WO2018008612A1 - 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 - Google Patents

全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 Download PDF

Info

Publication number
WO2018008612A1
WO2018008612A1 PCT/JP2017/024405 JP2017024405W WO2018008612A1 WO 2018008612 A1 WO2018008612 A1 WO 2018008612A1 JP 2017024405 W JP2017024405 W JP 2017024405W WO 2018008612 A1 WO2018008612 A1 WO 2018008612A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
liquid crystal
polyester resin
crystal polyester
wholly aromatic
Prior art date
Application number
PCT/JP2017/024405
Other languages
English (en)
French (fr)
Inventor
豪介 鷲野
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to EP17824215.2A priority Critical patent/EP3480240A4/en
Priority to JP2018526381A priority patent/JP6434195B2/ja
Priority to US16/314,998 priority patent/US10822453B2/en
Priority to CN201780040987.1A priority patent/CN109563253B/zh
Priority to KR1020187038232A priority patent/KR102353665B1/ko
Publication of WO2018008612A1 publication Critical patent/WO2018008612A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a wholly aromatic liquid crystal polyester resin and a molded article, and more particularly to a wholly aromatic liquid crystal polyester resin having a particularly low dielectric loss tangent, and a molded article and an electric / electronic component including the same.
  • the use of signals having a high frequency band is increasing in electronic devices and communication devices, and in particular, the gigahertz (GHz) band having a frequency of 10 9 or more.
  • the use of signals having a frequency of 1 is actively performed.
  • a high frequency band of GHz band is used in the automobile field.
  • millimeter-wave radar and quasi-millimeter-wave radar mounted for the purpose of preventing collisions of automobiles use high frequencies of 76 to 79 GHz and 24 GHz, respectively, and may become more popular in the future. is expected.
  • This transmission loss is composed of a conductor loss caused by a conductor and a dielectric loss caused by an insulating resin constituting an electric / electronic component such as a substrate in an electronic device or a communication device.
  • the conductor loss is 0 at the frequency used. Since the .5th power and dielectric loss are proportional to the first power of the frequency, the influence of this dielectric loss becomes very large in the high frequency band, particularly in the GHz band.
  • the dielectric loss increases in proportion to the dielectric loss tangent of the resin, a resin having a low dielectric loss tangent is required in order to prevent deterioration of information.
  • Patent Document 1 discloses a structural unit derived from p- or m-hydroxybenzoic acid and a structural unit derived from hydroxynaphthoic acid as a liquid crystalline aromatic polyester exhibiting a low dielectric loss tangent in a high frequency band. Liquid crystalline aromatic polyesters containing more than one species have been proposed.
  • Patent Document 2 discloses 1 to 6% of a structural unit derived from p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid as a wholly aromatic polyester having excellent heat resistance and the like. Proposed polyester resin containing 40 to 60% of structural units derived from benzene, 17.5 to 30% of structural units derived from aromatic diol compounds, and 17.5 to 30% of structural units derived from aromatic dicarboxylic acids Has been.
  • wholly aromatic liquid crystal polyester resins are widely used in surface-mount electronic parts obtained by injection molding because of their excellent heat resistance and thin-wall moldability.
  • it is a material having low dielectric loss and excellent electrical characteristics
  • a method for forming an aromatic liquid crystal polyester into a film by a T-die extrusion method, an inflation method, a solution casting method, or the like has been studied.
  • Patent Document 3 discloses 40 repeating structural units (I) derived from 2-hydroxy-6-naphthoic acid as an aromatic liquid crystal polyester having an excellent balance between heat resistance and film processability and low dielectric loss.
  • repeating structural unit (II) derived from an aromatic diol compound is 12.5 to 30 mol%
  • repeating structural unit (III) derived from 2,6-naphthalenedicarboxylic acid is 12.5 to 30 mol%
  • 0.2 to 15 mol% of repeating structural units (IV) derived from terephthalic acid or 4,4′-biphenyldicarboxylic acid is An aromatic liquid crystal polyester that satisfies the relationship (III) / ⁇ (III) + (IV) ⁇ ⁇ 0.5 has been proposed.
  • the inventor of the present invention has a low dielectric loss tangent and high heat resistance by adjusting a specific structural unit and a specific composition ratio in the wholly aromatic liquid crystal polyester resin. It has been found that a wholly aromatic liquid crystal polyester resin having a property can be obtained.
  • the polyester resin proposed in Patent Document 3 Even if the inventor used the polyester resin proposed in Patent Document 3, it has been found that the processability to a film or fiber is not sufficient. Specifically, it has been found that the melt stretchability that guarantees the processability and stretch processability during melting of the resin is not sufficient. In recent years, the amount of information communication has continued to increase rapidly, and the frequency of signals used has further increased, and a resin having a lower dielectric loss tangent is required in the gigahertz (GHz) band where the frequency is 10 9 Hz or higher. ing. Furthermore, when designing a device or the like using such a resin, a high temperature heat process such as processing with solder is generally performed, and thus sufficient heat resistance is required. The present inventor has found that the polyester resin proposed in Patent Document 1 cannot achieve both a sufficiently low dielectric loss tangent required in a high frequency band of a measurement frequency of 10 GHz and sufficient heat resistance.
  • GHz gigahertz
  • the inventor of the present invention has a particularly low dielectric loss tangent by adjusting a specific structural unit and a specific composition ratio thereof in a wholly aromatic liquid crystal polyester resin.
  • the present inventors have found that a wholly aromatic liquid crystal polyester resin having an excellent balance between heat resistance and processability can be obtained.
  • the wholly aromatic liquid crystal polyester resin according to the present invention is A structural unit (I) derived from 6-hydroxy-2-naphthoic acid, A structural unit (II) derived from an aromatic diol compound, Structural unit derived from aromatic dicarboxylic acid compound (III) Comprising The structural unit (III) includes a structural unit (IIIA) derived from terephthalic acid, and at least of the structural unit (IIIB) derived from 2,6-naphthalenedicarboxylic acid and the structural unit (IIIC) derived from isophthalic acid Including one,
  • the composition ratio (mol%) of the structural units is as follows: 40 mol% ⁇ constituent unit (I) ⁇ 80 mol% 10 mol% ⁇ constituent unit (II) ⁇ 30 mol% 3 mol% ⁇ constituent unit (IIIA) ⁇ 28 mol% 0 mol% ⁇ constituent unit (IIIB) ⁇ 9 mol% 0 mol% ⁇ constituent unit (IIIC) ⁇ 5 mol%
  • the composition ratio (mol%) of the structural units is as follows: 50 mol% ⁇ constituent unit (I) ⁇ 80 mol% 10 mol% ⁇ constituent unit (II) ⁇ 25 mol% 5 mol% ⁇ constituent unit (IIIA) ⁇ 25 mol% Is preferably further satisfied.
  • the composition ratio (mol%) of the structural units is as follows: 0 mol% ⁇ constituent unit (IIIB) + constituent unit (IIIC) ⁇ 5 mol% Is more preferable.
  • the composition ratio (mol%) of the structural units is as follows: 40 mol% ⁇ constituent unit (I) ⁇ 75 mol% 12 mol% ⁇ constituent unit (II) ⁇ 30 mol% 3 mol% ⁇ constituent unit (IIIA) ⁇ 28 mol% 2 mol% ⁇ constituent unit (IIIB) ⁇ 9 mol% Is preferably further satisfied.
  • the composition ratio (mol%) of the structural units is as follows: 50 mol% ⁇ constituent unit (I) ⁇ 70 mol% 15 mol% ⁇ constituent unit (II) ⁇ 27 mol% 6 mol% ⁇ constituent unit (IIIA) ⁇ 24 mol% 3 mol% ⁇ constituent unit (IIIB) ⁇ 9 mol% Is more preferable.
  • the structural unit (II) is preferably represented by the following formula. (Wherein Ar 1 is selected from the group consisting of optionally substituted phenyl, biphenyl, naphthyl, anthryl and phenanthryl).
  • the molar ratio (structural unit (IIIA) / (structural unit (IIIB) + (IIIC)) of the structural unit (IIIA) and the sum of the structural units (IIIB) and (IIIC) is It is preferably 3.2 to 45.
  • the melting point is preferably 300 ° C. or higher.
  • the dielectric loss tangent at a measurement frequency of 10 GHz is preferably 0.85 ⁇ 10 ⁇ 3 or less.
  • the draw ratio of the melt strand extruded under the conditions of the melting point of the liquid crystalline polyester resin + 20 ° C. and the shear rate of 1000 s ⁇ 1 is 10 times or more.
  • the dielectric loss tangent at a measurement frequency of 82 GHz is preferably less than 3.5 ⁇ 10 ⁇ 3 .
  • the dielectric loss tangent at 30 ° C. and 100 ° C. at a measurement frequency of 34 GHz is preferably less than 2.0 ⁇ 10 ⁇ 3 and less than 4.0 ⁇ 10 ⁇ 3 , respectively.
  • the rate of change of dielectric loss tangent from 30 ° C. to 100 ° C. at a measurement frequency of 34 GHz is preferably less than 3.0 ⁇ 10 ⁇ 5 / ° C.
  • the melt viscosity of the liquid crystalline polyester resin at a melting point of + 20 ° C. and a shear rate of 1000 s ⁇ 1 is preferably 20 to 100 Pa ⁇ s.
  • the molded product according to the present invention is characterized by comprising the above wholly aromatic liquid crystal polyester resin.
  • the molded product is preferably in the form of a film.
  • the molded product is preferably fibrous.
  • the molded product is preferably an injection molded product.
  • An electrical / electronic component according to the present invention is characterized by comprising the above molded product.
  • the unit constituting the wholly aromatic liquid crystal polyester resin is a particular constituent unit and a particular composition ratio thereof, whereby a wholly aroma having a particularly low dielectric loss tangent and a high melting point.
  • a group liquid crystal polyester resin can be realized. Therefore, when processing and molding and using as a product, it is possible to prevent deterioration of the quality of the output signal in electric and electronic devices and communication devices that use high frequency signals.
  • the wholly aromatic polyester resin of the present invention has high film-forming stability, and a molded product produced using this has high stability against heat processing using solder or the like.
  • the unit constituting the wholly aromatic liquid crystal polyester resin is a specific structural unit and a specific composition ratio thereof, so that it has a particularly low dielectric loss tangent and is heat resistant.
  • the wholly aromatic liquid crystal polyester resin of the present invention has high spinnability and film-forming stability, and is also suitable for injection molding. Molded products produced using this are heat-processed using solder or the like. On the other hand, it has high stability.
  • the wholly aromatic liquid crystal polyester resin according to the present invention has a constitutional unit (I) derived from 6-hydroxy-2-naphthoic acid, a constitutional unit (II) derived from an aromatic diol compound, and a constitution derived from an aromatic dicarboxylic acid compound.
  • Comprising unit (III) includes a structural unit (IIIA) derived from terephthalic acid, and at least of the structural unit (IIIB) derived from 2,6-naphthalenedicarboxylic acid and the structural unit (IIIC) derived from isophthalic acid 1 type is included and a specific composition ratio is satisfy
  • the total of the structural units (I) to (IIII) is preferably 90 mol% or more, more preferably 95 mol% or more, as the lower limit, with respect to the entire structural unit of the wholly aromatic liquid crystal polyester resin. More preferably, it is 99 mol% or more, and the upper limit is preferably 100 mol% or less.
  • a wholly aromatic liquid crystal polyester resin having a particularly low dielectric loss tangent can be realized.
  • it can also be set as a fully aromatic liquid crystalline polyester resin with a high melting point, it can improve film-forming stability, and can improve the heat resistance against heat processing of a molded product produced using the same. it can.
  • it can be a fully aromatic polyester resin with a high glass transition temperature, it can improve the heat resistance in actual use of molded products made using this resin, and can be used in higher temperature environments. can do.
  • the dielectric loss tangent (measurement frequency: 10 GHz) of the wholly aromatic liquid crystal polyester resin is preferably 0.85 ⁇ 10 ⁇ 3 or less, and 0.80 or less ⁇ 10 ⁇ 3 . More preferably, it is 0.75 or less ⁇ 10 ⁇ 3 .
  • the dielectric loss tangent of the wholly aromatic liquid crystal polyester resin can be measured by a split post dielectric resonator method (SPDR method) using a network analyzer N5247A manufactured by Keysight Technology.
  • the melting point of the wholly aromatic liquid crystal polyester resin is preferably 320 ° C. or higher, more preferably 325 ° C. or higher, and further preferably 330 ° C. or higher as the lower limit. Yes, as an upper limit, it is preferably 390 ° C. or lower, and preferably 370 ° C. or lower.
  • the melting point of the wholly aromatic liquid crystal polyester resin is preferably 300 ° C.
  • the film-forming stability and the spinning stability can be improved, and the heat resistance of the molded product produced using the same against heat processing Can be improved.
  • the melting point of the wholly aromatic liquid crystal polyester resin conforms to the test method of ISO11357 and ASTM D3418, and uses a differential scanning calorimeter (DSC) manufactured by Hitachi High-Tech Science Co., Ltd. Can be measured.
  • DSC differential scanning calorimeter
  • the glass transition temperature of the wholly aromatic liquid crystal polyester resin is preferably 120 ° C. or higher, and more preferably 125 ° C. or higher.
  • the glass transition temperature of the wholly aromatic liquid crystalline polyester resin according to the present invention is based on JISK7244, using a dynamic viscoelasticity measuring device (Hitachi High-Tech Science Co., Ltd., trade name: DMA7100), etc. It can be determined from the peak top temperature of tanD obtained by elasticity measurement.
  • the volume expansion coefficient of the wholly aromatic liquid crystal polyester resin is preferably 250 ppm / ° C. or less, preferably 240 ppm / ° C. or less from the viewpoint of dimensional stability during molding. More preferably, it is 230 ppm / ° C. or less.
  • the volume expansion coefficient of the wholly aromatic liquid crystal polyester resin is determined based on a thermomechanical analyzer (Hitachi High-Technology) from a molded product obtained by heating and melting the resin, injection molding, press molding, or film molding. It can be measured using Science Co., Ltd. product name: TMA7000.
  • the melt viscosity of the liquid crystal polyester resin is preferably 1 Pa as the lower limit of the melt viscosity of the liquid crystal polyester resin + 20 ° C. and the shear rate of 1000 s ⁇ 1 .
  • the melt viscosity of the liquid crystal polyester resin is preferably 20 Pa ⁇ as the lower limit at the melting point of the liquid crystal polyester resin + 20 ° C. and the shear rate of 1000 s ⁇ 1 .
  • the viscosity of the wholly aromatic liquid crystal polyester resin can be measured using a capillary rheometer viscometer according to JIS K7199.
  • the wholly aromatic liquid crystal polyester resin of the second aspect of the present invention it is possible to impart stable processability to fibers and films by having sufficient melt stretchability.
  • a wholly aromatic liquid crystal polyester resin having a particularly low dielectric loss tangent can be realized.
  • it can also be set as a fully aromatic liquid crystalline polyester resin of high melting
  • the heat resistance in the actual use of the molded article produced using this can be improved, and it is higher Use under a temperature environment can be realized. Furthermore, it is possible to achieve a wholly aromatic liquid crystal polyester resin that can reduce the volume expansion coefficient and has high dimensional stability during molding and processing.
  • the melt stretchability of the liquid crystal polyester resin can be evaluated by measuring the stretch ratio of the melt strand.
  • the melt stretchability of the liquid crystalline polyester resin according to the present invention is such that the molten strand extruded under the conditions of the melting point of the liquid crystalline polyester resin + 20 ° C. and the shear rate of 1000 s ⁇ 1 is passed through a pulley.
  • the draw ratio of the molten strand when the take-up roller accelerates the take-up speed is preferably 10.
  • the melt stretchability of the wholly aromatic liquid crystal polyester resin can be measured using a Toyo Seiki Seisakusho Capillograph 1D.
  • the dielectric loss tangent (measurement frequency: 10 GHz) of the wholly aromatic liquid crystal polyester resin is preferably 0.75 ⁇ 10 ⁇ 3 or less, more preferably 0.70 or less ⁇ 10 ⁇ 3 , more preferably 0.65 or less ⁇ 10 ⁇ 3 .
  • the dielectric loss tangent (measurement frequency: 82 GHz) of the wholly aromatic liquid crystal polyester resin is preferably less than 3.5 ⁇ 10 ⁇ 3 , more preferably less than 3.0 ⁇ 10 ⁇ 3 , and even more preferably 2 Less than 5 ⁇ 10 ⁇ 3 .
  • the wholly aromatic liquid crystal polyester resin has a dielectric loss tangent (measurement frequency: 34 GHz) at 30 ° C.
  • the rate of change of dielectric loss tangent from 30 ° C. to 100 ° C. at a measurement frequency of 34 GHz is preferably less than 3.0 ⁇ 10 ⁇ 5 / ° C., more preferably less than 2.0 ⁇ 10 ⁇ 5 / ° C. More preferably, it is less than 1.5 ⁇ 10 ⁇ 5 / ° C.
  • the dielectric loss tangent of the wholly aromatic liquid crystal polyester resin at 10 GHz can be measured by a split post dielectric resonator method (SPDR method) using a network analyzer N5247A manufactured by Keysight Technology. it can.
  • SPDR method split post dielectric resonator method
  • Other dielectric loss tangents can be measured by the cylindrical cavity resonator method.
  • the value of dielectric loss tangent is a value measured at 23 ° C. in an air atmosphere at a humidity of 60%.
  • the liquid crystallinity of the wholly aromatic liquid crystal polyester resin according to the present invention is obtained by using a polarizing microscope (trade name: BH-2) manufactured by Olympus Co., Ltd. equipped with a hot stage for microscope (trade name: FP82HT) manufactured by METTLER. After the wholly aromatic liquid crystal polyester resin is heated and melted on a microscope heating stage, it can be confirmed by observing the presence or absence of optical anisotropy.
  • a polarizing microscope (trade name: BH-2) manufactured by Olympus Co., Ltd. equipped with a hot stage for microscope (trade name: FP82HT) manufactured by METTLER.
  • the wholly aromatic liquid crystalline polyester resin includes a structural unit (I) derived from 6-hydroxy-2-naphthoic acid represented by the following formula (I), and the structural unit (I) in the wholly aromatic liquid crystalline polyester resin
  • the composition ratio (mol%) is 40 mol% or more and 80 mol% or less.
  • Examples of the monomer that provides the structural unit (I) include 6-hydroxy-2-naphthoic acid (HNA, the following formula (1)), an acetylated product, an ester derivative, and an acid halide.
  • HNA 6-hydroxy-2-naphthoic acid
  • the composition ratio (mol%) of the structural unit (I) in the wholly aromatic liquid crystal polyester resin is The lower limit is 50 mol% or more, preferably 51 mol% or more, more preferably 52 mol% or more, even more preferably 54 mol% or more, most preferably 55 mol% or more. 75 mol% or less, preferably 70 mol% or less, more preferably 65 mol% or less, still more preferably 63 mol% or less, and most preferably 60 mol% or less.
  • the composition ratio (mol%) of the structural unit (I) in the wholly aromatic liquid crystal polyester resin from the viewpoint of lowering the dielectric loss tangent of the wholly aromatic liquid crystal polyester resin and improving the melting point, the composition ratio (mol%) of the structural unit (I) in the wholly aromatic liquid crystal polyester resin.
  • the lower limit is 40 mol% or more, preferably 45 mol% or more, more preferably 50 mol% or more, still more preferably 55 mol% or more, and the upper limit is 75 mol%. % Or less, preferably 70 mol% or less, more preferably 65 mol% or less, and still more preferably 60 mol% or less.
  • the wholly aromatic liquid crystal polyester resin comprises the structural unit (II) derived from the aromatic diol compound, and the composition ratio (mol%) of the structural unit (II) in the liquid crystal polyester is 10 mol% or more. 30 mol% or less.
  • the wholly aromatic liquid crystal polyester resin may contain two or more kinds of structural units (II).
  • the structural unit (II) is represented by the following formula.
  • Ar 1 is selected from the group consisting of optionally substituted phenyl, biphenyl, naphthyl, anthryl and phenanthryl. Of these, phenyl and biphenyl are more preferred.
  • substituent include hydrogen, an alkyl group, an alkoxy group, and fluorine.
  • the alkyl group has preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Further, it may be a linear alkyl group or a branched alkyl group.
  • the number of carbon atoms of the alkoxy group is preferably 1 to 10, and more preferably 1 to 5.
  • Examples of the monomer that gives the structural unit (II) include hydroquinone (HQ, the following formula (2)), 4,4-dihydroxybiphenyl (BP, the following formula (3)), 3,3′-dimethyl-1,1.
  • Examples include '-biphenyl-4,4'-diol (OCBP, the following formula (4)) and acylated products thereof.
  • the composition ratio (mol%) of the structural unit (II) in the wholly aromatic liquid crystal polyester resin is from the viewpoint of lowering the dielectric loss tangent and improving the melting point of the wholly aromatic liquid crystal polyester resin.
  • the lower limit is 10 mol% or more, preferably 12.5 mol% or more, more preferably 15 mol% or more, still more preferably 17.5 mol% or more, particularly preferably 18.5.
  • the upper limit is 24.5 mol% or less, preferably 24 mol% or less, more preferably 23 mol% or less, and more preferably 20 mol% or more. More preferably, it is 22.5 mol% or less, Most preferably, it is 22.5 mol% or less.
  • the composition ratio (mol%) of the structural unit (II) in the wholly aromatic liquid crystal polyester resin is from the viewpoint of lowering the dielectric loss tangent and improving the melting point of the wholly aromatic liquid crystal polyester resin.
  • the lower limit is 12 mol% or more, preferably 15 mol% or more, more preferably 17 mol% or more, still more preferably 20 mol% or more, and the upper limit is preferably 27 mol%.
  • the mol% or less more preferably 25 mol% or less, and further preferably 23 mol% or less.
  • the structural unit (III) derived from the aromatic dicarboxylic acid compound in the wholly aromatic liquid crystal polyester resin includes the structural unit (IIIA) derived from terephthalic acid represented by the following formula (IIIA), and has the following formula ( It comprises at least one of the structural unit (IIIB) derived from 2,6-naphthalenedicarboxylic acid represented by IIIB) and the structural unit (IIIC) derived from isophthalic acid represented by the following formula (IIIC).
  • composition ratio (mol%) of the structural unit (III) in the liquid crystal polyester is as follows: 10 mol% ⁇ constituent unit (III) ⁇ 30 mol% And the composition ratio of the structural unit (III) is preferably substantially equivalent to the composition ratio of the structural unit (II) (structural unit (III) ⁇ structural unit (II)).
  • composition ratio (mol%) of the structural unit (III) in the liquid crystal polyester is as follows: 3 mol% ⁇ constituent unit (IIIA) ⁇ 28 mol% 0 mol% ⁇ constituent unit (IIIB) ⁇ 9 mol% 0 mol% ⁇ constituent unit (IIIC) ⁇ 5 mol% (However, both the structural unit (IIIB) and the structural unit (IIIC) are not 0 mol%.) Meet.
  • Examples of the monomer that gives the structural unit (IIIA) include terephthalic acid (TPA, the following formula (5)), and ester derivatives and acid halides thereof. Since TPA and its derivatives are widely used as raw materials for general-purpose plastics such as polyethylene terephthalate and are the lowest cost among aromatic dicarboxylic acid compounds, the composition ratio of structural unit (IIIA) in structural unit (III) The cost advantage as a resin product is improved. Therefore, from the viewpoint of cost, the composition ratio (mol%) of the structural unit (III) preferably satisfies the structural unit (IIIA)> (structural unit (IIIB) + structural unit (IIIC)). It can also be expected that the heat resistance is improved by increasing the composition ratio of the structural unit (IIIA) in the structural unit (III).
  • TPA terephthalic acid
  • ester derivatives and acid halides thereof Since TPA and its derivatives are widely used as raw materials for general-purpose plastics such as polyethylene terephthalate and are the lowest cost among aromatic di
  • Examples of the monomer that provides the structural unit (IIIB) include 2,6-naphthalenedicarboxylic acid (NADA, the following formula (6)), and ester derivatives and acid halides thereof. Since NADA has a higher cost than TPA or the like, the cost advantage as a resin product is improved by reducing the composition ratio of the structural unit (IIIB) in the structural unit (III).
  • Examples of the monomer that gives the structural unit (IIIC) include isophthalic acid (IPA, the following formula (7)), and ester derivatives and acid halides thereof.
  • the composition ratio (mol%) of the structural unit (IIIA) in the wholly aromatic liquid crystal polyester resin is The lower limit is 5 mol%, preferably 5.5 mol% or more, more preferably 8 mol% or more, still more preferably 10.5 mol% or more, and even more preferably 13 Mol% or more, particularly preferably 14 mol% or more, most preferably 15.5 mol% or more, and the upper limit is less than 25 mol%, preferably 24.5 mol% or less, more Preferably it is 23.5 mol% or less, More preferably, it is 22.5 mol% or less, Most preferably, it is 22 mol% or less.
  • the composition ratio (mol%) of the structural unit (IIIB) in the wholly aromatic liquid crystal polyester resin is more than 0 mol%, preferably 0.5 mol% or more as the lower limit, It is less than 5 mol%, preferably 4.5 mol% or less.
  • the composition ratio (mol%) of the structural unit (IIIC) in the wholly aromatic liquid crystal polyester resin is 0 mol% or more as a lower limit, preferably more than 0 mol%, more preferably 0.5 mol. %, And the upper limit is less than 5 mol%, preferably 4.5 mol% or less.
  • the total composition ratio (mol%) of the structural unit (IIIB) and the structural unit (IIIC) in the wholly aromatic liquid crystal polyester resin is more than 0 mol%, preferably 0.5 mol% or more as a lower limit.
  • the upper limit is less than 5 mol%, preferably 4.5 mol% or less.
  • the molar ratio of the structural unit (IIIA) to the total of the structural units (IIIB) and (IIIC) (structural unit (III) / (structural unit (IIIA) + (IIIC)) is It is preferably 3.2 or more, more preferably 4 or more, further preferably 5 or more, and the molar ratio is preferably 45 or less, and preferably 40 or less.
  • the molar ratio of the structural unit (III) to the total of the structural units (IIIB) and (IIIC) is within the above numerical range. As a result, the melting point of the wholly aromatic polyester resin can be improved and the volume expansion coefficient can be reduced.
  • the composition ratio (mol%) of the structural unit (IIIA) in the wholly aromatic liquid crystal polyester resin is from the viewpoint of lowering the dielectric loss tangent and improving the melting point of the wholly aromatic liquid crystal polyester resin.
  • the lower limit is 3 mol%, preferably 6 mol% or more, more preferably 8 mol% or more, still more preferably 11 mol% or more, and the upper limit is 28 mol% or less.
  • it is 25 mol% or less, More preferably, it is 23 mol% or less, More preferably, it is 21 mol% or less.
  • the composition ratio (mol%) of the structural unit (IIIB) in the wholly aromatic liquid crystal polyester resin is 2 mol% or more, preferably 3 mol% or more, more preferably 4.5 mol, as the lower limit. % Or more, more preferably 5 mol% or more, and the upper limit is 9 mol% or less.
  • the composition ratio (mol%) of the structural unit (IIIC) in the wholly aromatic liquid crystal polyester resin is 0 mol% or more as a lower limit, preferably more than 0 mol%, more preferably 0.5 mol. %, And the upper limit is less than 5 mol%, preferably 4.5 mol% or less.
  • the molar ratio of the structural unit (IIIA) to the structural unit (IIIB) is preferably 0.5 or more as a lower limit. More preferably 1.0 or more, still more preferably 1.5 or more, still more preferably 2.0 or more, and the upper limit is preferably 8.0 or less, more preferably Is 7.0 or less, more preferably 5.0 or less.
  • the wholly aromatic liquid crystal polyester resin according to the present invention is produced by polymerizing the monomers giving the structural units (I) to (IV) by a conventionally known method such as melt polymerization, solid phase polymerization, solution polymerization, and slurry polymerization. can do.
  • the wholly aromatic liquid crystal polyester resin according to the present invention can be produced only by melt polymerization. It can also be produced by two-stage polymerization in which a prepolymer is prepared by melt polymerization and further solid-phase polymerized.
  • the monomers giving the structural units (I) to (IV) are combined in a predetermined blending amount to 100 mol%, and all the hydroxyl groups of the monomer are added.
  • the reaction is preferably carried out under reflux of acetic acid in the presence of 1.05 to 1.15 molar equivalents of acetic anhydride.
  • the prepolymer obtained by melt polymerization is cooled and solidified and then pulverized into powder or flakes, and then a known solid phase polymerization method is used.
  • a method of heat-treating the prepolymer resin for 1 to 30 hours in a temperature range of 200 to 350 ° C. under an inert atmosphere such as nitrogen or under vacuum is preferably selected.
  • the solid phase polymerization may be performed with stirring, or may be performed in a standing state without stirring.
  • a catalyst may be used or may not be used.
  • a conventionally known catalyst for polymerization of polyester can be used, and metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide are used. Examples thereof include salt catalysts, nitrogen-containing heterocyclic compounds such as N-methylimidazole, and organic compound catalysts.
  • the amount of the catalyst used is not particularly limited, but is preferably 0.0001 to 0.1 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • the polymerization reaction apparatus in melt polymerization is not particularly limited, but a reaction apparatus used for reaction of a general high viscosity fluid is preferably used.
  • reaction apparatuses include, for example, a stirring tank type polymerization reaction apparatus having a stirring apparatus having stirring blades of various shapes, such as a vertical type, a multistage type, a spiral band type, a helical shaft type, etc.
  • a kneader, a roll mill, a Banbury mixer and the like which are generally used for resin kneading.
  • the molded product according to the present invention comprises a wholly aromatic liquid crystal polyester resin, and the shape thereof is appropriately changed according to the application, and is not particularly limited.
  • the molded article according to the present invention may contain a resin other than the wholly aromatic liquid crystal polyester resin as long as the effects of the present invention are not impaired.
  • a resin other than the wholly aromatic liquid crystal polyester resin for example, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polyarylate and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene, cycloolefin polymers, vinyl resins such as polyvinyl chloride, polyacrylates, polymethacrylates and polymethylmethacrylates.
  • Heat of methacrylic resin such as acrylate, polyphenylene ether resin, polyacetal resin, polyamide resin, imide resin such as polyimide and polyetherimide, polystyrene resin such as polystyrene, high impact polystyrene, AS resin and ABS resin, and epoxy resin
  • methacrylic resin such as acrylate, polyphenylene ether resin, polyacetal resin, polyamide resin, imide resin such as polyimide and polyetherimide
  • polystyrene resin such as polystyrene, high impact polystyrene, AS resin and ABS resin
  • epoxy resins include cured resins, cellulose resins, polyetheretherketone resins, fluororesins and polycarbonate resins. These may be contained alone or in combination.
  • the molded article according to the present invention has other additives such as a colorant, a dispersant, a plasticizer, an antioxidant, a curing agent, a flame retardant, a heat stabilizer, and an ultraviolet absorber as long as the effects of the present invention are not impaired.
  • a colorant such as a colorant, a dispersant, a plasticizer, an antioxidant, a curing agent, a flame retardant, a heat stabilizer, and an ultraviolet absorber
  • An antistatic agent and a surfactant may be included.
  • the molded article according to the present invention can be obtained by press molding, foam molding, injection molding, extrusion molding, or stamping molding of a mixture containing a wholly aromatic liquid crystal polyester resin and, if desired, other resins and additives.
  • the mixture can be obtained by melt-kneading a wholly aromatic liquid crystal polyester resin or the like using a Banbury mixer, a kneader, a uniaxial or biaxial extruder, or the like.
  • the film is preferably a molded product film.
  • the film can be obtained by a conventionally known method, for example, extrusion molding such as inflation molding or melt extrusion molding, and a solution casting method.
  • the film thus obtained may be a single layer film made of wholly aromatic liquid crystal polyester resin or a multilayer film with different materials.
  • a film formed by melt extrusion molding or solution casting may be stretched uniaxially or biaxially.
  • you may heat-process in order to remove the anisotropy of these films, or to improve heat resistance.
  • the molded product is preferably fibrous.
  • the fiber can be obtained by a conventionally known method such as a melt spinning method or a solution spinning method.
  • the fibers may be made of a wholly aromatic liquid crystal polyester resin alone or may be mixed with other resins.
  • An electric / electronic component according to the present invention comprises the wholly aromatic liquid crystal polyester resin.
  • electric / electronic components for example, antennas used in electronic devices and communication devices such as ETC, GPS, wireless LAN, and mobile phones, connectors for high-speed transmission, CPU sockets, circuit boards, flexible printed circuit boards (FPC), and for lamination Circuit boards, millimeter wave and quasi-millimeter wave radars such as anti-collision radars, RFID tags, capacitors, inverter parts, insulation films, cable coating materials, insulation materials for secondary batteries such as lithium ion batteries, speaker diaphragms, etc. Can be mentioned.
  • the electrical / electronic component comprises a molded product (for example, an injection molded product or a film) containing a wholly aromatic liquid crystal polyester resin.
  • Example 1-1 Synthesis of Fully Aromatic Liquid Crystalline Polyester Resin A
  • HNA 6-hydroxy-2-naphthoic acid
  • BP 4,4-dihydroxybiphenyl
  • TPA terephthalic acid
  • IPA isophthalic acid
  • Potassium acetate and magnesium acetate were added as catalysts, and the polymerization vessel was evacuated three times with nitrogen injection. After substitution, 198.46 g of acetic anhydride (1.08 molar equivalent with respect to the hydroxyl group) was further added, the temperature was raised to 150 ° C., and acetylation reaction was carried out for 2 hours under reflux.
  • the polymerization vessel in acetic acid distillation was heated at 0.5 ° C./min, and when the melt temperature in the tank reached 310 ° C., the polymer was taken out and cooled and solidified.
  • the obtained polymer was pulverized and pulverized to a size passing through a sieve having an aperture of 2.0 mm to obtain a prepolymer.
  • the temperature of the prepolymer obtained above was increased from room temperature to 310 ° C. over 14 hours with a heater in an oven manufactured by Yamato Scientific Co., Ltd., and the temperature was maintained at 310 ° C. for 2 hours. Solid phase polymerization was performed. Thereafter, natural heat dissipation was performed at room temperature to obtain a wholly aromatic liquid crystal polyester resin A.
  • a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a METTLER microscope hot stage (trade name: FP82HT)
  • a fully aromatic liquid crystal polyester resin A sample was placed on the microscope heating stage. It was heated and melted, and liquid crystallinity was confirmed from the presence or absence of optical anisotropy.
  • Example 1-2 Synthesis of wholly aromatic liquid crystal polyester resin B
  • the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 19.5 mol% TPA, 0.5 mol% IPA, and the final temperature of solid phase polymerization was set to 300 ° C, as in Example 1-1.
  • a liquid crystal polyester resin B was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-3 Synthesis of wholly aromatic liquid crystal polyester resin C
  • the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 15.5 mol% of TPA, and 4.5 mol% of IPA, and the final temperature of the solid-phase polymerization was changed to 300 ° C in the same manner as in Example 1-1.
  • a liquid crystal polyester resin C was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-4 Synthesis of wholly aromatic liquid crystal polyester resin D
  • the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 14.5 mol% TPA, 0.5 mol% IPA, and the final temperature of solid phase polymerization was 300 ° C, as in Example 1-1.
  • a liquid crystal polyester resin D was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-5 Synthesis of wholly aromatic liquid crystal polyester resin E
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1 except that the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 13 mol% TPA, and 2 mol% IPA, and the final temperature of the solid phase polymerization was 300 ° C. E was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-6 Synthesis of wholly aromatic liquid crystal polyester resin F
  • the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 15.5 mol% TPA, 4.5 mol% 2,6-naphthalenedicarboxylic acid (NADA), and the final temperature of solid phase polymerization was 300 ° C.
  • the liquid crystal polyester resin F was obtained in the same manner as in Example 1-1, and the liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-7 Synthesis of wholly aromatic liquid crystal polyester resin G
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1 except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 18 mol% TPA, and 2 mol% NADA, and the final temperature of the solid phase polymerization was 300 ° C. G was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-8 Synthesis of wholly aromatic liquid crystal polyester resin H
  • the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 19.5 mol% TPA, 0.5 mol% NADA, and the final temperature of the solid-phase polymerization was changed to 300 ° C in the same manner as in Example 1-1.
  • a liquid crystal polyester resin H was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-9 Synthesis of wholly aromatic liquid crystal polyester resin I
  • the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 20.5 mol% TPA, 2 mol% NADA, and the final temperature of solid phase polymerization was changed to 300 ° C, in the same manner as in Example 1-1.
  • a liquid crystal polyester resin I was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-10 Synthesis of wholly aromatic liquid crystal polyester resin J
  • the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 18.5 mol% TPA, 4.5 mol% NADA, and the final temperature of solid phase polymerization was 295 ° C.
  • a liquid crystal polyester resin J was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-11 Synthesis of wholly aromatic liquid crystal polyester resin K
  • the monomer charge was changed to 58 mol% of HNA, 21 mol% of BP, 16.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of the solid-phase polymerization was changed to 300 ° C., as in Example 1-1.
  • a liquid crystal polyester resin K was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-12 Synthesis of wholly aromatic liquid crystal polyester resin L
  • the monomer charge was changed to 65 mol% of HNA, 17.5 mol% of BP, 15.5 mol% of TPA, and 2 mol% of NADA, and the final temperature of the solid-phase polymerization was changed to 300 ° C in the same manner as in Example 1-1.
  • a liquid crystal polyester resin L was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-1 Synthesis of wholly aromatic liquid crystal polyester resin M
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 10 mol% TPA, and 10 mol% IPA, and the final temperature of the solid phase polymerization was 280 ° C. M was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-2 Synthesis of wholly aromatic liquid crystal polyester resin N
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1, except that the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 10 mol% TPA, and 5 mol% IPA, and the final temperature of the solid phase polymerization was 280 ° C. N was obtained and the liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-3 Synthesis of wholly aromatic liquid crystal polyester resin O
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1, except that the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 5 mol% TPA, and 10 mol% IPA, and the final temperature of the solid phase polymerization was 280 ° C. O was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-5 Synthesis of wholly aromatic liquid crystal polyester resin Q
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1, except that the monomer charge was changed to 2 mol% HBA, 48 mol% HNA, 25 mol% BP, and 25 mol% TPA, and the final temperature of the solid phase polymerization was 280 ° C. Q was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 1-6 Synthesis of wholly aromatic liquid crystal polyester resin R
  • a liquid crystal polyester resin was prepared in the same manner as in Example 1-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 5 mol% TPA, and 15 mol% NADA, and the final temperature of the solid phase polymerization was 295 ° C. R was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • thermomechanical analyzer (trade name: TMA7000, manufactured by Hitachi High-Tech Science Co., Ltd.). The MD direction and TD direction were evaluated in the tensile mode, and the thickness direction was evaluated in the compressed mode. The measurement results are summarized in Table 1.
  • Tg glass transition temperature
  • Example 2-1 In a polymerization vessel having a stirring blade, 6-hydroxy-2-naphthoic acid (HNA) 45 mol%, 4,4-dihydroxybiphenyl (BP) 27.5 mol%, terephthalic acid (TPA) 23 mol%, 2,6 -Naphthalenedicarboxylic acid (NADA) 4.5 mol% was added, and potassium acetate and magnesium acetate were added as catalysts, and the polymerization vessel was depressurized-injected with nitrogen three times to perform nitrogen substitution. 1.08 molar equivalent) was further added, the temperature was raised to 150 ° C., and an acetylation reaction was carried out in a reflux state for 2 hours.
  • HNA 6-hydroxy-2-naphthoic acid
  • BP 4,4-dihydroxybiphenyl
  • TPA terephthalic acid
  • NADA 2,6 -Naphthalenedicarboxylic acid
  • the polymerization vessel in acetic acid distillation was heated at 0.5 ° C./min, and when the melt temperature in the tank reached 300 ° C., the polymer was taken out and cooled and solidified.
  • the obtained polymer was pulverized and pulverized to a size passing through a sieve having an aperture of 2.0 mm to obtain a prepolymer.
  • the temperature of the prepolymer obtained above was increased from room temperature to 300 ° C. over 14 hours with a heater in an oven manufactured by Yamato Scientific Co., Ltd., and then the temperature was maintained at 300 ° C. for 2 hours. Solid phase polymerization was performed. Thereafter, natural heat dissipation was performed at room temperature to obtain a wholly aromatic liquid crystal polyester resin A.
  • a wholly aromatic liquid crystal polyester resin sample is heated on the microscope heating stage. After melting, the liquid crystallinity was confirmed from the presence or absence of optical anisotropy.
  • Example 2-2 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 45 mol% HNA, 27.5 mol% BP, 21.5 mol% TPA, and 6 mol% NADA. The liquid crystal property was confirmed.
  • Example 2-3 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 45 mol% HNA, 27.5 mol% BP, 19.5 mol% TPA, and 8 mol% NADA. The liquid crystal property was confirmed.
  • Example 2-4 The monomer charge was changed to 50 mol% HNA, 25 mol% BP, 22 mol% TPA, 3 mol% NADA, the final temperature of solid phase polymerization was 310 ° C, and the holding time was 1 hour, as in Example 2-1. Thus, a liquid crystal polyester resin was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 2-5 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 50 mol% HNA, 25 mol% BP, 20.5 mol% TPA, and 4.5 mol% NADA. The liquid crystal property was confirmed.
  • Example 2-6 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 50 mol% HNA, 25 mol% BP, 19 mol% TPA, and 6 mol% NADA. did.
  • Example 2--7 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 50 mol% HNA, 25 mol% BP, 17 mol% TPA, and 8 mol% NADA. confirmed.
  • Example 2-8 Liquid crystal polyester in the same manner as in Example 2-1, except that the monomer charge was changed to 50 mol% HNA, 25 mol% BP, 18.5 mol% TPA, 4.5 mol% NADA, and 2 mol% isophthalic acid (IPA). A resin was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 2-9 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 50 mol% HNA, 25 mol% BP, 15 mol% TPA, 8 mol% NADA, and 2 mol% IPA. The liquid crystal properties were confirmed.
  • Example 2-10 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 52 mol% HNA, 24 mol% BP, 21 mol% TPA, 2 mol% NADA, and 1 mol% IPA. The liquid crystal properties were confirmed.
  • Example 2-11 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 52 mol% HNA, 24 mol% BP, 20 mol% TPA, 3 mol% NADA, and 1 mol% IPA. The liquid crystal properties were confirmed.
  • Example 2-12 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 18 mol% TPA, and 4.5 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-13 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 16.5 mol% TPA, and 6 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-14 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 14.5 mol% TPA, and 8 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-15 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 18 mol% TPA, 3.5 mol% NADA, and 1 mol% IPA. Liquid crystallinity was confirmed in the same manner as above.
  • Example 2-16 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 17 mol% TPA, 4.5 mol% NADA, and 1 mol% IPA. Liquid crystallinity was confirmed in the same manner as above.
  • Example 2-1-7 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 18 mol% TPA, 2.5 mol% NADA, and 2 mol% IPA. Liquid crystallinity was confirmed in the same manner as above.
  • Example 2-18 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 16 mol% TPA, 4.5 mol% NADA, and 2 mol% IPA. Liquid crystallinity was confirmed in the same manner as above.
  • Example 2-19 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 58 mol% HNA, 21 mol% BP, 16.5 mol% TPA, and 4.5 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-20 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 17 mol% TPA, and 3 mol% NADA. confirmed.
  • Example 2-21 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 15.5 mol% TPA, and 4.5 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-22 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 15 mol% TPA, and 5 mol% NADA. confirmed.
  • Example 2-23 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 14 mol% TPA, and 6 mol% NADA. confirmed.
  • Example 2-24 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 12 mol% TPA, and 8 mol% NADA. confirmed.
  • Example 2-25 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 11 mol% TPA, and 9 mol% NADA. confirmed.
  • Example 2-26 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 15.5 mol% TPA, 2.5 mol% NADA, and 2 mol% IPA. Liquid crystallinity was confirmed in the same manner as above.
  • Example 2-2-7 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 65 mol% HNA, 17.5 mol% BP, 15.5 mol% TPA, and 2 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-28 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 65 mol% HNA, 17.5 mol% BP, 13 mol% TPA, and 4.5 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-29 A liquid crystal polyester resin N was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 65 mol% HNA, 17.5 mol% BP, 8.5 mol% TPA, and 9 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-30 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 12 mol% TPA, and 3 mol% NADA. confirmed.
  • Example 2-31 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 8 mol% TPA, and 7 mol% NADA. confirmed.
  • Example 2-32 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 70 mol% HNA, 15 mol% BP, 6 mol% TPA, and 9 mol% NADA. confirmed.
  • Example 2 except that the monomer charge was changed to HNA 30 mol%, BP 35 mol%, TPA 30.5 mol%, NADA 4.5 mol%, the final temperature of solid phase polymerization was 295 ° C., and the retention time was 1 hour.
  • a liquid crystal polyester resin was obtained in the same manner as in -1, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 2-2 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 50 mol% HNA, 25 mol% BP, 10 mol% TPA, and 15 mol% NADA. confirmed.
  • Example 2 except that the monomer charge was changed to 55 mol% HNA, 22.5 mol% BP, 12.5 mol% TPA, 10 mol% NADA, the final temperature of solid phase polymerization was 295 ° C., and the retention time was 1 hour.
  • a liquid crystal polyester resin was obtained in the same manner as in -1, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 2-4 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 10 mol% TPA, and 10 mol% NADA. confirmed.
  • Example 2-5 Similar to Example 2-1, except that the monomer charge was changed to 60 mol% HNA, 20 mol% BP, 5 mol% TPA, 15 mol% NADA, the final temperature of solid phase polymerization was 295 ° C, and the retention time was 1 hour. Thus, a liquid crystal polyester resin was obtained, and liquid crystallinity was confirmed in the same manner as described above.
  • Example 2-6 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 65 mol% HNA, 17.5 mol% BP, 2.5 mol% TPA, and 15 mol% NADA. The liquid crystal properties were confirmed.
  • Example 2-7 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to BP 20 mol%, TPA 15 mol%, p-hydroxybenzoic acid (HBA) 60 mol%, and IPA 5 mol%. Liquid crystallinity was confirmed in the same manner as above.
  • Example 2-8 A liquid crystal polyester resin was obtained in the same manner as in Example 2-1, except that the monomer charge was changed to 27 mol% HNA and 73 mol% HBA, and the final temperature of solid phase polymerization was 270 ° C. The liquid crystal properties were confirmed.
  • the take-up speed is 40 m / min as the initial speed, the take-up speed is increased at a rate of 400 m / min 2 , and the point at which the take-up speed reaches the apparatus measurement limit value of 200 m / min or the molten strand breaks is taken as the measurement end point. did.
  • the measurement results are summarized in Tables 2 and 3.
  • melt stretchability due to lack of melt stretchability, melt viscosity, or melt tension, the melt strand could not be properly set on a series of pulleys and take-up rollers, or the melt stretchability was below the measurement lower limit of the apparatus and measurement was impossible. The thing was made into "-".
  • ⁇ Dielectric loss tangent measurement (10 GHz)> The wholly aromatic liquid crystal polyester resins obtained in the examples and comparative examples were heated and melted under the conditions of melting point to melting point + 30 ° C. and injection molded to produce a flat test piece of 30 mm ⁇ 30 mm ⁇ 0.4 mm.
  • the dielectric loss tangent at a frequency of 10 GHz was measured by a split post dielectric resonator method (SPDR method) using a network analyzer N5247A manufactured by Keysight Technology.
  • Example 2-22 ⁇ Dielectric loss tangent measurement (82 GHz, etc.)> The wholly aromatic liquid crystal polyester resin obtained in Example 2-22 and Comparative Examples 2-7 and 2-8 was heated and melted under the conditions of melting point to melting point + 30 ° C., and injection molded to give a plate of 30 mm ⁇ 30 mm ⁇ 0.4 mm A sample was made. Subsequently, a 13 mm square square flat plate was cut from the center of the flat plate sample to obtain a test piece.
  • This test piece was loaded on a 100 GHz resonator at the Kogami-Shimizu laboratory at Utsunomiya University graduate School of Engineering, and the dielectric loss tangent at a frequency of 82 GHz was measured at room temperature by the cylindrical cavity resonator method. (Although a resonator for 100 GHz was used, the actual measurement frequency was measured near 82 GHz due to the resonance characteristics of the material.) The measurement results are summarized in Table 4. In addition, FIG. 1 shows dielectric loss tangents measured at various frequencies in the same procedure using cylindrical cavity resonators having different set frequencies.
  • ⁇ Dielectric loss tangent measurement (temperature dependence in GHz range)>
  • the wholly aromatic liquid crystal polyester resin obtained in Example 2-22 and Comparative Examples 2-7 and 2-8 was heated and melted under the conditions of melting point to melting point + 30 ° C., and injection molded to give a plate of 30 mm ⁇ 30 mm ⁇ 0.4 mm A sample was made. Subsequently, a 13 mm square square flat plate was cut from the center of the flat plate sample to obtain a test piece. This test piece was measured at 34 GHz dielectric loss tangent while changing the measurement temperature by the cylindrical cavity resonator method using the resonator for 36 GHz in the Kogami-Shimizu Laboratory, graduate School of Engineering, Utsunomiya University.
  • a specific measurement method is as follows. The resonator on which the test piece was set was placed in a thermostat, and the set temperature of the thermostat was set to 105 ° C., and then 2 hours passed. Then, the thermostat was set to 20 ° C., the temperature in the bath was naturally lowered, and the dielectric loss tangent at this time was measured at 1 ° C. intervals. The results are shown in FIG. Table 5 shows the rate of change of the dielectric loss tangent at 30 ° C. and 100 ° C. and the dielectric loss tangent from 30 ° C. to 100 ° C.
  • melt viscosity (Pa ⁇ s) at the melting point + 20 ° C. of the wholly aromatic liquid crystal polyester resin obtained in the examples and comparative examples at a shear rate of 1000 S ⁇ 1 was measured with a capillary rheometer viscometer (Toyo Seiki Seisakusho Capillograph Co., Ltd.). 1D) and a 1 mm inner diameter capillary were used and measured according to JIS K7199. The measurement results are summarized in Tables 2 and 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】とりわけ低い誘電正接を有しながら、耐熱性に優れた全芳香族液晶ポリエステル樹脂の提供 【解決手段】 本発明による全芳香族液晶ポリエステル樹脂は、 6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)、 芳香族ジオール化合物に由来する構成単位(II)、 芳香族ジカルボン酸化合物に由来する構成単位(III) を含んでなり、 構成単位(III)が、テレフタル酸に由来する構成単位(IIIA)を含み、かつ2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)およびイソフタル酸に由来する構成単位(IIIC)の少なくとも1種を含み、 前記構成単位の組成比(モル%)が、下記の条件: 40モル%≦構成単位(I)≦80モル% 10モル%≦構成単位(II)≦30モル% 3モル%≦構成単位(IIIA)≦28モル% 0モル%≦構成単位(IIIB)≦9モル% 0モル%≦構成単位(IIIC)<5モル% (但し、構成単位(IIIB)および構成単位(IIIC)の両方が0モル%ではない。) を満たすことを特徴とする。

Description

全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
 本発明は、全芳香族液晶ポリエステル樹脂および成形品に関し、より詳細には、とりわけ低い誘電正接を有する全芳香族液晶ポリエステル樹脂ならびにこれを含む成形品および電気電子部品に関する。
 近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の周波数を有する信号の使用が増加しており、特に、周波数が10以上であるギガヘルツ(GHz)帯の周波数を有する信号の使用が盛んに行われている。例えば、自動車分野においてGHz帯の高周波数帯が使用されている。具体的には、自動車の衝突防止目的で搭載されるミリ波レーダー、準ミリ波レーダーにおいては、それぞれ76~79GHz、24GHzの高周波数が使用されており、今後更なる普及が進んでいくことが予想される。
 しかしながら、使用される信号の周波数が高くなるに伴い、情報の誤認識を招きうる出力信号の品質低下、すなわち、伝送損失が大きくなる。この伝送損失は、導体に起因する導体損失と、電子機器や通信機器における基板等の電気電子部品を構成する絶縁用の樹脂に起因する誘電損失とからなるが、導体損失は使用する周波数の0.5乗、誘電損失は周波数の1乗に比例するため、高周波帯、とりわけGHz帯においては、この誘電損失による影響が非常に大きくなる。また、誘電損失は、樹脂の誘電正接にも比例して増大するため、情報の劣化を防ぐため低誘電正接を有する樹脂が求められている。
 上記課題に対し、特許文献1では、高周波数帯において低誘電正接を示す液晶性芳香族ポリエステルとして、p-又はm-ヒドロキシ安息香酸に由来する構成単位およびヒドロキシナフトエ酸に由来する構成単位の2種以上を含む液晶性芳香族ポリエステルが提案されている。
 ところで、電気電子部品を構成する樹脂には、成形時の加熱に対する高い耐熱性(フィルム製膜安定性)が要求され、また、これを用いて作成したフィルム等の成形品には、はんだ等を用いた加熱加工に対する高い耐熱性が要求される。このような課題に対し、特許文献2では、このような耐熱性等に優れる全芳香族ポリエステルとして、p-ヒドロキシ安息香酸に由来する構成単位を1~6%、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位を40~60%、芳香族ジオール化合物に由来する構成単位を17.5~30%、および芳香族ジカルボン酸に由来する構成単位を17.5~30%含むポリエステル樹脂が提案されている。
 また、全芳香族液晶ポリエステル樹脂は、耐熱性や薄肉成形性などに優れていることから、射出成形して得られる表面実装の電子部品に幅広く用いられている。また、誘電損失が小さく電気特性にも優れる材料でもあることから、最近では、芳香族液晶ポリエステルをTダイ押出法やインフレーション法、溶液キャスト法などでフィルム状に成形する方法が検討されている。
 上記課題に対し、特許文献3では、耐熱性とフィルム加工性のバランスに優れ、誘電損失が小さい芳香族液晶ポリエステルとして、2-ヒドロキシ-6-ナフトエ酸に由来する繰り返し構造単位(I)が40~74.8モル%、芳香族ジオール化合物に由来する繰り返し構造単位(II)が12.5~30モル%、2,6-ナフタレンジカルボン酸に由来する繰り返し構造単位(III)が12.5~30モル%、テレフタル酸または4,4’-ビフェニルジカルボン酸に由来する繰り返し構造単位(IV)が0.2~15モル%からなり、かつ繰り返し構造単位(III)および(IV)のモル比が(III)/{(III)+(IV)}≧0.5の関係を満たす芳香族液晶ポリエステルが提案されている。
特開2004-250620号公報 特開2002-179776号公報 特開2005-272810号公報
 近年、情報通信量は急速に増加し続け、使用される信号の周波数はさらに高まっており、高周波数帯において更に低い誘電正接を有する樹脂が求められている。本発明者は、特許文献1において提案されるポリエステル樹脂を用いたとしても、高周波数帯において要求される十分な低誘電正接を示さないことを見出した。また、同様に、特許文献2において提案されるポリエステル樹脂を用いたとしても、高周波数帯において要求される十分な低誘電正接を示さないことを見出した。
 そして、本発明者は、上記課題を解決するために鋭意検討した結果、全芳香族液晶ポリエステル樹脂において、特定の構成単位およびそれらを特定の組成比に調節することにより、低誘電正接かつ高い耐熱性を有する全芳香族液晶ポリエステル樹脂を得られることを見出した。
 また、本発明者は、特許文献3において提案されるポリエステル樹脂を用いたとしても、フィルムや繊維への加工性が十分ではないことを見出した。具体的には樹脂の溶融時の加工性や延伸加工性を担保する溶融延伸性が十分でないことを見出した。
 また、近年、情報通信量は急速に増加し続け、使用される信号の周波数はさらに高まっており、周波数が10Hz以上であるギガヘルツ(GHz)帯において更に低い誘電正接を有する樹脂が求められている。さらにこうした樹脂を使いデバイス等を設計する際は、はんだによる加工のような高温の熱プロセスを経ることが一般的であるため、十分な耐熱性が必要である。本発明者は、特許文献1において提案されるポリエステル樹脂は、測定周波数10GHzという高周波帯において要求される十分な低誘電正接と、十分な耐熱性とを両立させることはできないことを見出した。
 本発明者は、上記課題を解決するために鋭意検討した結果、全芳香族液晶ポリエステル樹脂において、特定の構成単位およびそれらを特定の組成比に調節することにより、とりわけ低い誘電正接を有しながら、耐熱性および加工性のバランスに優れた全芳香族液晶ポリエステル樹脂を得られることを見出した。
 本発明の目的は、とりわけ低い誘電正接を有しながら、耐熱性に優れた全芳香族液晶ポリエステル樹脂を提供することである。
 また、本発明の目的は、とりわけ低い誘電正接を有しながら、耐熱性および加工性のバランスに優れた全芳香族液晶ポリエステル樹脂を提供することである。
 さらに、本発明の他の目的は、この全芳香族液晶ポリエステル樹脂を含む成形品および該成形品を含む電気電子部品を提供することである。
 本発明による全芳香族液晶ポリエステル樹脂は、
 6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)、
 芳香族ジオール化合物に由来する構成単位(II)、
 芳香族ジカルボン酸化合物に由来する構成単位(III)
を含んでなり、
 構成単位(III)が、テレフタル酸に由来する構成単位(IIIA)を含み、かつ、2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)およびイソフタル酸に由来する構成単位(IIIC)の少なくとも1種を含み、
 前記構成単位の組成比(モル%)が、下記の条件:
 40モル%≦構成単位(I)≦80モル%
 10モル%≦構成単位(II)≦30モル%
 3モル%≦構成単位(IIIA)≦28モル%
 0モル%≦構成単位(IIIB)≦9モル%
 0モル%≦構成単位(IIIC)<5モル%
(但し、構成単位(IIIB)および構成単位(IIIC)の両方が0モル%ではない。)
を満たすことを特徴とする
 本発明の第1の態様においては、前記構成単位の組成比(モル%)が、下記の条件:
 50モル%≦構成単位(I)≦80モル%
 10モル%≦構成単位(II)≦25モル%
 5モル%<構成単位(IIIA)<25モル%
をさらに満たすことが好ましい。
 本発明の第1の態様においては、前記構成単位の組成比(モル%)が、下記の条件:
 0モル%<構成単位(IIIB)+構成単位(IIIC)<5モル%
をさらに満たすことがより好ましい。
 本発明の第2の態様においては、前記構成単位の組成比(モル%)が、下記の条件:
 40モル%≦構成単位(I)≦75モル%
 12モル%≦構成単位(II)≦30モル%
 3モル%≦構成単位(IIIA)≦28モル%
 2モル%≦構成単位(IIIB)≦9モル%
をさらに満たすことが好ましい。
 本発明の第2の態様においては、前記構成単位の組成比(モル%)が、下記の条件:
 50モル%≦構成単位(I)≦70モル%
 15モル%≦構成単位(II)≦27モル%
 6モル%≦構成単位(IIIA)≦24モル%
 3モル%≦構成単位(IIIB)≦9モル%
をさらに満たすことがより好ましい。
 本発明の第1および第2の態様においては、構成単位(II)が、下記式で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、Arは、所望により置換基を有するフェニル、ビフェニル、ナフチル、アントリルおよびフェナントリルからなる群より選択される。)
 本発明の第1の態様においては、構成単位(IIIA)と構成単位(IIIB)および(IIIC)の合計とのモル比(構成単位(IIIA)/(構成単位(IIIB)+(IIIC))が、3.2~45であることが好ましい。
 本発明の第1および第2の態様においては、融点が、300℃以上であることが好ましい。
 本発明の第1および第2の態様においては、測定周波数10GHzにおける誘電正接が、0.85×10-3以下であることが好ましい。
 本発明の第2の態様においては、前記液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1の条件で押し出した溶融ストランドの延伸比が、10倍以上であることが好ましい。
 本発明の第2の態様においては、測定周波数82GHzにおける誘電正接が、3.5×10-3未満であることが好ましい。
 本発明の第2の態様においては、測定周波数34GHzにおける30℃および100℃の誘電正接が、それぞれ2.0×10-3未満および4.0×10-3未満であることが好ましい。
 本発明の第2の態様においては、測定周波数34GHzにおける30℃から100℃までの誘電正接の変化率が、3.0×10-5/℃未満であることが好ましい。
 本発明の第2の態様においては、前記液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1における溶融粘度が、20~100Pa・sであることが好ましい。
 本発明による成形品は、上記全芳香族液晶ポリエステル樹脂を含んでなることを特徴とする。
 本発明においては、成形品は、フィルム状であることが好ましい。
 本発明においては、成形品は、繊維状であることが好ましい。
 本発明においては、成形品は、射出成形品であることが好ましい。
 本発明による電気電子部品は、上記成形品を含んでなることを特徴とする。
 本発明の第1の態様によれば、全芳香族液晶ポリエステル樹脂を構成する単位を、特定の構成単位およびそれらを特定の組成比とすることにより、とりわけ低い誘電正接および高い融点を有する全芳香族液晶ポリエステル樹脂を実現することができる。
 したがって、加工成形し、製品として使用する際には周波数の高い信号を使用する電気電子機器や通信機器における出力信号の品質の低下を防止することができる。
 また、本発明の全芳香族ポリエステル樹脂は、高いフィルム製膜安定性を有すると共に、これを用いて作製した成形品は、はんだ等を用いた加熱加工に対し、高い安定性を有する。
 本発明の第2の態様によれば、全芳香族液晶ポリエステル樹脂を構成する単位を、特定の構成単位およびそれらを特定の組成比とすることにより、とりわけ低い誘電正接を有しながら、耐熱性および加工性のバランスに優れた全芳香族液晶ポリエステル樹脂を実現することができる。したがって、加工成形し、製品として使用する際には周波数の高い信号を使用する電気電子機器や通信機器における出力信号の品質の低下を防止することができる。また、本発明の全芳香族ポリエステル樹脂は、高い紡糸性、フィルム製膜安定性を有すると共に、射出成形にも適しており、これを用いて作製した成形品は、はんだ等を用いた加熱加工に対し、高い安定性を有する。
第2の態様の全芳香族ポリエステル樹脂の種々GHz帯周波数における誘電正接の測定結果を示した図である。 第2の態様の全芳香族ポリエステル樹脂の34GHzにおける誘電正接の測定結果(30℃から100℃の温度依存性)を示した図である。
発明を実施するための態様
(全芳香族液晶ポリエステル樹脂)
 本発明による全芳香族液晶ポリエステル樹脂は、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)、芳香族ジオール化合物に由来する構成単位(II)、芳香族ジカルボン酸化合物に由来する構成単位(III)を含んでなり、
 構成単位(III)が、テレフタル酸に由来する構成単位(IIIA)を含み、かつ、2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)およびイソフタル酸に由来する構成単位(IIIC)の少なくとも1種を含み、特定の組成比を満たすものである。また、全芳香族液晶ポリエステル樹脂全体の構成単位に対して、構成単位(I)~(IIII)の合計は、下限値としては、好ましくは90モル%以上であり、より好ましくは95モル%以上であり、さらに好ましくは99モル%以上であり、上限値としては、好ましくは100モル%以下である。
 このような構成を有する全芳香族液晶ポリエステル樹脂によれば、とりわけ低い誘電正接を有する全芳香族液晶ポリエステル樹脂を実現することができる。
 また、高い融点の全芳香族液晶ポリエステル樹脂とすることもできるため、フィルム製膜安定性を向上させることができると共に、これを用いて作製した成形品の加熱加工に対する耐熱性を向上させることができる。
 また、高いガラス転移温度の全芳香族ポリエステル樹脂とすることもできるため、これを用いて作製した成形品の実使用における耐熱性を向上させることができ、より高い温度環境下においての使用を実現することができる。
 さらに、体積膨張率を低下させることができ、成形時および加工時の寸法安定性が高い全芳香族液晶ポリエステル樹脂を実現することができる。
 本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接(測定周波数:10GHz)は、0.85×10-3以下であることが好ましく、0.80以下×10-3であることがより好ましく、0.75以下×10-3であることがさらに好ましい。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂の誘電正接は、キーサイト・テクノロジー社のネットワークアナライザーN5247A等を用いて、スプリットポスト誘電体共振器法(SPDR法)により測定することができる。
 また、本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の融点は、下限値として、好ましくは320℃以上であり、より好ましくは325℃以上であり、さらに好ましくは330℃以上であり、上限値として、好ましくは390℃以下であり、好ましくは370℃以下である。本発明による全芳香族液晶ポリエステル樹脂の融点を上記数値範囲とすることにより、フィルム製膜安定性を向上させることができると共に、これを用いて作製した成形品の加熱加工に対する耐熱性を向上させることができる。
 本発明の第2の態様においては、全芳香族液晶ポリエステル樹脂の融点は、下限値としては、好ましくは300℃以上であり、より好ましくは305℃以上であり、さらに好ましくは310℃以上であり、また、上限値としては、好ましくは350℃以下であり、より好ましくは345℃以下であり、さらに好ましくは340℃以下である。本発明による全芳香族液晶ポリエステル樹脂の融点を上記数値範囲とすることにより、フィルム製膜安定性や紡糸安定性を向上させることができると共に、これを用いて作製した成形品の加熱加工に対する耐熱性を向上させることができる。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂の融点は、ISO11357、ASTM D3418の試験方法に準拠するものであり、日立ハイテクサイエンス(株)製の示差走査熱量計(DSC)等を用いて、測定することができる。
 また、本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂のガラス転移温度は、120℃以上であることが好ましく、125℃以上であることがより好ましい。
 本発明による全芳香族液晶ポリエステル樹脂のガラス転移温度を上記数値範囲とすることにより、本発明の全芳香族ポリエステル樹脂を用いて作製した、電子機器や通信機器等に使用される成形品の耐熱性を向上させることができ、より高い温度環境下における使用を実現することができる。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂のガラス転移温度は、JISK7244に準拠し、動的粘弾性測定装置(日立ハイテクサイエンス(株)、商品名:DMA7100)等を用い、動的粘弾性測定により得られるtanDのピークトップ温度から求めることができる。
 また、本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の体積膨張率は、成形時の寸法安定性の観点から、250ppm/℃以下であることが好ましく、240ppm/℃以下であることがより好ましく、230ppm/℃以下であることがより好ましい。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂の体積膨張率は、この樹脂を加熱溶融し、射出成形やプレス成形、フィルム成形して得られた成形品から熱機械的分析装置(日立ハイテクサイエンス(株)製、商品名:TMA7000)を用いて測定することができる。
 また、本発明の第1の態様においては、成形性という観点からは、液晶ポリエステル樹脂の溶融粘度は、液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1における粘度は、下限値として、好ましく1Pa・s以上であり、より好ましくは5Pa・sであり、上限値として、好ましくは500Pa・s以下であり、より好ましくは450Pa・s以下である。
 また、本発明の第2の態様においては、成形性という観点からは、液晶ポリエステル樹脂の溶融粘度は、液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1において、下限値として、好ましくは20Pa・s以上であり、より好ましくは30Pa・s以上であり、上限値として、好ましくは100Pa・s以下であり、より好ましくは90Pa・s以下である。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂の粘度は、JIS K7199に準拠し、キャピラリーレオメーター粘度計を用いて測定することができる。
 本発明の第2の態様の全芳香族液晶ポリエステル樹脂によれば、十分な溶融延伸性を有することで繊維やフィルムへの安定した加工性を持たせることができる。また、とりわけ低い誘電正接を有する全芳香族液晶ポリエステル樹脂を実現することができる。さらに、高い融点の全芳香族液晶ポリエステル樹脂とすることもできるため、これを用いて作製した成形品の加熱加工に対する高耐熱性を実現することができる。
 本発明の第2の態様においては、高いガラス転移温度の全芳香族ポリエステル樹脂とすることもできるため、これを用いて作製した成形品の実使用における耐熱性を向上させることができ、より高い温度環境下においての使用を実現することができる。さらに、体積膨張率を低下させることができ、成形時および加工時の寸法安定性が高い全芳香族液晶ポリエステル樹脂を実現することができる。
 本発明の第2の態様においては、液晶ポリエステル樹脂の溶融延伸性は、溶融ストランドの延伸比を測定することで評価することができる。繊維やフィルムへの加工性という観点からは、本発明による液晶ポリエステル樹脂の溶融延伸性は、液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1の条件で押し出した溶融ストランドを、滑車を介した巻取ローラーで引取速度を加速させながら引き取った時の溶融ストランドの延伸比(=測定終点での引取速度(m/min)/キャピラリー通過時換算の押出速度(m/min))が好ましくは10倍以上であり、より好ましくは15倍以上である。なお、本明細書において、全芳香族液晶ポリエステル樹脂の溶融延伸性は、(株)東洋精機製作所キャピログラフ1Dを用いて測定することができる。
 また、繊維やフィルムへの加工性という観点からは、上記測定の終点における溶融ストランドの張力(=溶融張力)は、好ましくは1mN以上であり、より好ましくは3mN以上であり、さらに好ましくは5mN以上である。
 本発明の第2の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接(測定周波数:10GHz)は、好ましくは0.75×10-3以下であり、より好ましくは0.70以下×10-3であり、さらに好ましくは0.65以下×10-3である。
 また、全芳香族液晶ポリエステル樹脂の誘電正接(測定周波数:82GHz)は、好ましくは3.5×10-3未満であり、より好ましくは3.0×10-3未満であり、さらに好ましくは2.5×10-3未満である。
 また、全芳香族液晶ポリエステル樹脂は、30℃および100℃の誘電正接(測定周波数:34GHz)が、それぞれ、好ましくは2.0×10-3未満および4.0×10-3未満であり、より好ましくは1.5×10-3未満および3.0×10-3未満であり、さらに好ましくは1.2×10-3未満および2.0×10-3未満である。
 さらに、測定周波数34GHzにおける30℃から100℃までの誘電正接の変化率は、好ましくは3.0×10-5/℃未満であり、より好ましくは2.0×10-5/℃未満であり、さらに好ましくは1.5×10-5/℃未満である。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂の10GHzにおける誘電正接は、キーサイト・テクノロジー社のネットワークアナライザーN5247A等を用いて、スプリットポスト誘電体共振器法(SPDR法)により測定することができる。それ以外の誘電正接は円筒空洞共振器法により測定することができる。また、特別に指定がない場合、誘電正接の値は、23℃、大気雰囲気下、湿度60%での測定値である。
 本発明による全芳香族液晶ポリエステル樹脂の液晶性は、メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)等を用い、全芳香族液晶ポリエステル樹脂を顕微鏡加熱ステージ上にて加熱溶融させた後、光学異方性の有無を観察することにより確認することができる。
 以下、全芳香族液晶ポリエステル樹脂に含まれる各構成単位について説明する。
(6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I))
 全芳香族液晶ポリエステル樹脂は、下記式(I)で表される6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)を含み、全芳香族液晶ポリエステル樹脂中における構成単位(I)の組成比(モル%)は、40モル%以上80モル%以下である。
Figure JPOXMLDOC01-appb-C000003
 構成単位(I)を与えるモノマーとしては、6-ヒドロキシ-2-ナフトエ酸(HNA、下記式(1))、そのアセチル化物、エステル誘導体、酸ハロゲン化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接の低下および融点の向上という観点から、全芳香族液晶ポリエステル樹脂中における構成単位(I)の組成比(モル%)は、下限値としては、50モル%以上、好ましくは51モル%以上、より好ましくは52モル%以上、さらにより好ましくは54モル%以上、最も好ましくは55モル%以上であり、上限値としては、75モル%以下であり、好ましくは70モル%以下であり、より好ましくは65モル%以下であり、さらにより好ましくは63モル%以下であり、最も好ましくは60モル%以下である。
 本発明の第2の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接の低下および融点の向上という観点からは、全芳香族液晶ポリエステル樹脂中における構成単位(I)の組成比(モル%)は、下限値としては、40モル%以上であり、好ましくは45モル%以上であり、より好ましくは50モル%以上であり、さらに好ましくは55モル%以上であり、上限値としては、75モル%以下であり、好ましくは70モル%以下であり、より好ましくは65モル%以下であり、さらに好ましくは60モル%以下である。
(芳香族ジオール化合物に由来する構成単位(II))
 全芳香族液晶ポリエステル樹脂は、芳香族ジオール化合物に由来する構成単位(II)を含んでなるものであり、液晶ポリエステル中における構成単位(II)の組成比(モル%)は、10モル%以上30モル%以下である。なお、全芳香族液晶ポリエステル樹脂は、2種以上の構成単位(II)を含むものであってもよい。
 一実施態様において、構成単位(II)は下記式で表される。
Figure JPOXMLDOC01-appb-C000005
 上記式中Arは、所望により置換基を有するフェニル、ビフェニル、ナフチル、アントリルおよびフェナントリルからなる群より選択される。これらの中でもフェニルおよびビフェニルがより好ましい。置換基としては、水素、アルキル基、アルコキシ基、ならびにフッ素等が挙げられる。アルキル基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、直鎖状のアルキル基であっても、分岐鎖状のアルキル基であってもよい。アルコキシ基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。
 構成単位(II)を与えるモノマーとしては、例えば、ハイドロキノン(HQ,下記式(2))、4,4-ジヒドロキシビフェニル(BP、下記式(3))、3,3’-ジメチル-1,1’-ビフェニル-4,4’-ジオール(OCBP、下記式(4))およびこれらのアシル化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接の低下および融点の向上という観点から、全芳香族液晶ポリエステル樹脂中における構成単位(II)の組成比(モル%)は、下限値としては、10モル%以上であり、好ましくは12.5モル%以上であり、より好ましくは15モル%以上であり、さらに好ましくは17.5モル%以上、特に好ましくは18.5モル%以上であり、最も好ましくは20モル%以上であり、上限値としては、24.5モル%以下であり、好ましくは24モル%以下であり、より好ましくは23モル%以下であり、さらにより好ましくは22.5モル%以下であり、最も好ましくは22.5モル%以下である。
 本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接の低下および融点の向上という観点から、全芳香族液晶ポリエステル樹脂中における構成単位(II)の組成比(モル%)は、下限値としては、12モル%以上であり、好ましくは15モル%以上であり、より好ましくは17モル%以上であり、さらに好ましくは20モル%以上であり、上限値としては、好ましくは27モル%以下であり、より好ましくは25モル%以下であり、さらに好ましくは23モル%以下である。
(芳香族ジカルボン酸化合物に由来する構成単位(III))
 全芳香族液晶ポリエステル樹脂中の芳香族ジカルボン酸化合物に由来する構成単位(III)は、下記式(IIIA)で表されるテレフタル酸に由来する構成単位(IIIA)を含み、かつ、下記式(IIIB)で表される2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)および下記式(IIIC)で表されるイソフタル酸に由来する構成単位(IIIC)の少なくとも1種を含むものである。
 液晶ポリエステル中における構成単位(III)の組成比(モル%)は、下記の条件:
 10モル%≦構成単位(III)≦30モル%
を満たし、構成単位(III)の組成比は、構成単位(II)の組成比と実質的に当量(構成単位(III)≒構成単位(II))となることが好ましい。
 また、液晶ポリエステル中における構成単位(III)の組成比(モル%)は、下記の条件:
 3モル%≦構成単位(IIIA)≦28モル%
 0モル%≦構成単位(IIIB)≦9モル%
 0モル%≦構成単位(IIIC)<5モル%
(但し、構成単位(IIIB)および構成単位(IIIC)の両方が0モル%ではない。)
を満たす。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 構成単位(IIIA)を与えるモノマーとしては、テレフタル酸(TPA、下記式(5))、およびこれらのエステル誘導体、酸ハロゲン化物等が挙げられる。TPAやその誘導体はポリエチレンテレフタレートなど汎用プラスチックの原料などとして幅広く使用され、芳香族ジカルボン酸化合物の中で最も原価が低い部類であるため、構成単位(III)中の構成単位(IIIA)の組成比を高めることで樹脂製品としてのコスト優位性が向上する。したがって、コストの観点からは、構成単位(III)の組成比(モル%)は、構成単位(IIIA)>(構成単位(IIIB)+構成単位(IIIC))を満たすことが好ましい。また、構成単位(III)中の構成単位(IIIA)の組成比を上げることで耐熱性を向上させることも期待できる。
Figure JPOXMLDOC01-appb-C000012
 構成単位(IIIB)を与えるモノマーとしては、2,6-ナフタレンジカルボン酸(NADA、下記式(6))、およびこれらのエステル誘導体、酸ハロゲン化物等が挙げられる。NADAはTPAなどに比べ原価が高いため、構成単位(III)中の構成単位(IIIB)の組成比を下げることで樹脂製品としてのコスト優位性が向上する。
Figure JPOXMLDOC01-appb-C000013
 構成単位(IIIC)を与えるモノマーとしては、イソフタル酸(IPA、下記式(7))、およびこれらのエステル誘導体、酸ハロゲン化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 本発明の第1の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接の低下および融点の向上という観点から、全芳香族液晶ポリエステル樹脂中における構成単位(IIIA)の組成比(モル%)は、下限値としては、5モル%であり、好ましくは5.5モル%以上であり、より好ましくは8モル%以上であり、さらに好ましくは10.5モル%以上であり、さらにより好ましくは13モル%以上、特に好ましくは14モル%以上であり、最も好ましくは15.5モル%以上であり、上限値としては、25モル%未満であり、好ましくは24.5モル%以下であり、より好ましくは23.5モル%以下であり、さらに好ましくは22.5モル%以下であり、最も好ましくは22モル%以下である。
 全芳香族液晶ポリエステル樹脂中における構成単位(IIIB)の組成比(モル%)は、下限値としては、0モル%超であり、好ましくは0.5モル%以上であり、上限値としては、5モル%未満であり、好ましくは4.5モル%以下である。
 全芳香族液晶ポリエステル樹脂中における構成単位(IIIC)の組成比(モル%)は、下限値としては、0モル%以上であり、好ましくは0モル%超であり、より好ましくは0.5モル%以上であり、上限値としては、5モル%未満であり、好ましくは4.5モル%以下である。
 全芳香族液晶ポリエステル樹脂中における構成単位(IIIB)および構成単位(IIIC)の合計の組成比(モル%)は、下限値としては、0モル%超であり、好ましくは0.5モル%以上であり、上限値としては、5モル%未満であり、好ましくは4.5モル%以下である。
 また、全芳香族ポリエステル樹脂においては、構成単位(IIIA)と構成単位(IIIB)および(IIIC)の合計とのモル比(構成単位(III)/(構成単位(IIIA)+(IIIC))が、3.2以上であることが好ましく、4以上であることがより好ましく、5以上であることがさらに好ましい。また、該モル比は、45以下であることが好ましく、40以下であることがより好ましく、30以下であることがさらに好ましく、20以下であることがさらにより好ましい。構成単位(III)と、構成単位(IIIB)および(IIIC)の合計とのモル比を上記数値範囲とすることにより、全芳香族ポリエステル樹脂の融点を向上させることができると共に、体積膨張率を低減させることができる。
 本発明の第2の態様においては、全芳香族液晶ポリエステル樹脂の誘電正接の低下および融点の向上という観点から、全芳香族液晶ポリエステル樹脂中における構成単位(IIIA)の組成比(モル%)は、下限値としては、3モル%であり、好ましくは6モル%以上であり、より好ましくは8モル%以上であり、さらに好ましくは11モル%以上であり、上限値としては、28モル%以下であり、好ましくは25モル%以下であり、より好ましくは23モル%以下であり、さらに好ましくは21モル%以下である。
 全芳香族液晶ポリエステル樹脂中における構成単位(IIIB)の組成比(モル%)は、下限値としては、2モル%以上であり、好ましくは3モル%以上であり、より好ましくは4.5モル%以上であり、さらに好ましくは5モル%以上であり、上限値としては、9モル%以下である。
 全芳香族液晶ポリエステル樹脂中における構成単位(IIIC)の組成比(モル%)は、下限値としては、0モル%以上であり、好ましくは0モル%超であり、より好ましくは0.5モル%以上であり、上限値としては、5モル%未満であり、好ましくは4.5モル%以下である。
 また、全芳香族ポリエステル樹脂においては、構成単位(IIIA)と構成単位(IIIB)とのモル比(構成単位(IIIA)/構成単位(IIIB))は、下限値として、好ましくは0.5以上であり、より好ましくは1.0以上であり、さらに好ましくは1.5以上であり、さらにより好ましくは2.0以上であり、上限値としては、好ましくは8.0以下であり、より好ましくは7.0以下であり、さらに好ましくは5.0以下である。
(全芳香族液晶ポリエステル樹脂の製造方法)
 本発明に係る全芳香族液晶ポリエステル樹脂は、構成単位(I)~(IV)を与えるモノマーを、溶融重合、固相重合、溶液重合およびスラリー重合等、従来公知の方法で重合することにより製造することができる。
 一実施態様において、本発明に係る全芳香族液晶ポリエステル樹脂は、溶融重合のみによって製造することができる。また、溶融重合によりプレポリマーを作製し、これをさらに固相重合する2段階重合によっても製造することができる。
 溶融重合は、本発明に係るポリエステル化合物が効率よく得られる観点から、上記構成単位(I)~(IV)を与えるモノマーを、所定の配合で合わせて100モル%として、モノマーが有する全水酸基に対し、1.05~1.15モル当量の無水酢酸を存在させて酢酸還流下において行うことが好ましい。
 溶融重合とこれに続く固相重合の二段階により重合反応を行う場合は、溶融重合により得られたプレポリマーを冷却固化後に粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法、例えば、窒素等の不活性雰囲気下、または真空下において200~350℃の温度範囲で1~30時間プレポリマー樹脂を熱処理する等の方法が好ましくは選択される。固相重合は、攪拌しながら行ってもよく、また攪拌することなく静置した状態で行ってもよい。
 重合反応において触媒は使用してもよいし、また使用しなくてもよい。使用する触媒としては、ポリエステルの重合用触媒として従来公知のものを使用することができ、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属塩触媒、N-メチルイミダゾール等の窒素含有複素環化合物等、有機化合物触媒等が挙げられる。触媒の使用量は、特に限定されるものではないが、モノマーの総量100重量部に対して、0.0001~0.1重量部であることが好ましい。
 溶融重合における重合反応装置は特に限定されるものではないが、一般の高粘度流体の反応に用いられる反応装置が好ましく使用される。これらの反応装置の例としては、例えば、錨型、多段型、螺旋帯型、螺旋軸型等、あるいはこれらを変形した各種形状の攪拌翼をもつ攪拌装置を有する攪拌槽型重合反応装置、又は、ニーダー、ロールミル、バンバリーミキサー等の、一般に樹脂の混練に使用される混合装置等が挙げられる。
(成形品)
 本発明による成形品は、全芳香族液晶ポリエステル樹脂を含んでなるものであり、その形状は用途に応じ適宜変更されるものであり、特に限定されず、例えば、フィルム状、板状、繊維状等とすることができる。
 また、本発明による成形品は、本発明の効果を損なわない範囲において、全芳香族液晶ポリエステル樹脂以外の樹脂を含んでいてもよい。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレートおよびポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、シクロオレフィンポリマー、ポリ塩化ビニル等のビニル樹脂、ポリアクリレート、ポリメタアクリレートおよびポリメチルメタアクリレート等の(メタ)アクリル樹脂、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリイミドおよびポリエーテルイミド等のイミド樹脂、ポリスチレン、高衝撃ポリスチレン、AS樹脂およびABS樹脂等のポリスチレン樹脂、エポキシ樹脂等の熱硬化樹脂、セルロース樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂ならびにポリカーボネート樹脂等が挙げられ、成形品は、これらを1種または2種以上含んでいてもよい。
 本発明による成形品は、本発明の効果を損なわない範囲において、その他の添加剤、例えば、着色剤、分散剤、可塑剤、酸化防止剤、硬化剤、難燃剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤を含んでいてもよい。
 本発明による成形品は、全芳香族液晶ポリエステル樹脂および所望によりその他の樹脂や添加剤等を含む混合物をプレス成形、発泡成形、射出成形、押出成形、打ち抜き成形することにより得ることができる。
 なお、混合物は、全芳香族液晶ポリエステル樹脂等をバンバリーミキサー、ニーダー、一軸または二軸押出機等を用いて、溶融混練することにより得ることができる。
 一実施態様において、成形品フィルム状であることが好ましい。フィルムは、従来の公知の方法、例えば、インフレーション成形、溶融押出成形等の押出成形、および溶液キャスト法により得ることができる。このようにして得られるフィルムは、全芳香族液晶ポリエステル樹脂からなる単層フィルムであってもよく、異種材料との多層フィルムであってもよい。
 なお、溶融押出成形、溶液キャスト成形したフィルムを寸法安定性、機械特性を改良する目的で、単軸、または二軸にて延伸処理をしてもよい。また、これらフィルムの異方性を除去する、または耐熱性向上目的で熱処理を行ってもよい。
 一実施態様において、成形品は繊維状であることが好ましい。繊維は、従来公知の方法、例えば、溶融紡糸法、溶液紡糸法等により得ることができる。繊維は、全芳香族液晶ポリエステル樹脂のみからなるものであってもよく、他の樹脂と混合してもよい。
(電気電子部品)
 本発明による電気電子部品は、上記全芳香族液晶ポリエステル樹脂を含んでなる。
 電気電子部品としては、例えば、ETC、GPS、無線LANおよび携帯電話等の電子機器や通信機器に使用されるアンテナ、高速伝送用コネクタ、CPUソケット、回路基板、フレキシブルプリント基板(FPC)、積層用回路基板、衝突防止用レーダーなどのミリ波および準ミリ波レーダー、RFIDタグ、コンデンサー、インバーター部品、絶縁フィルム、ケーブルの被覆材、リチウムイオン電池等の二次電池の絶縁材、スピーカー振動板等が挙げられる。
 一実施態様において、電気電子部品は、全芳香族液晶ポリエステル樹脂を含む成形品(例えば、射出成形品やフィルム等)を備えてなる。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
 まずは、本発明の第1の態様について実施例および比較例を挙げて詳細に説明する。
<全芳香族液晶ポリエステル樹脂の製造>
(実施例1-1:全芳香族液晶ポリエステル樹脂Aの合成)
 攪拌翼を有する重合容器に、6-ヒドロキシ-2-ナフトエ酸(HNA)203.24g(60モル%)、4,4-ジヒドロキシビフェニル(BP)67.03g(20モル%)、テレフタル酸(TPA)53.83g(18モル%)、イソフタル酸(IPA)5.98g(2モル%)を加え、触媒として酢酸カリウム及び、酢酸マグネシウムを仕込み、重合容器の減圧-窒素注入を3回行って窒素置換を行った後、無水酢酸198.46g(水酸基に対して1.08モル当量)を更に添加し、150℃まで昇温し、還流状態で2時間アセチル化反応を行った。
 アセチル化終了後、酢酸留出状態にした重合容器を0.5℃/分で昇温して、槽内の溶融体温度が310℃になったところで重合物を抜き出し、冷却固化した。得られた重合物を粉砕し目開き2.0mmの篩を通過する大きさに粉砕してプレポリマーを得た。
 次に、上記で得られたプレポリマーを、ヤマト科学(株)製のオーブンでヒーターにより、温度を室温から14時間かけて310℃まで昇温した後、310℃で温度を2時間保持して固相重合を行った。その後室温で自然放熱し、全芳香族液晶ポリエステル樹脂Aを得た。メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)を用い、全芳香族液晶ポリエステル樹脂A試料を顕微鏡加熱ステージ上にて加熱溶融させ、光学異方性の有無から液晶性を確認した。
(実施例1-2:全芳香族液晶ポリエステル樹脂Bの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA19.5モル%、IPA0.5モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Bを得て、上記と同様にして液晶性を確認した。
(実施例1-3:全芳香族液晶ポリエステル樹脂Cの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、IPA4.5モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Cを得て、上記と同様にして液晶性を確認した。
(実施例1-4:全芳香族液晶ポリエステル樹脂Dの合成)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA14.5モル%、IPA0.5モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Dを得て、上記と同様にして液晶性を確認した。
(実施例1-5:全芳香族液晶ポリエステル樹脂Eの合成)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA13モル%、IPA2モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Eを得て、上記と同様にして液晶性を確認した。
(実施例1-6:全芳香族液晶ポリエステル樹脂Fの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、2,6-ナフタレンジカルボン酸(NADA)4.5モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Fを得て、上記と同様にして液晶性を確認した。
(実施例1-7:全芳香族液晶ポリエステル樹脂Gの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA18モル%、NADA2モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Gを得て、上記と同様にして液晶性を確認した。
(実施例1-8:全芳香族液晶ポリエステル樹脂Hの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA19.5モル%、NADA0.5モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Hを得て、上記と同様にして液晶性を確認した。
(実施例1-9:全芳香族液晶ポリエステル樹脂Iの合成)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA20.5モル%、NADA2モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Iを得て、上記と同様にして液晶性を確認した。
(実施例1-10:全芳香族液晶ポリエステル樹脂Jの合成)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA18.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を295℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Jを得て、上記と同様にして液晶性を確認した。
(実施例1-11:全芳香族液晶ポリエステル樹脂Kの合成)
 モノマー仕込みを、HNA58モル%、BP21モル%、TPA16.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Kを得て、上記と同様にして液晶性を確認した。
(実施例1-12:全芳香族液晶ポリエステル樹脂Lの合成)
 モノマー仕込みを、HNA65モル%、BP17.5モル%、TPA15.5モル%、NADA2モル%に変更し、固相重合の最終温度を300℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Lを得て、上記と同様にして液晶性を確認した。
(比較例1-1:全芳香族液晶ポリエステル樹脂Mの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA10モル%、IPA10モル%に変更し、固相重合の最終温度を280℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Mを得て、上記と同様にして液晶性を確認した。
(比較例1-2:全芳香族液晶ポリエステル樹脂Nの合成)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA10モル%、IPA5モル%に変更し、固相重合の最終温度を280℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Nを得て、上記と同様にして液晶性を確認した。
(比較例1-3:全芳香族液晶ポリエステル樹脂Oの合成)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA5モル%、IPA10モル%に変更し、固相重合の最終温度を280℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Oを得て、上記と同様にして液晶性を確認した。
(比較例1-4:全芳香族液晶ポリエステル樹脂Pの合成)
 モノマー仕込みを、p-ヒドロキシ安息香酸(HBA)60モル%、BP20モル%、TPA5モル%、IPA5モル%に変更した以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Pを得て、上記と同様にして液晶性を確認した。
(比較例1-5:全芳香族液晶ポリエステル樹脂Qの合成)
 モノマー仕込みを、HBA2モル%、HNA48モル%、BP25モル%、TPA25モル%に変更し、固相重合の最終温度を280℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Qを得て、上記と同様にして液晶性を確認した。
(比較例1-6:全芳香族液晶ポリエステル樹脂Rの合成)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA5モル%、NADA15モル%に変更し、固相重合の最終温度を295℃にした以外は、実施例1-1と同様にして、液晶ポリエステル樹脂Rを得て、上記と同様にして液晶性を確認した。
<<性能評価>>
<誘電正接測定>
 実施例および比較例により得られた全芳香族液晶ポリエステル樹脂を融点~融点+30℃条件で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作製した。この試験片の面内方向の誘電正接を、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法(SPDR法)により、周波数10GHzの誘電正接を測定した。
<融点の測定>
 実施例および比較例において得られた全芳香族液晶ポリエステル樹脂の融点を、日立ハイテクサイエンス(株)製の示差走査熱量計(DSC)により測定した。このとき、昇温速度10℃/分で室温から360~380℃まで昇温してポリマーを完全に融解させた後、速度10℃/分で30℃まで降温し、更に10℃/分の速度で380℃まで昇温するときに得られる吸熱ピークの頂点を融点とした。ただし、再加熱時の吸熱ピークがブロードで検出困難な場合は、1周目の吸熱ピークの頂点を融点とした。測定結果を表1にまとめた。
<体積膨張率の測定>
 実施例および比較例により得られた全芳香族液晶ポリエステル樹脂を、融点~融点+30℃で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作成した。この平板状試験片を引張モード用に幅5mmに切削し、30×5×0.4mmの短冊状試験片を準備した。また圧縮モード用に平板状試験片中央部を7×7mmに切削し、7×7×0.4mmの板状試験片を準備した。
 これらの試験片の30~150℃の体積膨張率(MD線膨張率+TD線膨張率+厚み線膨張率)を、熱機械的分析装置(日立ハイテクサイエンス(株)製、商品名:TMA7000)を用いて測定した、なお、MD方向およびTD方向は引張モード、厚み方向は圧縮モードで評価した。測定結果を表1にまとめた。
<粘度の測定>
 実施例および比較例により得られた全芳香族液晶ポリエステル樹脂の、融点+20℃における溶融粘度を、キャピラリーレオメーター粘度計(東洋精機株式会社製)を用い、JIS K7199に準拠して測定した。測定結果を表1にまとめた。
<ガラス転移温度(Tg)の測定>
 実施例および比較例において得られた全芳香族液晶ポリエステル樹脂を融点~融点+30℃条件で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作成した。この平板状試験片を幅8mmに切削し、30×8×0.4mmの短冊状試験片(MD方向が8mm、TD方向が30mm)を準備した。動的粘弾性測定装置(日立ハイテクサイエンス(株)製、商品名:DMA7100)を用い、引張モードの動的粘弾性測定により得られるtanDのピークトップ温度から、全芳香族液晶ポリエステル樹脂のガラス転移点を求めた。測定結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000015
 次に、本発明の第2の態様について実施例および比較例を挙げて詳細に説明する。
<全芳香族液晶ポリエステル樹脂の製造>
(実施例2-1)
 攪拌翼を有する重合容器に、6-ヒドロキシ-2-ナフトエ酸(HNA)45モル%、4,4-ジヒドロキシビフェニル(BP)27.5モル%、テレフタル酸(TPA)23モル%、2,6-ナフタレンジカルボン酸(NADA)4.5モル%を加え、触媒として酢酸カリウムおよび酢酸マグネシウムを仕込み、重合容器の減圧-窒素注入を3回行って窒素置換を行った後、無水酢酸(水酸基に対して1.08モル当量)を更に添加し、150℃まで昇温し、還流状態で2時間アセチル化反応を行った。
 アセチル化終了後、酢酸留出状態にした重合容器を0.5℃/分で昇温して、槽内の溶融体温度が300℃になったところで重合物を抜き出し、冷却固化した。得られた重合物を粉砕し目開き2.0mmの篩を通過する大きさに粉砕してプレポリマーを得た。
 次に、上記で得られたプレポリマーを、ヤマト科学(株)製のオーブンでヒーターにより、温度を室温から14時間かけて300℃まで昇温した後、300℃で温度を2時間保持して固相重合を行った。その後室温で自然放熱し、全芳香族液晶ポリエステル樹脂Aを得た。メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)を用い、全芳香族液晶ポリエステル樹脂試料を顕微鏡加熱ステージ上にて加熱溶融させ、光学異方性の有無から液晶性を確認した。
(実施例2-2)
 モノマー仕込みを、HNA45モル%、BP27.5モル%、TPA21.5モル%、NADA6モル%に変更した以外は実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-3)
 モノマー仕込みを、HNA45モル%、BP27.5モル%、TPA19.5モル%、NADA8モル%に変更した以外は実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-4)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA22モル%、NADA3モル%に変更し、固相重合の最終温度を310℃、保持時間を1時間にした以外は実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-5)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA20.5モル%、NADA4.5モル%に変更した以外は実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-6)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA19モル%、NADA6モル%に変更した以外は実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-7)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA17モル%、NADA8モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-8)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA18.5モル%、NADA4.5モル%、イソフタル酸(IPA)2モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-9)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA15モル%、NADA8モル%、IPA2モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-10)
 モノマー仕込みを、HNA52モル%、BP24モル%、TPA21モル%、NADA2モル%、IPA1モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-11)
 モノマー仕込みを、HNA52モル%、BP24モル%、TPA20モル%、NADA3モル%、IPA1モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-12)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA18モル%、NADA4.5モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-13)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA16.5モル%、NADA6モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-14)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA14.5モル%、NADA8モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-15)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA18モル%、NADA3.5モル%、IPA1モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-16)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA17モル%、NADA4.5モル%、IPA1モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-17)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA18モル%、NADA2.5モル%、IPA2モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-18)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA16モル%、NADA4.5モル%、IPA2モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-19)
 モノマー仕込みを、HNA58モル%、BP21モル%、TPA16.5モル%、NADA4.5モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-20)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA17モル%、NADA3モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-21)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、NADA4.5モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-22)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15モル%、NADA5モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-23)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA14モル%、NADA6モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-24)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA12モル%、NADA8モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-25)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA11モル%、NADA9モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-26)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、NADA2.5モル%、IPA2モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-27)
 モノマー仕込みを、HNA65モル%、BP17.5モル%、TPA15.5モル%、NADA2モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-28)
 モノマー仕込みを、HNA65モル%、BP17.5モル%、TPA13モル%、NADA4.5モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-29)
 モノマー仕込みを、HNA65モル%、BP17.5モル%、TPA8.5モル%、NADA9モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂Nを得て、上記と同様にして液晶性を確認した。
(実施例2-30)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA12モル%、NADA3モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-31)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA8モル%、NADA7モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(実施例2-32)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA6モル%、NADA9モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-1)
 モノマー仕込みを、HNA30モル%、BP35モル%、TPA30.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を295℃、保持時間を1時間にした以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-2)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA10モル%、NADA15モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-3)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA12.5モル%、NADA10モル%に変更し、固相重合の最終温度を295℃、保持時間を1時間にした以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-4)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA10モル%、NADA10モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-5)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA5モル%、NADA15モル%に変更し、固相重合の最終温度を295℃、保持時間を1時間にした以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-6)
 モノマー仕込みを、HNA65モル%、BP17.5モル%、TPA2.5モル%、NADA15モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-7)
 モノマー仕込みを、BP20モル%、TPA15モル%、p-ヒドロキシ安息香酸(HBA)60モル%、IPA5モル%に変更した以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
(比較例2-8)
 モノマー仕込みを、HNA27モル%、HBA73モル%に変更し、固相重合の最終温度を270℃にした以外は、実施例2-1と同様にして、液晶ポリエステル樹脂を得て、上記と同様にして液晶性を確認した。
<<性能評価>>
<溶融延伸性・溶融張力の測定>
 実施例および比較例により得られた全芳香族液晶ポリエステル樹脂の溶融延伸性は、溶融ストランドの延伸比を測定することで評価した。具体的には、全芳香族液晶ポリエステル樹脂を、(株)東洋精機製作所キャピログラフ1D(バレル内径9.55mmのレオメーター)、内径1mmキャピラリーを用いて、液晶ポリエステル樹脂の融点+20℃、プランジャー押出速度82.3mm/min(=キャピラリー通過時の樹脂かかるせん断速度1000s-1となる押出速度)、の条件で溶融した樹脂をストランドとして押し出した。押し出された溶融ストランドを、滑車を介して巻取ローラーで引取延伸比(=測定終点での引取速度(m/min)/キャピラリー通過時換算の押出速度(m/min))を測定した。引取速度は40m/minを初速度とし、400m/minの割合で引取速度を上昇させ、引取速度が装置測定限界値の200m/minに達した、または溶融ストランドが破断した点を測定終点とした。この測定結果を表2および3にまとめた。また測定終点における溶融ストランドの張力(=溶融張力)も合わせて表2および3にまとめた。なお、溶融延伸性、溶融粘度、あるいは溶融張力の不足のため、溶融ストランドを一連の滑車、巻取ローラーに適切にセットできず、または溶融延伸性が装置の測定下限未満となり測定不可であったものは、「-」とした。
<誘電正接測定(10GHz)>
 実施例および比較例により得られた全芳香族液晶ポリエステル樹脂を融点~融点+30℃条件で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作製した。この試験片の面内方向の誘電正接について、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法(SPDR法)により、周波数10GHzの誘電正接を測定した。
<誘電正接測定(82GHz等)>
 実施例2-22ならびに比較例2-7および2-8により得られた全芳香族液晶ポリエステル樹脂を、融点~融点+30℃条件で加熱溶融、射出成形により、30mm×30mm×0.4mmの平板サンプルを作製した。続いて、この平板サンプルの中央から13mm角の正方形平板を切削して試験片とした。この試験片を、宇都宮大学大学院工学研究科 古神・清水研究室にて100GHz用共振器に装荷し、円筒空洞共振器法により、室温で周波数82GHzの誘電正接を測定した。(100GHz用の共振器を用いたが、実際の測定周波数は材料の共振特性により、82GHz付近の測定となった。)測定結果を表4にまとめた。また、設定周波数の異なる円筒空洞共振器を用いて同様の手順で、種々周波数で測定した誘電正接を図1に示した。
<誘電正接測定(GHz領域における温度依存性)>
 実施例2-22ならびに比較例2-7および2-8により得られた全芳香族液晶ポリエステル樹脂を、融点~融点+30℃条件で加熱溶融、射出成形により、30mm×30mm×0.4mmの平板サンプルを作製した。続いて、この平板サンプルの中央から13mm角の正方形平板を切削して試験片とした。この試験片を、宇都宮大学大学院工学研究科 古神・清水研究室にて36GHz用共振器を用いて円筒空洞共振器法により、測定温度を変化させながら34GHzの誘電正接測定を行った。(36GHz用の共振器を用いたが、実際の測定周波数は材料の共振特性により34GHzとなった。)具体的な測定方法は次の通りである。試験片をセットした該共振器を恒温槽に配置し、恒温槽の設定温度を105℃に設定後、2時間経過させた。その後、恒温槽を20℃に設定し、槽内温度を自然降下させ、この時の誘電正接を1℃間隔で測定した。結果を図2に示した。また30℃および100℃での誘電正接と30℃から100℃までの誘電正接の変化率を表5に示した。
<融点の測定>
 実施例および比較例において得られた全芳香族液晶ポリエステル樹脂の融点を、日立ハイテクサイエンス(株)製の示差走査熱量計(DSC)により測定した。このとき、昇温速度10℃/分で室温から360~380℃まで昇温してポリマーを完全に融解させた後、速度10℃/分で30℃まで降温し、更に10℃/分の速度で380℃まで昇温するときに得られる吸熱ピークの頂点を融点(Tm)とした。ただし、再加熱時の吸熱ピークがブロードで検出困難な場合は、1周目の吸熱ピークの頂点(Tm)を融点(℃)とした。測定結果を表2および3にまとめた。
<溶融粘度の測定>
 実施例および比較例により得られた全芳香族液晶ポリエステル樹脂の、せん断速度1000S-1における融点+20℃での溶融粘度(Pa・s)を、キャピラリーレオメーター粘度計((株)東洋精機製作所キャピログラフ1D)と内径1mmキャピラリーを用い、JIS K7199に準拠して測定した。測定結果を表2および3にまとめた。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019

Claims (19)

  1.  6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)、
     芳香族ジオール化合物に由来する構成単位(II)、
     芳香族ジカルボン酸化合物に由来する構成単位(III)
    を含んでなり、
     構成単位(III)が、テレフタル酸に由来する構成単位(IIIA)を含み、かつ、2,6-ナフタレンジカルボン酸に由来する構成単位(IIIB)およびイソフタル酸に由来する構成単位(IIIC)の少なくとも1種を含み、
     前記構成単位の組成比(モル%)が、下記の条件:
     40モル%≦構成単位(I)≦80モル%
     10モル%≦構成単位(II)≦30モル% 
     3モル%≦構成単位(IIIA)≦28モル%
     0モル%≦構成単位(IIIB)≦9モル%
     0モル%≦構成単位(IIIC)<5モル%
    (但し、構成単位(IIIB)および構成単位(IIIC)の両方が0モル%ではない。)
    を満たすことを特徴とする、全芳香族液晶ポリエステル樹脂。
  2.  前記構成単位の組成比(モル%)が、下記の条件: 
     50モル%≦構成単位(I)≦80モル%
     10モル%≦構成単位(II)≦25モル%
     5モル%<構成単位(IIIA)<25モル%
    をさらに満たす、請求項1に記載の全芳香族液晶ポリエステル樹脂。
  3.  前記構成単位の組成比(モル%)が、下記の条件: 
     0モル%<構成単位(IIIB)+構成単位(IIIC)<5モル%
    をさらに満たす、請求項2に記載の全芳香族液晶ポリエステル樹脂。
  4.  前記構成単位の組成比(モル%)が、下記の条件:
     40モル%≦構成単位(I)≦75モル%
     12モル%≦構成単位(II)≦30モル%
     3モル%≦構成単位(IIIA)≦28モル%
     2モル%≦構成単位(IIIB)≦9モル%
    をさらに満たす、請求項1に記載の全芳香族液晶ポリエステル樹脂。
  5.  前記構成単位の組成比(モル%)が、下記の条件:
     50モル%≦構成単位(I)≦70モル%
     15モル%≦構成単位(II)≦27モル%
     6モル%≦構成単位(IIIA)≦24モル%
     3モル%≦構成単位(IIIB)≦9モル%
    をさらに満たす、請求項4に全芳香族液晶ポリエステル樹脂。
  6.  前記構成単位(II)が、下記式で表される、請求項1~5のいずれか一項に記載の全芳香族液晶ポリエステル樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは、所望により置換基を有するフェニル、ビフェニル、ナフチル、アントリルおよびフェナントリルからなる群より選択される)
  7.  構成単位(IIIA)と構成単位(IIIB)および(IIIC)の合計とのモル比(構成単位(IIIA)/(構成単位(IIIB)+(IIIC))が、3.2~45である、請求項3に記載の全芳香族液晶ポリエステル樹脂。
  8.  融点が、300℃以上である、請求項1~7のいずれか一項に記載の全芳香族液晶ポリエステル樹脂。
  9.  測定周波数10GHzにおける誘電正接が、0.85×10-3以下である、請求項1~8のいずれか一項に記載の全芳香族液晶ポリエステル樹脂。
  10.  前記液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1の条件で押し出した溶融ストランドの延伸比が、10倍以上である、請求項4または5に記載の全芳香族液晶ポリエステル樹脂。
  11.  測定周波数82GHzにおける誘電正接が、3.5×10-3未満である、請求項4または5に記載の全芳香族液晶ポリエステル樹脂。
  12.  測定周波数34GHzにおける30℃および100℃の誘電正接が、それぞれ2.0×10-3未満および4.0×10-3未満である、請求項4または5に記載の全芳香族液晶ポリエステル樹脂。
  13.  測定周波数34GHzにおける30℃から100℃までの誘電正接の変化率が、3.0×10-5/℃未満である、請求項4または5に記載の全芳香族液晶ポリエステル樹脂。
  14.  前記液晶ポリエステル樹脂の融点+20℃、せん断速度1000s-1における溶融粘度が、20~100Pa・sである、請求項4または5に記載の全芳香族液晶ポリエステル樹脂。
  15.  請求項1~14のいずれか一項に記載の全芳香族液晶ポリエステル樹脂を含んでなる、成形品。
  16.  フィルム状である、請求項15に記載の成形品。
  17.  繊維状である、請求項15に記載の成形品。
  18.  射出成形品である、請求項15に記載の成形品。
  19.  請求項15~18のいずれか一項に記載の成形品を含んでなる、電気電子部品。
PCT/JP2017/024405 2016-07-04 2017-07-03 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品 WO2018008612A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17824215.2A EP3480240A4 (en) 2016-07-04 2017-07-03 FULLY FLAVORED LIQUID CRYSTAL POLYESTER RESIN, SHAPED ITEM AND ELECTRICAL / ELECTRONIC COMPONENT
JP2018526381A JP6434195B2 (ja) 2016-07-04 2017-07-03 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
US16/314,998 US10822453B2 (en) 2016-07-04 2017-07-03 Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components
CN201780040987.1A CN109563253B (zh) 2016-07-04 2017-07-03 全芳香族液晶聚酯树脂、成型品、以及电气电子部件
KR1020187038232A KR102353665B1 (ko) 2016-07-04 2017-07-03 전방향족 액정 폴리에스테르 수지, 성형품, 및 전기전자 부품

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016132826 2016-07-04
JP2016-132826 2016-07-04
JP2016204652 2016-10-18
JP2016-204652 2016-10-18
JP2017063452 2017-03-28
JP2017-063452 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018008612A1 true WO2018008612A1 (ja) 2018-01-11

Family

ID=60912689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024405 WO2018008612A1 (ja) 2016-07-04 2017-07-03 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品

Country Status (7)

Country Link
US (1) US10822453B2 (ja)
EP (1) EP3480240A4 (ja)
JP (1) JP6434195B2 (ja)
KR (1) KR102353665B1 (ja)
CN (1) CN109563253B (ja)
TW (1) TWI724196B (ja)
WO (1) WO2018008612A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533880B1 (ja) * 2018-10-02 2019-06-19 上野製薬株式会社 液晶ポリエステル樹脂
JP6533881B1 (ja) * 2018-10-02 2019-06-19 上野製薬株式会社 液晶ポリエステル樹脂
WO2020070903A1 (ja) * 2018-10-02 2020-04-09 上野製薬株式会社 液晶ポリエステル樹脂
WO2020070904A1 (ja) * 2018-10-02 2020-04-09 上野製薬株式会社 液晶ポリエステル樹脂
JP2020193261A (ja) * 2019-05-27 2020-12-03 上野製薬株式会社 液晶ポリマー組成物
CN112292421A (zh) * 2018-06-26 2021-01-29 引能仕株式会社 可通过热处理来降低介质损耗角正切的含有全芳香族液晶聚酯树脂的树脂成型品和电气电子元件
US10968347B2 (en) * 2016-12-01 2021-04-06 Jxtg Nippon Oil & Energy Corporation Wholly aromatic liquid crystalline polyester resin
US10968311B2 (en) * 2017-03-28 2021-04-06 Jxtg Nippon Oil & Energy Corporation Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components
CN112969740A (zh) * 2018-10-31 2021-06-15 引能仕株式会社 可通过熔解来缓和各向异性的树脂组合物和由该树脂组合物形成的树脂成型品
WO2021187399A1 (ja) * 2020-03-18 2021-09-23 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
WO2022019292A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019296A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019294A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116546B2 (ja) * 2017-12-27 2022-08-10 Eneos株式会社 金属箔張積層板
US10818434B2 (en) 2018-04-11 2020-10-27 Eaton Intelligent Power Limited Adaptor for a capacitor
JP7312767B2 (ja) * 2018-12-27 2023-07-21 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US20210075162A1 (en) * 2019-09-10 2021-03-11 Ticona Llc Electrical Connector Formed from a Polymer Composition having a Low Dielectric Constant and Dissipation Factor
US20210070927A1 (en) * 2019-09-10 2021-03-11 Ticona Llc Polymer Composition and Film for Use in 5G Applications
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
KR20220128466A (ko) * 2020-01-17 2022-09-20 도레이 카부시키가이샤 액정 폴리에스테르 수지, 액정 폴리에스테르 수지 조성물, 성형품, 적층체 및 액정 폴리에스테르 수지 필름 및 그 제조 방법
WO2021173412A1 (en) 2020-02-26 2021-09-02 Ticona Llc Circuit structure
JP2022011773A (ja) 2020-06-30 2022-01-17 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system
JPWO2022260082A1 (ja) * 2021-06-09 2022-12-15
JPWO2022260087A1 (ja) * 2021-06-09 2022-12-15
CN114316230A (zh) * 2021-12-28 2022-04-12 上海普利特化工新材料有限公司 一种全芳香族热致型液晶聚脂及其初生纤维

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509020A (ja) * 1993-05-14 1996-09-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 液晶ポリマー組成物
JP2009127024A (ja) * 2007-11-28 2009-06-11 Polyplastics Co 全芳香族ポリエステル及びポリエステル樹脂組成物
KR20130012509A (ko) * 2011-07-25 2013-02-04 삼성정밀화학 주식회사 전방향족 액정 폴리에스테르 수지, 전방향족 액정 폴리에스테르 수지 컴파운드 및 상기 수지 컴파운드를 포함하는 물품

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3730150B2 (ja) 2000-09-22 2005-12-21 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
TWI289573B (en) 2000-09-22 2007-11-11 Polyplastics Co Whole aromatic polyester and polyester resin composition
JP4363057B2 (ja) 2003-02-21 2009-11-11 住友化学株式会社 絶縁材料用液晶性芳香族ポリエステルおよびその樹脂組成物
JP4639756B2 (ja) 2003-11-05 2011-02-23 住友化学株式会社 芳香族液晶ポリエステルおよびそのフィルムならびにそれらの用途
TWI359159B (en) 2003-11-05 2012-03-01 Sumitomo Chemical Co Aromatic liquid-crystalline polyester
JP5753143B2 (ja) * 2012-09-21 2015-07-22 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物、並びにポリエステル成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509020A (ja) * 1993-05-14 1996-09-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 液晶ポリマー組成物
JP2009127024A (ja) * 2007-11-28 2009-06-11 Polyplastics Co 全芳香族ポリエステル及びポリエステル樹脂組成物
KR20130012509A (ko) * 2011-07-25 2013-02-04 삼성정밀화학 주식회사 전방향족 액정 폴리에스테르 수지, 전방향족 액정 폴리에스테르 수지 컴파운드 및 상기 수지 컴파운드를 포함하는 물품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480240A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968347B2 (en) * 2016-12-01 2021-04-06 Jxtg Nippon Oil & Energy Corporation Wholly aromatic liquid crystalline polyester resin
US10968311B2 (en) * 2017-03-28 2021-04-06 Jxtg Nippon Oil & Energy Corporation Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components
EP3816213A4 (en) * 2018-06-26 2022-03-09 ENEOS Corporation MOLDED RESIN PRODUCT WITH FULLY AROMATIC LIQUID CRYSTAL POLYESTER RESIN CAPABLE OF DIELECTRIC LOSS REDUCTION BY HEAT TREATMENT AND ELECTRICAL/ELECTRONIC COMPONENT
JPWO2020003690A1 (ja) * 2018-06-26 2021-07-08 Eneos株式会社 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品
CN112292421B (zh) * 2018-06-26 2023-11-17 引能仕株式会社 可通过热处理来降低介质损耗角正切的含有全芳香族液晶聚酯树脂的树脂成型品和电气电子元件
CN112292421A (zh) * 2018-06-26 2021-01-29 引能仕株式会社 可通过热处理来降低介质损耗角正切的含有全芳香族液晶聚酯树脂的树脂成型品和电气电子元件
JP7324752B2 (ja) 2018-06-26 2023-08-10 Eneos株式会社 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品
US11505647B2 (en) 2018-06-26 2022-11-22 Eneos Corporation Resin molded article comprising wholly aromatic liquid crystalline polyester resin capable of reducing dielectric loss tangent by heat treatment and electrical and electronic component
JP6533880B1 (ja) * 2018-10-02 2019-06-19 上野製薬株式会社 液晶ポリエステル樹脂
WO2020070904A1 (ja) * 2018-10-02 2020-04-09 上野製薬株式会社 液晶ポリエステル樹脂
JP6533881B1 (ja) * 2018-10-02 2019-06-19 上野製薬株式会社 液晶ポリエステル樹脂
WO2020070903A1 (ja) * 2018-10-02 2020-04-09 上野製薬株式会社 液晶ポリエステル樹脂
CN112969740A (zh) * 2018-10-31 2021-06-15 引能仕株式会社 可通过熔解来缓和各向异性的树脂组合物和由该树脂组合物形成的树脂成型品
CN112969740B (zh) * 2018-10-31 2023-09-29 引能仕株式会社 可通过熔解来缓和各向异性的树脂组合物和由该树脂组合物形成的树脂成型品
JP2020193261A (ja) * 2019-05-27 2020-12-03 上野製薬株式会社 液晶ポリマー組成物
WO2021187399A1 (ja) * 2020-03-18 2021-09-23 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
JP2021147476A (ja) * 2020-03-18 2021-09-27 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
WO2022019292A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019296A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019294A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
JP7458924B2 (ja) 2020-07-21 2024-04-01 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品

Also Published As

Publication number Publication date
JP6434195B2 (ja) 2018-12-05
EP3480240A1 (en) 2019-05-08
TWI724196B (zh) 2021-04-11
TW201819459A (zh) 2018-06-01
EP3480240A4 (en) 2020-02-26
CN109563253B (zh) 2021-08-17
US10822453B2 (en) 2020-11-03
US20190202978A1 (en) 2019-07-04
KR20190028668A (ko) 2019-03-19
CN109563253A (zh) 2019-04-02
KR102353665B1 (ko) 2022-01-19
JPWO2018008612A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6434195B2 (ja) 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
WO2018181525A1 (ja) 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
US11505647B2 (en) Resin molded article comprising wholly aromatic liquid crystalline polyester resin capable of reducing dielectric loss tangent by heat treatment and electrical and electronic component
JP6900151B2 (ja) 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
JP7312767B2 (ja) 樹脂組成物および該樹脂組成物からなる樹脂成形品
US11781009B2 (en) Resin composition capable of relaxing anisotropy by fusing and resin molded article comprising the same
KR20230026442A (ko) 액정 폴리에스테르 수지, 성형품, 및 전기 전자 부품
KR20230026444A (ko) 액정 폴리에스테르 수지, 성형품, 및 전기 전자 부품
WO2022019294A1 (ja) 液晶ポリエステル樹脂、成形品、および電気電子部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526381

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187038232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824215

Country of ref document: EP

Effective date: 20190204