the polyimide-based resin cured at a temperature of 400° C. or higher.
  • the cured product refers to a material obtained through a curing process of a resin composition containing the polyimide resin, and the curing process may be performed at a temperature of 400°C or higher, or between 400°C and 500°C.
  • the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2 are 70 mol% or more, or 80 mol% or more, or 90 mol% or more, compared to the total repeating units contained in the polyimide resin. At least 91 mol%, or at least 92 mol%, or at least 93 mol%, or at least 94 mol%, or at least 95 mol%, or at least 96 mol%, or at least 97 mol%, or at least 98 mol%, or at least 99 mole % or more, or 100 mol% or less, or 70 mol% or more and 100 mol% or less, or 80 mol% or more and 100 mol% or less, or 91 mol% or more and 100 mol% or less, or 92 mol% or more and 100 mol% or less, or 93 Mol% or more and 100 mol% or less, or 94 mol% or more and 100 mol% or less, or 95 mol% or more and 100
  • the polyimide-based resin consists only of the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2, or is mostly composed of the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2. It may be composed of polyimide repeating units.
  • the weight average molecular weight (GPC measurement) of the polyimide resin is not greatly limited, but may be, for example, 1000 g/mol or more and 200,000 g/mol or less, or 10,000 g/mol or more and 200,000 g/mol or less.
  • the polyimide resin according to the present invention can exhibit excellent colorless and transparent properties while maintaining characteristics such as heat resistance and mechanical strength due to its rigid structure, and can be used as a substrate for devices, a cover substrate for displays, and optical films. It can be used in various fields such as IC (integrated circuit) package, adhesive film, multi-layer FRC (flexible printed circuit), tape, touch panel, protective film for optical disk, etc. It can be especially suitable for display cover substrate. there is.
  • examples of methods for synthesizing the polyimide-based resin film are not greatly limited, and include, for example, applying a resin composition containing the polyimide-based resin to a substrate to form a coating film (step 1); Drying the coating film (step 2); A method for producing a film can be used, which includes curing the dried coating film by heat treatment (step 3).
  • Step 1 is a step of forming a coating film by applying a resin composition containing the above-described polyimide resin to a substrate.
  • the method of applying the resin composition containing the polyimide resin to the substrate is not particularly limited, and for example, methods such as screen printing, offset printing, flexographic printing, and inkjet can be used.
  • the resin composition containing the polyimide resin may be dissolved or dispersed in an organic solvent.
  • the solution may be the obtained reaction solution itself, or may be a product diluted with another solvent.
  • the polyimide resin when it is obtained as a powder, it may be dissolved in an organic solvent to form a solution.
  • organic solvent examples include toluene, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, and N-ethyl.
  • the resin composition containing the polyimide resin may contain solid content in an amount to have an appropriate viscosity in consideration of processability such as applicability during the film forming process.
  • the content of the composition can be adjusted so that the total resin content is 5% by weight or more and 25% by weight or less, or 5% by weight or more and 20% by weight or less, or 5% by weight or more and 15% by weight or less. .
  • the resin composition containing the polyimide resin may further include other components in addition to the organic solvent.
  • the resin composition containing the polyimide resin when applied, it improves the uniformity of film thickness or surface smoothness, improves adhesion to the substrate, or changes dielectric constant or conductivity.
  • additives that can increase density may be additionally included. Examples of such additives may include surfactants, silane-based compounds, dielectrics, or crosslinking compounds.
  • Step 2 is a step of drying the coating film formed by applying the resin composition containing the polyimide resin to the substrate.
  • the drying step of the coating film can be performed by a heating means such as a hot plate, hot air circulation furnace, or infrared furnace, and can be performed at a temperature of 50 °C or higher and 150 °C or lower, or 50 °C or higher and 100 °C or lower.
  • a heating means such as a hot plate, hot air circulation furnace, or infrared furnace, and can be performed at a temperature of 50 °C or higher and 150 °C or lower, or 50 °C or higher and 100 °C or lower.
  • Step 3 is a step of curing the dried coating film by heat treatment.
  • the heat treatment may be performed by a heating means such as a hot plate, hot air circulation furnace, or infrared furnace, and at a temperature of 200 °C or higher, or 200 °C or higher and 300 °C or lower, or 400 °C or higher, or 400 °C or higher and 500 °C or lower. It can be done with a heating means such as a hot plate, hot air circulation furnace, or infrared furnace, and at a temperature of 200 °C or higher, or 200 °C or higher and 300 °C or lower, or 400 °C or higher, or 400 °C or higher and 500 °C or lower. It can be done with a heating means such as a hot plate, hot air circulation furnace, or infrared furnace, and at a temperature of 200 °C or higher, or 200 °C or higher and 300 °C or lower, or 400 °C or higher, or 400 °C or higher and 500 °
  • the thickness of the polyimide resin film is not greatly limited, but can be freely adjusted, for example, within the range of 0.01 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the polyimide-based resin film increases or decreases by a certain amount, the physical properties measured from the polyimide-based resin film may also change by a certain amount.
  • the polyimide-based resin film of the above embodiment has a residual stress with the inorganic material substrate at a thickness of 10 ⁇ m of 55 MPa or less, or 50 MPa or less, or 48 MPa or less, or 40 MPa or less, or 31 MPa or less, or At least 1 MPa, or 1 MPa to 55 MPa, or 1 MPa to 50 MPa, or 1 MPa to 48 MPa, or 1 MPa to 40 MPa, or 1 MPa to 31 MPa, or 10 MPa to 48 MPa, or 20 MPa 48 MPa, or 30 MPa to 48 MPa, or 30.4 MPa to 48 MPa, or 30.4 MPa to 40 MPa, or 30.4 MPa to 32 MPa, or 33 MPa to 40 MPa, or 41 MPa to 48 MPa.
  • the polyimide-based resin film of the above embodiment can solve defects caused by the lifting phenomenon during panel processing by reducing the residual stress.
  • Examples of the method and equipment for measuring the residual stress are not specifically limited, and various methods conventionally used to measure residual stress can be applied without limitation.
  • the residual stress of a polyimide resin film can be measured using a residual stress meter.
  • an example of the inorganic material substrate may be a wafer substrate.
  • the residual stress can be measured from the polyimide-based resin film sample with a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a certain amount, the physical properties measured from the polyimide-based resin film may also change by a certain amount.
  • the polyimide-based resin film of the above embodiment has a thickness direction retardation value of 100 nm or less, or 90 nm or less, or 80 nm or less, or 73 nm or less, or 1 nm or more, or 1 nm at a thickness of 10 ⁇ m. to 100 nm, or 1 nm to 90 nm, or 1 nm to 80 nm, or 1 nm to 73 nm, or 73 nm to 89 nm, or 73 nm to 79 nm, or 80 nm to 89 nm, or 80 nm to It may be 85 nm, or 86 nm to 89 nm. In this way, optical isotropy is increased through the low phase difference (R th ) characteristic in the thickness direction, and excellent visibility can be realized by securing the diagonal viewing angle of the display to which the polyimide-based resin film is applied.
  • R th phase difference
  • This low phase difference is achieved by reducing the difference in refractive index in the plane direction and thickness direction using m-PDA (m-Phenylenediamine), a diamine with an asymmetric structure as a monomer used in the production of polyimide resin films, as described later. It appears that
  • the refractive index in the thickness direction is low because the polyimides are packed side by side, whereas in the case of polyimide with a curved, bent main chain structure, the molecules are not well packed.
  • the refractive index in the thickness direction may increase.
  • the phase difference in the thickness direction may be measured at a wavelength of 532 nm, examples of measurement methods and equipment are not specifically limited, and various methods conventionally used to measure the phase difference in the thickness direction can be applied without limitation.
  • the phase difference in the thickness direction can be measured from the polyimide-based resin film sample with a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a certain amount, the physical properties measured from the polyimide-based resin film may also change by a certain amount.
  • the thickness direction phase difference R th can be calculated through Equation 1 below.
  • n n y is the refractive index perpendicular to n x among the in-plane refractive indices of the polyimide resin film measured with light with a wavelength of 532 nm
  • n z is the refractive index in the thickness direction of the polyimide resin film measured with light with a wavelength of 532 nm
  • d is the thickness of the polyimide-based resin film.
  • the thickness direction retardation R th is a value obtained by multiplying the absolute value of the difference between the thickness direction refractive index value (n z ) and the average value of the plane refractive index values [(n x + n y )/2] by the film thickness. The smaller the difference between the refractive index value (n z ) and the average value of the plane refractive index values [(n x + n y )/2] by the film thickness. The smaller the difference between the refractive index value (n z ) and the average value of the plane refractive index values [(n
  • the polyimide-based resin film satisfies the thickness direction retardation value of 100 nm or less at a thickness of 10 ⁇ m, the average value of the thickness direction refractive index value (n z ) and the plane refractive index value on the display to which the polyimide-based resin film is applied. As the difference in [(n x +n y )/2] decreases, excellent visibility can be realized.
  • the polyimide-based resin film has a haze value of 10% or less, or 1% or less, or 0.1% or more, or 0.1% to 10%, or 0.1% to 1%, or 0.26% to 0.57 at a thickness of 10 ⁇ m. %, or 0.26% to 0.4%, or 0.41% to 0.54%, or 0.55% to 0.57%.
  • the haze can be measured from the polyimide-based resin film sample with a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a certain amount, the physical properties measured from the polyimide-based resin film may also change by a certain amount.
  • the polyimide resin film has a Bow value at a thickness of 10 ⁇ m of 50 ⁇ m or less, or 48 ⁇ m or less, or 35 ⁇ m or less, or 31 ⁇ m or less, or 1 ⁇ m or more, or 1 ⁇ m to 50 ⁇ m, or 1 ⁇ m to 48 ⁇ m, or 1 ⁇ m to 35 ⁇ m, or 1 ⁇ m to 31 ⁇ m, or 10 ⁇ m to 48 ⁇ m, or 20 ⁇ m to 48 ⁇ m, or 30.11 ⁇ m to 47.6 ⁇ m, or 30.11 ⁇ m to 40 ⁇ m, or 30.1 ⁇ m 1 ⁇ m to 32 ⁇ m, or 33 ⁇ m to 40 ⁇ m, or 41 ⁇ m to 47.6 ⁇ m.
  • the bow is also referred to as bending or bow, and is a type of surface flatness characteristic of a material.
  • various methods widely known in the field of semiconductor wafer substrate manufacturing can be applied without limitation.
  • the Bow (3) is the central axis between the thickness central plane (1) (thickness central plane) and the reference plane (2) (reference plane (Best fit plane of thickness central plane)) as shown in Figure 1 below. 4) It can be defined as phase distance.
  • the thickness center surface 1 refers to a surface connecting points that are half (t/2) of the thickness (t) of the measurement object.
  • the reference surface 2 refers to a cross section formed by a straight line connecting the thickness center points of both ends of the measurement object, as shown in Figure 1 below.
  • the central axis 4 refers to a straight line perpendicular to the horizontal plane passing through the center of gravity of the measurement object.
  • a stress analyzer laser stress analyzer
  • the Bow value can be calculated and obtained automatically.
  • the Bow may be measured on the polyimide-based resin film sample of the embodiment having a thickness of 10 ⁇ 1 ⁇ m.
  • the polyimide-based resin film sample used for the Bow measurement is a pure polyimide-based resin film; Or, it may include a laminate including a base film and a polyimide-based resin film coated on the base film.
  • Examples of the base film are not greatly limited, and glass substrates, wafer substrates, or mixtures thereof may be used without limitation.
  • the Bow is automatically measured based on the results of analyzing the polyimide-based resin film sample with a stress analyzer (laser stress analyzer).
  • a stress analyzer laser stress analyzer
  • a pure polyimide-based resin film can be secured through a process of peeling the base film from a laminate including the base film and the polyimide-based resin film coated on the base film.
  • the polyimide resin film has a yellow index at a thickness of 10 ⁇ m of 25 or less, or 22 or less, or 20 or less, or 15 or less, or 0.1 or more, or 0.1 to 25, or 0.1 to 22, or 0.1 to 20. , or 0.1 to 15, or 14.3 to 22.4, or 14.3 to 19, or 20 to 22.4, or 20 to 21.5, or 21.6 to 22.4. If the yellowness index of the polyimide-based resin film at a thickness of 10 ⁇ m increases excessively, such as exceeding 25, the degree of yellow discoloration of the polyimide-based resin film increases, making it difficult to manufacture a colorless and transparent film.
  • Examples of the yellowness index measurement method and equipment of the above embodiment are not specifically limited, and various methods conventionally used for YI measurement can be applied without limitation. For example, it can be measured using a color meter (Color-Eye 7000A from GRETAGMACBETH).
  • the yellowness index can be measured from the polyimide-based resin film sample with a thickness of 10 ⁇ 1 ⁇ m.
  • the thickness of the polyimide-based resin film increases or decreases by a certain amount, the physical properties measured from the polyimide-based resin film may also change by a certain amount.
  • the polyimide-based resin film of the above embodiment has a retardation value in the thickness direction at a thickness of 5 ⁇ m of 100 nm or less, or 90 nm or less, or 80 nm or less, or 70 nm or less, or 68 nm or less, or 65 nm.
  • phase difference (R th ) in the thickness direction are the same as described above, except that it was measured on the polyimide-based resin film sample of the embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the above embodiment has a residual stress with the inorganic material substrate at a thickness of 5 ⁇ m of 52 MPa or less, or 50 MPa or less, or 45 MPa or less, or 43 MPa or less, or 42 MPa or less, or At least 1 MPa, or 1 MPa to 52 MPa, or 1 MPa to 50 MPa, or 1 MPa to 45 MPa, or 1 MPa to 43 MPa, or 1 MPa to 42 MPa, or 41.7 MPa to 48.9 MPa, or 41.7 MPa It may be 44 MPa, or 41.7 MPa to 42 MPa, or 43 MPa to 44 MPa, or 45 MPa to 48.9 MPa.
  • the specific details of the residual stress with the inorganic substrate are the same as described above, except that it was measured on the polyimide-based resin film sample of the above embodiment with a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the above embodiment has a Bow value at a thickness of 5 ⁇ m of 25 ⁇ m or less, or 24.5 ⁇ m or less, or 24 ⁇ m or less, or 23 ⁇ m or less, or 1 ⁇ m or more, or 1 ⁇ m to 25 ⁇ m. , or 1 ⁇ m to 24.5 ⁇ m, or 1 ⁇ m to 24 ⁇ m, or 1 ⁇ m to 23 ⁇ m, or 22.49 ⁇ m to 24.7 ⁇ m, or 22.49 ⁇ m to 24.2 ⁇ m, or 22.49 ⁇ m to 23.2 ⁇ m, or 23 .3 ⁇ m to 24.2 ⁇ m, Or it may be 24.3 ⁇ m to 24.7 ⁇ m.
  • the specific details of Bow are the same as described above, except that it was measured on a sample of the polyimide-based resin film of one embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide resin film has a yellow index at a thickness of 5 ⁇ m of 15 or less, or 13.9 or less, or 13 or less, or 10 or less, or 9 or less, or 0.1 or more, or 0.1 to 15, or 0.1 to 13.9, or 0.1 to 13, or 0.1 to 10, or 0.1 to 9, or 8.4 to 10.8, or 8.4 to 9, or 9.1 to 10.8, or 9.1 to 10, or 10.1 to 10.8.
  • the details of the yellowness index are the same as described above, except that it was measured on a sample of the polyimide resin film of the above-described embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide resin film has a Bow value at 2 ⁇ m thickness of less than 12 ⁇ m, 11.9 ⁇ m or less, or 11.6 ⁇ m or less, or 11.5 ⁇ m or less, or 11.2 ⁇ m or less, or 1 ⁇ m or more, or 1 ⁇ m or more 12 Less than ⁇ m, or 1 ⁇ m to 11.9 ⁇ m, or 1 ⁇ m to 11.6 ⁇ m, or 1 ⁇ m to 11.5 ⁇ m, or 1 ⁇ m to 11.2 ⁇ m, or 11.2 ⁇ m to 11.85 ⁇ m, or 11.2 ⁇ m to 11.6 ⁇ m, or 11.2 ⁇ m to 11.3 ⁇ m, or 11.4 ⁇ m to 11.6 ⁇ m, or 11.7 ⁇ m to 11.85 ⁇ m.
  • the specific details of Bow are the same as described above, except that it was measured on a sample of the polyimide-based resin film of one embodiment having a thickness of 2 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the above embodiment has a retardation value in the thickness direction at a thickness of 2 ⁇ m of 40 nm or less, or 30 nm or less, or 28 nm or less, or 25 nm or less, or 20 nm or less, or 1 nm. or more, or 1 nm to 40 nm, or 1 nm to 30 nm, or 1 nm to 28 nm, or 1 nm to 25 nm, or 1 nm to 20 nm, or 20 nm to 29 nm, or 20 nm to 24 nm.
  • phase difference (R th ) in the thickness direction are the same as described above, except that it was measured on the polyimide-based resin film sample of the embodiment having a thickness of 2 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the above embodiment has a residual stress with the inorganic material substrate at a thickness of 2 ⁇ m of 50 MPa or less, or 45 MPa or less, or 42 MPa or less, or 1 MPa or more, or 1 MPa to 50 MPa.
  • the specific details of the residual stress with the inorganic substrate are the same as described above, except that it was measured on the polyimide-based resin film sample of the above embodiment with a thickness of 2 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the above embodiment has a yellow index at a thickness of 2 ⁇ m of 10 or less, or 7 or less, or 6.5 or less, or 5 or less, or 0.1 or more, or 0.1 to 10, or 0.1 to 7, or It can be 0.1 to 6.5, or 0.1 to 5, or 3.3 to 4.48, or 3.3 to 3.9, or 4 to 4.48, or 4 to 4.2, or 4.2 to 4.48. Specific details about the yellowness index are the same as described above, except that it was measured on a sample of the polyimide-based resin film of one embodiment having a thickness of 2 ⁇ 1 ⁇ m.
  • a polyimide-based resin containing a polyimide repeating unit represented by the following formula (1) and a polyimide repeating unit represented by the following formula (2), and has a Bow value of 25 at a thickness of 5 ⁇ m.
  • a polyimide-based resin film may be provided having a thickness of 100 nm or less and a phase difference R th value in the thickness direction at a thickness of 5 ⁇ m is 100 nm or less.
  • X 1 is an aromatic tetravalent functional group
  • Y 1 is an aromatic divalent functional group having 6 to 10 carbon atoms
  • X 2 is an aromatic tetravalent functional group
  • Y 2 is an aromatic divalent functional group containing multiple rings.
  • the molar ratio between the polyimide repeating unit represented by Formula 1 and the polyimide repeating unit represented by Formula 2 is 9:1 to 1:9, or 9:1 to 2:1, or 6:1 to 2:1. , or 6:1 to 3.5:1, or 3.5:1 to 2:1, or 1:2 to 1:9, or 1:2 to 1:6, or 1:3 to 1:5.
  • the polyimide-based resin film of the other embodiment has a thickness direction retardation value of 100 nm or less, or 90 nm or less, or 80 nm or less, or 70 nm or less, or 68 nm or less, or 65 nm at a thickness of 5 ⁇ m.
  • phase difference (R th ) in the thickness direction are the same as described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the other embodiment has a residual stress with the inorganic material substrate at a thickness of 5 ⁇ m of 52 MPa or less, or 50 MPa or less, or 45 MPa or less, or 43 MPa or less, or 42 MPa or less, or At least 1 MPa, or 1 MPa to 52 MPa, or 1 MPa to 50 MPa, or 1 MPa to 45 MPa, or 1 MPa to 43 MPa, or 1 MPa to 42 MPa, or 41.7 MPa to 48.9 MPa, or 41.7 MPa It may be 44 MPa, or 41.7 MPa to 42 MPa, or 43 MPa to 44 MPa, or 45 MPa to 48.9 MPa.
  • the specific details of the residual stress with the inorganic substrate are the same as described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the other embodiment has a Bow value at a thickness of 5 ⁇ m of 25 ⁇ m or less, or 24.5 ⁇ m or less, or 24 ⁇ m or less, or 23 ⁇ m or less, or 1 ⁇ m or more, or 1 ⁇ m to 25 ⁇ m. , or 1 ⁇ m to 24.5 ⁇ m, or 1 ⁇ m to 24 ⁇ m, or 1 ⁇ m to 23 ⁇ m, or 22.49 ⁇ m to 24.7 ⁇ m, or 22.49 ⁇ m to 24.2 ⁇ m, or 22.49 ⁇ m to 23.2 ⁇ m, or 23 .3 ⁇ m to 24.2 ⁇ m, Or it may be 24.3 ⁇ m to 24.7 ⁇ m.
  • the specific details of Bow are the same as those described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the other embodiments has a yellow index at a thickness of 5 ⁇ m of 15 or less, or 13.9 or less, or 13 or less, or 10 or less, or 9 or less, or 0.1 or more, or 0.1 to 15, or 0.1. to 13.9, or 0.1 to 13, or 0.1 to 10, or 0.1 to 9, or 8.4 to 10.8, or 8.4 to 9, or 9.1 to 10.8, or 9.1 to 10, or 10.1 to 10.8.
  • the details of the yellowness index are the same as those described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having a thickness of 5 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the other embodiment has a Bow value at 2 ⁇ m thickness of less than 12 ⁇ m, 11.9 ⁇ m or less, or 11.6 ⁇ m or less, or 11.5 ⁇ m or less, or 11.2 ⁇ m or less, or 1 ⁇ m or more, or 1 ⁇ m or more but less than 12 ⁇ m, or 1 ⁇ m to 11.9 ⁇ m, or 1 ⁇ m to 11.6 ⁇ m, or 1 ⁇ m to 11.5 ⁇ m, or 1 ⁇ m to 11.2 ⁇ m, or 11.2 ⁇ m to 11.85 ⁇ m, or 11.2 ⁇ m to 11 ⁇ m .6 ⁇ m, or 11.2 It may be from ⁇ m to 11.3 ⁇ m, or from 11.4 ⁇ m to 11.6 ⁇ m, or from 11.7 ⁇ m to 11.85 ⁇ m.
  • the specific details of Bow are the same as those described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having
  • the polyimide-based resin film of the other embodiment has a thickness direction retardation value of 40 nm or less, or 30 nm or less, or 28 nm or less, or 25 nm or less, or 20 nm or less, or 1 nm at a thickness of 2 ⁇ m. or more, or 1 nm to 40 nm, or 1 nm to 30 nm, or 1 nm to 28 nm, or 1 nm to 25 nm, or 1 nm to 20 nm, or 20 nm to 29 nm, or 20 nm to 24 nm.
  • phase difference (R th ) in the thickness direction are the same as described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having a thickness of 2 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the other embodiment has a residual stress with the inorganic material substrate at a thickness of 2 ⁇ m of 50 MPa or less, or 45 MPa or less, or 42 MPa or less, or 1 MPa or more, or 1 MPa to 50 MPa.
  • the specific details of the residual stress with the inorganic substrate are the same as described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment with a thickness of 2 ⁇ 1 ⁇ m.
  • the polyimide-based resin film of the other embodiment has a yellow index at a thickness of 2 ⁇ m of 10 or less, or 7 or less, or 6.5 or less, or 5 or less, or 0.1 or more, or 0.1 to 10, or 0.1 to 7, or It can be 0.1 to 6.5, or 0.1 to 5, or 3.3 to 4.48, or 3.3 to 3.9, or 4 to 4.48, or 4 to 4.2, or 4.2 to 4.48.
  • the specific details of the yellowness index are the same as those described above in one embodiment, except that it was measured on the polyimide-based resin film sample of the other embodiment having a thickness of 2 ⁇ 1 ⁇ m.
  • a substrate for a display device including the polyimide-based resin film of one embodiment or another embodiment may be provided.
  • Content regarding the polyimide-based resin film may include all of the content described above in one embodiment or another embodiment.
  • the display device including the substrate may be a liquid crystal display device (LCD), an organic light emitting diode (OLED), a flexible display, or a rollable display or foldable display. ), etc., but are not limited thereto.
  • LCD liquid crystal display device
  • OLED organic light emitting diode
  • flexible display or a rollable display or foldable display.
  • the display device may have various structures depending on the field of application and specific form, etc., and may include, for example, a cover plastic window, a touch panel, a polarizer, a barrier film, a light-emitting device (OLED device, etc.), a transparent substrate, etc. there is.
  • the polyimide-based resin film of one embodiment or another embodiment described above can be used for various purposes such as a substrate, external protective film, or cover window in various display devices, and more specifically, can be applied as a substrate.
  • the substrate for the display device may have a structure in which a device protection layer, a transparent electrode layer, a silicon oxide layer, a polyimide resin film, a silicon oxide layer, and a hard coating layer are sequentially stacked.
  • the transparent polyimide substrate may include a silicon oxide layer formed between the transparent polyimide-based resin film and the cured layer in terms of improving solvent resistance, moisture permeability, and optical properties, and the silicon oxide layer is poly. It may be produced by curing silazane.
  • the silicon oxide layer is formed by coating and drying a solution containing polysilazane before forming a coating layer on at least one side of the transparent polyimide resin film and then curing the coated polysilazane. It may be.
  • the substrate for a display device can provide a transparent polyimide cover substrate having excellent bending properties and impact resistance, solvent resistance, optical properties, moisture permeability, and scratch resistance by including the above-described device protection layer. there is.
  • an optical device including the polyimide-based resin film of one embodiment or another embodiment may be provided.
  • Content regarding the polyimide-based resin film may include all of the content described above in one embodiment or another embodiment.
  • the optical device may include all kinds of devices that utilize properties realized by light, and may include, for example, a display device.
  • a display device include a liquid crystal display device (LCD), an organic light emitting diode (OLED), a flexible display, or a rollable display or foldable display. These may include, but are not limited to these.
  • the optical device may have various structures depending on the field of application and specific form, and may include, for example, a cover plastic window, a touch panel, a polarizer, a barrier film, a light-emitting device (OLED device, etc.), a transparent substrate, etc. there is.
  • the polyimide-based resin film of one embodiment or another embodiment may be used for various purposes such as a substrate, external protective film, or cover window in various optical devices, and more specifically, may be applied to a substrate.
  • the present invention relates to a polyimide-based resin film capable of realizing excellent bending characteristics and low retardation, a substrate for a display device using the same, and an optical device.
  • Figure 1 shows a cross-sectional view measuring the bending (Bow) of the polyimide-based resin film obtained in Examples and Comparative Examples.
  • m-phenylenediamine (1,3-phenylenediamine, m-PDA) and 9,9'-bis(4-aminophenyl)fluorene (9,9'-bis(4-aminophenyl)fluorene, FDA) are added
  • BPDA 3,3',4,4'-biphenyltetracarboxylic dianhydride
  • a polyimide precursor composition was prepared. At this time, the molar ratios of m-PDA, FDA, and BPDA are as shown in Table 1 below.
  • the polyimide precursor composition was spin-coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor composition was placed in an oven and heated at a rate of 5°C/min, and the curing process was performed by maintaining the temperature at 80°C for 30 minutes , 250°C for 30 minutes, and 400°C for 30 minutes. After completing the curing process, the glass substrate was immersed in water, the film formed on the glass substrate was removed, and dried in an oven at 100°C to prepare a polyimide film with a thickness of 10 ⁇ m (including ⁇ 1 ⁇ m error).
  • a polyimide precursor composition and polyimide were prepared in the same manner as in the above example, except that the molar ratio of m-PDA, FDA, p-PDA (1,4-phenylenediamine), and BPDA was changed as shown in Table 1 below. A film was prepared.
  • TFMB 2,2'-Bis(trifluoromethyl)benzidine
  • the 2,2'-bis(trifluoromethyl)benzidine (2,2'-Bis(trifluoromethyl)benzidine, TFMB), m-phenylenediamine (1,3-phenylenediamine, m-PDA), and 9,9' -4,4'-(hexafluoroisopropylidene)diphthalic anhydride as acid dianhydride in a solution containing 9,9'-bis(4-aminophenyl)fluorene (FDA).
  • FDA 9,9'-bis(4-aminophenyl)fluorene
  • 4,4'-(Hexafluoroisopropylidene)diphthalic Anhydride, 6FDA) was added at the same temperature and stirred for 24 hours to prepare a polyimide precursor composition.
  • the molar ratio of 6FDA, TFMB, m-PDA, and FDA was 100/70/20/10 (6FDA/TFMB/m-PDA/FDA).
  • the polyimide precursor composition was spin coated on a glass substrate.
  • the glass substrate coated with the polyimide precursor composition was placed in an oven and heated at a rate of 5°C/min, and the curing process was performed by maintaining the temperature at 80°C for 30 minutes , 250°C for 30 minutes, and 400°C for 30 minutes. After completing the curing process, the glass substrate was immersed in water, the film formed on the glass substrate was removed, and dried in an oven at 100°C to prepare a polyimide film with a thickness of 10 ⁇ m (including ⁇ 1 ⁇ m error).
  • a polyimide precursor composition and a polyimide film were prepared in the same manner as in the above example, except that the molar ratio of m-PDA, FDA, and BPDA was changed as shown in Table 1 below.
  • the yellowness index of the polyimide films prepared in Examples and Comparative Examples was measured using a color meter (Color-Eye 7000A from GRETAGMACBETH).
  • the haze value of the polyimide film was measured using a Hazemeter (NDH-5000).
  • the refractive index values for the 532 nm light of the polyimide films manufactured in Examples and Comparative Examples were input, temperature: 25°C, humidity: After measuring the retardation in the thickness direction and surface direction using light with a wavelength of 532 nm under the condition of 40%, the obtained retardation measurement value in the thickness direction (measured value by automatic measurement of the measuring device) is used to measure the film. It was obtained by converting it into a retardation value per 10 ⁇ m thickness, and is shown in Table 1 below.
  • the thickness direction phase difference R th was calculated through Equation 1 below.
  • the composition was applied by a spin coater on a 6-inch silicon wafer with a thickness of 525 ⁇ m, in which the warpage of the wafer was previously measured using a residual stress meter (FLX2320 from TENCOR). Then, using an oven (manufactured by Koyo Lindberg), heat curing was performed under a nitrogen atmosphere at 250°C for 30 min and 400°C for 30 min, and after curing, a silicon wafer with a resin film attached thereto was manufactured.
  • a residual stress meter FLX2320 from TENCOR
  • the amount of warpage of the silicon wafer to which the resin film is attached was measured using a residual stress meter, and the absolute value of the difference from the warp amount of the wafer was expressed in advance as a Real Bow value, and the residual stress generated between the silicon wafer and the resin film was measured using a residual stress meter. It was measured.
  • the Bow is defined as the central axis distance between the thickness central plane (thickness central plane) of the measurement sample and the reference plane (best fit plane of thickness central plane), as shown in Figure 1 below, and Bow measurement is performed at room temperature.
  • the sample was measured using a stress analyzer (TENCOR FLX-2320).
  • the polyimide films obtained in Examples 1 to 3 have a thickness direction retardation R th value of 73 nm to 89 nm, a haze of 0.26% to 0.57%, and YI based on a thickness of 10 ⁇ m. It was confirmed that the value was 14.3 to 22.4, the residual stress was 30.4 MPa to 48 MPa, and the Bow was 30.11 ⁇ m to 47.6 ⁇ m. On the other hand, the polyimide film obtained in Comparative Example 1 had a thickness direction retardation R th value based on a thickness of 10 ⁇ m.
  • the polyimide film (based on a thickness of 10 ⁇ m) obtained in Comparative Example 3 had a problem of not realizing a high level of flatness as the residual stress was 55.7 MPa and the bow was 52.3 ⁇ m, which was increased compared to the example.
  • the polyimide films obtained in Examples 1 to 3 have a thickness direction retardation R th value of 65 nm to 79 nm, YI of 8.4 to 10.8, and residual stress of 41.7 MPa to 48.9 MPa, based on a thickness of 5 ⁇ m, It was confirmed that Bow was 22.49 ⁇ m to 24.7 ⁇ m.
  • the polyimide film obtained in Comparative Example 1 had a thickness direction retardation R th value of 1200 nm based on a thickness of 5 ⁇ m, which increased sharply compared to the Example, and the polyimide film obtained in Comparative Example 2 had a thickness of 5 ⁇ m.
  • the directional phase difference R th value was 110 nm, which was increased compared to the example, so low phase difference could not be realized.
  • the polyimide film obtained in Comparative Example 2 had a problem of not realizing a high level of flatness because the bow increased to 26.8 ⁇ m compared to the example, based on a thickness of 5 ⁇ m.
  • the polyimide film (based on a thickness of 5 ⁇ m) obtained in Comparative Example 3 had a problem of not being able to achieve a high level of flatness because the residual stress was 52.8 MPa and the bow was 32.41 ⁇ m, which was increased compared to the example.
  • the polyimide films obtained in Examples 1 to 3 have a thickness direction retardation R th value of 20 nm to 29 nm, YI of 3.3 to 4.48, and residual stress of 41.3 MPa to 48.6 MPa, based on a thickness of 2 ⁇ m, It was confirmed that Bow was 11.2 ⁇ m to 11.85 ⁇ m.
  • the polyimide film obtained in Comparative Example 1 failed to realize a low retardation as the thickness direction retardation R th value increased sharply to 542 nm, based on a thickness of 2 ⁇ m, compared to the Example, and the polyimide film obtained in Comparative Example 2 had a thickness of 542 nm. Based on 2 ⁇ m, the thickness direction retardation R th value increased to 53 nm compared to the example, and the bow increased to 12.2 ⁇ m compared to the example, resulting in a problem of not realizing a high level of flatness.
  • the polyimide film (based on a thickness of 2 ⁇ m) obtained in Comparative Example 3 had a residual stress of 53.6 MPa and a bow of 14.99 ⁇ m, which was increased compared to the example, so there was a problem in that it could not achieve a high level of flatness.
  • the polyimide film obtained in Comparative Example 4 failed to implement a low phase difference because the thickness direction retardation R th value increased compared to the example based on a thickness of 10 ⁇ m, and the residual stress based on a thickness of 10 ⁇ m, 5 ⁇ m, and 2 ⁇ m. , and Bow increased compared to the embodiment, so there was a problem that a high level of flatness could not be achieved.
  • the polyimide film obtained in Comparative Example 5 failed to implement low phase difference because the thickness direction retardation R th value increased compared to the example based on the thickness of 10 ⁇ m, 5 ⁇ m, and 2 ⁇ m
  • the polyimide film obtained in Comparative Example 6, similar to Comparative Example 3 had a problem of failing to achieve a high level of flatness due to increased residual stress and bow compared to the example based on thicknesses of 10 ⁇ m, 5 ⁇ m, and 2 ⁇ m. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 화학식1로 표시되는 폴리이미드 반복단위 및 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하는 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 관한 것이다.

Description

폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
관련 출원(들)과의 상호 인용
본 출원은 2022년 3월 10일자 한국 특허 출원 제10-2022-0030175호 및 2023년 3월 9일자 한국 특허 출원 제10-2023-0031292호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 우수한 휨 특성 및 낮은 위상차를 구현할 수 있는 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 관한 것이다.
표시 장치 시장은 대면적이 용이하고 박형 및 경량화가 가능한 평판디스플레이(Flat Panel Display; FPD) 위주로 급속히 변화하고 있다. 이러한 평판디스플레이에는 액정 표시 장치(Liquid Crystal Display; LCD), 유기 발광 표시 장치(Organic Light Emitting Display; OLED) 또는 전기 영동 표시 장치(electrophoretic display; EPD) 등이 있다.
특히, 최근 들어서는 이러한 평판 디스플레이의 응용과 용도를 더욱확장하기 위해, 상기 평판 디스플레이에 가요성 기판을 적용한 소위 플렉서블 디스플레이 소자 등에 관한 관심이 집중되고 있다. 이러한 플렉서블 디스플레이 소자는 주로 스마트 폰 등 모바일 기기를 중심으로 적용이 검토되고 있으며, 점차로 그 응용 분야가 확장되고 있다.
일반적으로, 플렉스블 디스플레이 소자 및 조명 소자를 제작함에 있어서 경화된 폴리이미드 위에 buffer layer, active layer, gate insulator등 다층의 무기막을 성막하여 TFT 소자를 제조하고 있다.
그러나, 기존에 사용되는 폴리이미드 수지는 면방향의 굴절율이 크고 두께방향의 굴절율과 큰 차이가 존재한다. 이로 인해 폴리이미드는 이방성 성질을 가짐에 따라, 빛의 왜곡현상이 생겨 시감성을 크게 저하시키는 한계가 있다.
또한, 폴리이미드층(기판층)에 포함되는 폴리이미드 재료는 400 ℃ 이상의 고온에서 경화시 폴리이미드의 열화에 따른 광학특성 감소가 발생하거나, 물리적으로 비틀어지는 휨 특성으로 인해 평탄성을 확보하기 어려운 한계가 있었다.
이에, 면방향, 두께방향의 굴절율 차이를 줄여 시감성을 향상시키면서 우수한 휨 특성을 만족할 수 있는 새로운 폴리이미드 개발이 요구되고 있다.
본 발명은 우수한 휨 특성 및 낮은 위상차를 구현할 수 있는 폴리이미드계 수지 필름에 관한 것이다.
또한, 본 발명은 상기 폴리이미드계 수지 필름을 이용한 디스플레이 장치용 기판, 및 광학 장치를 제공하기 위한 것이다.
상기 과제를 해결하기 위하여, 본 명세서에서는, 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하고, 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 55 MPa 이하이고, 10 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인 폴리이미드계 수지 필름이 제공된다.
[화학식 1]
Figure PCTKR2023003301-appb-img-000001
상기 화학식1에서, X1은 방향족 4가 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
[화학식 2]
Figure PCTKR2023003301-appb-img-000002
상기 화학식2에서, X2은 방향족 4가 작용기이며, Y2은 다중고리를 함유한 방향족 2가 작용기이다.
본 명세서에서는 또한, 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하고, 5 ㎛ 두께에서의 Bow 값이 25 ㎛ 이하이고, 5 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인 폴리이미드계 수지 필름이 제공된다.
[화학식 1]
Figure PCTKR2023003301-appb-img-000003
상기 화학식1에서, X1은 방향족 4가 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
[화학식 2]
Figure PCTKR2023003301-appb-img-000004
상기 화학식2에서, X2은 방향족 4가 작용기이며, Y2은 다중고리를 함유한 방향족 2가 작용기이다.
본 명세서에서는 또한, 상기 폴리이미드계 수지 필름을 포함하는, 디스플레이 장치용 기판이 제공된다.
본 명세서에서는 또한, 상기 폴리이미드계 수지 필름을 포함하는, 광학 장치 가 제공된다.
이하 발명의 구체적인 구현예에 따른 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 대하여 보다 상세하게 설명하기로 한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
그리고, 본 명세서에서 '제 1' 및 '제 2'와 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용되며, 상기 서수에 의해 한정되지 않는다. 예를 들어, 본 발명의 권리 범위 내에서 제 1 구성요소는 제 2 구성요소로도 명명될 수 있고, 유사하게 제 2 구성요소는 제 1 구성요소로 명명될 수 있다.
본 명세서에서 (공)중합체는 중합체 또는 공중합체를 모두 포함하는 의미이며, 상기 중합체는 단일 반복단위로 이루어진 단독중합체를 의미하고, 공중합체는 2종 이상의 반복단위를 함유한 복합중합체를 의미한다.
본 명세서에서, 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에서, "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정되지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 1차 아미노기; 카르복시기; 술폰산기; 술폰아미드기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알콕시실릴알킬기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서,
Figure PCTKR2023003301-appb-img-000005
, 또는
Figure PCTKR2023003301-appb-img-000006
는 다른 치환기에 연결되는 결합을 의미하고, 직접결합은 L 로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다.
본 명세서에 있어서, 방향족(aromatic)은 휘켈 규칙(Huckels Rule)을 만족하는 특성으로서, 상기 휘켈 규칙에 따라 다음 3가지 조건을 모두 만족하는 경우를 방향족이라고 정의할 수 있다.
1) 비어있는 p-오비탈, 불포화 결합, 홀전자쌍 등에 의하여 완전히 콘주게이션을 이루고 있는 4n+2개의 전자가 존재하여야 한다.
2) 4n+2개의 전자는 평면 형태 이성질체를 구성하여야 하고, 고리 구조를 이루어야 한다.
3) 고리의 모든 원자가 콘주게이션에 참여할 수 있어야 한다.
본 명세서에 있어서, 다가 작용기(multivalent functional group)는 임의의 화합물에 결합된 복수의 수소 원자가 제거된 형태의 잔기로 예를 들어 2가 작용기, 3가 작용기, 4가 작용기를 들 수 있다. 일 예로, 사이클로부탄에서 유래한 4가의 작용기는 사이클로부탄에 결합된 임의의 수소 원자 4개가 제거된 형태의 잔기를 의미한다.
본 명세서에 있어서, 아릴기는 아렌(arene)으로부터 유래한 1가의 작용기로, 특별히 한정되지 않으나 탄소수 6 내지 20인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 아릴기는 치환 또는 비치환될 수 있으며, 치환되는 경우 치환기의 예시는 상술한 바와 같다.
본 명세서에서, 직접결합 또는 단일결합은 해당 위치에 어떠한 원자 또는 원자단도 존재하지 않아, 결합선으로 연결되는 것을 의미한다. 구체적으로, 화학식 중 L1, L2로 표시되는 부분에 별도의 원자가 존재하지 않은 경우를 의미한다.
본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 의 값을 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
이하, 본 발명을 보다 상세히 설명한다.
1. 폴리이미드계 수지 필름
발명의 일 구현예에 따르면, 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하고, 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 55 MPa 이하이고, 10 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인 폴리이미드계 수지 필름이 제공될 수 있다.
[화학식 1]
Figure PCTKR2023003301-appb-img-000007
상기 화학식1에서, X1은 방향족 4가 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
[화학식 2]
Figure PCTKR2023003301-appb-img-000008
상기 화학식2에서, X2은 방향족 4가 작용기이며, Y2은 다중고리를 함유한 방향족 2가 작용기이다.
본 발명자들은 상기 일 구현예의 폴리이미드계 수지 필름과 같이 상기 화학식1로 표시되는 폴리이미드 반복단위 및 상기 화학식2로 표시되는 폴리이미드 반복단위를 동시에 포함하게 되면, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생을 최소화하여 평탄성 및 치수안정성이 높아 패널공정시 들뜸현상에 의한 불량을 해결할 수 있으며, 동시에 광학적 등방성이 높아져 낮은 위상차를 구현함으로서, 폴리이미드계 수지 필름이 적용된 디스플레이 대각 시야각을 확보하여 빛의 왜곡 현상으로 인한 시감성 저하를 막을 수 있음을 실험을 통해 확인하고 발명을 완성하였다.
특히, 상기 폴리이미드계 수지는 상기 화학식2로 표시되는 구조와 같이, 방향족 테트라카르복시산 이무수물, 및 다중고리를 함유한 방향족 디아민의 이미드화 반응을 통해 얻어지는 반응 생성물을 포함하여, 다중고리를 함유한 방향족 디아민의 구조에 따른 물리, 화학적 작용에 의해 고내열성을 확보하여, 400 ℃ 이상의 고온에서 열처리를 통한 경화된 필름에서뿐만 아니라, 경화된 필름에 대해 추가적인 400 ℃ 이상의 고온에서 열처리시에도 우수한, 평탄성이 달성되는 것으로 보인다. 또한, 다중고리에 의해 입체장애가 증가된 대칭성 구조가 폴리이미드 사슬 구조에 도입됨으로써, 면 방향과 두께 방향의 굴절률 차이를 줄임으로서 저위상차를 구현할 수 있다.
또한, 상기 폴리이미드계 수지는 상기 화학식1로 표시되는 구조와 같이, 방향족 테트라카르복시산 이무수물, 및 탄소수 6 내지 10의 방향족 디아민의 이미드화 반응을 통해 얻어지는 반응 생성물을 포함하여, 굽은 형태의 비대칭성 구조를 갖는 탄소수 6 내지 10의 방향족 디아민에 의해 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 저위상차가 달성되는 것으로 보인다.
보다 구체적으로, 평면 직선형 주사슬 구조를 갖는 폴리이미드의 경우 폴리이미드끼리 나란히 packing 되어 쌓이기 때문에 두께방향 굴절률이 낮은 반면, 굽은 형태로 비대칭성 구조가 폴리이미드 사슬 구조에 도입됨에 따라 두께방향으로 배열을 유지할 수 있어, 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 저위상차를 구현할 수 있다.
본 발명에 따른 폴리이미드계 수지 필름은 굴절율을 상승시킬 수 있으며, 플렉서블 디스플레이 소자에서 기판층으로서 사용되어, 소자를 구성하는 각 층과의 굴절율의 차이를 감소시킬 수 있으며, 이로부터, 내부에서 소멸되는 빛의 양을 줄여주어, 빛의 방출(bottom emission) 효율을 효과적으로 증대시킬 수 있다.
구체적으로, 상기 폴리이미드계 수지 필름은 폴리이미드계 수지를 포함할 수 있다. 상기 폴리이미드계 수지는 폴리이미드, 그리고 이의 전구체 중합체인 폴리아믹산, 폴리아믹산 에스테르를 모두 포함한 것을 의미한다. 즉, 상기 폴리이미드계 고분자는 폴리아믹산 반복단위, 폴리아믹산에스테르 반복단위, 및 폴리이미드 반복단위로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 즉, 상기 폴리이미드계 고분자는 폴리아믹산 반복단위 1종, 폴리아믹산에스테르 반복단위 1종, 폴리이미드 반복단위 1종, 또는 이들의 2종 이상의 반복단위가 혼합된 공중합체를 포함할 수 있다.
상기 폴리아믹산 반복단위, 폴리아믹산에스테르 반복단위, 및 폴리이미드 반복단위로 이루어진 군에서 선택된 1종 이상의 반복단위는 상기 폴리이미드계 고분자의 주쇄를 형성할 수 있다.
상기 폴리이미드계 수지 필름은 폴리이미드계 수지의 경화물을 포함할 수 있다. 상기 폴리이미드계 수지의 경화물은 상기 폴리이미드계 수지의 경화공정을 거쳐 얻어지는 생성물을 의미한다.
특히, 상기 폴리이미드계 수지는 하기 화학식1로 표시되는 폴리이미드 반복단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2023003301-appb-img-000009
상기 화학식1에서, X1은 방향족 4가 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이다.
상기 화학식1에서, X1은 방향족 4가 작용기이며, 상기 X1은 폴리이미드계 수지 합성에 사용되는 테트라카르복시산 이무수물 화합물로부터 유도된 작용기이다.
상기 X2는 하기 화학식5로 표시되는 4가의 작용기 중 하나일 수 있다.
[화학식5]
Figure PCTKR2023003301-appb-img-000010
상기 화학식 5에서, R1 내지 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이고, L3는 단일결합, -O-, -CO-, -COO-, -S-, -SO-, -SO2-, -CR7R8-, -(CH2)t-, -O(CH2)tO-, -COO(CH2)tOCO-, -CONH-, 페닐렌, 또는 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며, 상기에서 R7 및 R8는 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 또는 탄소수 1 내지 10의 할로 알킬기 중 하나이고, t는 1 내지 10의 정수이다.
상기 화학식5로 표시되는 작용기의 구체적인 예로는 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3',4,4'-Biphenyltetracarboxylic dianhydride, BPDA)로부터 유래한 하기 화학식5-1로 표시되는 작용기를 들 수 있다.
[화학식5-1]
Figure PCTKR2023003301-appb-img-000011
상기 방향족 4가 작용기로 상기 화학식5-1로 표시되는 작용기를 포함하게 되면, 다른 bulky한 구조를 가진 무수물(예를 들어, BPAF, 6FDA)로부터 유래된 작용기 보다 linear한 구조를 가지기 때문에 열팽창계수(CTE)가 낮춰 400 ℃ 이상의 고온 경화시 휨 발생을 억제함으로 인해 필름 상에 소자를 적층하기에 적당한 평탄도를 가져 후속 공정이 가능할 수 있다.
한편, 상기 화학식1에서, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고, 상기 Y1은 폴리아믹산, 폴리아믹산에스테르, 또는 폴리이미드 합성시 사용되는 디아민 화합물로부터 유래한 작용기일 수 있다.
상기 탄소수 6 내지 10의 방향족 2가 작용기는 페닐렌기를 포함할 수 있다. 보다 구체적으로, 상기 Y1의 탄소수 6 내지 10의 방향족 2가 작용기는 하기 화학식3으로 표시되는 작용기를 포함할 수 있다.
[화학식 3]
Figure PCTKR2023003301-appb-img-000012
하기 화학식3으로 표시되는 작용기의 구체적인 예로는 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA)로부터 유래한 하기 화학식 3-1로 표시되는 작용기를 들 수 있다.
[화학식 3-1]
Figure PCTKR2023003301-appb-img-000013
상기 화학식 3-1로 표시되는 작용기를 상기 Y1에 포함하게 되면, 굽은 형태로 비대칭성 구조가 폴리이미드 사슬 구조에 도입됨에 따라 두께방향으로 배열을 유지할 수 있어, 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 저위상차를 구현할 수 있다.
반면, 굽은 형태의 비대칭 구조를 갖지 않는 p-페닐렌디아민 (1,4-phenylenediamine, p-PDA)로부터 유래한 작용기를 상기 Y1에 포함하게 되면, 상술한 굽은 비대칭성 구조 구현이 어려워 평면 일직선 방향으로 폴리이미드가 중합되면서 고분자가 면방향으로만 성장하기 때문에 고분자끼리 packing이 잘 되면서 두께 방향의 굴절율이 감소하여, 면 방향과 두께 방향의 굴절율 차이가 증가하는 문제가 발생할 수 있다.
한편, 상기 폴리이미드계 수지는 상기 화학식1로 표시되는 폴리이미드 반복단위 이외에, 하기 화학식 2로 표시되는 폴리이미드 반복단위를 더 포함할 수 있다. 즉, 상기 폴리이미드계 수지는 상기 화학식1로 표시되는 폴리이미드 반복단위 및, 하기 화학식 2로 표시되는 폴리이미드 반복단위를 포함할 수 있다.
[화학식 2]
Figure PCTKR2023003301-appb-img-000014
상기 화학식 4 에서, X2는 방향족 4가 작용기이며, Y2은 다중고리를 함유한 방향족 2가 작용기이다.
상기 X2는 상기 화학식1의 X1과 동일하다.
상기 화학식2에서, Y2은 다중고리를 함유한 방향족 2가 작용기이며, 상기 Y2은 폴리이미드계 수지 합성에 사용되는 디아민 화합물로부터 유도된 작용기이다.
보다 구체적으로, 상기 Y2의 2가의 작용기는 하기 화학식4로 표시되는 2가의 작용기를 포함할 수 있다.
[화학식4]
Figure PCTKR2023003301-appb-img-000015
상기 화학식4에서, Ar은 다중고리 방향족 2가 작용기이다. 상기 다중고리 방향족 2가 작용기는 다중고리 방향족 탄화수소(polycyclic aromatic hydrocarbon) 화합물로 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
보다 구체적으로, 상기 화학식4의 Ar에서, 다중고리 방향족 2가 작용기는 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기를 포함할 수 있다. 즉, 상기 다중고리 방향족 2가 작용기는, 작용기 구조내에 적어도 2이상의 방향족 고리 화합물이 함유되고, 뿐만 아니라 작용기가 접합 고리(fused ring) 구조를 가질 수 있다.
상기 방향족 고리 화합물은 1이상의 벤젠고리를 함유한 아렌 화합물, 또는 상기 아렌 화합물 내 탄소원자가 헤테로원자로 대체된 헤테로 아렌 화합물을 포함할 수 있다.
상기 방향족 고리 화합물은 다중고리 방향족 2가 작용기 내에 적어도 2이상 함유될 수 있으며, 상기 2이상의 방향족 고리 화합물 각각은 직접 접합 고리를 형성하거나, 혹은 다른 고리 구조를 매개로 접합고리를 형성할 수 있다. 일례로 2개의 벤젠고리가 시클로알킬고리구조에 각각 접합되는 경우, 시클로알킬 고리를 매 개로 2개의 벤젠고리가 접합고리를 형성했다고 정의할 수 있다.
상기 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리형 2가 작용기는 적어도 2이상의 방향족 고리 화합물이 함유된 접합 고리 화합물 또는 이의 유도체 화합물로부터 유래된 2가의 작용기로서, 상기 유도체 화합물은 1이상의 치환기가 도입되거나, 탄소원자가 헤테로원자로 대체된 화합물을 모두 포함한다.
상기 화학식4의 Ar에서, 다중고리 방향족 2가 작용기는 플루오레닐렌기를 포함할 수 있다. 상기 화학식4로 표시되는 작용기의 구체적인 예로는 9,9'-비스(4-아미노페닐)플루오렌(9,9'-bis(4-aminophenyl)fluorene, FDA)로부터 유래한 하기 화학식 4-1로 표시되는 작용기를 들 수 있다.
[화학식 4-1]
Figure PCTKR2023003301-appb-img-000016
상기 다중고리를 함유한 방향족 2가 작용기를 상기 Y2에 포함하게 되면, 다중고리에 의해 입체장애가 증가된 대칭성 구조가 폴리이미드 사슬 구조에 도입됨으로써, 열에 의한 변형을 완화시켜 내열성을 향상시킬 수 있으며, 다중고리에 의해 두께방향으로 입체장애가 증가된 bulky한 구조가 폴리이미드 사슬 구조에 도입됨으로써, 두께방향으로 굴절률을 높여 면 방향과 두께 방향의 굴절률 차이를 줄임으로서 저위상차를 구현할 수 있고, 분자간 packing을 억제하여 높은 투과도를 구현할 수 있다.
상기 폴리이미드계 수지는 방향족 테트라카르복시산 이무수물, 탄소수 6 내지 10의 방향족 디아민, 및 다중고리를 함유한 방향족 디아민의 결합물을 포함할 수 있다.
상기 방향족 테트라카르복시산 이무수물은 상술한 방향족 4가 작용기의 양말단에 무수물기(-OC-O-CO-)가 도입된 화합물로서, 방향족 4가 작용기에 대한 설명은 상술한 바와 같다.
상기 방향족 테트라카르복시산 이무수물의 구체적인 예로는 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3',4,4'-Biphenyltetracarboxylic dianhydride, BPDA)를 들 수 있다.
상기 탄소수 6 내지 10의 방향족 디아민은 상술한 탄소수 6 내지 10의 방향족 2가 작용기의 양말단에 아미노기(-NH2)가 도입된 화합물로서, 탄소수 6 내지 10의 방향족 2가 작용기에 대한 설명은 상술한 바와 같다. 상기 탄소수 6 내지 10의 방향족 디아민의 구체적인 예로는 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA)을 들 수 있다.
상기 다중고리를 함유한 방향족 디아민은 상술한 다중고리 방향족 2가 작용기의 양말단에 아미노기(-NH2)가 도입된 화합물로서, 다중고리 방향족 2가 작용기에 대한 설명은 상술한 바와 같다. 상기 다중고리를 함유한 방향족 디아민의 구체적인 예로는 9,9'-비스(4-아미노페닐)플루오렌(9,9'-bis(4-aminophenyl)fluorene, FDA)을 들 수 있다.
보다 구체적으로, 상기 폴리이미드계 수지는 상기 방향족 테트라카르복시산 이무수물의 말단 무수물기(-OC-O-CO-)와, 탄소수 6 내지 10의 방향족 디아민 및 다중고리를 함유한 방향족 디아민의 말단 아미노기(-NH2)의 반응으로 아미노기의 질소원자와 무수물기의 탄소원자간 결합이 형성될 수 있다.
한편, 상기 폴리이미드계 고분자는, 디아민 유래 반복단위가 상기 화학식3으로 표시되는 작용기인 화학식1로 표시되는 반복단위를 함유하는 제 1 반복 단위; 및 디아민 유래 반복단위가 상기 화학식4로 표시되는 작용기인 화학식2로 표시되는 반복단위를 함유한 제 2 반복 단위;를 포함할 수 있다. 상기 제1 반복 단위 및 제 2 반복 단위는 상기 폴리이미드계 고분자 내에서 랜덤하게 배열하여 랜덤 공중합체를 이루거나, 제1 반복단위 간의 블록, 제2 반복단위 간의 블록을 형성하며 블록 공중합체를 이룰 수 있다.
상기 화학식 1로 표시되는 반복 단위 및 상기 화학식 2로 표시되는 반복 단위를 포함한 폴리이미드계 고분자는 테트라카르복시산 이무수물 화합물과 함께 서로 다른 2종 이상의 디아민 화합물을 반응시켜 제조할 수 있으며, 상기 2종의 디아민 화합물을 동시에 첨가하여 랜덤 공중합체를 합성하거나, 순차적으로 첨가하여 블록 공중합체를 합성할 수 있다.
상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 9:1 내지 1:9, 또는 9:1 내지 2:1, 또는 6:1 내지 2:1, 또는 6:1 내지 3.5:1, 또는 3.5:1 내지 2:1, 또는 1:2 내지 1:9, 또는 1:2 내지 1:6, 또는 1:3 내지 1:5일 수 있다.
우수한 휨 특성 및 무색 투명의 우수한 광학특성을 구현할 수 있으며, 동시에 낮은 두께 방향의 위상차(Rth) 특성을 통해 광학적 등방성이 높아져, 상기 폴리이미드계 수지 필름이 적용된 디스플레이 대각 시야각을 확보함에 따라, 빛의 왜곡 현상으로 인한 시감성 저하를 막을 수 있다.
반면, 상기 화학식1로 표시되는 폴리이미드 반복단위가 지나치게 소량 함유되어 상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 1:9를 벗어나는 경우, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생이 커짐으로 인해 필름 상에 소자를 적층하기 어려워지므로 후속 공정이 불가능해질 수 있다.
또한, 상기 화학식2로 표시되는 폴리이미드 반복단위가 지나치게 소량 함유되어 상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 9:1를 벗어나는 경우, 두께 방향 위상차 Rth값이 증가하면서 위상차 증가에 따른 빛의 왜곡 현상으로 인해 시감성이 저하되는 문제가 있고, 필름 헤이즈가 증가하여 투명특성이 저하되는 등 광학 특성이 불량해질 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 상기 폴리이미드계 수지가 400 ℃ 이상의 온도에서 경화된 경화물을 포함할 수 있다. 상기 경화물은 상기 폴리이미드계 수지가 함유된 수지 조성물의 경화공정을 거쳐 얻어진 물질을 의미하며, 상기 경화공정은 400 ℃ 이상, 또는 400 ℃ 이상 500 ℃ 이하의 온도에서 진행될 수 있다.
상기 화학식 1로 표시되는 폴리이미드 반복단위 및 화학식 2로 표시되는 폴리이미드 반복단위는 폴리이미드계 수지에 함유된 전체 반복단위 대비 70몰% 이상, 또는 80몰% 이상, 또는 90몰% 이상, 또는 91몰% 이상, 또는 92몰% 이상, 또는 93몰% 이상, 또는 94몰% 이상, 또는 95몰% 이상, 또는 96몰% 이상, 또는 97몰% 이상, 또는 98몰% 이상, 또는 99몰% 이상, 또는 100몰%이하, 또는 70몰% 이상 100몰%이하, 80몰% 이상 100몰%이하, 또는 91몰% 이상 100몰%이하, 또는 92몰% 이상 100몰%이하, 또는 93몰% 이상 100몰%이하, 또는 94몰% 이상 100몰%이하, 또는 95몰% 이상 100몰%이하, 또는 96몰% 이상 100몰%이하, 또는 97몰% 이상 100몰%이하, 또는 98몰% 이상 100몰%이하, 또는 99몰% 이상 100몰%이하로 함유될 수 있다.
즉, 상기 폴리이미드계 수지는 상기 화학식 1로 표시되는 폴리이미드 반복단위 및 화학식 2로 표시되는 폴리이미드 반복단위만으로 이루어져 있거나, 대부분이 상기 화학식 1로 표시되는 폴리이미드 반복단위 및 화학식 2로 표시되는 폴리이미드 반복단위로 이루어질 수 있다.
상기 폴리이미드계 수지의 중량평균 분자량(GPC측정)이 크게 한정되는 것은 아니나, 예를 들어, 1000 g/mol 이상 200000 g/mol 이하, 또는 10000 g/mol 이상 200000 g/mol 이하일 수 있다.
본 발명에 따른 폴리이미드계 수지는 강직한 구조에 의한 내열성, 기계적 강도 등의 특성을 그대로 유지하면서, 우수한 무색 투명한 특성을 나타낼 수 있어, 소자용 기판, 디스플레이용 커버기판, 광학 필름(optical film), IC(integrated circuit) 패키지, 전착 필름(adhesive film), 다층 FRC(flexible printed circuit), 테이프, 터치패널, 광디스크용 보호필름 등과 같은 다양한 분야에 사용될 수 있으며, 특히 디스플레이용 커버기판에 적합할 수 있다.
보다 구체적으로 상기 폴리이미드계 수지 필름을 합성하는 방법의 예가 크게 한정되는 것은 아니며, 예를 들어, 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 도막을 형성하는 단계(단계 1); 상기 도막을 건조하는 단계(단계 2); 상기 건조된 도막을 열처리하여 경화하는 단계(단계 3)를 포함하는, 필름의 제조 방법을 사용할 수 있다.
상기 단계 1은, 상술한 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 도막을 형성하는 단계이다. 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하는 방법은 특별히 제한되지 않으며, 예컨대 스크린 인쇄, 오프셋 인쇄, 플렉소 인쇄, 잉크젯 등의 방법이 이용될 수 있다.
그리고, 상기 폴리이미드계 수지를 함유한 수지 조성물은 유기 용매에 용해 또는 분산시킨 것일 수 있다. 이러한 형태를 갖는 경우, 예를 들어 폴리이미드계 수지를 유기 용매 중에서 합성한 경우에는, 용액은 얻어지는 반응 용액 그 자체여도 되고, 또 이 반응 용액을 다른 용매로 희석한 것이어도 된다. 또, 폴리이미드계 수지를 분말로서 얻은 경우에는, 이것을 유기 용매에 용해시켜 용액으로 한 것이어도 된다.
상기 유기 용매의 구체적인 예로는 톨루엔, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, N-메틸카프로락탐, 2-피롤리돈, N-에틸피롤리돈, N-비닐피롤리돈, 디메틸술폭사이드, 테트라메틸우레아, 피리딘, 디메틸술폰, 헥사메틸술폭사이드, 감마-부티로락톤, 3-메톡시-N,N-디메틸프로판아미드, 3-에톡시-N,N-디메틸프로판아미드, 3-부톡시-N,N-디메틸프로판아미드, 1,3-디메틸-이미다졸리디논, 에틸아밀케톤, 메틸노닐케톤, 메틸에틸케톤, 메틸이소아밀케톤, 메틸이소프로필케톤, 사이클로헥사논, 에틸렌카보네이트, 프로필렌카보네이트, 디글라임, 4-하이드록시-4-메틸-2-펜타논, 에틸렌 글리콜 모노메틸 에테르, 에틸렌 글리콜 모노메틸 에테르 아세테이트, 에틸렌 글리콜 모노에틸 에테르, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노프로필 에테르, 에틸렌 글리콜 모노프로필 에테르 아세테이트, 에틸렌 글리콜 모노이소프로필 에테르, 에틸렌 글리콜 모노이소프로필 에테르 아세테이트, 에틸렌 글리콜 모노뷰틸 에테르, 에틸렌 글리콜 모노뷰틸 에테르 아세테이트 등을 들 수 있다. 이들은 단독으로 사용될 수도 있고, 혼합하여 사용될 수도 있다.
상기 폴리이미드계 수지를 함유한 수지 조성물은 필름 형성 공정시의 도포성 등의 공정성을 고려하여 적절한 점도를 갖도록 하는 양으로 고형분을 포함할 수 있다. 예를 들어, 전체 수지의 함량이 5 중량% 이상 25 중량% 이하가 되도록 조성물의 함량을 조절할 수 있으며, 또는 5 중량% 이상 20 중량% 이하, 또는 5 중량% 이상 15 중량% 이하로 조절할 수 있다.
또한, 상기 폴리이미드계 수지를 함유한 수지 조성물은 유기 용매 외에 다른 성분을 추가로 포함할 수 있다. 비제한적인 예로, 상기 폴리이미드계 수지를 함유한 수지 조성물이 도포되었을 때, 막 두께의 균일성이나 표면 평활성을 향상시키거나, 혹은 기판과의 밀착성을 향상시키거나, 혹은 유전율이나 도전성을 변화시키거나, 혹은 치밀성을 증가시킬 수 있는 첨가제가 추가로 포함될 수 있다. 이러한 첨가제로는 계면 활성제, 실란계 화합물, 유전체 또는 가교성 화합물 등이 예시될 수 있다.
상기 단계 2는, 상기 폴리이미드계 수지를 함유한 수지 조성물을 기판에 도포하여 형성된 도막을 건조하는 단계이다.
상기 도막의 건조 단계는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 50 ℃ 이상 150 ℃ 이하, 또는 50 ℃ 이상 100 ℃이하 온도로 수행할 수 있다.
상기 단계 3은, 상기 건조된 도막을 열처리하여 경화하는 단계이다. 이때, 상기 열처리는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 200 ℃ 이상, 또는 200 ℃ 이상 300 ℃ 이하, 또는 400 ℃ 이상, 또는 400 ℃ 이상 500 ℃ 이하의 온도로 수행할 수 있다.
상기 폴리이미드계 수지 필름의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1000 ㎛ 이하 범위내에서 자유롭게 조절 가능하다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 55 MPa 이하, 또는 50 MPa 이하, 또는 48 MPa 이하, 또는 40 MPa 이하, 또는 31 MPa 이하, 또는 1 MPa 이상, 또는 1 MPa 내지 55 MPa, 또는 1 MPa 내지 50 MPa, 또는 1 MPa 내지 48 MPa, 또는 1 MPa 내지 40 MPa, 또는 1 MPa 내지 31 MPa, 또는 10 MPa 내지 48 MPa, 또는 20 MPa 내지 48 MPa, 또는 30 MPa 내지 48 MPa, 또는 30.4 MPa 내지 48 MPa, 또는 30.4 MPa 내지 40 MPa, 또는 30.4 MPa 내지 32 MPa, 또는 33 MPa 내지 40 MPa, 또는 41 MPa 내지 48 MPa일 수 있다. 이처럼, 무기소재 기판과의 잔류 응력이 낮아짐에 따라 상기 일 구현예의 폴리이미드계 수지 필름은 잔류응력을 감소시킴으로써 패널공정시 들뜸현상에 의한 불량을 해결할 수 있다.
상기 잔류 응력의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 잔류 응력 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, 폴리이미드계 수지 필름에 대하여 잔류응력 측정기를 이용하여 잔류 응력을 측정할 수 있다. 또한 상기 무기소재 기판의 일례로는 웨이퍼 기판을 들 수 있다.
상기 잔류 응력은 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 폴리이미드계 수지 필름의 10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 55 MPa 초과 등으로 지나치게 증가하면, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생으로 인해 패널공정시 들뜸현상에 의한 불량이 발생할 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 이하, 또는 90 nm 이하, 또는 80 nm 이하, 또는 73 nm 이하, 또는 1 nm 이상, 또는 1 nm 내지 100 nm, 또는 1 nm 내지 90 nm, 또는 1 nm 내지 80 nm, 또는 1 nm 내지 73 nm, 또는 73 nm 내지 89 nm, 또는 73 nm 내지 79 nm, 또는 80 nm 내지 89 nm, 또는 80 nm 내지 85 nm, 또는 86 nm 내지 89 nm일 수 있다. 이처럼, 낮은 두께 방향의 위상차(Rth) 특성을 통해 광학적 등방성이 높아져, 상기 폴리이미드계 수지 필름이 적용된 디스플레이 대각 시야각을 확보하여 우수한 시감성이 구현될 수 있다.
이러한 저위상차는 후술하는 바와 같이 폴리이미드계 수지 필름 제조에 사용되는 단량체로 비대칭성 구조를 갖는 디아민인 m-PDA(m-Phenylenediamine)를 사용하여 면 방향과 두께 방향의 굴절율 차이를 줄임으로서 달성되는 것으로 보인다.
보다 구체적으로, 평면 직선형 주사슬 구조를 갖는 폴리이미드의 경우 폴리이미드끼리 나란히 packing 되어 쌓이기 때문에 두께방향 굴절률이 낮은 반면, 굽은형의 꺾인 주사슬 구조를 가진 폴리이미드는 분자끼리 packing이 잘 되지 않기 때문에 두께방향으로의 굴절률이 증가할 수 있다.
상기 두께방향의 위상차는 532 nm 파장에 대해 측정한 것일 수 있고, 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 두께방향의 위상차 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다.
상기 두께방향의 위상차는 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
구체적으로, 두께 방향 위상차 Rth는 다음의 수학식1를 통해 계산할 수 있다.
[수학식1]
Rth (nm) = |[(nx + ny) / 2] - nz | ×d
상기 수학식1에서, nx 는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율이며; ny는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드계 수지 필름의 두께이다.
즉, 상기 두께 방향 위상차 Rth는 두께방향 굴절율 값(nz)과 평면굴절율 값의 평균값 [(nx+ny)/2]의 차이의 절대값을 필름 두께에 곱하여 얻은 값으로서, 두께방향 굴절율 값(nz)과 평면굴절율 값의 평균값 [(nx+ny)/2]의 차이가 작을수록 낮은 값을 나타낼 수 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 이하를 만족함에 따라, 상기 폴리이미드계 수지 필름이 적용된 디스플레이 상에서 두께방향 굴절율 값(nz)과 평면굴절율 값의 평균값 [(nx+ny)/2]의 차이가 적어짐에 따라 우수한 시감성이 구현될 수 있다.
상기 폴리이미드계 수지 필름이 10 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 초과 등으로 지나치게 증가하게 되면, 투명한 디스플레이 구현 시 상부에 폴리이미드가 존재하는 구조에서 빛이 투과 시 왜곡 현상이 발생하여, 기술적으로 최대 45nm까지 보상하는 보상필름으로도 투과되는 빛의 굴절을 보정할 수 없는 기술적 한계가 있다.
한편, 상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 헤이즈 값이 10% 이하, 또는 1% 이하, 또는 0.1% 이상, 또는 0.1% 내지 10%, 또는 0.1% 내지 1%, 또는 0.26% 내지 0.57%, 또는 0.26% 내지 0.4%, 또는 0.41% 내지 0.54%, 또는 0.55% 내지 0.57%일 수 있다. 상기 헤이즈는 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 Bow 값이 50 ㎛ 이하, 또는 48 ㎛ 이하, 또는 35 ㎛ 이하, 또는 31 ㎛ 이하, 또는 1 ㎛ 이상, 또는 1 ㎛ 내지 50 ㎛, 또는 1 ㎛ 내지 48 ㎛, 또는 1 ㎛ 내지 35 ㎛, 또는 1 ㎛ 내지 31 ㎛, 또는 10 ㎛ 내지 48 ㎛, 또는 20 ㎛ 내지 48 ㎛, 또는 30.11 ㎛ 내지 47.6 ㎛, 또는 30.11 ㎛ 내지 40 ㎛, 또는 30.11 ㎛ 내지 32 ㎛, 또는 33 ㎛ 내지 40 ㎛, 또는 41 ㎛ 내지 47.6 ㎛일 수 있다. 상기 Bow는 구부러짐 혹은 보우로 지칭하기도 하며, 재료의 표면 평탄성 특성의 일종으로 이에 대한 구체적인 설명, 예를 들어 구체적인 측정방법 등은 반도체 웨이퍼 기판 제조분야에서 널리 알려진 다양한 방법을 제한없이 적용할 수 있다.
구체적으로, 상기 Bow(3)는 하기 도면1에 나타난 바와 같이 두께 중심 면(1)(thickness central plane)과 기준면(2)(reference plane(Best fit plane of thickness central plane)) 사이의 중심축(4)상 거리로 정의될 수 있다.
상기 두께 중심면(1)은 하기 도면1에 나타난 바와 같이, 측정 대상에서 두께(t)의 절반(t/2)이 되는 지점을 연결한 면을 의미한다.
상기 기준면(2)은 하기 도면1에 나타난 바와 같이, 측정 대상 양 말단의 두께 중심점을 연결한 직선에 의한 단면을 의미한다.
상기 중심축(4)은 하기 도면1에 나타난 바와 같이, 측정 대상의 무게중심점을 지나는 지평면에 수직한 직선을 의미한다.
상기 Bow(3)를 측정하는 방법의 일례로는 응력 분석기(laser stress analyzer)를 사용할 수 있으며, 상기 응력 분석기는 측정 시료 후면에서 반사된 빛의 강도를 측정하고, 이를 수학적으로 분석하는 방법을 통해 Bow 값을 자동으로 계산하여 구할 수 있다.
상기 Bow는 10±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것일 수 있다.
상기 Bow 측정에 사용되는 폴리이미드계 수지 필름 시료는, 순수한 폴리이미드계 수지 필름; 또는 기재필름 및 상기 기재필름 상에 코팅된 폴리이미드계 수지 필름을 포함한 적층체;를 포함할 수 있다. 상기 기재필름의 예가 크게 한정되는 것은 아니며, 유리기판, 웨이퍼기판, 또는 이들의 혼합물 등이 제한없이 사용될 수 있다.
상기 Bow 측정에 사용되는 폴리이미드계 수지 필름 시료가, 순수한 폴리이미드계 수지 필름만으로 이루어질 경우, 상기 Bow는 폴리이미드계 수지 필름 시료를 응력 분석기(laser stress analyzer)로 분석한 결과를 통해 자동으로 측정가능하다. 예를 들어, 상기 기재필름 및 상기 기재필름 상에 코팅된 폴리이미드계 수지 필름을 포함한 적층체에서 기재필름을 박리하는 공정을 통해, 순수한 폴리이미드계 수지 필름을 확보할 수 있다.
상기 폴리이미드계 수지 필름의 10 ㎛ 두께에서의 Bow 값이 50 ㎛ 초과 등으로 지나치게 증가하면, 400 ℃ 이상의 고온에서 경화를 진행한 폴리이미드 수지 필름에서 휨 발생으로 인해 패널공정시 들뜸현상에 의한 불량이 발생할 수 있다.
또한, 상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 황색 지수가 25 이하, 또는 22 이하, 또는 20 이하, 또는 15 이하, 또는 0.1 이상, 또는 0.1 내지 25, 또는 0.1 내지 22, 또는 0.1 내지 20, 또는 0.1 내지 15, 또는 14.3 내지 22.4, 또는 14.3 내지 19, 또는 20 내지 22.4, 또는 20 내지 21.5, 또는 21.6 내지 22.4일 수 있다. 상기 폴리이미드계 수지 필름의 10 ㎛ 두께에서의 황색 지수가 25 초과 등으로 지나치게 증가하면, 폴리이미드계 수지 필름의 황색 변색도가 증가하여 무색 투명한 필름제조가 어려워지는 한계가 있다.
상기 일 구현예의 황색 지수의 측정방법 및 장비의 예는 구체적으로 한정되지 않고, 종래 YI 측정에 사용된 다양한 방법을 제한없이 적용할 수 있다. 일례를 들면, color meter(GRETAGMACBETH사의 Color-Eye 7000A)를 이용하여 측정할 수 있다.
상기 황색 지수는 두께 10±1 ㎛의 상기 폴리이미드계 수지 필름 시료로부터 측정될 수 있다. 상기 폴리이미드계 수지 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 폴리이미드계 수지 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
한편, 상기 일 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 이하, 또는 90 nm 이하, 또는 80 nm 이하, 또는 70 nm 이하, 또는 68 nm 이하, 또는 65 nm 이하, 또는 1 nm 이상, 또는 1 nm 내지 100 nm, 또는 1 nm 내지 90 nm, 또는 1 nm 내지 80 nm, 또는 1 nm 내지 70 nm, 또는 1 nm 내지 68 nm, 또는 1 nm 내지 65 nm, 또는 65 nm 내지 79 nm, 또는 65 nm 내지 69 nm, 또는 70 nm 내지 79 nm, 또는 70 nm 내지 74 nm, 또는 75 nm 내지 79 nm일 수 있다. 두께 방향의 위상차(Rth)에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
또한, 상기 일 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 52 MPa 이하, 또는 50 MPa 이하, 또는 45 MPa 이하, 또는 43 MPa 이하, 또는 42 MPa 이하, 또는 1 MPa 이상, 또는 1 MPa 내지 52 MPa, 또는 1 MPa 내지 50 MPa, 또는 1 MPa 내지 45 MPa, 또는 1 MPa 내지 43 MPa, 또는 1 MPa 내지 42 MPa, 또는 41.7 MPa 내지 48.9 MPa, 또는 41.7 MPa 내지 44 MPa, 또는 41.7 MPa 내지 42 MPa, 또는 43 MPa 내지 44 MPa, 또는 45 MPa 내지 48.9 MPa일 수 있다. 무기소재 기판과의 잔류 응력에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
또한, 상기 일 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 Bow 값이 25 ㎛ 이하, 또는 24.5 ㎛ 이하, 또는 24 ㎛ 이하, 또는 23 ㎛ 이하, 또는 1 ㎛ 이상, 또는 1 ㎛ 내지 25 ㎛, 또는 1 ㎛ 내지 24.5 ㎛, 또는 1 ㎛ 내지 24 ㎛, 또는 1 ㎛ 내지 23 ㎛, 또는 22.49 ㎛ 내지 24.7 ㎛, 또는 22.49 ㎛ 내지 24.2 ㎛, 또는 22.49 ㎛ 내지 23.2 ㎛, 또는 23.3 ㎛ 내지 24.2 ㎛, 또는 24.3 ㎛ 내지 24.7 ㎛일 수 있다. Bow에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
또한, 상기 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 황색 지수가 15 이하, 또는 13.9 이하, 또는 13 이하, 또는 10 이하, 또는 9 이하, 또는 0.1 이상, 또는 0.1 내지 15, 또는 0.1 내지 13.9, 또는 0.1 내지 13, 또는 0.1 내지 10, 또는 0.1 내지 9, 또는 8.4 내지 10.8, 또는 8.4 내지 9, 또는 9.1 내지 10.8, 또는 9.1 내지 10, 또는 10.1 내지 10.8일 수 있다. 황색지수에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
한편, 상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 Bow 값이 12 ㎛ 미만, 11.9 ㎛ 이하, 또는 11.6 ㎛ 이하, 또는 11.5 ㎛ 이하, 또는 11.2 ㎛ 이하, 또는 1 ㎛ 이상, 또는 1 ㎛ 이상 12 ㎛ 미만, 또는 1 ㎛ 내지 11.9 ㎛, 또는 1 ㎛ 내지 11.6 ㎛, 또는 1 ㎛ 내지 11.5 ㎛, 또는 1 ㎛ 내지 11.2 ㎛, 또는 11.2 ㎛ 내지 11.85 ㎛, 또는 11.2 ㎛ 내지 11.6 ㎛, 또는 11.2 ㎛ 내지 11.3 ㎛, 또는 11.4 ㎛ 내지 11.6 ㎛, 또는 11.7 ㎛ 내지 11.85 ㎛일 수 있다. Bow에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
또한, 상기 일 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 두께방향의 위상차 값이 40 nm 이하, 또는 30 nm 이하, 또는 28 nm 이하, 또는 25 nm 이하, 또는 20 nm 이하, 또는 1 nm 이상, 또는 1 nm 내지 40 nm, 또는 1 nm 내지 30 nm, 또는 1 nm 내지 28 nm, 또는 1 nm 내지 25 nm, 또는 1 nm 내지 20 nm, 또는 20 nm 내지 29 nm, 또는 20 nm 내지 24 nm, 또는 24 nm 내지 29 nm, 또는 24 nm 내지 28 nm, 또는 28 nm 내지 29 nm일 수 있다. 두께 방향의 위상차(Rth)에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
또한, 상기 일 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 또는 50 MPa 이하, 또는 45 MPa 이하, 또는 42 MPa 이하, 또는 1 MPa 이상, 또는 1 MPa 내지 50 MPa, 또는 1 MPa 내지 45 MPa, 또는 1 MPa 내지 42 MPa, 또는 41.3 MPa 내지 48.6 MPa, 또는 41.3 MPa 내지 45 MPa, 또는 41.3 MPa 내지 43 MPa, 또는 43 MPa 내지 45 MPa, 또는 46MPa 내지 48.6 MPa일 수 있다. 무기소재 기판과의 잔류 응력에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
또한, 상기 일 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 황색 지수가 10 이하, 또는 7 이하, 또는 6.5 이하, 또는 5 이하, 또는 0.1 이상, 또는 0.1 내지 10, 또는 0.1 내지 7, 또는 0.1 내지 6.5, 또는 0.1 내지 5, 또는 3.3 내지 4.48, 또는 3.3 내지 3.9, 또는 4 내지 4.48, 또는 4 내지 4.2, 또는 4.2 내지 4.48일 수 있다. 황색 지수에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 일 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상술한 바와 동일하다.
한편, 발명의 다른 구현예에 따르면, 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하고, 5 ㎛ 두께에서의 Bow 값이 25 ㎛ 이하이고, 5 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인 폴리이미드계 수지 필름이 제공될 수 있다.
[화학식 1]
Figure PCTKR2023003301-appb-img-000017
상기 화학식1에서, X1은 방향족 4가 작용기이며, Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
[화학식 2]
Figure PCTKR2023003301-appb-img-000018
상기 화학식2에서, X2은 방향족 4가 작용기이며, Y2은 다중고리를 함유한 방향족 2가 작용기이다.
상기 화학식1로 표시되는 폴리이미드 반복단위, 화학식2로 표시되는 폴리이미드 반복단위, 폴리이미드계 수지에 관한 내용은 상기 일 구현예에서 상술한 내용을 모두 포함할 수 있다.
상기 화학식1로 표시되는 폴리이미드 반복단위와 상기 화학식2로 표시되는 폴리이미드 반복단위간 몰 비율이 9:1 내지 1:9, 또는 9:1 내지 2:1, 또는 6:1 내지 2:1, 또는 6:1 내지 3.5:1, 또는 3.5:1 내지 2:1, 또는 1:2 내지 1:9, 또는 1:2 내지 1:6, 또는 1:3 내지 1:5일 수 있다.
한편, 상기 다른 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 두께방향의 위상차 값이 100 nm 이하, 또는 90 nm 이하, 또는 80 nm 이하, 또는 70 nm 이하, 또는 68 nm 이하, 또는 65 nm 이하, 또는 1 nm 이상, 또는 1 nm 내지 100 nm, 또는 1 nm 내지 90 nm, 또는 1 nm 내지 80 nm, 또는 1 nm 내지 70 nm, 또는 1 nm 내지 68 nm, 또는 1 nm 내지 65 nm, 또는 65 nm 내지 79 nm, 또는 65 nm 내지 69 nm, 또는 70 nm 내지 79 nm, 또는 70 nm 내지 74 nm, 또는 75 nm 내지 79 nm일 수 있다. 두께 방향의 위상차(Rth)에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
또한, 상기 다른 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 52 MPa 이하, 또는 50 MPa 이하, 또는 45 MPa 이하, 또는 43 MPa 이하, 또는 42 MPa 이하, 또는 1 MPa 이상, 또는 1 MPa 내지 52 MPa, 또는 1 MPa 내지 50 MPa, 또는 1 MPa 내지 45 MPa, 또는 1 MPa 내지 43 MPa, 또는 1 MPa 내지 42 MPa, 또는 41.7 MPa 내지 48.9 MPa, 또는 41.7 MPa 내지 44 MPa, 또는 41.7 MPa 내지 42 MPa, 또는 43 MPa 내지 44 MPa, 또는 45 MPa 내지 48.9 MPa일 수 있다. 무기소재 기판과의 잔류 응력에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
또한, 상기 다른 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 Bow 값이 25 ㎛ 이하, 또는 24.5 ㎛ 이하, 또는 24 ㎛ 이하, 또는 23 ㎛ 이하, 또는 1 ㎛ 이상, 또는 1 ㎛ 내지 25 ㎛, 또는 1 ㎛ 내지 24.5 ㎛, 또는 1 ㎛ 내지 24 ㎛, 또는 1 ㎛ 내지 23 ㎛, 또는 22.49 ㎛ 내지 24.7 ㎛, 또는 22.49 ㎛ 내지 24.2 ㎛, 또는 22.49 ㎛ 내지 23.2 ㎛, 또는 23.3 ㎛ 내지 24.2 ㎛, 또는 24.3 ㎛ 내지 24.7 ㎛일 수 있다. Bow에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
또한, 상기 다른 구현예의 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 황색 지수가 15 이하, 또는 13.9 이하, 또는 13 이하, 또는 10 이하, 또는 9 이하, 또는 0.1 이상, 또는 0.1 내지 15, 또는 0.1 내지 13.9, 또는 0.1 내지 13, 또는 0.1 내지 10, 또는 0.1 내지 9, 또는 8.4 내지 10.8, 또는 8.4 내지 9, 또는 9.1 내지 10.8, 또는 9.1 내지 10, 또는 10.1 내지 10.8일 수 있다. 황색지수에 대한 구체적인 내용은 5±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
한편, 상기 다른 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 Bow 값이 12 ㎛ 미만, 11.9 ㎛ 이하, 또는 11.6 ㎛ 이하, 또는 11.5 ㎛ 이하, 또는 11.2 ㎛ 이하, 또는 1 ㎛ 이상, 또는 1 ㎛ 이상 12 ㎛ 미만, 또는 1 ㎛ 내지 11.9 ㎛, 또는 1 ㎛ 내지 11.6 ㎛, 또는 1 ㎛ 내지 11.5 ㎛, 또는 1 ㎛ 내지 11.2 ㎛, 또는 11.2 ㎛ 내지 11.85 ㎛, 또는 11.2 ㎛ 내지 11.6 ㎛, 또는 11.2 ㎛ 내지 11.3 ㎛, 또는 11.4 ㎛ 내지 11.6 ㎛, 또는 11.7 ㎛ 내지 11.85 ㎛일 수 있다. Bow에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
또한, 상기 다른 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 두께방향의 위상차 값이 40 nm 이하, 또는 30 nm 이하, 또는 28 nm 이하, 또는 25 nm 이하, 또는 20 nm 이하, 또는 1 nm 이상, 또는 1 nm 내지 40 nm, 또는 1 nm 내지 30 nm, 또는 1 nm 내지 28 nm, 또는 1 nm 내지 25 nm, 또는 1 nm 내지 20 nm, 또는 20 nm 내지 29 nm, 또는 20 nm 내지 24 nm, 또는 24 nm 내지 29 nm, 또는 24 nm 내지 28 nm, 또는 28 nm 내지 29 nm일 수 있다. 두께 방향의 위상차(Rth)에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
또한, 상기 다른 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 또는 50 MPa 이하, 또는 45 MPa 이하, 또는 42 MPa 이하, 또는 1 MPa 이상, 또는 1 MPa 내지 50 MPa, 또는 1 MPa 내지 45 MPa, 또는 1 MPa 내지 42 MPa, 또는 41.3 MPa 내지 48.6 MPa, 또는 41.3 MPa 내지 45 MPa, 또는 41.3 MPa 내지 43 MPa, 또는 43 MPa 내지 45 MPa, 또는 46MPa 내지 48.6 MPa일 수 있다. 무기소재 기판과의 잔류 응력에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
또한, 상기 다른 구현예의 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 황색 지수가 10 이하, 또는 7 이하, 또는 6.5 이하, 또는 5 이하, 또는 0.1 이상, 또는 0.1 내지 10, 또는 0.1 내지 7, 또는 0.1 내지 6.5, 또는 0.1 내지 5, 또는 3.3 내지 4.48, 또는 3.3 내지 3.9, 또는 4 내지 4.48, 또는 4 내지 4.2, 또는 4.2 내지 4.48일 수 있다. 황색 지수에 대한 구체적인 내용은 2±1 ㎛의 두께를 갖는 상기 다른 구현예의 폴리이미드계 수지 필름 시료에 대하여 측정한 것을 제외하고는 상기 일 구현예에서 상술한 바와 동일하다.
2. 디스플레이 장치용 기판
한편, 발명의 또 다른 구현예에 따르면, 상기 일 구현예 또는 다른 구현예의 폴리이미드계 수지 필름을 포함하는 디스플레이 장치용 기판이 제공될 수 있다. 상기 폴리이미드계 수지 필름에 관한 내용은 상기 일 구현예 또는 다른 구현예에서 상술한 내용을 모두 포함할 수 있다.
상기 기판을 포함하는 디스플레이 장치는 액정 표시 장치(liquid crystal display device, LCD), 유기발광다이오드(organic light emitting diode, OLED), 플렉서블 디스플레이(Flexible Display), 또는 감김 가능 디스플레이 장치(rollable display or foldable display) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 디스플레이 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
상술한 상기 일 구현예 또는 다른 구현예의 폴리이미드계 수지 필름은 이러한 다양한 디스플레이 장치에서 기판, 외부 보호 필름 또는 커버 윈도우 등의 다양한 용도로 사용될 수 있으며, 보다 구체적으로는 기판으로 적용될 수 있다.
예를 들면, 상기 디스플레이 장치용 기판은 소자보호층, 투명 전극층, 실리콘 산화물층, 폴리이미드계 수지 필름, 실리콘 산화물층 및 하드 코팅층이 순차적으로 적층된 구조를 구비할 수 있다.
상기 투명 폴리이미드 기판은 내용제성 내지 수분투과성 및 광학적 특성을 보다 향상시킬 수 있는 측면에서 투명 폴리이미드계 수지 필름과 경화층 사이에 형성된, 실리콘산화물층을 포함할 수 있으며, 상기 실리콘산화물층은 폴리실라잔을 경화시켜 생성되는 것일 수 있다.
구체적으로, 상기 실리콘산화물층은 상기 투명 폴리이미드계 수지 필름의 적어도 일면상에 코팅층을 형성하는 단계 이전에 폴리실라잔을 포함하는 용액을 코팅 및 건조한 후 상기 코팅된 폴리실라잔을 경화시켜 형성되는 것일 수 있다.
본 발명에 따른 디스플레이 장치용 기판은 상술한 소자보호층을 포함함으로써 우수한 휨특성 및 내충격성을 가지면서, 내용제성, 광학특성, 수분투과도 및 내스크래치성을 갖는 투명 폴리이미드 커버기판을 제공할 수 있다.
3. 광학 장치
한편, 발명의 또 다른 구현예에 따르면, 상기 일 구현예 또는 다른 구현예의 폴리이미드계 수지 필름을 포함하는 광학 장치가 제공될 수 있다. 상기 폴리이미드계 수지 필름에 관한 내용은 상기 일 구현예 또는 다른 구현예에서 상술한 내용을 모두 포함할 수 있다.
상기 광학 장치는 빛에 의해 구현되는 성질을 이용한 각종 장치가 모두 포함될 수 있으며, 예를 들어, 디스플레이 장치를 들 수 있다. 상기 디스플레이 장치의 구체적인 예로는 액정 표시 장치(liquid crystal display device, LCD), 유기발광다이오드(organic light emitting diode, OLED), 플렉서블 디스플레이(Flexible Display), 또는 감김 가능 디스플레이 장치(rollable display or foldable display) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 광학 장치는 적용 분야 및 구체적인 형태 등에 따라서 다양한 구조를 가질 수 있으며, 예를 들어 커버 플라스틱 윈도우, 터치 패널, 편광판, 배리어 필름, 발광 소자(OLED 소자 등), 투명 기판 등을 포함하는 구조일 수 있다.
상기 일 구현예 또는 다른 구현예의 폴리이미드계 수지 필름은 이러한 다양한 광학 장치에서 기판, 외부 보호 필름 또는 커버 윈도우 등의 다양한 용도로 사용될 수 있으며, 보다 구체적으로는 기판에 적용될 수 있다.
본 발명에 따르면, 우수한 휨 특성 및 낮은 위상차를 구현할 수 있는 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치에 관한 것이다.
도 1은 실시예 및 비교예에서 얻어진 폴리이미드계 수지 필름의 구부러짐(Bow)을 측정하는 단면도를 나타낸 것이다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예, 및 비교예: 폴리이미드 전구체 조성물 및 폴리이미드 필름의 제조>
실시예1-3
(1) 폴리이미드 전구체 조성물의 제조
질소 기류가 흐르는 교반기 내에 유기용매 DEAc를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA) 및 9,9'-비스(4-아미노페닐)플루오렌(9,9'-bis(4-aminophenyl)fluorene, FDA)을 같은 온도에서 첨가하여 용해시켰다. 상기 m-페닐렌디아민 (1,3-phenylenediamine, m-PDA) 및 9,9'-비스(4-아미노페닐)플루오렌(9,9'-bis(4-aminophenyl)fluorene, FDA)이 첨가된 용액에 산이무수물로 3,3',4,4'-비페닐테트라카르복실산 이무수물(3,3',4,4'-Biphenyltetracarboxylic dianhydride, BPDA)을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체 조성물을 제조하였다. 이때, m-PDA, FDA, BPDA의 몰비율은 하기 표1에 기재한 바와 같다.
(2) 폴리이미드 필름의 제조
상기 폴리이미드 전구체 조성물을 유리기판 상에 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 유리 기판을 오븐에 넣고 5 ℃ /min의 속도로 가열하였으며, 80 ℃에서 30분, 250 ℃에서 30분, 400 ℃에서 30분을 유지하여 경화 공정을 진행하였다. 경화공정 완료 후에, 유리 기판을 물에 담구어 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100 ℃로 건조하여, 두께가 10 ㎛(±1 ㎛ 오차 포함)인 폴리이미드 필름을 제조하였다.
비교예1-3
m-PDA, FDA, p-PDA(1,4-phenylenediamine), BPDA의 몰비율을 하기 표1에 기재한 바와 같이 변경한 것을 제외하고는 상기 실시예와 동일한 방법으로 폴리이미드 전구체 조성물 및 폴리이미드 필름을 제조하였다.
비교예4
(1) 폴리이미드 전구체 조성물의 제조
질소 기류가 흐르는 교반기 내에 유기용매 DEAc를 채운 후, 반응기의 온도를 25 ℃로 유지한 상태에서 2,2'-비스(트리플루오로메틸)벤지딘(2,2'-Bis(trifluoromethyl)benzidine, TFMB), m-페닐렌디아민 (1,3-phenylenediamine, m-PDA) 및 9,9'-비스(4-아미노페닐)플루오렌(9,9'-bis(4-aminophenyl)fluorene, FDA)을 같은 온도에서 첨가하여 용해시켰다. 상기 2,2'-비스(트리플루오로메틸)벤지딘(2,2'-Bis(trifluoromethyl)benzidine, TFMB), m-페닐렌디아민 (1,3-phenylenediamine, m-PDA) 및 9,9'-비스(4-아미노페닐)플루오렌(9,9'-bis(4-aminophenyl)fluorene, FDA)이 첨가된 용액에 산이무수물로 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(4,4'-(Hexafluoroisopropylidene)diphthalic Anhydride, 6FDA)을 같은 온도에서 첨가하여 24시간동안 교반하여 폴리이미드 전구체 조성물을 제조하였다. 이때, 6FDA, TFMB, m-PDA, FDA의 몰비율은 100/70/20/10(6FDA/TFMB/m-PDA/FDA)이었다.
(2) 폴리이미드 필름의 제조
상기 폴리이미드 전구체 조성물을 유리기판 상에 스핀 코팅하였다. 폴리이미드 전구체 조성물이 도포된 유리 기판을 오븐에 넣고 5 ℃ /min의 속도로 가열하였으며, 80 ℃에서 30분, 250 ℃에서 30분, 400 ℃에서 30분을 유지하여 경화 공정을 진행하였다. 경화공정 완료 후에, 유리 기판을 물에 담구어 유리 기판 위에 형성된 필름을 떼어내어 오븐에서 100 ℃로 건조하여, 두께가 10 ㎛(±1 ㎛ 오차 포함)인 폴리이미드 필름을 제조하였다.
비교예5-6
m-PDA, FDA, BPDA의 몰비율을 하기 표1에 기재한 바와 같이 변경한 것을 제외하고는 상기 실시예와 동일한 방법으로 폴리이미드 전구체 조성물 및 폴리이미드 필름을 제조하였다.
<실험예: 실시예 및 비교예에서 얻어진 폴리이미드 전구체 조성물 및 폴리이미드 필름의 물성 측정>
상기 실시예, 비교예에서 얻어진 폴리이미드 전구체 조성물 및 폴리이미드 필름으로부터 물성을 하기 방법으로 측정하였으며, 그 결과를 표1에 나타내었다.
1. 황색지수(YI)
실시예, 비교예에서 제조된 폴리이미드 필름에 대하여 color meter(GRETAGMACBETH사의 Color-Eye 7000A)를 이용하여 황색 지수를 측정하였다.
2. Haze
Hazemeter(NDH-5000)를 이용하여 폴리이미드 필름의 헤이즈 값을 측정하였다.
3. 두께 방향 위상차(Rth )
측정 장치로서 AXOMETRICS사제의 상품명 「엑소스캔(AxoScan)」을 사용하여, 실시예, 비교예에서 제조한 폴리이미드 필름의 532nm의 광에 대한 굴절율의 값을 인풋한 후, 온도: 25 ℃, 습도: 40%의 조건 하 파장 532nm의 광을 사용하여, 두께 방향, 면방향의 리타데이션을 측정한 후, 구해진 두께 방향의 리타데이션 측정값(측정 장치의 자동 측정에 의한 측정값)을 사용하여, 필름의 두께 10㎛당 리타데이션값으로 환산함으로써 구하고, 하기 표 1에 나타내었다.
구체적으로, 두께 방향 위상차 Rth는 다음의 수학식1를 통해 계산되었다.
[수학식1]
Rth (nm) = |[(nx + ny) / 2] - nz | ×d
(상기 수학식1에서, nx 는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율이며; ny는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 532nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드 필름의 두께이다.)
4. 잔류 응력(Residual stress) 및 Bow(구부러짐)
실시예, 비교예에서 제조된 폴리이미드 전구체 조성물에 대하여 잔류응력 측정기(TENCOR사의 FLX2320)를 사용하여 미리 웨이퍼의 휨량을 측정해 둔, 두께 525um의 6in 실리콘 웨이퍼 상에, 조성물을 스핀코터에 의해 도포하고 (코요 린드버그사 제조) 오븐을 사용하여, 질소 분위기하 250 ℃ 30min, 400 ℃ 30min의 가열경화 처리를 실시하고 경화 후 수지막이 부착된 실리콘웨이퍼를 제조하였다. 상기 수지막이 부착된 실리콘웨이퍼의 휨량을 잔류응력 측정기로 측정하고, 미리 웨이퍼의 휨량과의 차이값의 절대값을 Real Bow 값으로 나타내었으며, 실리콘웨이퍼와 수지막 사이에 발생한 잔류응력을 잔류응력 측정기로 측정하였다.
상기 Bow는 하기 도면1에 나타난 바와 같이, 측정 시료의 두께 중심 면(thickness central plane)과 기준면(reference plane(Best fit plane of thickness central plane)) 사이의 중심축상 거리로 정의되며, Bow 측정은 상온에서 시료에 대해 응력 분석기(stress analyzer 장비; TENCOR FLX-2320)를 이용하여 측정하였다.
실시예, 및 비교예의 실험예 측정 결과
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6
단량체 몰비율 100/80.75/20(BPDA/m-PDA/FDA) 100/73.25/25
(BPDA/m-PDA/FDA)
100/20/80
(BPDA/m-PDA/FDA)
100/98.7
(BPDA/p-PDA)
100/98.75
(BPDA/m-PDA)
100/100
(BPDA/FDA)
100/70/20/10(6FDA/TFMB/m-PDA/FDA) 100/95/5
(BPDA/m-PDA/FDA)
100/5/95
(BPDA/m-PDA/FDA)
두께10 ㎛ 기준 고형분함량(wt%) 15.48 16.65 9.24 11.3 16.47 10.24 16.5 17.2 11.3
YI 22.4 21.3 14.3 27.17 23.2 13.79 10.34 23.0 13.98
HAZE(%) 0.57 0.26 0.53 0.40 15.31 0.28 0.47 13.5 0.37
Rth (nm) 89 80 73 2222 144 61 117 140 60
Residual stress(MPa) 30.4 33.2 48.0 4.6 44.1 55.7 53.3 45.2 56.2
Bow(㎛) 30.11 34.27 47.6 4.22 43.23 52.3 52 44.6 55.2
두께5 ㎛ 기준 고형분함량(%) 10.28 16.65 9.24 11.3 16.47 10.24 16.5 17.2 11.3
YI 10.8 9.2 8.4 14 12.1 8.2 6.2 12.0 8.9
Rth (nm) 79 70 65 1200 110 60 65 110 62
Residual stress(MPa) 41.7 43.5 48.9 5.0 44.3 52.8 53.3 45.3 55.8
Bow(㎛) 22.49 24.1 24.7 2.2 26.8 32.41 37.1 26.3 33.1
두께2 ㎛ 기준 고형분함량(%) 10.28 16.65 9.24 11.3 16.47 10.24 16.5 17.2 11.3
YI 4.48 4.0 3.3 7.2 5.8 3.6 4.08 6.0 3.8
Rth (nm) 29 27 20 542 53 20 23 50 22
Residual stress(MPa) 41.3 43.2 48.6 5.1 44.5 53.6 51.9 45.1 56.3
Bow(㎛) 11.2 11.53 11.85 1.8 12.2 14.99 20.3 12.0 15.01
상기 표1에 나타난 바와 같이, 실시예1 내지 3에서 얻어진 폴리이미드 필름은 두께 10㎛ 기준으로, 두께 방향 위상차 Rth값이 73 nm 내지 89 nm이고, 헤이즈가 0.26% 내지 0.57% 이고, YI가 14.3 내지 22.4이며, 잔류 응력이 30.4 MPa 내지 48 MPa이고, Bow가 30.11 ㎛ 내지 47.6 ㎛임을 확인하였다.반면, 비교예1에서 얻어진 폴리이미드 필름은 두께 10㎛ 기준으로, 두께 방향 위상차 Rth값이 2222 nm로 실시예 대비 급격히 증가하여 저위상차를 구현하지 못했고, 비교예2에서 얻어진 폴리이미드 필름은 두께 10㎛ 기준으로, 두께 방향 위상차 Rth값이 144 nm로 실시예보다 증가하면서, 헤이즈가 15.31%로 실시예 대비 증가하여 투명특성이 저하됨을 확인하였다.
또한, 비교예 3에서 얻어진 폴리이미드 필름(두께 10 ㎛ 기준)은 잔류 응력이 55.7 MPa, Bow가 52.3 ㎛ 로 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.
한편, 실시예1 내지 3에서 얻어진 폴리이미드 필름은 두께 5㎛ 기준으로, 두께 방향 위상차 Rth값이 65 nm 내지 79 nm이고, YI가 8.4 내지 10.8이며, 잔류 응력이 41.7 MPa 내지 48.9 MPa이고, Bow가 22.49 ㎛ 내지 24.7 ㎛임을 확인하였다.
반면, 비교예1에서 얻어진 폴리이미드 필름은 두께 5㎛ 기준으로, 두께 방향 위상차 Rth값이 1200 nm로 실시예 대비 급격히 증가하였고, 비교예2에서 얻어진 폴리이미드 필름은 두께 5㎛ 기준으로, 두께 방향 위상차 Rth값이 110 nm로 실시예보다 증가하여 저위상차를 구현하지 못했다. 또한, 비교예2에서 얻어진 폴리이미드 필름은 두께 5㎛ 기준으로, Bow가 26.8 ㎛ 로 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.
또한, 비교예 3에서 얻어진 폴리이미드 필름(두께 5 ㎛ 기준)은 잔류 응력이 52.8 MPa, Bow가 32.41 ㎛ 로 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.
한편, 실시예1 내지 3에서 얻어진 폴리이미드 필름은 두께 2㎛ 기준으로, 두께 방향 위상차 Rth값이 20 nm 내지 29 nm이고, YI가 3.3 내지 4.48이며, 잔류 응력이 41.3 MPa 내지 48.6 MPa이고, Bow가 11.2 ㎛ 내지 11.85 ㎛임을 확인하였다.
반면, 비교예1에서 얻어진 폴리이미드 필름은 두께 2㎛ 기준으로, 두께 방향 위상차 Rth값이 542 nm로 실시예 대비 급격히 증가하여 저위상차를 구현하지 못했고, 비교예2에서 얻어진 폴리이미드 필름은 두께 2㎛ 기준으로, 두께 방향 위상차 Rth값이 53 nm로 실시예보다 증가하면서, Bow가 12.2 ㎛ 로 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.
또한, 비교예 3에서 얻어진 폴리이미드 필름(두께 2 ㎛ 기준)은 잔류 응력이 53.6 MPa, Bow가 14.99 ㎛ 로 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.
또한, 비교예4에서 얻어진 폴리이미드 필름은 두께 10 ㎛ 기준으로 두께 방향 위상차 Rth값이 실시예 대비 증가하여 저위상차를 구현하지 못했고, 두께 10 ㎛, 두께 5 ㎛, 두께 2 ㎛ 기준으로 잔류 응력, 및 Bow가 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.
한편, 비교예5에서 얻어진 폴리이미드 필름은 비교예1과 유사하게 두께 10 ㎛, 두께 5 ㎛ 기준, 두께 2 ㎛ 기준으로 두께 방향 위상차 Rth값이 실시예 대비 증가하여 저위상차를 구현하지 못했고, 비교예6에서 얻어진 폴리이미드 필름은 비교예3과 유사하게 두께 10 ㎛, 두께 5 ㎛, 두께 2 ㎛ 기준으로 잔류 응력, 및 Bow가 실시예 대비 증가하여 높은 수준의 평탄성을 구현하지 못한 문제가 있었다.

Claims (20)

  1. 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하고,
    10 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 55 MPa 이하이고,
    10 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인 폴리이미드계 수지 필름:
    [화학식 1]
    Figure PCTKR2023003301-appb-img-000019
    상기 화학식1에서,
    X1은 방향족 4가 작용기이며,
    Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
    [화학식 2]
    Figure PCTKR2023003301-appb-img-000020
    상기 화학식2에서,
    X2은 방향족 4가 작용기이며,
    Y2은 다중고리를 함유한 방향족 2가 작용기이다.
  2. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 헤이즈 값이 10 % 이하인, 폴리이미드계 수지 필름.
  3. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 10 ㎛ 두께에서의 Bow 값이 50 ㎛ 이하인, 폴리이미드계 수지 필름.
  4. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 Bow 값이 25 ㎛ 이하인, 폴리이미드계 수지 필름.
  5. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인, 폴리이미드계 수지 필름.
  6. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 52 MPa 이하인, 폴리이미드계 수지 필름.
  7. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 Bow 값이 12 ㎛ 미만인, 폴리이미드계 수지 필름.
  8. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 50 MPa 이하인, 폴리이미드계 수지 필름.
  9. 제1항에 있어서,
    상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 40 nm 이하인, 폴리이미드계 수지 필름.
  10. 하기 화학식1로 표시되는 폴리이미드 반복단위 및 하기 화학식2로 표시되는 폴리이미드 반복단위를 포함한 폴리이미드계 수지를 포함하고,
    5 ㎛ 두께에서의 Bow 값이 25 ㎛ 이하이고,
    5 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 100 nm 이하인 폴리이미드계 수지 필름:
    [화학식 1]
    Figure PCTKR2023003301-appb-img-000021
    상기 화학식1에서,
    X1은 방향족 4가 작용기이며,
    Y1은 탄소수 6 내지 10의 방향족 2가 작용기이고,
    [화학식 2]
    Figure PCTKR2023003301-appb-img-000022
    상기 화학식2에서,
    X2은 방향족 4가 작용기이며,
    Y2은 다중고리를 함유한 방향족 2가 작용기이다.
  11. 제10항에 있어서,
    상기 폴리이미드계 수지 필름은 5 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 52 MPa 이하인, 폴리이미드계 수지 필름.
  12. 제10항에 있어서,
    상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 Bow 값이 12 ㎛ 미만인, 폴리이미드계 수지 필름.
  13. 제10항에 있어서,
    상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 무기소재 기판과의 잔류 응력이 50 MPa 이하인, 폴리이미드계 수지 필름.
  14. 제10항에 있어서,
    상기 폴리이미드계 수지 필름은 2 ㎛ 두께에서의 두께방향의 위상차 Rth 값이 40 nm 이하인, 폴리이미드계 수지 필름.
  15. 제1항 또는 제10항 중 어느 한 항에 있어서,
    상기 Y1은 하기 화학식3으로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 3]
    Figure PCTKR2023003301-appb-img-000023
    .
  16. 제15항에 있어서,
    상기 화학식3으로 표시되는 작용기는 하기 화학식 3-1로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 3-1]
    Figure PCTKR2023003301-appb-img-000024
    .
  17. 제1항 또는 제10항 중 어느 한 항에 있어서,
    상기 Y2은 4가의 작용기는 하기 화학식4로 표시되는 2가의 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식4]
    Figure PCTKR2023003301-appb-img-000025
    상기 화학식4에서, Ar은 다중고리 방향족 2가 작용기이다.
  18. 제17항에 있어서,
    상기 화학식4로 표시되는 2가의 작용기는 하기 화학식4-1로 표시되는 작용기를 포함하는, 폴리이미드계 수지 필름:
    [화학식 4-1]
    Figure PCTKR2023003301-appb-img-000026
    .
  19. 제1항 또는 제10항 중 어느 한 항의 폴리이미드계 수지 필름을 포함하는, 디스플레이 장치용 기판.
  20. 제1항 또는 제10항 중 어느 한 항의 폴리이미드계 수지 필름을 포함하는, 광학 장치.
PCT/KR2023/003301 2022-03-10 2023-03-10 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치 WO2023172103A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023569636A JP2024518952A (ja) 2022-03-10 2023-03-10 ポリイミド系樹脂フィルムおよびこれを用いたディスプレイ装置用基板、および光学装置
EP23767204.3A EP4321563A1 (en) 2022-03-10 2023-03-10 Polyimide-based resin film, display device substrate using same, and optical device
US18/567,576 US20240287266A1 (en) 2022-03-10 2023-03-10 Polyimide-based polymer film, substrate for display device, and optical device using the same
CN202380011735.1A CN117355562A (zh) 2022-03-10 2023-03-10 基于聚酰亚胺的聚合物膜、使用其的显示装置用基底和光学装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0030175 2022-03-10
KR20220030175 2022-03-10
KR10-2023-0031292 2023-03-09
KR1020230031292A KR20230133232A (ko) 2022-03-10 2023-03-09 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Publications (1)

Publication Number Publication Date
WO2023172103A1 true WO2023172103A1 (ko) 2023-09-14

Family

ID=87935552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003301 WO2023172103A1 (ko) 2022-03-10 2023-03-10 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치

Country Status (4)

Country Link
US (1) US20240287266A1 (ko)
EP (1) EP4321563A1 (ko)
JP (1) JP2024518952A (ko)
WO (1) WO2023172103A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116899A1 (en) * 2005-11-22 2007-05-24 Industrial Technology Research Institute Liquid crystal display
KR20150138758A (ko) * 2014-06-02 2015-12-10 삼성전자주식회사 폴리이미드 필름 및 그 제조 방법, 상기 폴리이미드 필름을 포함하는 광학 장치
KR101837947B1 (ko) * 2017-05-10 2018-04-27 (주)상아프론테크 폴리이미드계 필름 형성용 조성물, 이를 이용하여 제조된 폴리이미드계 필름 및 이의 제조방법
CN110099946A (zh) * 2016-12-19 2019-08-06 株式会社斗山 透明聚酰亚胺膜
KR20220012076A (ko) * 2020-07-22 2022-02-03 주식회사 엘지화학 폴리이미드 필름 및 이를 이용한 디스플레이 장치용 기판, 회로 기판, 광학 장치 및 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116899A1 (en) * 2005-11-22 2007-05-24 Industrial Technology Research Institute Liquid crystal display
KR20150138758A (ko) * 2014-06-02 2015-12-10 삼성전자주식회사 폴리이미드 필름 및 그 제조 방법, 상기 폴리이미드 필름을 포함하는 광학 장치
CN110099946A (zh) * 2016-12-19 2019-08-06 株式会社斗山 透明聚酰亚胺膜
KR101837947B1 (ko) * 2017-05-10 2018-04-27 (주)상아프론테크 폴리이미드계 필름 형성용 조성물, 이를 이용하여 제조된 폴리이미드계 필름 및 이의 제조방법
KR20220012076A (ko) * 2020-07-22 2022-02-03 주식회사 엘지화학 폴리이미드 필름 및 이를 이용한 디스플레이 장치용 기판, 회로 기판, 광학 장치 및 전자 장치

Also Published As

Publication number Publication date
EP4321563A1 (en) 2024-02-14
JP2024518952A (ja) 2024-05-08
TW202342596A (zh) 2023-11-01
US20240287266A1 (en) 2024-08-29

Similar Documents

Publication Publication Date Title
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2014168400A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2020209625A1 (ko) 폴리아미드-이미드 블록 공중합체, 이의 제조방법 및 이를 포함하는 폴리아미드-이미드 필름
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023172103A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2023106571A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2021071152A1 (ko) 플렉서블 윈도우 필름 및 이를 포함하는 디스플레이 장치
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2022108063A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 회로 기판, 광학 장치 및 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23767204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 23767204

Country of ref document: EP

Ref document number: 2023767204

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023569636

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2023767204

Country of ref document: EP

Effective date: 20231106

WWE Wipo information: entry into national phase

Ref document number: 202380011735.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18567576

Country of ref document: US