WO2022019294A1 - 液晶ポリエステル樹脂、成形品、および電気電子部品 - Google Patents
液晶ポリエステル樹脂、成形品、および電気電子部品 Download PDFInfo
- Publication number
- WO2022019294A1 WO2022019294A1 PCT/JP2021/027083 JP2021027083W WO2022019294A1 WO 2022019294 A1 WO2022019294 A1 WO 2022019294A1 JP 2021027083 W JP2021027083 W JP 2021027083W WO 2022019294 A1 WO2022019294 A1 WO 2022019294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mol
- structural unit
- derived
- polyester resin
- liquid crystal
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
- C08G63/605—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/60—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/065—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids the hydroxy and carboxylic ester groups being bound to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/185—Acids containing aromatic rings containing two or more aromatic rings
- C08G63/187—Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
- C08G63/189—Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2250/00—Compositions for preparing crystalline polymers
Definitions
- the present invention relates to a liquid crystal polyester resin, and more particularly to a liquid crystal polyester resin having a low dielectric loss tangent, a molded product containing the liquid crystal polyester resin, and an electric / electronic component including the molded product.
- the frequency is 10 9 Hz or more gigahertz (GHz)
- GHz gigahertz
- the use of signals with band frequencies is widespread.
- a high frequency band of the GHz band is used.
- high frequencies of 76 to 79 GHz and 24 GHz are used in millimeter-wave radars and quasi-millimeter-wave radars installed for the purpose of preventing collisions in automobiles, respectively, and it is expected that they will become more widespread in the future. is expected.
- This transmission loss consists of a conductor loss caused by a conductor and a dielectric loss caused by an insulating resin constituting an electric / electronic component such as a substrate in an electronic device or a communication device.
- the conductor loss is 0 at the frequency used. Since the fifth power and the dielectric loss are proportional to the first power of the frequency, the influence of this dielectric loss becomes very large in the high frequency band, particularly in the GHz band.
- the liquid crystal polyester resin having a small dielectric loss is derived from a structural unit derived from p-hydroxybenzoic acid, a structural unit derived from 6-hydroxy-2-naphthoic acid, and 4,4'-dihydroxybiphenyl.
- a liquid crystal polyester resin containing a constituent unit and 2,6-naphthalenedicarboxylic acid in a specific composition ratio has been proposed.
- the resin constituting the electric / electronic component is required to have high heat resistance against heating during molding, and the molded product manufactured by using the resin is required to have high heat resistance to heat processing using solder or the like. Ru.
- the liquid crystal polyester resin having excellent heat resistance and the like is derived from 4,4'-dihydroxybiphenyl, which is a structural unit derived from 6-hydroxy-2-naphthoic acid.
- a liquid crystal polyester resin containing a constituent unit and 2,6-naphthalenedicarboxylic acid in a specific composition ratio has been proposed.
- the present inventors have made a constituent unit derived from 6-hydroxy-2-naphthoic acid, a constituent unit derived from an aromatic diol compound, and a constituent unit derived from isophthalic acid.
- a liquid crystal polyester resin containing a unit and a structural unit derived from 2,6-naphthalenedicarboxylic acid by adjusting the melting point and the temperature difference between the melting point and the crystallization point, heat resistance and heat resistance while having a low dielectric positive contact are obtained. It has been found that a liquid crystal polyester resin having an excellent balance of processing stability can be obtained.
- the liquid crystal polyester resin according to the present invention is Structural unit (I) derived from aromatic hydroxycarboxylic acid, Building blocks (II) derived from aromatic diol compounds, and Structural unit derived from aromatic dicarboxylic acid (III) Containing,
- the structural unit (I) comprises a structural unit (IA) derived from 6-hydroxy-2-naphthoic acid.
- the structural unit (III) includes a structural unit (IIIA) derived from isophthalic acid and a structural unit (IIIB) derived from 2,6-naphthalenedicarboxylic acid.
- the dielectric loss tangent at a measurement frequency of 10 GHz is 1.50 ⁇ 10 -3 or less. It has a melting point of 290 ° C or higher and has a melting point of 290 ° C or higher. It is characterized in that the temperature difference between the melting point and the crystallization point is 30 ° C. or more.
- the melting point of the liquid crystal polyester resin is preferably 340 ° C. or lower.
- the structural unit (I) may further contain a structural unit (IB) derived from p-hydroxybenzoic acid.
- the composition ratio (mol%) of the structural units (I) to (III) is as follows: 36 mol% ⁇ constituent unit (IA) ⁇ 74 mol% 0 mol% ⁇ constituent unit (IB) ⁇ 4 mol% 11 mol% ⁇ constituent unit (II) ⁇ 32 mol% 1 mol% ⁇ constituent unit (IIIA) ⁇ 7 mol% 10 mol% ⁇ constituent unit (IIIB) ⁇ 25 mol% It is preferable to satisfy.
- the structural unit (I) is a structural unit (IA) derived from 6-hydroxy-2-naphthoic acid.
- the structural unit (III) includes a structural unit (IIIA) derived from isophthalic acid and a structural unit (IIIB) derived from 2,6-naphthalenedicarboxylic acid.
- the composition ratio (mol%) of the structural units (I) to (III) is as follows: 44 mol% ⁇ constituent unit (IA) ⁇ 72 mol% 14 mol% ⁇ constituent unit (II) ⁇ 28 mol% 2 mol% ⁇ constituent unit (IIIA) ⁇ 6 mol% 12 mol% ⁇ constituent unit (IIIB) ⁇ 22 mol% It is preferable to satisfy.
- the structural unit (I) comprises a structural unit (IA) derived from 6-hydroxy-2-naphthoic acid and a structural unit (IB) derived from p-hydroxybenzoic acid.
- the structural unit (III) includes a structural unit (IIIA) derived from isophthalic acid and a structural unit (IIIB) derived from 2,6-naphthalenedicarboxylic acid.
- composition ratio (mol%) of the structural units (I) to (III) is as follows: 39 mol% ⁇ constituent unit (IA) ⁇ 71 mol% 0 mol% ⁇ constituent unit (IB) ⁇ 3 mol% 13 mol% ⁇ constituent unit (II) ⁇ 30 mol% 2 mol% ⁇ constituent unit (IIIA) ⁇ 6 mol% 11 mol% ⁇ constituent unit (IIIB) ⁇ 24 mol% It is preferable to satisfy.
- the structural unit (II) derived from the aromatic diol compound is a structural unit derived from 4,4'-dihydroxybiphenyl.
- the molded product according to the present invention preferably contains the above liquid crystal polyester resin and is in a fibrous form.
- the molded product according to the present invention contains the above liquid crystal polyester resin, and is preferably an injection molded product.
- the electrical and electronic parts according to the present invention are characterized by including the above-mentioned molded product.
- the present invention it is possible to realize a liquid crystal polyester resin having an excellent balance between heat resistance and processing stability while having a low dielectric loss tangent. That is, by using the liquid crystal polyester resin of the present invention, it is possible to improve the processing stability such as injection molding stability and spinning stability, and also to improve the heat resistance of the produced molded product to heat processing. .. Therefore, it is possible to prevent deterioration of the quality of the output signal in electrical / electronic equipment and communication equipment that use a signal having a high frequency when it is processed and molded and used as a product.
- the liquid crystal polyester resin according to the present invention contains a structural unit (I) derived from an aromatic hydroxycarboxylic acid, a structural unit (II) derived from an aromatic diol compound, and a structural unit (III) derived from an aromatic dicarboxylic acid. It consists of. Further, the liquid crystal polyester resin contains a structural unit (I) derived from 6-hydroxy-2-naphthoic acid (IA), preferably a structural unit (IB) derived from p-hydroxybenzoic acid.
- constituent unit (III) comprises a constituent unit derived from isophthalic acid (IIIA) and a constituent unit derived from 2,6-naphthalenedicarboxylic acid (IIIB), and has the following specific properties (dielectric tangent, melting point). , The temperature difference between the melting point and the crystallization point).
- the dielectric loss tangent (measurement frequency: 10 GHz) of the liquid crystal polyester resin according to the present invention is 1.50 ⁇ 10 -3 or less, preferably 1.00 ⁇ 10 -3 or less, and more preferably 0.90 ⁇ 10 ⁇ . It is 3 or less, more preferably 0.80 ⁇ 10 -3 or less.
- the dielectric loss tangent of the liquid crystal polyester resin according to the present invention can be measured by the split post dielectric resonator method (SPDR method) using a network analyzer N5247A manufactured by Keysight Technology Co., Ltd.
- the melting point of the liquid crystal polyester resin according to the present invention is 290 ° C. or higher as a lower limit value, preferably 295 ° C. or higher, more preferably 300 ° C. or higher, and the upper limit value is preferably 340 ° C. or lower. It is more preferably 335 ° C. or lower, still more preferably 330 ° C. or lower.
- the crystallization point of the liquid crystal polyester resin according to the present invention is preferably 240 ° C. or higher, more preferably 245 ° C.
- the upper limit value is preferably 295 ° C. or lower, more preferably 240 ° C. or higher. It is preferably 290 ° C. or lower.
- the above is more preferably 40 ° C. or higher, and the upper limit value is preferably 70 ° C. or lower, more preferably 60 ° C. or lower.
- the melting point and the crystallization point of the liquid crystal polyester resin are values measured by a differential scanning calorimeter (DSC). Specifically, heat generated when the temperature is raised from room temperature to 340 to 360 ° C. at a heating rate of 10 ° C./min to completely melt the liquid crystal polyester resin, and then the temperature is lowered to 30 ° C.
- DSC differential scanning calorimeter
- the apex of the peak was defined as the crystallization point (Tc), and the apex of the endothermic peak obtained when the temperature was further raised to 360 ° C. at a rate of 10 ° C./min was defined as the melting point (Tm).
- the liquid crystal property of the liquid crystal polyester resin according to the present invention is determined by using a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a hot stage for a microscope (trade name: FP82HT) manufactured by Metler. Can be confirmed by observing the presence or absence of optical anisotropy after heating and melting on a microscope heating stage.
- a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a hot stage for a microscope (trade name: FP82HT) manufactured by Metler.
- the melt viscosity of the liquid crystal polyester resin according to the present invention is preferably 20 Pa ⁇ s or more, more preferably 20 Pa ⁇ s or more, under the conditions of the melting point of the liquid crystal polyester resin + 20 ° C. and the shear rate of 100 s -1.
- the viscosity of the liquid crystal polyester resin conforms to JIS K7199 and can be measured using a capillary rheometer viscometer.
- the liquid crystal polyester resin according to the present invention has the following conditions: the composition ratio (mol%) of the structural units (I) to (III) is as follows. 36 mol% ⁇ constituent unit (IA) ⁇ 74 mol% 0 mol% ⁇ constituent unit (IB) ⁇ 4 mol% 11 mol% ⁇ constituent unit (II) ⁇ 32 mol% 1 mol% ⁇ constituent unit (IIIA) ⁇ 7 mol% 10 mol% ⁇ constituent unit (IIIB) ⁇ 25 mol% It is preferable to satisfy.
- the liquid crystal polyester resin according to the present invention contains only the structural unit (IA) derived from 6-hydroxy-2-naphthoic acid as the structural unit structural unit (I) derived from aromatic hydroxycarboxylic acid, and p-hydroxybenzoic acid. If no acid-derived building blocks (IB) are included, the following conditions: 44 mol% ⁇ constituent unit (IA) ⁇ 72 mol% 14 mol% ⁇ constituent unit (II) ⁇ 28 mol% 2 mol% ⁇ constituent unit (IIIA) ⁇ 6 mol% 12 mol% ⁇ constituent unit (IIIB) ⁇ 22 mol% It is more preferable to satisfy.
- the constituent unit (I) is both a constituent unit (IA) derived from 6-hydroxy-2-naphthoic acid and a constituent unit (IB) derived from p-hydroxybenzoic acid. If included, the following conditions: 39 mol% ⁇ constituent unit (IA) ⁇ 71 mol% 0 mol% ⁇ constituent unit (IB) ⁇ 3 mol% 13 mol% ⁇ constituent unit (II) ⁇ 30 mol% 2 mol% ⁇ constituent unit (IIIA) ⁇ 6 mol% 11 mol% ⁇ constituent unit (IIIB) ⁇ 24 mol% It is more preferable to satisfy.
- the liquid crystal polyester resin according to the present invention has a balance between heat resistance and processing stability while having a low dielectric loss tangent when the composition ratios (mol%) of the structural units (I) to (III) satisfy the above conditions. It will be excellent.
- the composition ratio of the constituent unit (II) is substantially equivalent to the composition ratio of the constituent unit (III) (constituent unit (II) ⁇ constituent unit (III)).
- the total of the constituent units (I) to (III)) is preferably 90 mol% or more, more preferably 95 mol% or more as the lower limit value with respect to the constituent units of the entire liquid crystal polyester resin. It is more preferably 99 mol% or more, and the upper limit value is preferably 100 mol% or less.
- the liquid crystal polyester resin contains a structural unit (I) derived from an aromatic hydroxycarboxylic acid.
- the structural unit (I) derived from the aromatic hydroxycarboxylic acid includes the structural unit (IA) derived from 6-hydroxy-2-naphthoic acid represented by the following formula (IA).
- the composition ratio (mol%) of the structural unit (IA) in the liquid crystal polyester resin is preferably 36 mol% or more and 74 mol% or less.
- the composition ratio (mol%) of the structural unit (IA) is preferably 39 mol% or more as the lower limit. It is more preferably 44 mol% or more, further preferably 50 mol% or more, and the upper limit value is preferably 72 mol% or less, more preferably 71 mol% or less, and further. It is preferably 70 mol% or less.
- Examples of the monomer giving the structural unit (IA) include 6-hydroxy-2-naphthoic acid (HNA, the following formula (1)), an acetylated product thereof, an ester derivative, an acid halide and the like.
- HNA 6-hydroxy-2-naphthoic acid
- the structural unit (I) derived from the aromatic hydroxycarboxylic acid may include the structural unit (IB) derived from p-hydroxybenzoic acid represented by the following formula (IB).
- the composition ratio (mol%) of the structural unit (IB) in the liquid crystal polyester resin is preferably 0 mol% or more and 4 mol% or less. From the viewpoint of reducing the dielectric loss tangent of the liquid crystal polyester resin, improving the heat resistance, and improving the processing stability, when the structural unit (IB) is included, the composition ratio (mol%) of the structural unit (IB) is the lower limit.
- the value is preferably more than 0 mol%, more preferably 0.5 mol% or more, and the upper limit value is preferably 3 mol% or less, more preferably 2 mol% or less. ..
- Examples of the monomer giving the structural unit (IB) include p-hydroxybenzoic acid (HBA, the following formula (2)), an acetylated product thereof, an ester derivative, an acid halide and the like.
- HBA p-hydroxybenzoic acid
- the liquid crystal polyester resin contains a structural unit (II) derived from an aromatic diol compound, and the composition ratio (mol%) of the structural unit (II) in the liquid crystal polyester resin is preferably 11 mol% or more and 32 mol. % Or less.
- the composition ratio (mol%) of the structural unit (II) is preferably 13 mol% or more as the lower limit. It is more preferably 14 mol% or more, and the upper limit value is preferably 30 mol% or less, more preferably 28 mol% or less.
- the structural unit (II) is represented by the following formula (II).
- Ar 1 is selected from the group consisting of a phenyl group having a substituent, a biphenyl group, a 4,4'-isopropyridendiphenyl group, a naphthyl group, an anthryl group and a phenanthryl group, if desired. Of these, a phenyl group and a biphenyl group are more preferable.
- the substituent include hydrogen, an alkyl group, an alkoxy group, fluorine and the like.
- the number of carbon atoms of the alkyl group is preferably 1 to 10, and more preferably 1 to 5. Further, it may be a linear alkyl group or a branched chain alkyl group.
- the number of carbon atoms contained in the alkoxy group is preferably 1 to 10, and more preferably 1 to 5.
- Examples of the monomer giving the structural unit (II) include 4,4'-dihydroxybiphenyl (BP, the following formula (3)), hydroquinone (HQ, the following formula (4)), methylhydroquinone (MeHQ, the following formula (5)). )), 4,4'-Isopropyridene diphenol (BisPA, the following formula (6)), and acylated products, ester derivatives, acid halides and the like thereof.
- BP 4,4'-dihydroxybiphenyl
- HQ hydroquinone
- MeHQ methylhydroquinone
- BisPA 4,4'-Isopropyridene diphenol
- acylated products ester derivatives, acid halides and the like thereof.
- the liquid crystal polyester resin contains a structural unit (III) derived from an aromatic dicarboxylic acid. Further, the structural unit (III) derived from the aromatic dicarboxylic acid includes the structural unit (IIIA) derived from isophthalic acid represented by the following formula (IIIA).
- the composition ratio (mol%) of the structural unit (IIIA) in the liquid crystal polyester resin is preferably 1 mol% or more and 7 mol% or less. From the viewpoint of reducing the dielectric loss tangent of the liquid crystal polyester resin, improving the heat resistance, and improving the processing stability, the composition ratio (mol%) of the structural unit (IIIA) is preferably 2 mol% or more as the lower limit. The upper limit is preferably 6 mol% or less, and more preferably 5 mol% or less.
- Examples of the monomer giving the structural unit (IIIB) include isophthalic acid (IPA, the following formula (7)), ester derivatives thereof, acid halides and the like.
- the structural unit (III) derived from the aromatic dicarboxylic acid includes the structural unit (IIIB) derived from the 2,6-naphthalenedicarboxylic acid represented by the following formula (IIIB).
- the composition ratio (mol%) of the structural unit (IIIB) in the liquid crystal polyester resin is preferably 10 mol% or more and 25 mol% or less. From the viewpoint of reducing the dielectric loss tangent of the liquid crystal polyester resin, improving the heat resistance, and improving the processing stability, the composition ratio (mol%) of the structural unit (IIIB) is preferably 11 mol% or more as the lower limit. It is more preferably 12 mol% or more, and the upper limit value is preferably 24 mol% or less, more preferably 22 mol% or less.
- Examples of the monomer giving the structural unit (IIIB) include 2,6-naphthalenedicarboxylic acid (NADA, the following formula (8)), ester derivatives thereof, acid halides and the like.
- the liquid crystal polyester resin according to the present invention can be produced by polymerizing the monomers giving the structural units (I) to (III) by conventionally known methods such as melt polymerization, solid phase polymerization, solution polymerization and slurry polymerization. can.
- the liquid crystal polyester resin according to the present invention can be produced only by melt polymerization. It can also be produced by two-step polymerization in which a prepolymer is produced by melt polymerization and then solid-phase polymerized.
- the monomers giving the above-mentioned structural units (I) to (III) are combined in a predetermined formulation to be 100 mol%, and all the hydroxyl groups of the monomers are present.
- the reaction temperature is preferably 200 to 380 ° C., more preferably 240 to 370 ° C., further preferably 260 to 360 ° C., and the final ultimate pressure is preferably 0.1 to 760 Torr. Yes, more preferably 1 to 100 Torr, still more preferably 1 to 50 Torr.
- the polymer obtained by melt polymerization may be cooled and solidified and then crushed into powder or flakes. Further, the polymer strand obtained by melt polymerization may be pelletized into pellets. Then, a known solid phase polymerization method, for example, a method of heat-treating the polymer in a temperature range of 200 to 350 ° C. for 1 to 30 hours under an inert atmosphere such as nitrogen or under vacuum is preferably selected.
- the solid-phase polymerization may be carried out with stirring, or may be carried out in a stationary state without stirring.
- the catalyst may or may not be used in the polymerization reaction.
- conventionally known catalysts for polymerizing polyester resins can be used, such as potassium acetate, magnesium acetate, stannous acetate, lead acetate, sodium acetate, tetrabutyl titanate, antimony trioxide and the like. Examples thereof include metal salt catalysts, nitrogen-containing heterocyclic compounds such as N-methylimidazole, and organic compound catalysts.
- the amount of the catalyst used is not particularly limited, but is preferably 0.0001 to 0.1 parts by weight with respect to 100 parts by weight of the total amount of the monomers.
- the polymerization reaction device in melt polymerization is not particularly limited, but a reaction device used for the reaction of a general high-viscosity fluid is preferably used.
- these reaction devices include, for example, an anchor type, a multi-stage type, a spiral band type, a spiral shaft type, or a stirring tank type polymerization reaction device having a stirring device having various shapes of stirring blades obtained by modifying these. , Kneader, roll mill, Banbury mixer and the like, which are generally used for kneading resin.
- the molded product according to the present invention contains a liquid crystal polyester resin, and its shape is appropriately changed according to the intended use, and is not particularly limited, and may be, for example, a plate shape, a sheet shape, a fibrous shape, or the like. be able to.
- the molded product is preferably fibrous.
- the fiber can be obtained by a conventionally known method, for example, a melt spinning method, a solution spinning method, or the like.
- the fiber may be made of only a liquid crystal polyester resin, or may be mixed with another resin.
- the molded product according to the present invention may further contain a filler.
- Fillers include carbon fiber, graphite, glass fiber, talc, mica, glass flakes, clay, sericite, calcium carbonate, calcium sulfate, calcium silicate, silica, alumina, aluminum hydroxide, calcium hydroxide, Examples thereof include graphite, potassium titanate, titanium oxide, fluorocarbon resin fiber, fluorocarbon resin, barium sulfate, and various whiskers.
- the molded product according to the present invention may contain a resin other than the liquid crystal polyester resin as long as it does not deviate from the gist of the present invention.
- a resin other than the liquid crystal polyester resin for example, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polyarylate, polycyclohexylene methylene terephthalate, and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene, cycloolefin polymers, vinyl resins such as polyvinyl chloride, and polyacrylates.
- (Meta) acrylic resin such as polymethacrylate and polymethylmethacrylate, polyphenylene ether resin, polyacetal resin, polyamide resin, imide resin such as polyimide and polyetherimide, polystyrene, high impact polystyrene, AS resin, ABS resin and the like.
- thermosetting resins such as polystyrene resins and epoxy resins, cellulose resins, polyether ether ketone resins, fluororesins and polycarbonate resins, and the molded product may contain one or more of these.
- the molded product according to the present invention contains other additives such as colorants, dispersants, plasticizers, antioxidants, curing agents, flame retardants, heat stabilizers, and ultraviolet absorbers, to the extent that it does not deviate from the gist of the present invention.
- additives such as colorants, dispersants, plasticizers, antioxidants, curing agents, flame retardants, heat stabilizers, and ultraviolet absorbers, to the extent that it does not deviate from the gist of the present invention.
- Antistatic agent, surfactant may be contained.
- the molded product according to the present invention can be obtained by press molding, foam molding, injection molding, calendar molding, and punch molding of a mixture containing a liquid crystal polyester resin and, if desired, other resins and additives.
- the mixture can be obtained by melt-kneading a liquid crystal polyester resin or the like using a Banbury mixer, a kneader, a single-screw or twin-screw extruder or the like.
- the electric / electronic component according to the present invention includes a molded product (for example, an injection molded product) containing a liquid crystal polyester resin.
- Electrical and electronic components provided with the above molded products include, for example, antennas used in electronic devices and communication devices such as ETC, GPS, wireless LAN and mobile phones, high-speed transmission connectors, CPU sockets, circuit boards, and flexible prints.
- Millimeter-wave and quasi-millimeter-wave radars such as boards (FPCs), laminated circuit boards, collision prevention radars, RFID tags, capacitors, inverter parts, cable coverings, secondary battery insulation materials such as lithium-ion batteries, speakers A vibrating plate and the like can be mentioned.
- Example 1 ⁇ Manufacturing of liquid crystal polyester resin> (Example 1)
- HNA 6-hydroxy-2-naphthoic acid
- BP 4,4'-dihydroxybiphenyl
- IPA isophthalic acid
- NADA 2,6- 19 mol% of naphthalenedicarboxylic acid
- the temperature of the polymerization vessel in the acetic acid distillate state was raised at 0.5 ° C./min until the melting zone temperature in the tank reached 330 ° C. Then, the pressure was reduced to 50 Torr in the system over 30 minutes. After the stirring torque reached a predetermined value, nitrogen was introduced to bring the pressure down to normal pressure, the polymer was extracted, and the polymer was cooled and solidified. The obtained polymer was pulverized and pulverized to a size passing through a sieve having a mesh size of 2.0 mm to obtain a polymer. When the melt viscosity of the obtained polymer at a melting point of + 20 ° C.
- the polymerization is completed.
- the melt viscosity of the polymer obtained above is less than 20 Pa ⁇ s at a melting point of + 20 ° C. and 100 s- 1
- the degree of polymerization is insufficient and the melt viscosity is 20 Pa ⁇ s or more and 600 Pa ⁇ s or less.
- the solid phase polymerization is carried out by holding for 4 hours to complete the repolymerization.
- the polyester resin of the present invention After that, heat was naturally dissipated at room temperature to obtain the polyester resin of the present invention.
- a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a hot stage for microscopes (trade name: FP82HT) manufactured by Metler, the polyester resin is heated and melted on the microscope heating stage, and the optical difference is obtained. The liquid crystal property was confirmed from the presence or absence of anisotropy.
- Example 2 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 58 mol% HNA, 21 mol% BP, 5 mol% IPA, and 16 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 3 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to HNA 60 mol%, BP 20 mol%, IPA 3 mol%, and NADA 17 mol%. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 4 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to HNA 60 mol%, BP 20 mol%, IPA 4 mol%, and NADA 16 mol%. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 5 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to HNA 60 mol%, BP 20 mol%, IPA 6 mol%, and NADA 14 mol%. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 6 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 70 mol% HNA, 15 mol% BP, 3 mol% IPA, and 12 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 7 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charge was changed to 57 mol% of HNA, 1 mol% of p-hydroxybenzoic acid (HBA), 21 mol% of BP, 5 mol% of IPA, and 16 mol% of NADA. .. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 8 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 48 mol% HNA, 2 mol% HBA, 25 mol% BP, 3 mol% IPA, and 22 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 9 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 48 mol% HNA, 2 mol% HBA, 25 mol% BP, 4 mol% IPA, and 21 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 10 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 48 mol% HNA, 2 mol% HBA, 25 mol% BP, 5 mol% IPA, and 20 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 11 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to HNA 50 mol%, HBA 2 mol%, BP 24 mol%, IPA 4 mol%, and NADA 20 mol%. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 12 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 54 mol% HNA, 2 mol% HBA, 22 mol% BP, 3 mol% IPA, and 19 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 13 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 58 mol% HNA, 2 mol% HBA, 20 mol% BP, 3 mol% IPA, and 17 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 1 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 50 mol% HNA, 25 mol% BP, and 25 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 2 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 50 mol% HNA, 25 mol% BP, 10 mol% IPA, and 15 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 3 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 48 mol% HNA, 2 mol% HBA, 25 mol% BP, and 25 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 4 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 48 mol% HNA, 2 mol% HBA, 25 mol% BP, 10 mol% IPA, and 15 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 5 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to HNA 60 mol%, HBA 2 mol%, BP 19 mol%, and NADA 19 mol%. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 6 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 38 mol% HNA, 12 mol% HBA, 25 mol% BP, and 25 mol% NADA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- Example 7 A polyester resin was obtained in the same manner as in Example 1 except that the monomer charges were changed to 27 mol% HNA and 73 mol% HBA. Next, the liquid crystal property of the polyester resin was confirmed in the same manner as above.
- the melting point was less than 290 ° C or more than 340 ° C, or the difference between the melting point and the crystallization point was less than 30 ° C, and the balance between heat resistance and processing stability was inferior.
- the melting point was less than 290 ° C or more than 340 ° C, and the difference between the melting point and the crystallization point was less than 30 ° C, and the balance between heat resistance and processing stability was particularly poor.
- the liquid crystal polyester resins of Examples 1 to 13 have a clearly lower dielectric loss tangent, heat resistance and processing stability, as compared with Comparative Example 7, which is a general-purpose liquid crystal polyester resin. It was excellent in the balance of. Further, the liquid crystal polyester resins of Examples 1 to 13 had an excellent balance between heat resistance and processing stability, even when compared with Comparative Examples 1 to 6 which were liquid crystal polyester resins having other compositions.
- melt viscosities (Pa ⁇ s) of the liquid crystal polyester resins obtained in Examples and Comparative Examples at a melting point of + 20 ° C. at a shear rate of 100S-1 were measured with a Capillary Rheometer Viscometer (Capillograph 1D, Toyo Seiki Seisakusho Co., Ltd.). It was measured according to JIS K7199 using a capillary with an inner diameter of 1 mm. The measurement results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
[課題]低誘電正接を有しながら、耐熱性および加工安定性のバランスに優れた液晶ポリエステル樹脂の提供。
[解決手段]本発明による液晶ポリエステル樹脂は、 芳香族ヒドロキシカルボン酸に由来する構成単位(I)、 芳香族ジオール化合物に由来する構成単位(II)、および 芳香族ジカルボン酸に由来する構成単位(III)
を含んでなり、 前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含み、 前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、 測定周波数10GHzにおける誘電正接が、1.50×10-3以下であり、 融点が290℃以上であり、 融点と結晶化点との温度差が30℃以上であることを特徴とする。
Description
本発明は、液晶ポリエステル樹脂に関し、より詳細には、低誘電正接を有する液晶ポリエステル樹脂、該液晶ポリエステル樹脂を含む成形品、および該成形品を備える電気電子部品に関する。
近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の周波数を有する信号の使用が増加しており、特に、周波数が109Hz以上であるギガヘルツ(GHz)帯の周波数を有する信号の使用が盛んに行われている。例えば、自動車分野においてGHz帯の高周波数帯が使用されている。具体的には、自動車の衝突防止目的で搭載されるミリ波レーダー、準ミリ波レーダーにおいては、それぞれ76~79GHz、24GHzの高周波数が使用されており、今後更なる普及が進んでいくことが予想される。
しかしながら、使用される信号の周波数が高くなるに伴い、情報の誤認識を招きうる出力信号の品質低下、すなわち、伝送損失が大きくなる。この伝送損失は、導体に起因する導体損失と、電子機器や通信機器における基板等の電気電子部品を構成する絶縁用の樹脂に起因する誘電損失とからなるが、導体損失は使用する周波数の0.5乗、誘電損失は周波数の1乗に比例するため、高周波帯、特にGHz帯においては、この誘電損失による影響が非常に大きくなる。また、誘電損失は、樹脂の誘電正接にも比例して増大するため、情報の劣化を防ぐため低誘電正接を有する樹脂が求められている。例えば、特許文献1では、誘電損失が小さい液晶ポリエステル樹脂として、p-ヒドロキシ安息香酸に由来する構成単位、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位、4,4’-ジヒドロキシビフェニルに由来する構成単位および2,6-ナフタレンジカルボン酸を特定の組成比で含む液晶ポリエステル樹脂が提案されている。
また、電気電子部品を構成する樹脂には、成形時の加熱に対する高い耐熱性が要求され、さらにこれを用いて作製した成形品には、はんだ等を用いた加熱加工に対する高い耐熱性が要求される。このような課題に対し、特許文献2および3では、このような耐熱性等に優れる液晶ポリエステル樹脂として、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位、4,4’-ジヒドロキシビフェニルに由来する構成単位および2,6-ナフタレンジカルボン酸を特定の組成比で含む液晶ポリエステル樹脂が提案されている。
しかしながら、本発明者らは、特許文献1~3において提案される液晶ポリエステル樹脂を用いたとしても、十分な低誘電正接を有しながら、耐熱性と加工安定性のバランスに優れた液晶ポリエステル樹脂が得られないことを知見した。
そこで、本発明者らは、上記課題を解決するために鋭意検討した結果、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位、芳香族ジオール化合物に由来する構成単位、イソフタル酸に由来する構成単位、および2,6-ナフタレンジカルボン酸に由来する構成単位を含む液晶ポリエステル樹脂において、融点および融点と結晶化点との温度差を調節することにより、低誘電正接を有しながら、耐熱性および加工安定性のバランスに優れた液晶ポリエステル樹脂を得られることを見出した。
したがって、本発明の目的は、低誘電正接を有しながら、耐熱性および加工安定性のバランスに優れた液晶ポリエステル樹脂を提供することである。また、本発明の他の目的は、この液晶ポリエステル樹脂を含む成形品および該成形品を備える電気電子部品を提供することである。
本発明による液晶ポリエステル樹脂は、
芳香族ヒドロキシカルボン酸に由来する構成単位(I)、
芳香族ジオール化合物に由来する構成単位(II)、および
芳香族ジカルボン酸に由来する構成単位(III)
を含んでなり、
前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含み、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
測定周波数10GHzにおける誘電正接が、1.50×10-3以下であり、
融点が290℃以上であり、
融点と結晶化点との温度差が30℃以上であることを特徴とする。
芳香族ヒドロキシカルボン酸に由来する構成単位(I)、
芳香族ジオール化合物に由来する構成単位(II)、および
芳香族ジカルボン酸に由来する構成単位(III)
を含んでなり、
前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含み、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
測定周波数10GHzにおける誘電正接が、1.50×10-3以下であり、
融点が290℃以上であり、
融点と結晶化点との温度差が30℃以上であることを特徴とする。
本発明の態様においては、液晶ポリエステル樹脂の融点が340℃以下であることが好ましい。
本発明の態様においては、前記構成単位(I)が、p-ヒドロキシ安息香酸に由来する構成単位(IB)をさらに含んでもよく、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
36モル%≦構成単位(IA)≦74モル%
0モル%≦構成単位(IB)≦4モル%
11モル%≦構成単位(II)≦32モル%
1モル%≦構成単位(IIIA)≦7モル%
10モル%≦構成単位(IIIB)≦25モル%
を満たすことが好ましい。
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
36モル%≦構成単位(IA)≦74モル%
0モル%≦構成単位(IB)≦4モル%
11モル%≦構成単位(II)≦32モル%
1モル%≦構成単位(IIIA)≦7モル%
10モル%≦構成単位(IIIB)≦25モル%
を満たすことが好ましい。
本発明の態様においては、前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)であり、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
44モル%≦構成単位(IA)≦72モル%
14モル%≦構成単位(II)≦28モル%
2モル%≦構成単位(IIIA)≦6モル%
12モル%≦構成単位(IIIB)≦22モル%
を満たすことが好ましい。
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
44モル%≦構成単位(IA)≦72モル%
14モル%≦構成単位(II)≦28モル%
2モル%≦構成単位(IIIA)≦6モル%
12モル%≦構成単位(IIIB)≦22モル%
を満たすことが好ましい。
本発明の態様においては、前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)およびp-ヒドロキシ安息香酸に由来する構成単位(IB)を含み、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
39モル%≦構成単位(IA)≦71モル%
0モル%<構成単位(IB)≦3モル%
13モル%≦構成単位(II)≦30モル%
2モル%≦構成単位(IIIA)≦6モル%
11モル%≦構成単位(IIIB)≦24モル%
を満たすことが好ましい。
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
39モル%≦構成単位(IA)≦71モル%
0モル%<構成単位(IB)≦3モル%
13モル%≦構成単位(II)≦30モル%
2モル%≦構成単位(IIIA)≦6モル%
11モル%≦構成単位(IIIB)≦24モル%
を満たすことが好ましい。
本発明の態様においては、前記芳香族ジオール化合物に由来する構成単位(II)が、4,4’-ジヒドロキシビフェニルに由来する構成単位であることが好ましい。
本発明による成形品は、上記液晶ポリエステル樹脂を含んでなり、繊維状であることが好ましい。
本発明による成形品は、上記液晶ポリエステル樹脂を含んでなり、射出成形品であることが好ましい。
本発明による電気電子部品は、上記成形品を備えることを特徴とする。
本発明によれば、低誘電正接を有しながら、耐熱性および加工安定性のバランスに優れた液晶ポリエステル樹脂を実現することができる。すなわち、本発明の液晶ポリエステル樹脂を用いることで、射出成形安定性および紡糸安定性等の加工安定性を向上させることができるとともに、作製した成形品の加熱加工に対する耐熱性を向上させることができる。したがって、加工成形し、製品として使用する際には周波数の高い信号を使用する電気電子機器や通信機器における出力信号の品質の低下を防止することができる。
(液晶ポリエステル樹脂)
本発明による液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構成単位(I)、芳香族ジオール化合物に由来する構成単位(II)、および 芳香族ジカルボン酸に由来する構成単位(III)を含んでなる。さらに、液晶ポリエステル樹脂は、構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含み、好ましくはp-ヒドロキシ安息香酸に由来する構成単位(IB)をさらに含んでもよく、構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、下記の特定の性質(誘電正接、融点、融点と結晶化点の温度差)を有するものである。
本発明による液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構成単位(I)、芳香族ジオール化合物に由来する構成単位(II)、および 芳香族ジカルボン酸に由来する構成単位(III)を含んでなる。さらに、液晶ポリエステル樹脂は、構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含み、好ましくはp-ヒドロキシ安息香酸に由来する構成単位(IB)をさらに含んでもよく、構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、下記の特定の性質(誘電正接、融点、融点と結晶化点の温度差)を有するものである。
本発明による液晶ポリエステル樹脂の誘電正接(測定周波数:10GHz)は、1.50×10-3以下であり、好ましくは1.00×10-3以下であり、より好ましくは0.90×10-3以下であり、さらに好ましくは0.80×10-3以下である。本発明による液晶ポリエステル樹脂の誘電正接を上記数値範囲とすることにより、低誘電正接を有する成形品を製造できるため、製品として使用する際には周波数の高い信号を使用する電気電子機器や通信機器における出力信号の品質の低下を防止することができる。
なお、本明細書において、液晶ポリエステル樹脂の10GHzにおける誘電正接は、キーサイト・テクノロジー社のネットワークアナライザーN5247A等を用いて、スプリットポスト誘電体共振器法(SPDR法)により測定することができる。
なお、本明細書において、液晶ポリエステル樹脂の10GHzにおける誘電正接は、キーサイト・テクノロジー社のネットワークアナライザーN5247A等を用いて、スプリットポスト誘電体共振器法(SPDR法)により測定することができる。
本発明による液晶ポリエステル樹脂の融点は、下限値としては、290℃以上であり、好ましくは295℃以上であり、より好ましくは300℃以上であり、また、上限値としては、好ましくは340℃以下であり、より好ましくは335℃以下であり、さらに好ましくは330℃以下である。本発明による液晶ポリエステル樹脂の融点を上記数値範囲とすることにより、液晶ポリエステル樹脂を用いて作製した成形品の加熱加工に対する耐熱性を向上させることができる。
本発明による液晶ポリエステル樹脂の結晶化点は、下限値としては、好ましくは240℃以上であり、より好ましくは245℃以上であり、また、上限値としては、好ましくは295℃以下であり、より好ましくは290℃以下である。
本発明による液晶ポリエステル樹脂の融点と結晶化点の温度差(=「融点(℃)」-「結晶化点(℃)」)は、下限値としては、30℃以上であり、好ましくは35℃以上であり、より好ましくは40℃以上であり、また、上限値としては、好ましくは70℃以下であり、より好ましくは60℃以下である。本発明による液晶ポリエステル樹脂の融点と結晶化点の温度差を上記数値範囲とすることにより、液晶ポリエステルを溶融成形する際に、液晶ポリエステルが溶融してから固化するまでに十分な時間をかけることができ、成形温度等の温度条件設定の自由度を高くすることが可能である。従って、射出成形安定性および紡糸安定性等の加工安定性を向上させることができる。
なお、本明細書において、液晶ポリエステル樹脂の融点および結晶化点は、示差走査熱量計(DSC)により測定した値である。具体的には、昇温速度10℃/分で室温から340~360℃まで昇温して液晶ポリエステル樹脂を完全に融解させた後、速度10℃/分で30℃まで降温した時に得られる発熱ピークの頂点を結晶化点(Tc)、さらに10℃/分の速度で360℃まで昇温する時に得られる吸熱ピークの頂点を融点(Tm)とした。
本発明による液晶ポリエステル樹脂の結晶化点は、下限値としては、好ましくは240℃以上であり、より好ましくは245℃以上であり、また、上限値としては、好ましくは295℃以下であり、より好ましくは290℃以下である。
本発明による液晶ポリエステル樹脂の融点と結晶化点の温度差(=「融点(℃)」-「結晶化点(℃)」)は、下限値としては、30℃以上であり、好ましくは35℃以上であり、より好ましくは40℃以上であり、また、上限値としては、好ましくは70℃以下であり、より好ましくは60℃以下である。本発明による液晶ポリエステル樹脂の融点と結晶化点の温度差を上記数値範囲とすることにより、液晶ポリエステルを溶融成形する際に、液晶ポリエステルが溶融してから固化するまでに十分な時間をかけることができ、成形温度等の温度条件設定の自由度を高くすることが可能である。従って、射出成形安定性および紡糸安定性等の加工安定性を向上させることができる。
なお、本明細書において、液晶ポリエステル樹脂の融点および結晶化点は、示差走査熱量計(DSC)により測定した値である。具体的には、昇温速度10℃/分で室温から340~360℃まで昇温して液晶ポリエステル樹脂を完全に融解させた後、速度10℃/分で30℃まで降温した時に得られる発熱ピークの頂点を結晶化点(Tc)、さらに10℃/分の速度で360℃まで昇温する時に得られる吸熱ピークの頂点を融点(Tm)とした。
本発明による液晶ポリエステル樹脂の液晶性は、メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)等を用い、液晶ポリエステル樹脂を顕微鏡加熱ステージ上にて加熱溶融させた後、光学異方性の有無を観察することにより確認することができる。
本発明による液晶ポリエステル樹脂の溶融粘度は、成形性という観点から、液晶ポリエステル樹脂の融点+20℃、せん断速度100s-1の条件で、下限値としては、好ましくは20Pa・s以上であり、より好ましくは40Pa・s以上であり、さらに好ましくは50Pa・s以上であり、また、上限値としては600Pa・s以下であり、より好ましくは350Pa・s以下であり、さらに好ましくは320Pa・s以下であり、さらにより好ましくは200Pa・s以下である。
なお、本明細書において、液晶ポリエステル樹脂の粘度は、JIS K7199に準拠し、キャピラリーレオメーター粘度計を用いて測定することができる。
なお、本明細書において、液晶ポリエステル樹脂の粘度は、JIS K7199に準拠し、キャピラリーレオメーター粘度計を用いて測定することができる。
本発明による液晶ポリエステル樹脂は、構成単位(I)~(III)の組成比(モル%)が、下記の条件:
36モル%≦構成単位(IA)≦74モル%
0モル%≦構成単位(IB)≦4モル%
11モル%≦構成単位(II)≦32モル%
1モル%≦構成単位(IIIA)≦7モル%
10モル%≦構成単位(IIIB)≦25モル%
を満たすことが好ましい。
さらに、本発明による液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構成単位構成単位(I)として6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)のみを含み、p-ヒドロキシ安息香酸に由来する構成単位(IB)を含まない場合には、下記の条件:
44モル%≦構成単位(IA)≦72モル%
14モル%≦構成単位(II)≦28モル%
2モル%≦構成単位(IIIA)≦6モル%
12モル%≦構成単位(IIIB)≦22モル%
を満たすことがより好ましい。
また、本発明による液晶ポリエステル樹脂は、構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)およびp-ヒドロキシ安息香酸に由来する構成単位(IB)の両方を含む場合には、下記の条件:
39モル%≦構成単位(IA)≦71モル%
0モル%<構成単位(IB)≦3モル%
13モル%≦構成単位(II)≦30モル%
2モル%≦構成単位(IIIA)≦6モル%
11モル%≦構成単位(IIIB)≦24モル%
を満たすことがより好ましい。
本発明による液晶ポリエステル樹脂は、構成単位(I)~(III)の組成比(モル%)が上記の条件を満たすことにより、低誘電正接を有しながら、耐熱性および加工安定性のバランスに優れたものとなる。
36モル%≦構成単位(IA)≦74モル%
0モル%≦構成単位(IB)≦4モル%
11モル%≦構成単位(II)≦32モル%
1モル%≦構成単位(IIIA)≦7モル%
10モル%≦構成単位(IIIB)≦25モル%
を満たすことが好ましい。
さらに、本発明による液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構成単位構成単位(I)として6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)のみを含み、p-ヒドロキシ安息香酸に由来する構成単位(IB)を含まない場合には、下記の条件:
44モル%≦構成単位(IA)≦72モル%
14モル%≦構成単位(II)≦28モル%
2モル%≦構成単位(IIIA)≦6モル%
12モル%≦構成単位(IIIB)≦22モル%
を満たすことがより好ましい。
また、本発明による液晶ポリエステル樹脂は、構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)およびp-ヒドロキシ安息香酸に由来する構成単位(IB)の両方を含む場合には、下記の条件:
39モル%≦構成単位(IA)≦71モル%
0モル%<構成単位(IB)≦3モル%
13モル%≦構成単位(II)≦30モル%
2モル%≦構成単位(IIIA)≦6モル%
11モル%≦構成単位(IIIB)≦24モル%
を満たすことがより好ましい。
本発明による液晶ポリエステル樹脂は、構成単位(I)~(III)の組成比(モル%)が上記の条件を満たすことにより、低誘電正接を有しながら、耐熱性および加工安定性のバランスに優れたものとなる。
本発明による液晶ポリエステル樹脂において、構成単位(II)の組成比は、構成単位(III)の組成比と実質的に当量(構成単位(II)≒構成単位(III))となる。また、液晶ポリエステル樹脂全体の構成単位に対して、構成単位(I)~(III))の合計は、下限値としては、好ましくは90モル%以上であり、より好ましくは95モル%以上であり、さらに好ましくは99モル%以上であり、上限値としては、好ましくは100モル%以下である。
以下、液晶ポリエステル樹脂に含まれる各構成単位について詳細に説明する。
(芳香族ヒドロキシカルボン酸に由来する構成単位(I))
液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構成単位(I)を含む。芳香族ヒドロキシカルボン酸に由来する構成単位(I)は、下記式(IA)で表される6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含む。液晶ポリエステル樹脂中における構成単位(IA)の組成比(モル%)は、好ましくは36モル%以上74モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(IA)の組成比(モル%)は、下限値としては、好ましくは39モル%以上であり、より好ましくは44モル%以上であり、さらに好ましくは50モル%以上であり、また、上限値としては、好ましくは72モル%以下であり、より好ましくは71モル%以下であり、さらに好ましくは70モル%以下である。
液晶ポリエステル樹脂は、芳香族ヒドロキシカルボン酸に由来する構成単位(I)を含む。芳香族ヒドロキシカルボン酸に由来する構成単位(I)は、下記式(IA)で表される6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含む。液晶ポリエステル樹脂中における構成単位(IA)の組成比(モル%)は、好ましくは36モル%以上74モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(IA)の組成比(モル%)は、下限値としては、好ましくは39モル%以上であり、より好ましくは44モル%以上であり、さらに好ましくは50モル%以上であり、また、上限値としては、好ましくは72モル%以下であり、より好ましくは71モル%以下であり、さらに好ましくは70モル%以下である。
さらに、芳香族ヒドロキシカルボン酸に由来する構成単位(I)は、下記式(IB)で表されるp-ヒドロキシ安息香酸に由来する構成単位(IB)を含んでもよい。液晶ポリエステル樹脂中における構成単位(IB)の組成比(モル%)は、好ましくは0モル%以上4モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(IB)が含まれる場合、構成単位(IB)の組成比(モル%)は、下限値としては、好ましくは0モル%超であり、より好ましくは0.5モル%以上であり、また、上限値としては、好ましくは3モル%以下であり、より好ましくは2モル%以下である。
(芳香族ジオール化合物に由来する構成単位(II))
液晶ポリエステル樹脂は、芳香族ジオール化合物に由来する構成単位(II)を含むものであり、液晶ポリエステル樹脂中における構成単位(II)の組成比(モル%)は、好ましくは11モル%以上32モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(II)の組成比(モル%)は、下限値としては、好ましくは13モル%以上であり、より好ましくは14モル%以上であり、また、上限値としては、好ましくは30モル%以下であり、より好ましくは28モル%以下である。
液晶ポリエステル樹脂は、芳香族ジオール化合物に由来する構成単位(II)を含むものであり、液晶ポリエステル樹脂中における構成単位(II)の組成比(モル%)は、好ましくは11モル%以上32モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(II)の組成比(モル%)は、下限値としては、好ましくは13モル%以上であり、より好ましくは14モル%以上であり、また、上限値としては、好ましくは30モル%以下であり、より好ましくは28モル%以下である。
一実施態様において、構成単位(II)は下記式(II)で表される。
上記式中Ar1は、所望により置換基を有するフェニル基、ビフェニル基、4,4’-イソプロピリデンジフェニル基、ナフチル基、アントリル基およびフェナントリル基からなる群より選択される。これらの中でもフェニル基およびビフェニル基がより好ましい。置換基としては、水素、アルキル基、アルコキシ基、ならびにフッ素等が挙げられる。アルキル基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、直鎖状のアルキル基であっても、分岐鎖状のアルキル基であってもよい。アルコキシ基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。
構成単位(II)を与えるモノマーとしては、例えば、4,4’-ジヒドロキシビフェニル(BP、下記式(3))、ハイドロキノン(HQ、下記式(4))、メチルハイドロキノン(MeHQ、下記式(5))、4,4’-イソプロピリデンジフェノール(BisPA、下記式(6))、およびこれらのアシル化物、エステル誘導体、酸ハロゲン化物等が挙げられる。これらの中でも4,4’-ジヒドロキシビフェニル(BP)およびこれらのアシル化物、エステル誘導体、酸ハロゲン化物を用いることが好ましい。
(芳香族ジカルボン酸に由来する構成単位(III))
液晶ポリエステル樹脂は、芳香族ジカルボン酸に由来する構成単位(III)を含む。さらに、芳香族ジカルボン酸に由来する構成単位(III)は、下記式(IIIA)で表されるイソフタル酸に由来する構成単位(IIIA)を含む。液晶ポリエステル樹脂中における構成単位(IIIA)の組成比(モル%)は、好ましくは1モル%以上7モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(IIIA)の組成比(モル%)は、下限値としては、好ましくは2モル%以上であり、また、上限値としては、好ましくは6モル%以下であり、より好ましくは5モル%以下である。
液晶ポリエステル樹脂は、芳香族ジカルボン酸に由来する構成単位(III)を含む。さらに、芳香族ジカルボン酸に由来する構成単位(III)は、下記式(IIIA)で表されるイソフタル酸に由来する構成単位(IIIA)を含む。液晶ポリエステル樹脂中における構成単位(IIIA)の組成比(モル%)は、好ましくは1モル%以上7モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(IIIA)の組成比(モル%)は、下限値としては、好ましくは2モル%以上であり、また、上限値としては、好ましくは6モル%以下であり、より好ましくは5モル%以下である。
芳香族ジカルボン酸に由来する構成単位(III)は、下記式(IIIB)で表される2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含む。液晶ポリエステル樹脂中における構成単位(IIIB)の組成比(モル%)は、好ましくは10モル%以上25モル%以下である。液晶ポリエステル樹脂の誘電正接の低下、耐熱性の向上、および加工安定性の向上という観点からは、構成単位(IIIB)の組成比(モル%)は、下限値としては、好ましくは11モル%以上であり、より好ましくは12モル%以上であり、また、上限値としては、好ましくは24モル%以下であり、より好ましくは22モル%以下である。
(液晶ポリエステル樹脂の製造方法)
本発明に係る液晶ポリエステル樹脂は、構成単位(I)~(III)を与えるモノマーを、溶融重合、固相重合、溶液重合およびスラリー重合等、従来公知の方法で重合することにより製造することができる。一実施態様において、本発明に係る液晶ポリエステル樹脂は、溶融重合のみによって製造することができる。また、溶融重合によりプレポリマーを作製し、これをさらに固相重合する2段階重合によっても製造することができる。
本発明に係る液晶ポリエステル樹脂は、構成単位(I)~(III)を与えるモノマーを、溶融重合、固相重合、溶液重合およびスラリー重合等、従来公知の方法で重合することにより製造することができる。一実施態様において、本発明に係る液晶ポリエステル樹脂は、溶融重合のみによって製造することができる。また、溶融重合によりプレポリマーを作製し、これをさらに固相重合する2段階重合によっても製造することができる。
溶融重合は、本発明に係る液晶ポリエステル樹脂が効率よく得られる観点から、上記構成単位(I)~(III)を与えるモノマーを、所定の配合で合わせて100モル%として、モノマーが有する全水酸基に対し、1.05~1.15モル当量の無水酢酸を存在させて酢酸還流下において行うことが好ましい。また、溶融重合は、減圧下で反応を行うことが好ましい。反応条件としては、反応温度が好ましくは200~380℃であり、より好ましくは240~370℃であり、さらに好ましくは260~360℃であり、最終到達圧力が、好ましくは0.1~760Torrであり、より好ましくは1~100Torrであり、さらに好ましくは1~50Torrである。
溶融重合とこれに続く固相重合の二段階により重合反応を行う場合は、溶融重合により得られたポリマーを冷却固化後に粉砕してパウダー状もしくはフレーク状にしてもよい。また、溶融重合により得られたポリマーストランドをペレタイズし、ペレット状にしてもよい。その後、公知の固相重合方法、例えば、窒素等の不活性雰囲気下、または真空下において200~350℃の温度範囲で1~30時間、ポリマーを熱処理する等の方法が好ましくは選択される。固相重合は、撹拌しながら行ってもよく、また撹拌することなく静置した状態で行ってもよい。
重合反応において触媒は使用してもよいし、また使用しなくてもよい。使用する触媒としては、ポリエステル樹脂の重合用触媒として従来公知のものを使用することができ、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、酢酸鉛、酢酸ナトリウム、テトラブチルチタネート、三酸化アンチモン等の金属塩触媒、N-メチルイミダゾール等の窒素含有複素環化合物等、有機化合物触媒等が挙げられる。触媒の使用量は、特に限定されるものではないが、モノマーの総量100重量部に対して、0.0001~0.1重量部であることが好ましい。
溶融重合における重合反応装置は特に限定されるものではないが、一般の高粘度流体の反応に用いられる反応装置が好ましく使用される。これらの反応装置の例としては、例えば、錨型、多段型、螺旋帯型、螺旋軸型等、あるいはこれらを変形した各種形状の撹拌翼をもつ撹拌装置を有する撹拌槽型重合反応装置、又は、ニーダー、ロールミル、バンバリーミキサー等の、一般に樹脂の混練に使用される混合装置等が挙げられる。
(成形品)
本発明による成形品は、液晶ポリエステル樹脂を含んでなるものであり、その形状は用途に応じ適宜変更されるものであり、特に限定されず、例えば、板状、シート状、繊維状等とすることができる。
本発明による成形品は、液晶ポリエステル樹脂を含んでなるものであり、その形状は用途に応じ適宜変更されるものであり、特に限定されず、例えば、板状、シート状、繊維状等とすることができる。
一実施態様において、成形品は繊維状であることが好ましい。繊維は、従来公知の方法、例えば、溶融紡糸法、溶液紡糸法等により得ることができる。繊維は、液晶ポリエステル樹脂のみからなるものであってもよく、他の樹脂と混合してもよい。
本発明による成形品は、充填剤をさらに含んでもよい。充填材としては、炭素繊維(カーボンファイバー)、グラファイト、ガラス繊維、タルク、マイカ、ガラスフレーク、クレー、セリサイト、炭酸カルシウム、硫酸カルシウム、珪酸カルシウム、シリカ、アルミナ、水酸化アルミニウム、水酸化カルシウム、黒鉛、チタン酸カリウム、酸化チタン、フルオロカーボン樹脂繊維、フルオロカーボン樹脂、硫酸バリウム、各種ウィスカー等が挙げられる。
また、本発明による成形品は、本発明の趣旨を逸脱しない範囲で、液晶ポリエステル樹脂以外の樹脂を含んでいてもよい。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリシクロへキシレンジメチレンテレフタレート、およびポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、シクロオレフィンポリマー、ポリ塩化ビニル等のビニル樹脂、ポリアクリレート、ポリメタアクリレートおよびポリメチルメタアクリレート等の(メタ)アクリル樹脂、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリイミドおよびポリエーテルイミド等のイミド樹脂、ポリスチレン、高衝撃ポリスチレン、AS樹脂およびABS樹脂等のポリスチレン樹脂、エポキシ樹脂等の熱硬化樹脂、セルロース樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂ならびにポリカーボネート樹脂等が挙げられ、成形品は、これらを1種または2種以上含んでいてもよい。
本発明による成形品は、本発明の趣旨を逸脱しない範囲で、その他の添加剤、例えば、着色剤、分散剤、可塑剤、酸化防止剤、硬化剤、難燃剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤を含んでいてもよい。
本発明による成形品は、液晶ポリエステル樹脂および所望によりその他の樹脂や添加剤等を含む混合物をプレス成形、発泡成形、射出成形、カレンダー成形、打ち抜き成形することにより得ることができる。なお、混合物は、液晶ポリエステル樹脂等をバンバリーミキサー、ニーダー、一軸または二軸押出機等を用いて、溶融混練することにより得ることができる。
(電気電子部品)
本発明による電気電子部品は、液晶ポリエステル樹脂を含む成形品(例えば、射出成形品等)を備えてなる。上記成形品を備えてなる電気電子部品としては、例えば、ETC、GPS、無線LANおよび携帯電話等の電子機器や通信機器に使用されるアンテナ、高速伝送用コネクタ、CPUソケット、回路基板、フレキシブルプリント基板(FPC)、積層用回路基板、衝突防止用レーダーなどのミリ波および準ミリ波レーダー、RFIDタグ、コンデンサー、インバーター部品、ケーブルの被覆材、リチウムイオン電池等の二次電池の絶縁材、スピーカー振動板等が挙げられる。
本発明による電気電子部品は、液晶ポリエステル樹脂を含む成形品(例えば、射出成形品等)を備えてなる。上記成形品を備えてなる電気電子部品としては、例えば、ETC、GPS、無線LANおよび携帯電話等の電子機器や通信機器に使用されるアンテナ、高速伝送用コネクタ、CPUソケット、回路基板、フレキシブルプリント基板(FPC)、積層用回路基板、衝突防止用レーダーなどのミリ波および準ミリ波レーダー、RFIDタグ、コンデンサー、インバーター部品、ケーブルの被覆材、リチウムイオン電池等の二次電池の絶縁材、スピーカー振動板等が挙げられる。
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
<液晶ポリエステル樹脂の製造>
(実施例1)
撹拌翼を有する重合容器に6-ヒドロキシ-2-ナフトエ酸(HNA)52モル%、4,4’-ジヒドロキシビフェニル(BP)24モル%、イソフタル酸(IPA)5モル%、および2,6-ナフタレンジカルボン酸(NADA)19モル%を加え、触媒として酢酸カリウムを仕込み、重合容器の減圧-窒素注入を3回行った後、無水酢酸(水酸基に対して1.05モル当量)を更に添加し、150℃まで昇温し、還流状態で2時間アセチル化反応を行った。
(実施例1)
撹拌翼を有する重合容器に6-ヒドロキシ-2-ナフトエ酸(HNA)52モル%、4,4’-ジヒドロキシビフェニル(BP)24モル%、イソフタル酸(IPA)5モル%、および2,6-ナフタレンジカルボン酸(NADA)19モル%を加え、触媒として酢酸カリウムを仕込み、重合容器の減圧-窒素注入を3回行った後、無水酢酸(水酸基に対して1.05モル当量)を更に添加し、150℃まで昇温し、還流状態で2時間アセチル化反応を行った。
アセチル化終了後、酢酸留出状態にした重合容器を0.5℃/分で槽内の溶融帯温度が330℃となるまで昇温した。その後、30分かけて系内が50Torrになるまで減圧した。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧にし、ポリマーを抜き出し、冷却固化した。得られたポリマーを粉砕し、目開き2.0mmの篩を通過する大きさに粉砕して、ポリマーを得た。得られたポリマーの、融点+20℃、100s-1における溶融粘度が20Pa・s以上600Pa・s以下の範囲内であれば、重合を完了する。なお、上記で得られたポリマーの、融点+20℃、100s-1における溶融粘度が20Pa・s未満の場合には重合度が不足しているため、溶融粘度が20Pa・s以上600Pa・s以下の範囲に収まるように、300℃まで昇温した後、4時間保持して固相重合を行って、再度の重合を完了する。
その後、室温で自然放熱し、本発明のポリエステル樹脂を得た。メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)を用い、ポリエステル樹脂を顕微鏡加熱ステージ上にて加熱溶融させ、光学異方性の有無から液晶性を確認した。
(実施例2)
モノマー仕込みを、HNA58モル%、BP21モル%、IPA5モル%、およびNADA16モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA58モル%、BP21モル%、IPA5モル%、およびNADA16モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例3)
モノマー仕込みを、HNA60モル%、BP20モル%、IPA3モル%、およびNADA17モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA60モル%、BP20モル%、IPA3モル%、およびNADA17モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例4)
モノマー仕込みを、HNA60モル%、BP20モル%、IPA4モル%、およびNADA16モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA60モル%、BP20モル%、IPA4モル%、およびNADA16モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例5)
モノマー仕込みを、HNA60モル%、BP20モル%、IPA6モル%、およびNADA14モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA60モル%、BP20モル%、IPA6モル%、およびNADA14モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例6)
モノマー仕込みを、HNA70モル%、BP15モル%、IPA3モル%、およびNADA12モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA70モル%、BP15モル%、IPA3モル%、およびNADA12モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例7)
モノマー仕込みを、HNA57モル%、p-ヒドロキシ安息香酸(HBA)1モル%、BP21モル%、IPA5モル%、およびNADA16モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA57モル%、p-ヒドロキシ安息香酸(HBA)1モル%、BP21モル%、IPA5モル%、およびNADA16モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例8)
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA3モル%、およびNADA22モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA3モル%、およびNADA22モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例9)
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA4モル%、およびNADA21モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA4モル%、およびNADA21モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例10)
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA5モル%、およびNADA20モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA5モル%、およびNADA20モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例11)
モノマー仕込みを、HNA50モル%、HBA2モル%、BP24モル%、IPA4モル%、およびNADA20モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA50モル%、HBA2モル%、BP24モル%、IPA4モル%、およびNADA20モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例12)
モノマー仕込みを、HNA54モル%、HBA2モル%、BP22モル%、IPA3モル%、およびNADA19モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA54モル%、HBA2モル%、BP22モル%、IPA3モル%、およびNADA19モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(実施例13)
モノマー仕込みを、HNA58モル%、HBA2モル%、BP20モル%、IPA3モル%、およびNADA17モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA58モル%、HBA2モル%、BP20モル%、IPA3モル%、およびNADA17モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例1)
モノマー仕込みを、HNA50モル%、BP25モル%、およびNADA25モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA50モル%、BP25モル%、およびNADA25モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例2)
モノマー仕込みを、HNA50モル%、BP25モル%、IPA10モル%、およびNADA15モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA50モル%、BP25モル%、IPA10モル%、およびNADA15モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例3)
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、およびNADA25モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、およびNADA25モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例4)
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA10モル%、およびNADA15モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA48モル%、HBA2モル%、BP25モル%、IPA10モル%、およびNADA15モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例5)
モノマー仕込みを、HNA60モル%、HBA2モル%、BP19モル%、およびNADA19モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA60モル%、HBA2モル%、BP19モル%、およびNADA19モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例6)
モノマー仕込みを、HNA38モル%、HBA12モル%、BP25モル%、およびNADA25モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA38モル%、HBA12モル%、BP25モル%、およびNADA25モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
(比較例7)
モノマー仕込みを、HNA27モル%およびHBA73モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
モノマー仕込みを、HNA27モル%およびHBA73モル%に変更した以外は実施例1と同様にして、ポリエステル樹脂を得た。次に、上記と同様にして、ポリエステル樹脂の液晶性を確認した。
<平板状試験片の作製>
実施例および比較例において得られた液晶ポリエステル樹脂を融点~融点+20℃条件で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作製した。
実施例および比較例において得られた液晶ポリエステル樹脂を融点~融点+20℃条件で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作製した。
<誘電正接測定(10GHz)の測定>
上記で作製した平板状試験片の面内方向の誘電正接(tanδ)について、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法(SPDR法)により、周波数10GHzの誘電正接を測定した。測定結果を表1に示す。
上記で作製した平板状試験片の面内方向の誘電正接(tanδ)について、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法(SPDR法)により、周波数10GHzの誘電正接を測定した。測定結果を表1に示す。
<融点および結晶化点の測定>
実施例および比較例において得られた液晶ポリエステル樹脂の融点および結晶化点を、日立ハイテクサイエンス(株)製の示差走査熱量計(DSC)により測定した。まず、昇温速度10℃/分で室温から340~360℃まで昇温して液晶ポリエステル樹脂を完全に融解させた後、速度10℃/分で30℃まで降温した時に得られる発熱ピークの頂点を結晶化点(Tc)、さらに10℃/分の速度で360℃まで昇温する時に得られる吸熱ピークの頂点を融点(Tm)とした。また、得られた融点および結晶化点から融点および結晶化点の差を算出した。融点、結晶化点、ならびに融点および結晶化点の差を表1に示した。
実施例および比較例において得られた液晶ポリエステル樹脂の融点および結晶化点を、日立ハイテクサイエンス(株)製の示差走査熱量計(DSC)により測定した。まず、昇温速度10℃/分で室温から340~360℃まで昇温して液晶ポリエステル樹脂を完全に融解させた後、速度10℃/分で30℃まで降温した時に得られる発熱ピークの頂点を結晶化点(Tc)、さらに10℃/分の速度で360℃まで昇温する時に得られる吸熱ピークの頂点を融点(Tm)とした。また、得られた融点および結晶化点から融点および結晶化点の差を算出した。融点、結晶化点、ならびに融点および結晶化点の差を表1に示した。
<耐熱性と加工安定性のバランスの評価>
実施例および比較例において得られた液晶ポリエステル樹脂の耐熱性と加工安定性のバランスを下記の基準により評価した。評価基準の点数は数値が大きい方が好ましく、3点以上を合格とした。評価結果を表1に示した。
(評価基準)
4:融点が300℃以上340℃以下であり、かつ、融点と結晶化点の差が30℃以上であり、耐熱性と加工安定性のバランスに特に優れていた。
3:融点が290℃以上300℃未満であり、かつ、融点と結晶化点の差が30℃以上であり、耐熱性と加工安定性のバランスに優れていた。
2:融点が290℃未満もしくは340℃超であったか、または、融点と結晶化点の差が30℃未満であり、耐熱性と加工安定性のバランスに劣っていた。
1:融点が290℃未満もしくは340℃超であり、かつ、融点と結晶化点の差が30℃未満であり、耐熱性と加工安定性のバランスに特に劣っていた。
実施例および比較例において得られた液晶ポリエステル樹脂の耐熱性と加工安定性のバランスを下記の基準により評価した。評価基準の点数は数値が大きい方が好ましく、3点以上を合格とした。評価結果を表1に示した。
(評価基準)
4:融点が300℃以上340℃以下であり、かつ、融点と結晶化点の差が30℃以上であり、耐熱性と加工安定性のバランスに特に優れていた。
3:融点が290℃以上300℃未満であり、かつ、融点と結晶化点の差が30℃以上であり、耐熱性と加工安定性のバランスに優れていた。
2:融点が290℃未満もしくは340℃超であったか、または、融点と結晶化点の差が30℃未満であり、耐熱性と加工安定性のバランスに劣っていた。
1:融点が290℃未満もしくは340℃超であり、かつ、融点と結晶化点の差が30℃未満であり、耐熱性と加工安定性のバランスに特に劣っていた。
表1の結果から明らかなように、実施例1~13の液晶ポリエステル樹脂は、汎用の液晶ポリエステル樹脂である比較例7と比較例して、誘電正接が明らかに低く、耐熱性と加工安定性のバランスに優れるものであった。さらに、実施例1~13の液晶ポリエステル樹脂は、他の組成の液晶ポリエステル樹脂である比較例1~6と比較例しても、耐熱性と加工安定性のバランスに優れるものであった。
<溶融粘度の測定>
実施例および比較例において得られた液晶ポリエステル樹脂の、せん断速度100S-1における融点+20℃での溶融粘度(Pa・s)を、キャピラリーレオメーター粘度計((株)東洋精機製作所キャピログラフ1D)と内径1mmキャピラリーを用い、JIS K7199に準拠して測定した。測定結果を表1に示した。
実施例および比較例において得られた液晶ポリエステル樹脂の、せん断速度100S-1における融点+20℃での溶融粘度(Pa・s)を、キャピラリーレオメーター粘度計((株)東洋精機製作所キャピログラフ1D)と内径1mmキャピラリーを用い、JIS K7199に準拠して測定した。測定結果を表1に示した。
<成形品の製造・評価>
(試験片の成形)
実施例1、3、および12で得られた液晶ポリエステル樹脂を、射出成形機(Rambaldi製:Babyplast)で射出成形して、ISO527に準じたダンベル状引張試験片を作製した。
(試験片の成形)
実施例1、3、および12で得られた液晶ポリエステル樹脂を、射出成形機(Rambaldi製:Babyplast)で射出成形して、ISO527に準じたダンベル状引張試験片を作製した。
(引張強度、引張弾性率、および引張伸びの測定)
上記で作製した引張試験片を用い、ISO 527に準拠して、引張強度(MPa)および引張伸び(%)の測定を行った。
上記で作製した引張試験片を用い、ISO 527に準拠して、引張強度(MPa)および引張伸び(%)の測定を行った。
Claims (9)
- 芳香族ヒドロキシカルボン酸に由来する構成単位(I)、
芳香族ジオール化合物に由来する構成単位(II)、および
芳香族ジカルボン酸に由来する構成単位(III)
を含んでなり、
前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)を含み、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
測定周波数10GHzにおける誘電正接が、1.50×10-3以下であり、
融点が290℃以上であり、
融点と結晶化点との温度差が30℃以上であることを特徴とする、液晶ポリエステル樹脂。 - 融点が340℃以下である、請求項1に記載の液晶ポリエステル樹脂。
- 前記構成単位(I)が、p-ヒドロキシ安息香酸に由来する構成単位(IB)をさらに含んでもよく、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
36モル%≦構成単位(IA)≦74モル%
0モル%≦構成単位(IB)≦4モル%
11モル%≦構成単位(II)≦32モル%
1モル%≦構成単位(IIIA)≦7モル%
10モル%≦構成単位(IIIB)≦25モル%
を満たす、請求項1または2に記載の液晶ポリエステル樹脂。 - 前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)であり、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
44モル%≦構成単位(IA)≦72モル%
14モル%≦構成単位(II)≦28モル%
2モル%≦構成単位(IIIA)≦6モル%
12モル%≦構成単位(IIIB)≦22モル%
を満たす、請求項3に記載の液晶ポリエステル樹脂。 - 前記構成単位(I)が、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(IA)およびp-ヒドロキシ安息香酸に由来する構成単位(IB)を含み、
前記構成単位(III)が、イソフタル酸に由来する構成単位(IIIA)、および2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)を含み、
前記構成単位(I)~(III)の組成比(モル%)が、下記の条件:
39モル%≦構成単位(IA)≦71モル%
0モル%<構成単位(IB)≦3モル%
39モル%≦構成単位(IB)≦71モル%
13モル%≦構成単位(II)≦30モル%
2モル%≦構成単位(IIIA)≦6モル%
11モル%≦構成単位(IIIB)≦24モル%
を満たす、請求項3に記載の液晶ポリエステル樹脂。 - 前記芳香族ジオール化合物に由来する構成単位(II)が、4,4’-ジヒドロキシビフェニルに由来する構成単位である、請求項1~5のいずれか一項に記載の液晶ポリエステル樹脂。
- 請求項1~6のいずれか一項に記載の液晶ポリエステル樹脂を含む、繊維状の成形品。
- 請求項1~6のいずれか一項に記載の液晶ポリエステル樹脂を含む、射出成形品。
- 請求項7または8に記載の成形品を備える、電気電子部品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180049875.9A CN115916867A (zh) | 2020-07-21 | 2021-07-20 | 液晶聚酯树脂、成型品和电气电子零件 |
KR1020237001900A KR20230026443A (ko) | 2020-07-21 | 2021-07-20 | 액정 폴리에스테르 수지, 성형품, 및 전기 전자 부품 |
US18/006,355 US20230257519A1 (en) | 2020-07-21 | 2021-07-20 | Liquid crystal polyester resin, molded article, and electrical/electronic component |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020124628A JP7553001B2 (ja) | 2020-07-21 | 2020-07-21 | 液晶ポリエステル樹脂、成形品、および電気電子部品 |
JP2020-124628 | 2020-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022019294A1 true WO2022019294A1 (ja) | 2022-01-27 |
Family
ID=79729592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027083 WO2022019294A1 (ja) | 2020-07-21 | 2021-07-20 | 液晶ポリエステル樹脂、成形品、および電気電子部品 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230257519A1 (ja) |
JP (1) | JP7553001B2 (ja) |
KR (1) | KR20230026443A (ja) |
CN (1) | CN115916867A (ja) |
TW (1) | TW202206492A (ja) |
WO (1) | WO2022019294A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002296A (ja) * | 2003-06-16 | 2005-01-06 | Sumitomo Chem Co Ltd | 芳香族ポリエステルおよびそのフィルム |
JP2005126652A (ja) * | 2003-10-27 | 2005-05-19 | Toray Ind Inc | 水素ガスバリア用液晶性ポリエステル樹脂およびその組成物 |
JP2009127024A (ja) * | 2007-11-28 | 2009-06-11 | Polyplastics Co | 全芳香族ポリエステル及びポリエステル樹脂組成物 |
JP2010174114A (ja) * | 2009-01-29 | 2010-08-12 | Toray Ind Inc | 液晶性樹脂組成物 |
WO2018008612A1 (ja) * | 2016-07-04 | 2018-01-11 | Jxtgエネルギー株式会社 | 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 |
WO2018181222A1 (ja) * | 2017-03-31 | 2018-10-04 | 株式会社クラレ | 熱可塑性液晶ポリマーおよびそのフィルム |
JP2019043996A (ja) * | 2017-08-30 | 2019-03-22 | 上野製薬株式会社 | 液晶ポリエステル樹脂 |
JP2019214678A (ja) * | 2018-06-13 | 2019-12-19 | 上野製薬株式会社 | ポリプロピレン樹脂組成物 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4306268B2 (ja) | 2003-02-12 | 2009-07-29 | 住友化学株式会社 | 芳香族液晶ポリエステルおよびそのフィルム |
JP4466217B2 (ja) | 2004-06-16 | 2010-05-26 | 住友化学株式会社 | 芳香族液晶ポリエステルフィルムおよび積層体 |
JP4946066B2 (ja) | 2005-01-20 | 2012-06-06 | 住友化学株式会社 | 芳香族液晶ポリエステル及びそれから得られるフィルム |
JP2009114418A (ja) * | 2007-10-15 | 2009-05-28 | Toray Ind Inc | 液晶性樹脂組成物およびその製造方法 |
JP5914927B2 (ja) * | 2011-11-21 | 2016-05-11 | 住友化学株式会社 | 繊維製造用材料および繊維 |
JP6181587B2 (ja) * | 2014-03-26 | 2017-08-16 | 上野製薬株式会社 | 液晶ポリエステルブレンド |
JP6177191B2 (ja) * | 2014-05-30 | 2017-08-09 | 上野製薬株式会社 | 液晶ポリエステルブレンド |
TWI667283B (zh) * | 2014-06-30 | 2019-08-01 | 日商日鐵化學材料股份有限公司 | Method for producing aromatic polyester, aromatic polyester, curable resin composition and application thereof |
JP6739908B2 (ja) * | 2014-06-30 | 2020-08-12 | 日鉄ケミカル&マテリアル株式会社 | 芳香族ポリエステル及びその製造方法 |
TWI675862B (zh) * | 2014-08-19 | 2019-11-01 | 日商吉坤日礦日石能源有限公司 | 全芳族液晶聚酯樹脂 |
JP6576754B2 (ja) * | 2015-09-15 | 2019-09-18 | 上野製薬株式会社 | 液晶ポリマー組成物 |
JP6900151B2 (ja) * | 2016-03-30 | 2021-07-07 | Eneos株式会社 | 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 |
JP6302581B2 (ja) * | 2017-02-03 | 2018-03-28 | 住友化学株式会社 | 繊維製造用材料および繊維 |
US10968311B2 (en) * | 2017-03-28 | 2021-04-06 | Jxtg Nippon Oil & Energy Corporation | Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components |
CN108299632A (zh) * | 2017-12-26 | 2018-07-20 | 上海普利特化工新材料有限公司 | 一种液晶聚酯及其应用 |
CN110862523A (zh) * | 2019-11-04 | 2020-03-06 | 上海普利特化工新材料有限公司 | 一种液晶聚合物薄膜的制备方法 |
CN111072936A (zh) * | 2019-12-23 | 2020-04-28 | 上海普利特化工新材料有限公司 | 一种全芳香族液晶聚酯树脂及其应用 |
CN111101256A (zh) * | 2019-12-27 | 2020-05-05 | 上海普利特化工新材料有限公司 | 一种液晶聚合物织布以及制备方法 |
-
2020
- 2020-07-21 JP JP2020124628A patent/JP7553001B2/ja active Active
-
2021
- 2021-07-20 WO PCT/JP2021/027083 patent/WO2022019294A1/ja active Application Filing
- 2021-07-20 TW TW110126641A patent/TW202206492A/zh unknown
- 2021-07-20 CN CN202180049875.9A patent/CN115916867A/zh active Pending
- 2021-07-20 KR KR1020237001900A patent/KR20230026443A/ko not_active Application Discontinuation
- 2021-07-20 US US18/006,355 patent/US20230257519A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002296A (ja) * | 2003-06-16 | 2005-01-06 | Sumitomo Chem Co Ltd | 芳香族ポリエステルおよびそのフィルム |
JP2005126652A (ja) * | 2003-10-27 | 2005-05-19 | Toray Ind Inc | 水素ガスバリア用液晶性ポリエステル樹脂およびその組成物 |
JP2009127024A (ja) * | 2007-11-28 | 2009-06-11 | Polyplastics Co | 全芳香族ポリエステル及びポリエステル樹脂組成物 |
JP2010174114A (ja) * | 2009-01-29 | 2010-08-12 | Toray Ind Inc | 液晶性樹脂組成物 |
WO2018008612A1 (ja) * | 2016-07-04 | 2018-01-11 | Jxtgエネルギー株式会社 | 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 |
WO2018181222A1 (ja) * | 2017-03-31 | 2018-10-04 | 株式会社クラレ | 熱可塑性液晶ポリマーおよびそのフィルム |
JP2019043996A (ja) * | 2017-08-30 | 2019-03-22 | 上野製薬株式会社 | 液晶ポリエステル樹脂 |
JP2019214678A (ja) * | 2018-06-13 | 2019-12-19 | 上野製薬株式会社 | ポリプロピレン樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP2022021174A (ja) | 2022-02-02 |
JP7553001B2 (ja) | 2024-09-18 |
CN115916867A (zh) | 2023-04-04 |
KR20230026443A (ko) | 2023-02-24 |
US20230257519A1 (en) | 2023-08-17 |
TW202206492A (zh) | 2022-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6434195B2 (ja) | 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 | |
CN110494471B (zh) | 全芳香族液晶聚酯树脂、成型品以及电气电子部件 | |
JP7324752B2 (ja) | 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品 | |
JP6900151B2 (ja) | 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 | |
JP7312767B2 (ja) | 樹脂組成物および該樹脂組成物からなる樹脂成形品 | |
CN115916866B (zh) | 液晶聚酯树脂、成型品和电气电子零件 | |
WO2022019296A1 (ja) | 液晶ポリエステル樹脂、成形品、および電気電子部品 | |
WO2020138324A1 (ja) | 液晶ポリマーおよび該液晶ポリマーを含む樹脂組成物からなる樹脂成形品 | |
WO2022004630A1 (ja) | 樹脂組成物および該樹脂組成物からなる樹脂成形品 | |
JP7553001B2 (ja) | 液晶ポリエステル樹脂、成形品、および電気電子部品 | |
WO2023228573A1 (ja) | 液晶ポリエステル樹脂、成形品、および電気電子部品 | |
WO2021149723A1 (ja) | 樹脂組成物および該樹脂組成物からなる樹脂成形品 | |
JP2024061391A (ja) | 液晶ポリマーおよび成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21845797 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20237001900 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21845797 Country of ref document: EP Kind code of ref document: A1 |