WO2022037319A1 - 改性聚乙醇酸及其制备方法与应用 - Google Patents

改性聚乙醇酸及其制备方法与应用 Download PDF

Info

Publication number
WO2022037319A1
WO2022037319A1 PCT/CN2021/105985 CN2021105985W WO2022037319A1 WO 2022037319 A1 WO2022037319 A1 WO 2022037319A1 CN 2021105985 W CN2021105985 W CN 2021105985W WO 2022037319 A1 WO2022037319 A1 WO 2022037319A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyglycolic acid
diisocyanate
weight
modified
structural unit
Prior art date
Application number
PCT/CN2021/105985
Other languages
English (en)
French (fr)
Inventor
孙小杰
陈兰兰
王荣
梁文斌
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Priority to EP21857414.3A priority Critical patent/EP4201977A1/en
Priority to JP2023512146A priority patent/JP2023540889A/ja
Publication of WO2022037319A1 publication Critical patent/WO2022037319A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4283Hydroxycarboxylic acid or ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/724Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to the field of polymer materials, in particular to a modified polyglycolic acid and a preparation method and application thereof.
  • biodegradable polymer materials As human beings pay more and more attention to the ecological environment, more and more attention has been paid to environmentally friendly biodegradable polymer materials.
  • my country's biodegradable material industry is developing rapidly, with continuous breakthroughs in key technologies, increasing product types, and enhanced product economy.
  • Biodegradable materials have shown a strong momentum of development.
  • Polyglycolic acid is a biodegradable polymer. Due to its good biodegradability, good mechanical strength, and excellent gas barrier properties, it can be applied to films, fibers, packaging containers, multi-layer bottles and Various fields of medical sutures. Although ring-opening polymerization can obtain PGA with a certain relative molecular weight, its melt strength is still low, melt viscosity is low, and melt flow rate is high, which limits the applicability of PGA in blow molding, extrusion and other molding processes. Greatly hindered the wide application of PGA in various fields. Generally, the molecular weight of polyester can be increased and its physical and chemical properties can be improved by solid-phase polycondensation, melt polycondensation, reactive extrusion and other methods.
  • CN106432697A A preparation method of degradable polyglycolic acid, firstly, polyglycolic acid prepolymer is obtained by polycondensation reaction, and then chain extender MDI is added to the polymerization vessel to obtain high molecular weight polyglycolic acid. Since the polyglycolic acid in this patent is chain-extended by oligomers, the mechanical properties of the polyglycolic acid prepared by it cannot meet the actual needs.
  • the purpose of the present invention is to overcome the problems of low melt strength, low melt viscosity and high melt flow rate of polyglycolic acid existing in the prior art, and to provide a modified polyglycolic acid and its preparation method and application.
  • Polyglycolic acid has the characteristics of high weight-average molecular weight, high melt viscosity and low melt flow rate, as well as high tensile strength and greatly improved thermal stability.
  • a first aspect of the present invention provides a modified polyglycolic acid, wherein the modified polyglycolic acid includes a structural unit A derived from polyglycolic acid and a structural unit B derived from a polyisocyanate compound;
  • the molar ratio of the structural unit A to the structural unit B is >400:1.
  • the second aspect of the present invention provides a method for preparing modified polyglycolic acid, wherein the method includes the following steps: after drying and mixing the polyglycolic acid and the polyisocyanate compound, melt blending and extruding through an extruder. Granulation to obtain the modified polyglycolic acid,
  • the weight-average molecular weight of the polyglycolic acid is 50,000-300,000.
  • a third aspect of the present invention provides a modified polyglycolic acid prepared by the above method.
  • a fourth aspect of the present invention provides an application of the above modified polyglycolic acid in a degradable material or a barrier packaging material.
  • a fifth aspect of the present invention provides an application of the above-mentioned modified polyglycolic acid in preparing at least one of films, fibers and sheets.
  • the modified polyglycolic acid provided by the present invention and its preparation method and application obtain the following beneficial effects:
  • the polyglycolic acid is modified by selecting polyisocyanate compounds, and the polyglycolic acid chains are connected to each other through the reaction between the reactive groups and the end groups of the polyglycolic acid during the extrusion process, and the polyglycolic acid is improved.
  • the weight average molecular weight and melt viscosity of glycolic acid can significantly improve the thermal stability of polyglycolic acid and reduce the thermal degradation of polyglycolic acid during melt extrusion.
  • polyisocyanate compound in the present invention can significantly reduce the melt flow rate of polyglycolic acid.
  • Fig. 1 is an infrared comparison diagram of modified polyglycolic acid and polyglycolic acid in Example 1.
  • a first aspect of the present invention provides a modified polyglycolic acid, wherein the modified polyglycolic acid comprises a structural unit A derived from polyglycolic acid and a structural unit B derived from a polyisocyanate compound;
  • the molar ratio of the structural unit A to the structural unit B is >400:1.
  • the obtained modified polyglycolic acid has high weight average molecular weight, high melt viscosity and The advantages of low melt flow rate, at the same time high tensile strength, thermal stability is also greatly improved.
  • the molar ratio of structural unit A and structural unit B is 400- 3000:1.
  • the mol ratio of the structural unit A derived from polyglycolic acid and the structural unit B derived from the polyisocyanate compound is calculated by nitrogen content, and the calculation method is as shown in formula I:
  • x is the nitrogen content (g/kg)
  • n is the number of nitrogen-containing elements in the polyisocyanate compound
  • M1 is the molecular weight of the polyisocyanate (g/mol)
  • M2 is the weight average molecular weight of the polyglycolic acid (g /mol).
  • the content of nitrogen element in the modified polyglycolic acid is tested by a trace S/N analyzer.
  • the content of the nitrogen element is 0.016-0.12 wt% relative to the total weight of the modified polyglycolic acid.
  • the modified polyglycolic acid by controlling the content of nitrogen elements in the modified polyglycolic acid so that relative to the total weight of the modified polyglycolic acid, when the content of the nitrogen elements satisfies the above range, the modified polyglycolic acid has high Melt viscosity and low melt flow rate, high tensile strength and good thermal stability. Further, when the content of nitrogen element is 0.018-0.08wt%, the weight average molecular weight, melting Bulk viscosity, melt flow rate, tensile strength and thermal stability were further improved.
  • the weight average molecular weight of the modified polyglycolic acid is 100,000-500,000, preferably 180,000-300,000.
  • the polyisocyanate compound refers to a compound containing two or more isocyanate groups.
  • the polyisocyanate compounds are selected from diisocyanate compounds and/or diisocyanate prepolymers.
  • the polyisocyanate compound is selected from at least one selected from the group consisting of toluene-2,4-diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate and lysine diisocyanate. A sort of.
  • the polyisocyanate compound is selected from hexamethylene diisocyanate and/or diphenylmethane diisocyanate; preferably hexamethylene diisocyanate and phenylmethane diisocyanate.
  • the 5 wt % weight loss temperature of the polyglycolic acid and the 5 wt % weight loss temperature of the modified polyglycolic acid are T1 and T2 respectively;
  • T2-T1 ⁇ 20°C preferably, T2-T1 is 20-30°C.
  • the weight loss temperature of 5% by weight refers to the temperature corresponding to 5% weight loss of polyglycolic acid, which is measured by the TG thermal weight loss method.
  • the melt flow rates of the polyglycolic acid and the modified polyglycolic acid are MFR1 and MFR2, respectively;
  • MFR2 ⁇ 40% ⁇ MFR1 preferably, MFR2 is (10-30%) ⁇ MFR1;
  • the melt flow rate is measured according to the method of GB/T 3682-2000.
  • the melt viscosities of the polyglycolic acid and the modified polyglycolic acid are ⁇ 1 and ⁇ 2;
  • the melt viscosity is measured by a rotational rheological frequency sweep (230° C., strain 2%, frequency 0.1-100 rad/s).
  • the second aspect of the present invention provides a method for preparing modified polyglycolic acid, wherein the method includes the following steps: after drying and mixing the polyglycolic acid and the polyisocyanate compound, melt blending and extruding through an extruder.
  • the modified polyglycolic acid is obtained by granulation; the weight-average molecular weight of the polyglycolic acid is 50,000-300,000.
  • the extruder may be conventional extrusion equipment in the prior art, such as a single-screw extruder or a twin-screw extruder, preferably a twin-screw extruder.
  • the amount of the polyisocyanate compound is 0.5-5 parts by weight.
  • the amount of the polyisocyanate compound is 1-3 parts by weight.
  • the weight average molecular weight of the polyglycolic acid is preferably 100,000-150,000.
  • the polyisocyanate compounds are selected from diisocyanate compounds and/or diisocyanate prepolymers.
  • the polyisocyanate compound is selected from at least one selected from the group consisting of toluene-2,4-diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate and lysine diisocyanate. A sort of.
  • the polyisocyanate compounds include diphenylmethane diisocyanate and toluene-2,4-diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate and lysine diisocyanate. at least one polyisocyanate compound.
  • the polyisocyanate compound is hexamethylene diisocyanate and/or phenylmethane diisocyanate.
  • the polyisocyanate compounds are hexamethylene diisocyanate and diphenylmethane diisocyanate.
  • the inventors have found that the use of a mixture of hexamethylene diisocyanate and diphenylmethane diisocyanate as a polyisocyanate compound to modify polyglycolic acid can increase the molecular weight, increase the melt viscosity, and reduce the melt viscosity. flow rate.
  • the obtained modified polyglycolic acid has a molecular weight. High melt viscosity and low melt flow rate.
  • the drying conditions include: the drying temperature is 50-80° C.; and the drying time is 5-10 h.
  • the inventors have found that when the polyglycolic acid is dried under the above conditions, the water in the raw material can prevent the polyglycolic acid from being hydrolyzed during extrusion; further, the drying conditions include: drying The temperature is 60-80°C; the drying time is 5-8h.
  • the melt-blending conditions include: the temperature is 220-250° C.; the extruder rotational speed is 60-110 r/min.
  • the inventors have studied the conditions of melt blending, and found that when the above conditions are used to melt blend polyglycolic acid and polyisocyanate compounds, it is possible to ensure that the polyisocyanate compounds can react with polyglycolic acid. At the same time, the hydrolysis of the polyglycolic acid in the extrusion process is avoided, and the deterioration of the properties of the prepared modified polyglycolic acid is avoided.
  • melt blending conditions include: the temperature is 230-240° C.; the extruder rotational speed is 80-100 r/min.
  • a third aspect of the present invention provides a modified polyglycolic acid prepared by the above method.
  • the weight average molecular weight of the modified polyglycolic acid is 100,000-500,000, preferably 18-300,000.
  • the 5 wt% weight loss temperature of the polyglycolic acid and the 5 wt% weight loss temperature of the modified polyglycolic acid are respectively T1 and T2;
  • T2-T1 ⁇ 20°C preferably, T2-T1 is 20-30°C.
  • melt flow rates of the polyglycolic acid and the modified polyglycolic acid are MFR1 and MFR2, respectively;
  • MFR2 ⁇ 40% ⁇ MFR1 preferably, MFR2 is (10-30%) ⁇ MFR1;
  • melt viscosity of the polyglycolic acid and the modified polyglycolic acid are ⁇ 1 and ⁇ 2;
  • the fourth aspect of the present invention provides the application of the above-mentioned modified polyglycolic acid material in degradable materials or barrier packaging materials.
  • a fifth aspect of the present invention provides the application of the above-mentioned modified polyglycolic acid material in the preparation of at least one of films, fibers and sheets.
  • the melt flow rate of polyglycolic acid is measured by the method of GB/T 3682-2000;
  • the 5 wt% weight loss temperature of polyglycolic acid is measured by TG thermal weight loss method
  • melt viscosity of polyglycolic acid was measured by rotational rheological frequency sweep (230°C, strain 2%, frequency 0.1-100 rad/s).
  • the nitrogen content was tested by a trace S/N analyzer. Before the test, the modified polyglycolic acid was soaked and cleaned with acetone solvent to remove residual polyisocyanate compounds; test conditions: furnace temperature 1050°C, argon Gas and oxygen flow 100mL/min; maximum integration time 800s.
  • the molar ratio of the structural unit A derived from the polyglycolic acid to the structural unit B derived from the polyisocyanate compound is calculated by the nitrogen content, and the calculation method is shown in formula I:
  • x is the nitrogen content (g/kg)
  • n is the number of nitrogen-containing elements in the polyisocyanate compound
  • M1 is the molecular weight of the polyisocyanate (g/mol)
  • M2 is the weight average molecular weight of the polyglycolic acid (g/mol) ).
  • the tensile strength of polyglycolic acid was measured by GB/T1040.2-2006 method.
  • Polyglycolic acid A (PGA) is commercially available with a weight average molecular weight of 140,000;
  • Polyglycolic acid B (PGA) is commercially available; ;
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the polyglycolic acid A was dried for later use, the drying temperature was 70° C., and the drying time was 8 hours; 100 parts by weight of the dried polyglycolic acid and 3 parts by weight of the polyisocyanate compound (diphenylmethane diisocyanate MDI) were mixed uniformly, Then, melt blending at 240° C. with a twin-screw extruder at a rotational speed of 100 r/min, and extrude and granulate to obtain modified polyglycolic acid.
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the dosage and preparation conditions of polyglycolic acid A and polyisocyanate compounds are shown in Table 1.
  • the moles of structural unit A derived from polyethylene glycol and structural unit B derived from polyisocyanate compounds The ratio, nitrogen content in the modified polyglycolic acid, weight average molecular weight of the modified polyglycolic acid, melt viscosity, tensile strength 5 wt% weight loss temperature, and melt flow rate are shown in Table 2.
  • the preparation method is the same as that of Example 1, except that the melt extrusion temperature is 230°C.
  • the molar ratio of the structural unit A derived from polyethylene glycol to the structural unit B derived from the polyisocyanate compound, the content of nitrogen in the modified polyglycolic acid, and the weight of the modified polyglycolic acid are shown in Table 2.
  • the preparation method is the same as that of Example 1, except that the polyglycolic acid raw material used is different, and the polyglycolic acid B used has a weight-average molecular weight of 90,000.
  • the molar ratio of the structural unit A derived from polyethylene glycol to the structural unit B derived from the polyisocyanate compound, the content of nitrogen in the modified polyglycolic acid, and the weight of the modified polyglycolic acid The average molecular weight, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate are shown in Table 2.
  • the preparation method is the same as that in Example 1, the difference is that the amount of the polyisocyanate compound is different.
  • the dosage and preparation conditions of polyglycolic acid and polyisocyanate compounds are shown in Table 1.
  • the molar ratio of structural unit A derived from polyethylene glycol to structural unit B derived from polyisocyanate compounds .
  • the content of nitrogen element in the modified polyglycolic acid, the weight average molecular weight, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate of the modified polyglycolic acid are shown in Table 2.
  • the preparation method is the same as that of Comparative Example 1, the difference is that the polyglycolic acid raw material used is different, and the polyglycolic acid B used has a weight-average molecular weight of 90,000.
  • the dosage and preparation conditions of polyglycolic acid and polyisocyanate compounds are shown in Table 1.
  • the weight-average molecular weight, tensile strength, melt viscosity ⁇ 1 * , 5 wt% weight loss temperature T1 * and melt flow rate MFR1 of polyglycolic acid are shown in Table 1. * As shown in Table 2.
  • the preparation method is the same as that of Comparative Example 1, the difference is that the polyglycolic acid raw material used is different, and the polyglycolic acid C used has a weight-average molecular weight of 40,000.
  • the dosage and preparation conditions of polyglycolic acid and polyisocyanate compounds are shown in Table 1.
  • the weight-average molecular weight, tensile strength, melt viscosity ⁇ 1 # , 5 wt% weight loss temperature T1 # and melt flow rate MFR1 of polyglycolic acid are shown in Table 1.
  • the preparation method is the same as that in Example 1, the difference is that the polyglycolic acid raw material used is different, and the polyglycolic acid C used has a weight-average molecular weight of 40,000.
  • the dosage and preparation conditions of polyglycolic acid and polyisocyanate compounds are shown in Table 1.
  • the molar ratio of structural unit A derived from polyethylene glycol to structural unit B derived from polyisocyanate compounds The content of nitrogen element in the modified polyglycolic acid, the weight average molecular weight, melt viscosity, tensile strength, 5 wt% weight loss temperature and melt flow rate of the modified polyglycolic acid are shown in Table 2.
  • Example 1 As shown in the infrared spectrum of Example 1 shown in Figure 1, it can be seen that the modified polyglycolic acid has vibration absorption peaks at 3308 cm -1 and 1526 cm -1 , which are caused by the vibration of the amide group, indicating that The polyisocyanates react chemically with polyglycolic acid.
  • the PGA is chemically modified by adding polyisocyanate compounds according to the present invention.
  • the weight-average molecular weight of the modified polyglycolic acid is increased to a certain extent, and the MFR is reduced to polyethanol.
  • the complex viscosity at 230°C and frequency of 0.1rad/s in rotational rheological test increases to 4 times or more than that of polyglycolic acid, and the tensile strength remains >100MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

一种改性聚乙醇酸及其制备方法与应用。所述改性聚乙醇酸包括来源于聚乙醇酸的结构单元A和来源于多异氰酸酯类化合物的结构单元B;所述结构单元A与所述结构单元B的摩尔比>400:1。该改性聚乙醇酸具有高重均分子量、高熔体黏度及低熔体流动速率等特点,同时拉伸强度高,热稳定性也有较大改善。

Description

改性聚乙醇酸及其制备方法与应用
相关申请的交叉引用
本申请要求2020年08月19日提交的中国专利申请202010837348.1的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及高分子材料领域,具体涉及一种改性聚乙醇酸及其制备方法与应用。
背景技术
随着人类对生态环境的日益重视,对环境友好的生物可降解高分子材料受到越来越多的关注。我国的生物降解材料产业发展迅猛,关键技术不断突破,产品种类递增,产品经济性增强,生物降解材料已经显示出了强劲的发展势头。
聚乙醇酸(PGA)是一种生物可降解聚合物,由于具有良好的生物降解性、较好的机械强度,绝佳的气体阻隔性能,可以应用到薄膜、纤维、包装容器、多层瓶和医疗缝合线各个领域。虽然开环聚合能够得到具备一定相对分子量的PGA,但其熔体强度依然较低,熔体黏度很低,熔体流动速率高,限制了PGA在吹塑、挤出等成型工艺的适用性,大大阻碍了PGA在各领域的广泛应用。通常可以通过固相缩聚、熔融缩聚,反应挤出等方法增加聚酯的分子量以及改善其物理 化学性能。
CN106432697A一种可降解聚乙醇酸的制备方法,首先是通过缩聚反应得到聚乙醇酸预聚体,然后在聚合容器中加入扩链剂MDI,得到高分子量聚乙醇酸。由于该专利中聚乙醇酸是由寡聚物进行扩链,其制得的聚乙醇酸的力学性能无法满足实际需求。
发明内容
本发明的目的是为了克服现有技术存在的聚乙醇酸熔体强度低、熔体黏度低以及熔体流动速率高的问题,提供一种改性聚乙醇酸及其制备方法与应用,该改性聚乙醇酸具有高重均分子量、高熔体黏度及低熔体流动速率等特点,同时拉伸强度高,热稳定性也有较大改善。
为了实现上述目的,本发明第一方面提供一种改性聚乙醇酸,其中,所述改性聚乙醇酸包括来源于聚乙醇酸的结构单元A和来源于多异氰酸酯类化合物的结构单元B;
所述结构单元A与所述结构单元B的摩尔比>400∶1。
本发明第二方面提供一种制备改性聚乙醇酸的方法,其中,所述方法包括以下步骤:将聚乙醇酸和多异氰酸酯类化合物干燥、混合后,经挤出机熔融共混、挤出造粒,即得所述改性聚乙醇酸,
所述聚乙醇酸的重均分子量为5-30万。
本发明第三方面提供一种由上述方法制得的改性聚乙醇酸。
本发明第四方面提供一种上述改性聚乙醇酸在可降解材料或者阻隔包装材料中的应用。
本发明第五方面提供一种上述改性聚乙醇酸在制备薄膜、纤维和板材中的至少一种中的应用。
通过上述技术方案,本发明所提供的改性聚乙醇酸及其制备方法与应用获得以下有益的效果:
本发明中,通过选择多异氰酸酯类化合物对聚乙醇酸进行改性,通过反应性基团在挤出过程中与聚乙醇酸的端基发生反应,将聚乙醇酸链彼此连接起来,提高了聚乙醇酸的重均分子量和熔体黏度,并且能够显著改善聚乙醇酸的热稳定性,降低聚乙醇酸在熔融挤出时的热降解。
更进一步地,本发明中的多异氰酸酯类化合物能够使聚乙醇酸的熔体流动速率显著降低。
附图说明
图1是实施例1改性聚乙醇酸与聚乙醇酸红外对比图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种改性聚乙醇酸,其中,所述改性聚乙醇 酸包括来源于聚乙醇酸的结构单元A和来源于多异氰酸酯类化合物的结构单元B;
所述结构单元A与所述结构单元B的摩尔比>400∶1。
本发明中,通过控制来源于聚乙醇酸的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比满足上述范围,使得获得的改性聚乙醇酸具有高重均分子量、高熔体黏度及低熔体流动速率的优点,同时拉伸强度高,热稳定性也有较大改善。
更进一步地,为了进一步改善改性聚乙醇酸的重均分子量、熔体黏度、熔体流动速率、拉伸强度以及热稳定性等性能,使得结构单元A和结构单元B的摩尔比为400-3000∶1。
本发明中,来源于聚乙醇酸的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比采用氮含量计算得出,计算方法如式I所示:
n(结构单元A):
Figure PCTCN2021105985-appb-000001
其中,x为氮含量(g/kg),n为多异氰酸酯酯类化合物中含氮元素的个数,M1为多异氰酸酯的分子量(g/mol),M2为聚乙醇酸的重均分子量(g/mol)。
本发明中,改性聚乙醇酸中,氮元素的含量利用痕量S/N分析仪测试,测试条件:炉温1050℃,氩气、氧气流量100mL/min;最大积分时间800s。
根据本发明,相对于改性聚乙醇酸的总重量,所述氮元素的含量 为0.016-0.12wt%。
本发明中,通过控制改性聚乙醇酸中氮元素的含量,使得相对于改性聚乙醇酸的总重量,所述氮元素的含量满足上述范围时,改性聚乙醇酸具有高重均分子量、高熔体黏度及低熔体流动速率,同时拉伸强度高,热稳定性好的优点,进一步地,当氮元素的含量为0.018-0.08wt%时,改性聚乙醇酸的重均分子量、熔体黏度、熔体流动速率、拉伸强度及热稳定性得到进一步改善。
根据本发明,所述改性聚乙醇酸的重均分子量为10-50万,优选为18-30万。
本发明中,所述多异氰酸酯类化合物是指含有两个或以上异氰酸酯基团的化合物。
根据本发明,所述多异氰酸酯类化合物选自二异氰酸酯类化合物和/或二异氰酸酯预聚体。
根据本发明,所述多异氰酸酯类化合物选自甲苯-2,4-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯和赖氨酸二异氰酸酯中的至少一种。
优选地,所述多异氰酸酯类化合物选自六亚甲基二异氰酸酯和/或二苯基甲烷二异氰酸酯;优选为六亚甲基二异氰酸酯和苯基甲烷二异氰酸酯。
根据本发明,所述聚乙醇酸的5重量%失重温度和所述改性聚乙醇酸的5重量%失重温度分别为T1和T2;
其中,T2-T1≥20℃,优选地,T2-T1为20-30℃。
本发明中,5重量%失重温度是指聚乙醇酸失重5%对应的温度,采用TG热失重方法测得。
根据本发明,在240℃和负荷2.16kg下,所述聚乙醇酸和所述改性聚乙醇酸的熔体流动速率分别为MFR1和MFR2;
其中,MFR2≤40%×MFR1,优选地,MFR2为(10-30%)×MFR1;
本发明中,熔体流动速率按照GB/T 3682-2000方法测得。
根据本发明,在230℃、应变2%和频率0.1rad/s下,所述聚乙醇酸和所述改性聚乙醇酸的熔体黏度为η1和η2;
其中,η2≥4×η1,优选地,η2=(5-10)×η1。
本发明中,熔体黏度采用旋转流变频率扫描(230℃,应变2%,频率0.1-100rad/s)方法测得。
本发明第二方面提供一种制备改性聚乙醇酸的方法,其中,所述方法包括以下步骤:将聚乙醇酸和多异氰酸酯类化合物干燥、混合后,经挤出机熔融共混、挤出造粒,即得所述改性聚乙醇酸;所述聚乙醇酸的重均分子量为5-30万。
本发明中,所述挤出机可以为现有技术中常规的挤出设备,例如单螺杆挤出机、或者双螺杆挤出机,优选为双螺杆挤出机。
根据本发明,基于100重量份的聚乙醇酸,所述多异氰酸酯类化合物的用量为0.5-5重量份。
根据本发明,基于100重量份的聚乙醇酸,所述多异氰酸酯类化合物的用量为1-3重量份。
根据本发明,所述聚乙醇酸的重均分子量优选为10-15万。
根据本发明,所述多异氰酸酯类化合物选自二异氰酸酯类化合物和/或二异氰酸酯预聚体。
根据本发明,所述多异氰酸酯类化合物选自甲苯-2,4-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯和赖氨酸二异氰酸酯中的至少一种。
根据本发明,所述多异氰酸酯类化合物包括二苯基甲烷二异氰酸酯和选自甲苯-2,4-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯和赖氨酸二异氰酸酯中的至少一种的多异氰酸酯类化合物。
根据本发明,所述多异氰酸酯类化合物为六亚甲基二异氰酸酯和/或苯基甲烷二异氰酸酯。
根据本发明,所述多异氰酸酯类化合物为六亚甲基二异氰酸酯和二苯基甲烷二异氰酸酯。
本发明中,发明人研究发现,采用六亚甲基二异氰酸酯和二苯基甲烷二异氰酸酯的混合物作为多异氰酸酯类化合物对聚乙醇酸进行改性,能够提高分子量、提高熔体黏度,降低熔体流动速率。
更进一步地,当六亚甲基二异氰酸酯与二苯基甲烷二异氰酸酯的重量比为0∶10-6∶4,优选为3∶7-5∶5,制得的改性聚乙醇酸具有分子量高、熔体黏度高,熔体流动速率低的性能特点。
根据本发明,所述干燥的条件包括:干燥温度为50-80℃;干燥时间为5-10h。
本发明中,发明人研究发现,采用上述条件对聚乙醇酸进行干燥时,能够避免原料中的水分导致包含聚乙醇酸在挤出时发生水解;更 进一步地,所述干燥的条件包括:干燥温度60-80℃;干燥时间为5-8h。
根据本发明,所述熔融共混的条件包括:温度为220-250℃;挤出机转速为60-110r/min。
本发明中,发明人对熔融共混的条件进行了研究,研究发现,采用上述条件对聚乙醇酸和多异氰酸酯类化合物进行熔融共混时,既能够确保多异氰酸酯类化合物能够与聚乙醇酸反应充分,同时,避免了挤出过程中聚乙醇酸的水解,避免了制得的改性聚乙醇酸性能的变劣。
更进一步地,所述熔融共混的条件包括:温度为230-240℃;挤出机转速为80-100r/min。
本发明第三方面提供一种由上述方法制得的改性聚乙醇酸。
本发明中,所述改性聚乙醇酸的重均分子量为10-50万,优选为18-30万。
本发明中,所述聚乙醇酸的5重量%失重温度和所述改性聚乙醇酸的5重量%失重温度分别为T1和T2;
其中,T2-T1≥20℃,优选地,T2-T1为20-30℃。
本发明中,在240℃、负荷2.16kg下,所述聚乙醇酸和所述改性聚乙醇酸的熔体流动速率分别为MFR1和MFR2;
其中,MFR2≤40%×MFR1,优选地,MFR2为(10-30%)×MFR1;
本发明中,在230℃、应变2%和频率0.1rad/s下,所述聚乙醇酸和所述改性聚乙醇酸的熔体黏度为η1和η2;
其中,η2≥4×η1,优选地,η2=(5-10)×η1。
本发明第四方面提供上述改性聚乙醇酸料在可降解材料或者阻 隔包装材料中的应用。
本发明第五方面提供上述改性聚乙醇酸材料在制备薄膜、纤维和板材中的至少一种中的应用。
以下将通过实施例对本发明进行详细描述。以下实施例中,
聚乙醇酸的熔体流动速率采用GB/T 3682-2000方法测得;
聚乙醇酸的5重量%失重温度采用TG热失重方法测得;
聚乙醇酸的熔体黏度采用旋转流变频率扫描(230℃,应变2%,频率0.1-100rad/s)测得。
改性聚乙醇酸中,氮含量利用痕量S/N分析仪测试,测试前利用丙酮溶剂将改性聚乙醇酸浸泡清洗,以去除残余多异氰酸酯类化合物;测试条件:炉温1050℃,氩气、氧气流量100mL/min;最大积分时间800s。
改性聚乙醇酸中,来源于聚乙醇酸的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比通过氮含量计算得出,计算方法如式I所示:
n(结构单元A):
Figure PCTCN2021105985-appb-000002
x为氮含量(g/kg),n为多异氰酸酯酯类化合物中含氮元素的个数,M1为多异氰酸酯的分子量(g/mol),M2为聚乙醇酸的重均分子量(g/mol)。
聚乙醇酸的拉伸强度采用GB/T1040.2-2006方法测得。
聚乙醇酸A(PGA)商购,重均分子量为14万;聚乙醇酸B(PGA)商购;重均分子量为9万;聚乙醇酸C(PGA)商购,重均分子量为4万;
实施例以及对比例所用其他原料均为市售品。
实施例1
将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、3重量份多异氰酸酯类化合物(六亚甲基二异氰酸酯HDI∶二苯基甲烷二异氰酸酯MDI=2∶8)混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒,得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例2
将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、2重量份多异氰酸酯类化合物(六亚甲基二异氰酸酯HDI∶二苯基甲烷二异氰酸酯MDI=4∶6)、混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒,得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用 量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例3
其制备方法如下:将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、3重量份多异氰酸酯类化合物(六亚甲基二异氰酸酯HDI∶二苯基甲烷二异氰酸酯MDI=5∶5)混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒,得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例4
将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、4重量份多异氰酸酯类化合物(六亚甲基二异氰酸酯HDI∶二苯基甲烷二异氰酸酯MDI=5∶5)混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒, 得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例5
将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、3重量份多异氰酸酯类化合物(二苯基甲烷二异氰酸酯MDI)混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒,得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例6
将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、0.5重量份多异氰酸酯类化合物(六亚甲基二异氰酸酯HDI∶二苯基甲烷二异氰酸酯MDI=2∶8)混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒, 得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例7
将聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将100重量份干燥后的聚乙醇酸、5重量份多异氰酸酯类化合物(六亚甲基二异氰酸酯HDI∶二苯基甲烷二异氰酸酯MDI=5∶5)混合均匀,然后用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒,得到改性聚乙醇酸。聚乙醇酸A以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度5重量%失重温度、和熔体流动速率如表2所示。
实施例8
与实施例1制备方法相同,所不同的是熔融挤出温度为230℃。
改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量% 失重温度和熔体流动速率如表2所示。
实施例9
与实施例1制备方法相同,所不同的是所用聚乙醇酸原料不同,所用聚乙醇酸B重均分子量9万。改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
实施例10
与实施例1制备方法相同,所不同的是多异氰酸酯类化合物的用量不同。聚乙醇酸以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
对比例1
将100重量份聚乙醇酸A干燥备用,干燥温度为70℃,干燥时间为8小时;将干燥后的聚乙醇酸用双螺杆挤出机在240℃熔融共混,转速100r/min,挤出造粒。其制备条件如表1所示,聚乙醇酸的重均分子量、拉伸强度、熔体黏度η1、5重量%失重温度T1和熔体流动 速率MFR1如表2所示。
对比例2
与对比例1制备方法相同,所不同的是所用聚乙醇酸原料不同,所用聚乙醇酸B重均分子量9万。聚乙醇酸以及多异氰酸酯类化合物的用量以及制备条件如表1所示,聚乙醇酸的重均分子量、拉伸强度、熔体黏度η1 *、5重量%失重温度T1 *和熔体流动速率MFR1 *如表2所示。
对比例3
与对比例1制备方法相同,所不同的是所用聚乙醇酸原料不同,所用聚乙醇酸C重均分子量4万。聚乙醇酸以及多异氰酸酯类化合物的用量以及制备条件如表1所示,聚乙醇酸的重均分子量、拉伸强度、熔体黏度η1 #、5重量%失重温度T1 #和熔体流动速率MFR1 #如表2所示。
对比例4
与实施例1制备方法相同,所不同的是所用聚乙醇酸原料不同,所用聚乙醇酸C重均分子量4万。聚乙醇酸以及多异氰酸酯类化合物的用量以及制备条件如表1所示,改性聚乙醇酸中,来源于聚乙二醇的结构单元A与来源于多异氰酸酯类化合物的结构单元B的摩尔比、改性聚乙醇酸中氮元素的含量、改性聚乙醇酸的重均分子量、熔 体黏度、拉伸强度、5重量%失重温度和熔体流动速率如表2所示。
表1(重量份)
编号 聚乙醇酸 多异氰酸酯 HDI∶MDI 干燥 熔融挤出
实施例1 A/100 3 2∶8 70℃/8h 240℃
实施例2 A/100 2 4∶6 70℃/8h 240℃
实施例3 A/100 3 5∶5 70℃/8h 240℃
实施例4 A/100 4 5∶5 70℃/8h 240℃
实施例5 A/100 3 0∶10 70℃/8h 240℃
实施例6 A/100 0.5 2∶8 70℃/8h 240
实施例7 A/100 5 5∶5 70℃/8h 240
实施例8 A/100 3 2∶8 70℃/8h 230
实施例9 B/100 3 2∶8 70℃/8h 240
对比例1 A/100 0 - 70℃/8h 240℃
对比例2 B/100 0 - 70℃/8h 240℃
对比例3 C/100 0 - 70℃/8h 240℃
对比例4 C/100 3 2∶8 70℃/8h 240℃
实施例10 A/100 8 2∶8 70℃/8h 240℃
表2
Figure PCTCN2021105985-appb-000003
如图1所示的实施例1的红外谱图,可以看出,改性聚乙醇酸在3308cm -1和1526cm -1处出现了振动吸收峰,这是由酰胺基团振动所引起的,表明多异氰酸酯类酯类化合物与聚乙醇酸发生了化学反应。
通过表2的结果可以看出,采用本发明添加多异氰酸酯类化合物对PGA进行化学改性,改性聚乙醇酸相比于聚乙醇酸,重均分子量有一定程度增大,MFR降为聚乙醇酸的40%及以下,旋转流变测试的230℃,频率0.1rad/s时的复数黏度提高至聚乙醇酸的4倍及以上,拉伸强度保持在>100MPa。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于 此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (14)

  1. 一种改性聚乙醇酸,其中,所述改性聚乙醇酸包括来源于聚乙醇酸的结构单元A和来源于多异氰酸酯类化合物的结构单元B;
    所述结构单元A与所述结构单元B的摩尔比>400∶1。
  2. 根据权利要求1所述的改性聚乙醇酸,其中,所述结构单元A与所述结构单元B的摩尔比为400-3000∶1。
  3. 根据权利要求1或2所述的改性聚乙醇酸,其中,相对于改性聚乙醇酸的总重量,所述氮元素的含量为0.016-0.12wt%,优选为0.018-0.08wt%。
  4. 根据权利要求1-3中任意一项所述的改性聚乙醇酸,其中,所述改性聚乙醇酸的重均分子量为10-50万,优选为18-30万;
    优选地,所述多异氰酸酯类化合物选自二异氰酸酯类化合物和/或二异氰酸酯预聚体;
    优选地,所述多异氰酸酯类化合物选自甲苯-2,4-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯和赖氨酸二异氰酸酯中的至少一种;
    更优选地,所述多异氰酸酯类化合物选自六亚甲基二异氰酸酯和/或二苯基甲烷二异氰酸酯;优选为六亚甲基二异氰酸酯和苯基甲烷二异氰酸酯。
  5. 根据权利要求1-4中任意一项所述的改性聚乙醇酸,其中,所述聚乙醇酸的5重量%失重温度和所述改性聚乙醇酸的5重量%失重温度分别为T1和T2;
    其中,T2-T1≥20℃,优选地,T2-T1为20-30℃;
    优选地,在240℃和负荷2.16kg下,所述聚乙醇酸和所述改性聚乙醇酸的熔体流动速率分别为MFR1和MFR2;
    其中,MFR2≤40%×MFR1,优选地,MFR2为(10-30%)×MFR1;
    优选地,在230℃、应变2%和频率0.1rad/s下,所述聚乙醇酸和所述改性聚乙醇酸的熔体黏度为η1和η2;
    其中,η2≥4×η1,优选地,η2=(5-10)×η1。
  6. 一种制备改性聚乙醇酸的方法,其中,所述方法包括以下步骤:将聚乙醇酸和多异氰酸酯类化合物干燥、混合后,经挤出机熔融共混、挤出造粒,即得所述改性聚乙醇酸;
    所述聚乙醇酸的重均分子量为5-30万。
  7. 根据权利要求6所述的方法,其中,基于100重量份的聚乙醇酸,所述多异氰酸酯类化合物的用量为0.5-5重量份;
    优选地,基于100重量份的聚乙醇酸,所述多异氰酸酯类化合物的用量为1-3重量份。
  8. 根据权利要求6或7所述的方法,其中,所述聚乙醇酸的重均分子量为10-15万;
    优选地,所述多异氰酸酯类化合物选自二异氰酸酯类化合物和/或二异氰酸酯预聚体;
    优选地,所述多异氰酸酯类化合物选自甲苯-2,4-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯和赖氨酸二异氰酸酯中的至少一种;
    更优选地,所述多异氰酸酯类化合物包括二苯基甲烷二异氰酸酯和选自甲苯-2,4-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯和赖氨酸二异氰酸酯中的至少一种的多异氰酸酯类化合物。
  9. 根据权利要求6-8中任意一项所述的方法,其中,所述多异氰酸酯类化合物为六亚甲基二异氰酸酯和/或苯基甲烷二异氰酸酯;
    优选地,所述多异氰酸酯类化合物为六亚甲基二异氰酸酯和二苯基甲烷二异氰酸酯;
    更优选地,六亚甲基二异氰酸酯与二苯基甲烷二异氰酸酯的重量比为0∶1-6∶4,优选为3∶7-5∶5。
  10. 根据权利要求6-9中任意一项所述的方法,其中,所述干燥的条件包括:干燥温度为50-80℃,优选为60-80℃;干燥时间为5-10h,优选为5-8h。
  11. 根据权利要6-10中任意一项所述的方法,其中,所述熔融共混的条件包括:温度为220-250℃,优选为230-240℃;挤出机转速为60-110r/min,优选为80-100r/min。
  12. 由权利要求6-11中任意一项所述的方法制得的改性聚乙醇酸。
  13. 一种权利要求1-5和权利要求12中任意一项所述的改性聚乙醇酸在可降解材料或者阻隔包装材料中的应用。
  14. 一种权利要求1-5和权利要求12中任意一项所述的改性聚乙醇酸材料在制备薄膜、纤维和板材中的至少一种中的应用。
PCT/CN2021/105985 2020-08-19 2021-07-13 改性聚乙醇酸及其制备方法与应用 WO2022037319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21857414.3A EP4201977A1 (en) 2020-08-19 2021-07-13 Modified polyglycolic acid, preparation method therefor and use thereof
JP2023512146A JP2023540889A (ja) 2020-08-19 2021-07-13 変性ポリグリコール酸およびその調製方法並びに用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010837348.1 2020-08-19
CN202010837348.1A CN114075332B (zh) 2020-08-19 2020-08-19 改性聚乙醇酸及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022037319A1 true WO2022037319A1 (zh) 2022-02-24

Family

ID=80282624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105985 WO2022037319A1 (zh) 2020-08-19 2021-07-13 改性聚乙醇酸及其制备方法与应用

Country Status (4)

Country Link
EP (1) EP4201977A1 (zh)
JP (1) JP2023540889A (zh)
CN (1) CN114075332B (zh)
WO (1) WO2022037319A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052110A (ja) * 2009-09-01 2011-03-17 Mitsui Chemicals Inc ポリグリコール酸系樹脂、その製造方法およびその用途
CN106432697A (zh) 2016-08-09 2017-02-22 桂林市福泰建材有限责任公司 一种可降解聚乙醇酸的制备方法
CN109535470A (zh) * 2018-11-21 2019-03-29 朱志荣 一种高强度高韧性可降解聚酯类聚合物的高效制备方法
CN110041502A (zh) * 2019-03-22 2019-07-23 中国科学院宁波材料技术与工程研究所 一种热塑性聚氨酯弹性体及其制备方法和应用
CN111108138A (zh) * 2017-09-21 2020-05-05 3M创新有限公司 挤出的聚氨酯表面膜
CN111454552A (zh) * 2020-05-14 2020-07-28 包头稀土研究院 聚乙醇酸改性剂、组合物及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432696A (zh) * 2016-08-09 2017-02-22 桂林市福泰建材有限责任公司 一种耐拉伸聚乙醇酸的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052110A (ja) * 2009-09-01 2011-03-17 Mitsui Chemicals Inc ポリグリコール酸系樹脂、その製造方法およびその用途
CN106432697A (zh) 2016-08-09 2017-02-22 桂林市福泰建材有限责任公司 一种可降解聚乙醇酸的制备方法
CN111108138A (zh) * 2017-09-21 2020-05-05 3M创新有限公司 挤出的聚氨酯表面膜
CN109535470A (zh) * 2018-11-21 2019-03-29 朱志荣 一种高强度高韧性可降解聚酯类聚合物的高效制备方法
CN110041502A (zh) * 2019-03-22 2019-07-23 中国科学院宁波材料技术与工程研究所 一种热塑性聚氨酯弹性体及其制备方法和应用
CN111454552A (zh) * 2020-05-14 2020-07-28 包头稀土研究院 聚乙醇酸改性剂、组合物及其制备方法和用途

Also Published As

Publication number Publication date
EP4201977A1 (en) 2023-06-28
CN114075332A (zh) 2022-02-22
CN114075332B (zh) 2023-07-14
JP2023540889A (ja) 2023-09-27

Similar Documents

Publication Publication Date Title
WO2022037349A1 (zh) 增韧可降解聚乙醇酸组合物、增韧可降解聚乙醇酸材料及其制备方法与应用
Wang et al. Morphological and mechanical properties of biodegradable poly (glycolic acid)/poly (butylene adipate-co-terephthalate) blends with in situ compatibilization
US9006353B2 (en) Crosslinking compounds for high glass transition temperature polymers
CN103249765B (zh) 聚酰胺树脂薄膜及其制造方法
CN115772321A (zh) 一种生物可降解复合膜及其制备方法
CN110714232B (zh) 一种高强度聚乙烯单丝的配方工艺
WO2022037319A1 (zh) 改性聚乙醇酸及其制备方法与应用
EP0572682A1 (en) Process for producing high-molecular aliphatic polyester, and film
EP2940058B1 (en) Cross-linked polymer, polymer resin composition, and polymer film
TWI596140B (zh) 聚芳硫醚樹脂組合物及其形成之物件
CN114075331A (zh) 聚乙醇酸组合物及其制备方法与应用
Shibita et al. Conetworks composed of 4-armed star-shaped l-lactide oligomer and 4-armed star-shaped ɛ-caprolactone oligomer
CN110498895A (zh) 三维网状结构聚(脲-氨酯)自修复弹性体及其制备方法
CN114075375B (zh) 聚乙醇酸组合物及其制备方法与应用
CN114075374B (zh) 聚乙醇酸组合物及其制备方法与应用
CN114075378B (zh) 聚乙醇酸组合物及其制备方法与应用
JP3657309B2 (ja) 熱可塑性重合体組成物
JPS6239613A (ja) 熱可塑性ポリウレタンの製造法
JP4600798B2 (ja) サニタリー用ポリウレタン弾性繊維およびその製造方法
TWI788086B (zh) 可適用於淋膜加工的熱塑性聚氨酯樹脂及其製造方法
WO2023040769A1 (zh) 半芳香族聚醚酯及其制备方法和应用
JPH0747599A (ja) ポリエステル製テープ
CN116529286A (zh) 制备可生物降解的聚合物复合物的方法和可生物降解的聚合物复合物
CN116178819A (zh) 一种聚酰亚胺增强hdpe复合材料及其制备方法和应用
JPH08120073A (ja) ポリエステルアミド共重合体及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857414

Country of ref document: EP

Effective date: 20230320