WO2022030330A1 - 射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ - Google Patents

射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ Download PDF

Info

Publication number
WO2022030330A1
WO2022030330A1 PCT/JP2021/027921 JP2021027921W WO2022030330A1 WO 2022030330 A1 WO2022030330 A1 WO 2022030330A1 JP 2021027921 W JP2021027921 W JP 2021027921W WO 2022030330 A1 WO2022030330 A1 WO 2022030330A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
injection
tamper
molded article
thickness
Prior art date
Application number
PCT/JP2021/027921
Other languages
English (en)
French (fr)
Inventor
倫寿 山▲崎▼
貴支 軸丸
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020133848A external-priority patent/JP7494638B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2022030330A1 publication Critical patent/WO2022030330A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Definitions

  • This disclosure relates to an injection molded product, a manufacturing method thereof, and a hinge cap and a tamper evidence cap.
  • plastic molded products have been used in all everyday items and industrial products around us.
  • Demand for plastic molded products is increasing due to the progress of generalization by improving the quality of plastic molded products and reducing costs.
  • microplastics affect environmental pollution, and there is a growing tendency to refrain from the deplasticization movement and the use of plastic products.
  • Effervescent molding is known as a means of reducing the weight of plastic molded products.
  • Foam molding can be roughly divided into chemical foam molding and physical foam molding.
  • a foaming agent is used in chemical foam molding.
  • physical foam molding a fluid in a supercritical state is used, and this method is called supercritical fluid molding.
  • Chemical foam molding has problems such as concern about the adverse effect of the foaming agent on the environment and contamination of the mold.
  • Supercritical fluid molding has traditionally been applied to relatively large industrial products such as automobile parts molding and office equipment. In recent years, with the improvement of supercritical fluid generation technology and kneading technology for resin compositions, it has been studied to apply supercritical fluid molding to high-cycle injection molding.
  • Patent Documents 1 to 3 disclose food containers manufactured by supercritical fluid molding.
  • a container for accommodating seasonings and the like is provided with a hinge cap that can be opened and closed.
  • the hinge cap includes a cap main body, an upper lid, and a hinge portion connecting the cap main body and the upper lid (see FIG. 2).
  • This hinge portion is thinner than the cap body and the upper lid.
  • a hinge cap is manufactured by supercritical fluid molding, a gap is formed not only in the cap main body and the upper lid but also in the hinge portion, and there is a possibility that sufficient strength of the hinge portion cannot be ensured.
  • the present disclosure provides an injection-molded article having a thin-walled portion that is lightweight by foaming and has sufficient strength, and a method for producing the same.
  • One aspect of this disclosure relates to a method for manufacturing an injection molded product.
  • This manufacturing method includes (A) a step of preparing a molten resin composition containing a resin material and a supercritical fluid, (B) a step of injecting the molten resin composition into a cavity of a mold, and (C). In the cavity, a step of foaming the molten resin composition by reducing the pressure and (D) a step of recovering the molded body having a plurality of voids derived from the foaming from the mold are included, and the molded body is 1.8. It includes a thick portion having a thickness of about 10 mm and containing a plurality of voids, and a thin portion having a thickness of 0.3 to 1.7 mm.
  • the injection-molded article to be manufactured has a thick part and a thin part
  • foaming due to the supercritical fluid mainly occurs in the thick part, while foaming is suppressed in the thin part.
  • the weight of the injection-molded article as a whole can be reduced by foaming, and sufficient strength can be maintained for the thin-walled portion.
  • the molten resin composition is introduced into the cavity through the gate, it foams due to the decrease in pressure.
  • a step of applying pressure to the inside of the cavity (holding pressure) is performed after filling the resin, whereas in the above manufacturing method, for example, by not performing this step of applying pressure, foaming occurs in a thick portion. Occurs. It is presumed that the main reason why foaming is suppressed in the thin-walled portion is that the resin is cooled and solidified before foaming occurs in the thin-walled portion.
  • the type of supercritical fluid according to the resin material to be used and to set the injection speed in the step (B).
  • the supercritical fluid is preferably carbon dioxide, and the injection speed in the step (B) is preferably 5 to 20 mm / sec.
  • the distance from the gate of the mold to the portion corresponding to the thin-walled portion is 40 mm or more in the mold from the viewpoint of suppressing foaming in the thin-walled portion.
  • the portion different from the portion corresponding to the thin-walled portion is the flow end. That is, it is preferable that the flow end of the mold is not a portion corresponding to the thin wall portion.
  • This injection-molded article includes a thick portion having a thickness of 1.8 to 10 mm and including a plurality of voids, and a thin portion having a thickness of 0.3 to 1.7 mm.
  • This injection-molded article can be produced by the above-mentioned method for producing an injection-molded article.
  • the voids contained in the thick portion are derived from the foaming of the supercritical fluid.
  • a hinge cap can be mentioned as an example of an injection-molded article in which a thin-walled portion fulfills a specific function.
  • the hinge cap includes a cap main body, an upper lid, and a hinge portion connecting the cap main body and the upper lid.
  • the cap body and the upper lid correspond to the thick portion, and the hinge portion corresponds to the thin portion.
  • Another example is the tamper evidence cap.
  • the tamper evidence cap includes a cap, a tamper, and a connecting portion between the cap and the tamper.
  • the cap and the tamper correspond to the thick portion, and the connecting portion corresponds to the thin portion.
  • an injection-molded article which is lightweight by foaming and has a thin-walled portion having sufficient strength, and a method for producing the same.
  • FIG. 1 is a cross-sectional view schematically showing a state in which foaming occurs in a region corresponding to a thick portion of a cavity, whereas foaming does not occur in a region corresponding to a thin wall portion.
  • FIG. 2 is a cross-sectional view schematically showing an example of a hinge cap.
  • FIG. 3A is a side view schematically showing an example (before opening) of the tamper evidence cap, and FIG. 3B schematically shows a state after opening the tamper evidence cap shown in FIG. 3A. It is a side view shown in.
  • the method for manufacturing an injection-molded article according to the present embodiment includes the following steps.
  • B A step of injecting the molten resin composition into the cavity of the mold.
  • C A step of foaming the molten resin composition in the cavity by reducing the pressure.
  • D A step of recovering a molded product having a plurality of voids derived from foaming of a molten resin composition from a mold.
  • the molded product produced by this method includes a thick portion having a thickness of 1.8 to 10 mm and containing a plurality of voids, and a thin portion having a thickness of 0.3 to 1.7 mm.
  • the thick portion may have a thickness of 1.8 to 3.0 mm or 3.0 to 7.0 mm.
  • the thin portion may have a thickness of 0.3 to 0.6 mm or 0.7 to 1.0 mm.
  • the thin-walled portion may contain voids derived from foaming of the molten resin composition as long as the strength does not affect the portion.
  • the series of steps from (A) to (D) can be carried out using, for example, a MuCell injection molding machine (“MuCell” is a registered trademark of Trexel. Co. Ltd) (see Patent Documents 1 and 2).
  • a molten resin composition containing a resin material and a supercritical fluid is prepared.
  • the resin material include polypropylene resin and polyethylene resin.
  • supercritical fluids include carbon dioxide, nitrogen, argon and helium. According to the study by the present inventors, when the supercritical fluid is carbon dioxide, it is preferably 1.5 to 4.5 parts by mass, more preferably 3 to 4 parts by mass with respect to 100 parts by mass of the resin material.
  • a molten resin composition is prepared by adding carbon dioxide in a critical state. When the carbon dioxide content of the molten resin composition is 1.5 parts by mass or more, it is easy to form a sufficiently uniform foam layer in the thick portion, and it tends to be possible to realize weight reduction by foaming. On the other hand, when the carbon dioxide content of the molten resin composition is 4.5 parts by mass or less, excessive foaming tends to be suppressed.
  • the supercritical fluid is nitrogen
  • preferably 0.1 to 2.0 parts by mass more preferably 0.5 to 1.0 part by mass of supercritical nitrogen is added to 100 parts by mass of the resin material.
  • a molten resin composition When the nitrogen content of the molten resin composition is 0.5 parts by mass or more, it is easy to form a sufficiently uniform foam layer in the thick portion, and it tends to be possible to realize weight reduction by foaming. On the other hand, when the nitrogen content of the molten resin composition is 2.0 parts by mass or less, excessive foaming tends to be suppressed.
  • the temperature of the molten resin composition is preferably about 210 to 230 ° C.
  • this temperature is preferably about 220 to 240 ° C.
  • this temperature is at least the lower limit value, the resin tends to flow easily in the cavity, while when it is at least the upper limit value, for example, the scorching of the resin tends to be suppressed.
  • the molten resin composition may contain components other than the resin material and the supercritical fluid. That is, the molten resin composition may further contain, for example, a filler, a colorant, a slip agent, an antistatic agent, and the like, if necessary.
  • Step (B) and Step (C)] (A) The molten resin composition prepared in the step is injected into the cavity through the gate of the mold. When the molten resin composition is introduced into the cavity, the bubble cells grow due to the decrease in pressure and independent bubbles are generated in the resin composition.
  • the injection speed is preferably 5 to 100 mm / sec, more preferably 10 to 30 mm / sec. When the injection speed is 5 mm / sec or more, it is easy for the resin to reach the end of the flow, and the occurrence of short shots tends to be suppressed.
  • the injection speed in the step (B) is preferably 5 to 30 mm / sec, preferably 10 to 20 mm / sec. More preferably, it is seconds.
  • FIG. 1 is a cross-sectional view schematically showing a state in which foaming occurs in the region R1 corresponding to the thick portion of the cavity C, whereas foaming does not occur in the region R2 corresponding to the thin wall portion.
  • the cavity C is formed by the upper die D1 and the lower die D2.
  • the average diameter of the voids in the thick portion is, for example, 100 to 600 ⁇ m.
  • the size of the voids can be controlled by adjusting the injection amount, injection rate, resin temperature or pressure in the cavity of the molten resin composition.
  • the average diameter of the void can be obtained from the image of the microscope.
  • a step (holding pressure) of applying pressure to the cavity after filling the cavity with the molten resin composition is carried out. You don't have to.
  • a step called "core back" for reducing the pressure in the cavity it is preferable not to carry out a step called "core back" for reducing the pressure in the cavity.
  • the core back is a step of moving the movable part of the mold to expand the volume of the cabidi before the molten resin filled in the cabidi is solidified (see Patent Document 1).
  • the pressure drop accompanying the introduction of the molten resin composition into the cavity can cause foaming in the region corresponding to the thick portion in the cavity, while the thin portion can be foamed. Foaming in the corresponding region can be suppressed.
  • the distance from the gate of the mold to the portion corresponding to the thin-walled portion is preferably 40 mm or more, more preferably 40 to 60 mm in the mold. From the same viewpoint as this, in the mold, it is preferable that the portion different from the portion corresponding to the thin-walled portion is the flow end. That is, it is preferable that the flow end of the mold is not a portion corresponding to the thin wall portion.
  • Step (D) When the temperature of the molded product drops to about 30 to 60 ° C., the molded product is recovered from the mold.
  • voids derived from foaming By forming voids derived from foaming in the thick portion, weight reduction is achieved and the amount of plastic material used is reduced. Since the voids are formed, it is preferable that the weight is reduced by 5% by mass or more as compared with the molded article (ordinary injection molded article) in which the voids are not formed. Further, it is preferable that no appearance defects such as minute irregularities (dimples) and foam marks (swirl marks) are observed on the surface of the molded product.
  • FIG. 2 is a cross-sectional view schematically showing an example of a hinge cap.
  • the hinge cap 5 shown in this figure includes a cap main body 1, an upper lid 2, and a hinge portion 3 connecting the cap main body 1 and the upper lid 2.
  • the cap body 1 and the upper lid 2 correspond to the thick portion, and the hinge portion 3 corresponds to the thin portion.
  • FIG. 3A is a side view schematically showing an example (before opening) of the tamper evidence cap
  • FIG. 3B schematically shows a state after opening the tamper evidence cap shown in FIG. 3A. It is a side view shown in.
  • the tamper evidence cap 10 shown in these figures includes a cap 6, a tamper 7, and a connecting portion 8 of the cap 6 and the tamper 7.
  • the cap 6 and the tamper 7 correspond to the thick portion
  • the connecting portion 8 corresponds to the thin portion. For example, when the cap 6 is rotated to open the PET bottle, the connecting portion 8 is cut and the cap 6 is separated from the tamper 7 (see FIG. 3 (b)).
  • a hinge cap was manufactured by ordinary injection molding using the following resin materials.
  • Example 1 A molten resin composition was prepared by adding 3 parts by mass of carbon dioxide in a supercritical state to 100 parts by mass of the resin material. Using this molten resin composition, a hinge cap having the same shape as that of the comparative example was produced. The injection speed was 10 mm / sec. The weight of the hinge cap according to Example 1 was 11.8 g, and a weight reduction rate of 6.3% was achieved based on the comparative example.
  • a MuCell injection molding machine (“MuCell” is a registered trademark of Trexel.Co.Ltd) was used.
  • Example 2 A molten resin composition was prepared by adding 1.5 parts by mass of carbon dioxide in a supercritical state to 100 parts by mass of the resin material. Using this molten resin composition, a hinge cap having the same shape as that of the comparative example was produced. The injection speed was 10 mm / sec. The weight of the hinge cap according to Example 2 was 11.6 g, and a weight reduction rate of 8.5% was achieved based on the comparative example.
  • Example 3 A molten resin composition was prepared by adding 1.0 part by mass of nitrogen in a supercritical state to 100 parts by mass of the resin material. Using this molten resin composition, a hinge cap having the same shape as that of the comparative example was produced. The injection speed was 10 mm / sec. The weight of the hinge cap according to Example 3 was 11.7 g, and a weight reduction rate of 7.4% was achieved based on the comparative example.
  • Example 4 A molten resin composition was prepared by adding 0.5 parts by mass of nitrogen in a supercritical state to 100 parts by mass of the resin material. Using this molten resin composition, a hinge cap having the same shape as that of the comparative example was produced. The injection speed was 30 mm / sec. The weight of the hinge cap according to Example 4 was 11.9 g, and a weight reduction rate of 5.6% was achieved based on the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

本開示に係る射出成形体の製造方法は、(A)樹脂材料と、超臨界流体とを含む溶融樹脂組成物を調製する工程と、(B)溶融樹脂組成物を金型のキャビティ内に射出する工程と、(C)キャビティ内において、圧力の低下によって溶融樹脂組成物を発泡させる工程と、(D)発泡に由来する複数の空隙を有する成形体を金型から回収する工程とを含み、成形体が厚さ1.8~10mmの厚肉部と、厚さ0.3~1.7mmの薄肉部とを有する。

Description

射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ
 本開示は射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップに関する。
 近年、プラスチック成形品が身の回りのあらゆる日用品や工業製品に用いられている。プラスチック成形品の品質向上及びコストダウンによる汎用化が進み、プラスチック成形品の需要が高まっている。一方、海洋プラスチックごみ問題にみられるようにマイクロプラスチックによって環境汚染に影響を与えることが注目されるようになり、脱プラスチック運動やプラスチック製品の使用を控える風潮が高まっている。
 食品や日用品の用途における使い捨てのプラスチック容器については、ユーザーから少しでも石油由来のプラスチック使用量を少なくできないかという要望が強くなってきている。このような要望に対し、原料の一部に植物由来の樹脂を使用する、再生プラスチック材を活用する、寸法や形状の工夫によってプラスチック使用量を削減するなどの取り組みがなされている。
 プラスチック成形品を軽量化する手段として発泡成形が知られている。発泡成形は化学発泡成形と物理発泡成形に大別できる。化学発泡成形では発泡剤が使用される。一方、物理発泡成形では超臨界状態の流体が使用され、この方法は超臨界流体成形と称される。化学発泡成形は発泡剤の環境への悪誘響の懸念、金型の汚染等の課題がある。超臨界流体成形は、従来、自動車部品成形や事務用機器類などの比較的大型の工業製品に適用されてきた。近年、超臨界流体の生成技術及び樹脂組成物への混練技術の向上に伴い、ハイサイクルな射出成形に超臨界流体成形を適用することが検討されている。特許文献1~3は超臨界流体成形によって製造される食品用容器を開示している。
特許6085729号公報 特許6430684号公報 特開2020-040690号公報
 ところで、特許文献1~3に記載されているような食品用容器の他に、特定の機能を有するプラスチック成形品の製造にも射出成形が適用されている。例えば、調味料などを収容する容器は開閉自在のヒンジキャップを備える。ヒンジキャップは、キャップ本体と、上蓋と、キャップ本体と上蓋を連結しているヒンジ部とを備える(図2参照)。このヒンジ部は、キャップ本体及び上蓋と比較して肉薄である。例えば、超臨界流体成形によってヒンジキャップを製造すると、キャップ本体部及び上蓋のみならず、ヒンジ部にも空隙が形成され、ヒンジ部の十分な強度を確保できないおそれがある。
 本開示は、発泡によって軽量化が図られており且つ十分な強度を有する薄肉部を備える射出成形体及びその製造方法を提供する。
 本開示の一側面は射出成形体の製造方法に関する。この製造方法は、(A)樹脂材料と、超臨界流体とを含む溶融樹脂組成物を調製する工程と、(B)溶融樹脂組成物を金型のキャビティ内に射出する工程と、(C)キャビティ内において、圧力の低下によって溶融樹脂組成物を発泡させる工程と、(D)発泡に由来する複数の空隙を有する成形体を金型から回収する工程とを含み、上記成形体が1.8~10mmの厚さを有し且つ複数の空隙を含む厚肉部と、0.3~1.7mmの厚さを有する薄肉部とを備える。
 本発明者らの検討によると、作製すべき射出成形体に厚肉部と薄肉部があると、超臨界流体に起因する発泡が主に厚肉部で生じる一方、薄肉部においては発泡が抑制される。このため、射出成形体の全体としては発泡によって軽量化を図ることができ且つ薄肉部については十分な強度を維持することができる。溶融樹脂組成物がゲートを通じてキャビティ内に導入されると、圧力の低下によって発泡する。通常の射出成形では樹脂の充填後にキャビティ内に圧力をかける工程(保圧)を実施するのに対し、上記製造方法では、例えば、この圧力をかける工程を実施しないことで厚肉部において発泡が生じる。薄肉部における発泡が抑制される主因は薄肉部において発泡が生じる前に樹脂が冷却固化するためと推察される。
 上記製造方法においては、使用する樹脂材料に応じて超臨界流体の種類を選択するとともに、(B)工程における射出速度を設定することが好ましい。例えば、上記脂材料がポリプロピレン樹脂である場合、超臨界流体は二酸化炭素であることが好ましく、(B)工程における射出速度は5~20mm/秒であることが好ましい。
 本発明者らの検討によると、薄肉部における発泡を抑制する観点から、金型において、金型のゲートから薄肉部に対応する部分までの距離は40mm以上であることが好ましい。これと同様の観点から、金型において、薄肉部に対応する部分と異なる部分が流動末端であることが好ましい。つまり、金型の流動末端は薄肉部に対応する部分ではないことが好ましい。
 本開示の一側面は射出成形体に関する。この射出成形体は、1.8~10mmの厚さを有し且つ複数の空隙を含む厚肉部と、0.3~1.7mmの厚さを有する薄肉部とを備える。この射出成形体は、上述の射出成形体の製造方法によって製造することができる。厚肉部が含む空隙は超臨界流体の発泡に由来するものである。
 薄肉部が特定の機能を果たす射出成形体の例として、上述のとおり、ヒンジキャップが挙げられる。ヒンジキャップは、キャップ本体と、上蓋と、キャップ本体と上蓋を連結しているヒンジ部とを備える。キャップ本体及び上蓋が上記厚肉部に相当し、ヒンジ部が上記薄肉部に相当する。他の例として、タンパーエビデンスキャップが挙げられる。タンパーエビデンスキャップは、キャップと、タンパーと、キャップとタンパーの連結部とを備え、キャップ及びタンパーが上記厚肉部に相当し、連結部が上記薄肉部に相当する。
 本開示によれば、発泡によって軽量化が図られており且つ十分な強度を有する薄肉部を備える射出成形体及びその製造方法が提供される。
図1はキャビティの厚肉部に対応する領域に発泡が生じているのに対し、薄肉部に対応する領域に発泡が生じていない状態を模式的に示す断面図である。 図2はヒンジキャップの一例を模式的に示す断面図である。 図3(a)はタンパーエビデンスキャップの一例(開封前)を模式的に示す側面図であり、図3(b)は図3(a)に示すタンパーエビデンスキャップを開封した後の状態を模式的に示す側面図である。
 以下、本開示の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。
<射出成形体の製造方法>
 本実施形態に係る射出成形体の製造方法は以下の工程を含む。
(A)樹脂材料と、超臨界流体とを含む溶融樹脂組成物を調製する工程。
(B)溶融樹脂組成物を金型のキャビティ内に射出する工程。
(C)キャビティ内において、圧力の低下によって溶融樹脂組成物を発泡させる工程。
(D)溶融樹脂組成物の発泡に由来する複数の空隙を有する成形体を金型から回収する工程。
 この方法によって製造される成形体は、1.8~10mmの厚さを有し且つ複数の空隙を含む厚肉部と、0.3~1.7mmの厚さを有する薄肉部とを備える。厚肉部は、1.8~3.0mm又は3.0~7.0mmの厚さを有してもよい。薄肉部は、0.3~0.6mm又は0.7~1.0mmの厚さを有してもよい。なお、薄肉部は、その強度の影響が出ない程度であれば、溶融樹脂組成物の発泡に由来する空隙を含んでもよい。(A)工程から(D)工程の一連の工程は、例えば、MuCell射出成形機(「MuCell」はTrexel.Co.Ltdの登録商標)を使用して実施できる(特許文献1,2参照)。
[(A)工程]
 まず、樹脂材料と、超臨界流体とを含む溶融樹脂組成物を調製する。樹脂材料として、ポリプロピレン樹脂及びポリエチレン樹脂が挙げられる。超臨界流体としては、二酸化炭素、窒素、アルゴン及びヘリウムが挙げられる。本発明者らの検討によると、超臨界流体が二酸化炭素である場合、樹脂材料100質量部に対して、好ましくは1.5~4.5質量部、より好ましくは3~4質量部の超臨界状態の二酸化炭素を添加して溶融樹脂組成物を調製する。溶融樹脂組成物の二酸化炭素含有量が1.5質量部以上であることで、厚肉部に十分に均一の発泡層を形成しやすいとともに発泡による軽量化を実現し得る傾向にある。一方、溶融樹脂組成物の二酸化炭素含有量を4.5質量部以下であることで、過剰な発泡を抑制し得る傾向にある。
 超臨界流体が窒素である場合、樹脂材料100質量部に対して、好ましくは0.1~2.0質量部、より好ましくは0.5~1.0質量部の超臨界状態の窒素を添加して溶融樹脂組成物を調製する。溶融樹脂組成物の窒素含有量が0.5質量部以上であることで、厚肉部に十分に均一の発泡層を形成しやすいとともに発泡による軽量化を実現し得る傾向にある。一方、溶融樹脂組成物の窒素含有量を2.0質量部以下であることで、過剰な発泡を抑制し得る傾向にある。
 使用する樹脂材料がポリプロピレン樹脂である場合、溶融樹脂組成物の温度(スクリューシリンダ温度)は、210~230℃程度であることが好ましい。使用する樹脂材料がポリエチレン樹脂である場合、この温度は220~240℃程度であることが好ましい。この温度が下限値以上であることで、キャビティ内において樹脂が流動しやすく、他方、上限値以下であることで、例えば、樹脂の焦げ付きを抑制できる傾向にある。
 溶融樹脂組成物は、樹脂材料及び超臨界流体以外の成分を含んでもよい。すなわち、溶融樹脂組成物は、必要に応じて、例えば、フィラー、着色剤、スリップ剤、帯電防止剤などを更に含んでもよい。
[(B)工程及び(C)工程]
 (A)工程で調製した溶融樹脂組成物を金型のゲートを通じてキャビティ内に射出する。溶融樹脂組成物がキャビティ内に導入されると、圧力の低下によって気泡セルが成長して独立した気泡が樹脂組成物内に発生する。射出速度は、5~100mm/秒であることが好ましく、10~30mm/秒であることがより好ましい。射出速度が5mm/秒以上であることで、流動末端まで樹脂を到達させやすく、ショートショットの発生を抑制できる傾向にある。他方、射出速度が100mm/秒以下であることで、成形体内において気泡が疎の部分が生じたり、成形体の表面に凹凸ができたりすることを抑制できる傾向にある。本発明者らの検討によると、樹脂材料がポリプロピレン樹脂であり、超臨界流体が二酸化炭素である場合、(B)工程における射出速度は5~30mm/秒であることが好ましく、10~20mm/秒であることがより好ましい。
 図1は、キャビティCの厚肉部に対応する領域R1に発泡が生じているのに対し、薄肉部に対応する領域R2に発泡が生じていない状態を模式的に示す断面図である。なお、キャビティCは上型D1と下型D2によって形成されている。厚肉部における空隙の平均直径は、例えば、100~600μmである。空隙の大きさは、溶融樹脂組成物の射出量、射出速度、樹脂温度又はキャビティ内の圧力を調節することによって制御することができる。なお、空隙の平均直径は顕微鏡の画像から求めることができる。
 本実施形態においては、キャビティの厚肉部に対応する領域における発泡を十分に促進させる観点から、キャビティ内に溶融樹脂組成物を充填した後、キャビティ内に圧力をかける工程(保圧)を実施しなくてよい。他方、キャビティの薄肉部に対応する領域における発泡を抑制する観点から、キャビティ内の圧力を低下させるための「コアバック」と称される工程を実施しないことが好ましい。コアバックは、キャビディに充填された溶融樹脂が固化し終わる前に、金型の可動部を移動させてキャビディの容積を拡大させる工程である(特許文献1参照)。本実施形態においては、上述のとおり、溶融樹脂組成物がキャビティ内に導入されることに伴う圧力低下により、キャビティにおける厚肉部に対応する領域で発泡を生じさせることでき、一方、薄肉部に対応する領域での発泡を抑制することができる。
 薄肉部における発泡をより一層抑制する観点から、金型において、金型のゲートから薄肉部に対応する部分までの距離は好ましくは40mm以上であり、より好ましくは40~60mmである。これと同様の観点から、金型において、薄肉部に対応する部分と異なる部分が流動末端であることが好ましい。つまり、金型の流動末端は薄肉部に対応する部分ではないことが好ましい。
[(D)工程]
 成形体の温度が30~60℃程度に下がった時点で、成形体を金型から回収する。厚肉部に発泡に由来する空隙が形成されていることで、軽量化が図られ、プラスチック材料の使用量が削減されている。空隙が形成されていることで、空隙が形成されていない成形体(通常の射出成形体)と比較して、5質量%以上の軽量化が図られていることが好ましい。また、成形体の表面に微小な凹凸(ディンプル)や発泡痕(スワールマーク)などの外観上の欠陥が認められないことが好ましい。
<成形体>
 上記方法で製造される成形体として、例えば、ヒンジキャップ及びタンパーエビデンスキャップが挙げられる。図2はヒンジキャップの一例を模式的に示す断面図である。この図に示すヒンジキャップ5は、キャップ本体1と、上蓋2と、キャップ本体1と上蓋2を連結しているヒンジ部3とを備える。キャップ本体1及び上蓋2が厚肉部に相当し、ヒンジ部3が薄肉部に相当する。
 図3(a)はタンパーエビデンスキャップの一例(開封前)を模式的に示す側面図であり、図3(b)は図3(a)に示すタンパーエビデンスキャップを開封した後の状態を模式的に示す側面図である。これらの図に示すタンパーエビデンスキャップ10は、キャップ6と、タンパー7と、キャップ6とタンパー7の連結部8とを備える。キャップ6及びタンパー7が厚肉部に相当し、連結部8が薄肉部に相当する。例えば、ペットボトルを開封するために、キャップ6を回転させると、連結部8が切断されて、キャップ6がタンパー7から分離される(図3(b)参照)。
 以下、本開示について実施例及び比較例に基づいて説明する。なお、本発明は以下の実施例に限定されるものではない。
(比較例)
 以下の樹脂材料を使用し、通常の射出成形によってヒンジキャップを作製した。
[樹脂材料]
・ポリプロピレン(サンアロマー株式会社製、PM940M、ランダムコポリマー、メルトフローレート:30g/10分)
[ヒンジキャップの構成]
・キャップ本体の厚さ:1.0~1.4mm
・上蓋の厚さ:1.7~3.2mm
・ヒンジ部の厚さ:0.1~0.5mm
・重量:12.6g
(実施例1)
 上記樹脂材料100質量部に対して3質量部の超臨界状態の二酸化炭素を添加して溶融樹脂組成物を調製した。この溶融樹脂組成物を使用して比較例と同じ形状のヒンジキャップを作製した。射出速度は10mm/秒とした。実施例1に係るヒンジキャップの重量は11.8gであり、比較例を基準として6.3%の軽量化率が達成された。なお、本実施例及び以下の実施例ではMuCell射出成形機(「MuCell」はTrexel.Co.Ltdの登録商標)を使用した。
 実施例1に係るヒンジキャップのヒンジ部の内部をCTスキャンによる断面画像(倍率:50倍)で確認したところ、発泡は認められなかった。一方、ヒンジキャップの厚肉部の内部をCTスキャンによる断面画像で確認したところ、均一の空隙が広がっていた。また、成形体の表面にわずかにスワールマークが認められたものの、外観は良好であった。
(実施例2)
 上記樹脂材料100質量部に対して1.5質量部の超臨界状態の二酸化炭素を添加して溶融樹脂組成物を調製した。この溶融樹脂組成物を使用して比較例と同じ形状のヒンジキャップを作製した。射出速度は10mm/秒とした。実施例2に係るヒンジキャップの重量は11.6gであり、比較例を基準として8.5%の軽量化率が達成された。
 実施例2に係るヒンジキャップのヒンジ部の内部をCTスキャンによる断面画像(倍率:50倍)で確認したところ、発泡は認められなかった。一方、ヒンジキャップの厚肉部の内部をCTスキャンによる断面画像で確認したところ、実施例1と比較すると空隙が不均一に広がっていた。また、成形体の表面に凹みが認められた。
(実施例3)
 上記樹脂材料100質量部に対して1.0質量部の超臨界状態の窒素を添加して溶融樹脂組成物を調製した。この溶融樹脂組成物を使用して比較例と同じ形状のヒンジキャップを作製した。射出速度は10mm/秒とした。実施例3に係るヒンジキャップの重量は11.7gであり、比較例を基準として7.4%の軽量化率が達成された。
 実施例3に係るヒンジキャップのヒンジ部の内部をCTスキャンによる断面画像(倍率:50倍)で確認したところ、発泡は認められなかった。一方、ヒンジキャップの厚肉部の内部をCTスキャンによる断面画像で確認したところ、均一の空隙が広がっていた。しかし、成形体の表面に線状のスワールマークが認められた。
(実施例4)
 上記樹脂材料100質量部に対して0.5質量部の超臨界状態の窒素を添加して溶融樹脂組成物を調製した。この溶融樹脂組成物を使用して比較例と同じ形状のヒンジキャップを作製した。射出速度は30mm/秒とした。実施例4に係るヒンジキャップの重量は11.9gであり、比較例を基準として5.6%の軽量化率が達成された。
 実施例4に係るヒンジキャップのヒンジ部の内部をCTスキャンによる断面画像(倍率:50倍)で確認したところ、発泡は認められなかった。一方、ヒンジキャップの厚肉部の内部をCTスキャンによる断面画像で確認したところ、実施例1と比較すると空隙が疎に広がっていた。また、成形体の表面に凹みが認められた。
1…キャップ本体(厚肉部)、2…上蓋(厚肉部)、3…ヒンジ部(薄肉部)、5…ヒンジキャップ(成形体)、6…キャップ(厚肉部)、7…タンパー(厚肉部)、8…連結部(薄肉部)、10…タンパーエビデンスキャップ(成形体)、C…キャビティ、D1…上型、D2…下型、R1…厚肉部に対応する領域、R2…薄肉部に対応する領域

Claims (9)

  1. (A)樹脂材料と、超臨界流体とを含む溶融樹脂組成物を調製する工程と、
    (B)前記溶融樹脂組成物を金型のキャビティ内に射出する工程と、
    (C)前記キャビティ内において、圧力の低下によって前記溶融樹脂組成物を発泡させる工程と、
    (D)前記発泡に由来する複数の空隙を有する成形体を前記金型から回収する工程と、
    を含み、
     前記成形体が、1.8~10mmの厚さを有し且つ複数の空隙を含む厚肉部と、0.3~1.7mmの厚さを有する薄肉部とを備える、射出成形体の製造方法。
  2.  前記成形体が、キャップ本体と、上蓋と、前記キャップ本体と前記上蓋を連結しているヒンジ部とを備えるヒンジキャップであり、
     前記キャップ本体及び前記上蓋が前記厚肉部であり、
     前記ヒンジ部が前記薄肉部である、請求項1に記載の射出成形体の製造方法。
  3.  前記成形体が、キャップと、タンパーと、前記キャップと前記タンパーの連結部とを備えるタンパーエビデンスキャップであり、
     前記キャップ及び前記タンパーが前記厚肉部であり、
     前記連結部が前記薄肉部である、請求項1に記載の射出成形体の製造方法。
  4.  前記金型において、前記金型のゲートから前記薄肉部に対応する部分までの距離が40mm以上である、請求項1~3のいずれか一項に記載の射出成形体の製造方法。
  5.  前記金型において、前記薄肉部に対応する部分と異なる部分が流動末端である、請求項1~4のいずれか一項に記載の射出成形体の製造方法。
  6.  前記樹脂材料がポリプロピレン樹脂であり、
     前記超臨界流体が二酸化炭素であり、
     (B)工程における射出速度が5~30mm/秒である、請求項1~5のいずれか一項に記載の射出成形体の製造方法。
  7.  1.8~10mmの厚さを有し且つ複数の空隙を含む厚肉部と、
     0.3~1.7mmの厚さを有する薄肉部と、
    を備える射出成形体。
  8.  キャップ本体と、
     上蓋と、
     前記キャップ本体と前記上蓋を連結しているヒンジ部と、
    を備え、
     前記キャップ本体及び前記上蓋が1.8~10mmの厚さを有し且つ複数の空隙を含み、
     前記ヒンジ部の厚さが0.3~1.7mmである、ヒンジキャップ。
  9.  キャップと、
     タンパーと、
     前記キャップと前記タンパーの連結部と、
    を備え、
     前記キャップ及び前記タンパーが1.8~10mmの厚さを有し且つ複数の空隙を含み、
     前記連結部の厚さが0.3~1.7mmである、タンパーエビデンスキャップ。
PCT/JP2021/027921 2020-08-06 2021-07-28 射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ WO2022030330A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-133848 2020-08-06
JP2020133848A JP7494638B2 (ja) 2020-08-06 射出成形体の製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ

Publications (1)

Publication Number Publication Date
WO2022030330A1 true WO2022030330A1 (ja) 2022-02-10

Family

ID=80117431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027921 WO2022030330A1 (ja) 2020-08-06 2021-07-28 射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ

Country Status (1)

Country Link
WO (1) WO2022030330A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245362A (ja) * 1988-07-28 1990-02-15 Sumitomo Chem Co Ltd ヒンジ付プルオープンキャップ
JPH0657840U (ja) * 1993-01-20 1994-08-12 大和製罐株式会社 連結板つきヒンジキャップ
JPH10278951A (ja) * 1997-04-01 1998-10-20 Chisso Corp プルオープンキャップ
JP2005350081A (ja) * 2004-06-09 2005-12-22 Japan Steel Works Ltd:The ポリエチレンテレフタレート製ボトル型容器用の発泡体キャップおよびその製造方法
JP2007269002A (ja) * 2006-03-08 2007-10-18 Ono Sangyo Kk 偏肉樹脂成形品およびその製造方法
JP2012143977A (ja) * 2011-01-13 2012-08-02 Japan Crown Cork Co Ltd 複合ヒンジキャップの成形方法
JP2013154897A (ja) * 2012-01-27 2013-08-15 Nippon Closures Co Ltd 合成樹脂製ヒンジキャップ
JP2013173924A (ja) * 2012-01-23 2013-09-05 Sumitomo Chemical Co Ltd ポリプロピレン樹脂組成物およびそれを含む成形体
WO2017104217A1 (ja) * 2015-12-15 2017-06-22 バンドー化学株式会社 発泡成形品の製造方法、及び、発泡成形品
WO2018055429A1 (en) * 2016-09-23 2018-03-29 SOCIETE ANONYME DES EAUX MINERALES D'EVIAN et en abrégé "S.A.E.M.E" Double tamper evidence cap for a neck of a container, system including said cap and a container and method for manufacturing said cap
JP2019059866A (ja) * 2017-09-27 2019-04-18 日本ポリプロ株式会社 射出成形用ポリプロピレン系樹脂組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245362A (ja) * 1988-07-28 1990-02-15 Sumitomo Chem Co Ltd ヒンジ付プルオープンキャップ
JPH0657840U (ja) * 1993-01-20 1994-08-12 大和製罐株式会社 連結板つきヒンジキャップ
JPH10278951A (ja) * 1997-04-01 1998-10-20 Chisso Corp プルオープンキャップ
JP2005350081A (ja) * 2004-06-09 2005-12-22 Japan Steel Works Ltd:The ポリエチレンテレフタレート製ボトル型容器用の発泡体キャップおよびその製造方法
JP2007269002A (ja) * 2006-03-08 2007-10-18 Ono Sangyo Kk 偏肉樹脂成形品およびその製造方法
JP2012143977A (ja) * 2011-01-13 2012-08-02 Japan Crown Cork Co Ltd 複合ヒンジキャップの成形方法
JP2013173924A (ja) * 2012-01-23 2013-09-05 Sumitomo Chemical Co Ltd ポリプロピレン樹脂組成物およびそれを含む成形体
JP2013154897A (ja) * 2012-01-27 2013-08-15 Nippon Closures Co Ltd 合成樹脂製ヒンジキャップ
WO2017104217A1 (ja) * 2015-12-15 2017-06-22 バンドー化学株式会社 発泡成形品の製造方法、及び、発泡成形品
WO2018055429A1 (en) * 2016-09-23 2018-03-29 SOCIETE ANONYME DES EAUX MINERALES D'EVIAN et en abrégé "S.A.E.M.E" Double tamper evidence cap for a neck of a container, system including said cap and a container and method for manufacturing said cap
JP2019059866A (ja) * 2017-09-27 2019-04-18 日本ポリプロ株式会社 射出成形用ポリプロピレン系樹脂組成物

Also Published As

Publication number Publication date
JP2022030088A (ja) 2022-02-18

Similar Documents

Publication Publication Date Title
EP2393644B1 (en) Microcellular injection molding processes for personal and consumer care products
EP2258624B1 (en) Stretched foam plastic container and process for producing the stretched foam plastic container
JP5018593B2 (ja) 発泡プラスチック容器
EP2764978B1 (en) Stretched foam plastic container and manufacturing method for same
JP5929082B2 (ja) 発泡延伸プラスチック容器及びその製造方法
WO2022030330A1 (ja) 射出成形体及びその製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ
JP7494638B2 (ja) 射出成形体の製造方法並びにヒンジキャップ及びタンパーエビデンスキャップ
US11446849B2 (en) Method of forming an article
US20110089134A1 (en) Method of compression molding a plastic closure from foamed polymeric material
JP2022030089A (ja) 射出成形体及びその製造方法
JP5929101B2 (ja) 発泡樹脂成形品
JP2022072782A (ja) 容器用部材及びその製造方法、並びに容器用キャップ及び容器本体
JP2022099905A (ja) 口栓及びその製造方法
JP2022072734A (ja) 容器用部材及びその製造方法、並びに容器用キャップ
JP2022083097A (ja) 成形体及びその製造方法、並びに、キャップ、容器本体及び容器
US20110057355A1 (en) Injection Moulding Process For Making Parts Using A Polypropylene Composition Comprising Calcium Carbonate
JP2014084352A (ja) プロピレン系樹脂製発泡延伸成形体及びその製造方法
JP2023072320A (ja) 容器、及び、容器の製造方法
US10961021B2 (en) Closure with foamed region and methods of forming said closure
JP2023053663A (ja) 容器
CN110901002A (zh) 一种香水瓶盖的注塑成型方法
JP5929085B2 (ja) 発泡延伸容器及びその製造方法
JP2022126982A (ja) 容器及びその製造方法
JP2001225353A (ja) 射出成形部品
JP2023069815A (ja) 成形体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852350

Country of ref document: EP

Kind code of ref document: A1