WO2021248899A1 - 一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法 - Google Patents

一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法 Download PDF

Info

Publication number
WO2021248899A1
WO2021248899A1 PCT/CN2020/142057 CN2020142057W WO2021248899A1 WO 2021248899 A1 WO2021248899 A1 WO 2021248899A1 CN 2020142057 W CN2020142057 W CN 2020142057W WO 2021248899 A1 WO2021248899 A1 WO 2021248899A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
polydopamine
nanofiltration membrane
concentration
composite nanofiltration
Prior art date
Application number
PCT/CN2020/142057
Other languages
English (en)
French (fr)
Inventor
陈云强
洪昱斌
方富林
蓝伟光
Original Assignee
三达膜科技(厦门)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三达膜科技(厦门)有限公司 filed Critical 三达膜科技(厦门)有限公司
Publication of WO2021248899A1 publication Critical patent/WO2021248899A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the invention belongs to the technical field of membrane separation, and specifically relates to a graphene oxide modified polydopamine composite nanofiltration membrane and a preparation method thereof.
  • Nanofiltration membrane is a new type of pressure-driven membrane with a pore size between ultrafiltration and reverse osmosis, and can be used for the separation of divalent and monovalent salts.
  • Nanofiltration membranes have the characteristics of low operating pressure, high flux and energy saving. Therefore, nanofiltration membranes are widely used in bioengineering, medicine, metallurgy, water treatment, electronics and other fields.
  • the commonly used nanofiltration membrane in the industry is the organic nanofiltration membrane, which has many advantages such as high air permeability, low density, good film formation, low cost and good flexibility.
  • the organic nanofiltration membrane has low flux in industrial applications. , Poor anti-fouling ability and other shortcomings, so it is necessary to modify the organic nanofiltration membrane to improve the flux and anti-fouling of the membrane layer.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a graphene oxide modified polydopamine composite nanofiltration membrane.
  • Another object of the present invention is to provide a method for preparing the above-mentioned graphene oxide modified polydopamine composite nanofiltration membrane.
  • a graphene oxide modified polydopamine composite nanofiltration membrane comprising a polyethersulfone support and an organic functional layer arranged on the polyethersulfone support.
  • the organic functional layer is composed of an aqueous phase monomer, an organic phase monomer and
  • the acid acceptor is the raw material to be formed on the polyethersulfone support through the interfacial polymerization reaction;
  • the above-mentioned water phase monomer is composed of polydopamine and graphene oxide
  • the organic phase monomer is trimesoyl chloride
  • the above-mentioned acid acceptor is a polyamine.
  • the polyamine is diethylamine.
  • the pore size of the polyethersulfone support is 10-30KD.
  • the mass ratio of the polydopamine to graphene oxide is 1:0.6-1.
  • the mass ratio of the polydopamine, graphene oxide and polyamine is 1:0.6-1:9-11.
  • the method for preparing the graphene oxide modified polydopamine composite nanofiltration membrane is characterized in that it includes: using a mixture of polydopamine and graphene oxide as an aqueous monomer, using phthaloyl chloride as an organic monomer, and using a multi-element Amine is an acid acceptor, and the organic functional layer is formed on the polyethersulfone support through an interfacial polymerization reaction to obtain the graphene oxide modified polydopamine composite nanofiltration membrane.
  • step (3) After the material obtained in step (3) is dried in the shade, it is heat-treated at 50-80° C., and then cooled in a furnace to obtain the graphene oxide modified polydopamine composite nanofiltration membrane.
  • the concentration of the graphene oxide aqueous solution is 1-5 mg/L.
  • the concentration of the polyamine in the aqueous solution is 0.8-1.2 wt%.
  • the concentration of the n-hexane solution of trimesoyl chloride is 0.08-0.12 wt%.
  • the beneficial effect of the present invention is that the present invention adds a polydopamine composite nanofiltration membrane through graphene oxide to improve the hydrophilicity and roughness of the membrane layer surface, thereby increasing the water flux of the membrane layer.
  • Figure 1 is a scanning electron micrograph of a graphene oxide modified polydopamine composite nanofiltration membrane prepared in Example 2 of the present invention.
  • the modified Hummers method in the following comparative examples and examples specifically includes:
  • step (3) Place the material obtained in step (3) in a cool place to air dry, and then put it in a 50°C oven for heat treatment for 15 minutes, and then cool it in the furnace to obtain a contrast film.
  • Membrane tube performance test The comparative membrane prepared in this comparative example was tested at room temperature and 0.6MPa pressure. Its pure water flux was 57LHM and the rejection rate of 0.2wt% magnesium sulfate solution was 96%.
  • step (3) Place the material obtained in step (3) in a cool place to air dry, and then put it in a 50°C oven for heat treatment for 15 minutes, and then cool it in the furnace to obtain a contrast film.
  • Membrane tube performance test the comparative membrane prepared in this comparative example was tested at room temperature and 0.6 MPa pressure. Its pure water flux was 60 LHM, and the rejection rate of 0.2wt% magnesium sulfate solution was 95%.
  • step (3) Place the material obtained in step (3) in a cool place to air dry, and then put it in a 50°C oven for heat treatment for 15 minutes, and then cool it in the furnace to obtain a contrast film.
  • Membrane tube performance test the comparative membrane prepared in this comparative example was tested at room temperature and 0.6 MPa pressure. Its pure water flux was 64LHM, and the rejection rate of 0.2wt% magnesium sulfate solution was 93%.
  • step (3) The material obtained in step (3) is placed in a cool place and air-dried, and then placed in an oven at 50° C. for heat treatment for 15 minutes, and then cooled in the furnace to obtain the graphene oxide modified polydopamine composite nanofiltration membrane.
  • step (3) Place the material obtained in step (3) in a cool place to air dry, and then put it in a 50°C oven for heat treatment for 15 minutes, and then cool it down in the furnace to obtain the graphene oxide modified polydopamine composite sodium as shown in Figure 1. Filter membrane.
  • step (3) The material obtained in step (3) is placed in a cool place and air-dried, and then placed in an oven at 50° C. for heat treatment for 15 minutes, and then cooled in the furnace to obtain the graphene oxide modified polydopamine composite nanofiltration membrane.
  • Membrane tube performance test the graphene oxide modified polydopamine composite nanofiltration membrane prepared in this example was tested at room temperature and 0.6MPa pressure. Its pure water flux was 76LHM, compared with 0.2wt% magnesium sulfate solution The retention rate is 98%.
  • the invention discloses a graphene oxide modified polydopamine composite nanofiltration membrane and a preparation method thereof.
  • the composite nanofiltration membrane comprises a polyethersulfone support and an organic functional layer arranged on the polyethersulfone support.
  • the monomer, organic phase monomer and acid acceptor are formed on the polyethersulfone support through interfacial polymerization reaction as raw materials.
  • the invention adds a polydopamine composite nanofiltration membrane through graphene oxide to improve the hydrophilicity and roughness of the membrane layer surface, thereby increasing the water flux of the membrane layer, and has industrial practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法,包括聚醚砜支撑体和设于该聚醚砜支撑体上的有机功能层,该有机功能层以水相单体、有机相单体和酸接受剂为原料通过界面聚合反应于聚醚砜支撑体上形成。本发明通过氧化石墨烯添加聚多巴胺复合纳滤膜,提高膜层表面的亲水性和粗糙度从而提高膜层的水通量。

Description

一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法 技术领域
本发明属于膜分离技术领域,具体涉及一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法。
背景技术
纳滤膜是一种新型的压力驱动膜,膜孔径介于超滤和反渗透之间,能够用于二价盐和一价盐的分离。纳滤膜具有操作压力低、高通量和节能等特点,因此,纳滤膜被广泛地应用于生物工程、医药、冶金、水处理、电子等领域。工业常用的纳滤膜为有机纳滤膜,它具有透气性高、密度低、成膜性好、成本低和柔韧性好等诸多优点,但是有机纳滤膜在工业应用中存在着通量低,抗污染能力差等缺点,因此需要对有机纳滤膜进行改性,提高膜层的通量和抗污染性。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种氧化石墨烯改性聚多巴胺复合纳滤膜。
本发明的另一目的在于提供上述氧化石墨烯改性聚多巴胺复合纳滤膜的制备方法。
本发明的技术方案如下:
一种氧化石墨烯改性聚多巴胺复合纳滤膜,包括聚醚砜支撑体和设于该聚醚砜支撑体上的有机功能层,该有机功能层以水相单体、有机相单体和酸接受剂为原料通过界面聚合反应于聚醚砜支撑体上形成;
上述水相单体由聚多巴胺和氧化石墨烯组成;
上述有机相单体为均苯三甲酰氯;
上述酸接受剂为多元胺。
在本发明的一个优选实施方案中,所述多元胺为二乙胺。
在本发明的一个优选实施方案中,所述聚醚砜支撑体的孔径为10-30KD。
在本发明的一个优选实施方案中,所述聚多巴胺与氧化石墨烯的质量比为1:0.6-1。
进一步优选的,所述聚多巴胺、氧化石墨烯和多元胺的质量比为1:0.6-1:9-11。
本发明的另一技术方案如下:
上述氧化石墨烯改性聚多巴胺复合纳滤膜的制备方法,其特征在于:包括:以聚多巴胺和氧化石墨烯的混合物作为水相单体,以均苯二甲酰氯作为有机单体,以多元胺为酸接受剂,通过界面聚合反应在所述聚醚砜支撑体上形成所述有机功能层,即得所述氧化石墨烯改性聚多巴胺复合纳滤膜。
在本发明的一个优选实施方案中,包括如下步骤:
(1)使用改性的Hummers方法制备氧化石墨烯水溶液;
(2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液;
(3)将经过乙醇和水洗后的聚醚砜支撑体浸泡于上述水相溶液中,室温反应后进行泡水和吹干,再浸泡于均苯三甲酰氯的正己烷溶液中,室温下反应后进行泡水和吹干;重复该步骤至少1次;
(4)将步骤(3)所得的物料阴干后,再于50-80℃热处理,之后随炉冷却,即得所述氧化石墨烯改性聚多巴胺复合纳滤膜。
进一步优选的,所述氧化石墨烯水溶液的浓度为1-5mg/L。
进一步优选的,所述步骤(4)中,所述多元胺在所述水相溶液中的浓度为0.8-1.2wt%。
进一步优选的,所述均苯三甲酰氯的正己烷溶液的浓度为0.08-0.12wt%。
本发明的有益效果是:本发明通过氧化石墨烯添加聚多巴胺复合纳滤膜,提高膜层表面的亲水性和粗糙度从而提高膜层的水通量。
附图说明
图1为本发明实施例2制得的氧化石墨烯改性聚多巴胺复合纳滤膜的扫描电镜照片。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
下述对比例和实施例中的改性的Hummers方法具体包括:
(1)取1000mL的烧杯洗净干燥,加入3g鳞片石墨,在磁力搅拌下缓慢加入 360mL浓硫酸(98%H 2SO 4)和40mL浓磷酸(95%H 3PO 4),再分批次缓慢加入18g高锰酸钾(KMnO 4);烧杯移至50℃油浴中,搅拌12h。取出烧杯,自然冷却至室温。反应液缓慢浇在400mL稀双氧水(含18ml 30%H 2O 2)的冰块上,溶液变成亮黄色;
(2)将上述溶液用孔径为0.05μm管式陶瓷膜进行错流过滤进行除杂,获得除杂后的氧化石墨烯溶液;其基本原理是利用陶瓷膜的孔径筛分作用,即陶瓷管式膜过滤孔径尺寸小于GO片层的尺寸,使得GO片层无法通过管式陶瓷膜流出,而是随着管道内液体循环回流至料液桶中,既不会堵塞膜孔,保证膜孔的畅通性,而且也对尺寸较大的GO片层进行粉碎和剥离;陶瓷管式膜过滤孔径尺寸大于GO溶液的杂质离子尺寸,使得H +、K +、Mn 2+等酸根和金属离子可以轻松穿过陶瓷管式膜的孔径排出。如此反复循环,实现GO与废酸、K +、和Mn 2+等金属离子的分离,以及对GO溶液的收集,完成对GO的洗涤除杂;
(3)根据所需浓度进行稀释或浓缩,获得浓度为1-5mg/mL的氧化石墨烯水溶液。
对比例1
(1)使用改性的Hummers方法制备浓度为1-5mg/mL的氧化石墨烯水溶液;
(2)将聚多巴胺和多元胺于水中搅拌混合均匀,超声处理后,获得水相溶液,其中,聚多巴胺的浓度为0.1wt%,二乙胺的浓度为1wt%;
(3)将经过乙醇和水洗后的50KD聚醚砜支撑体浸泡于上述水相溶液中,室温反应10min后进行泡水和吹干,再浸泡于浓度为0.1wt%的均苯三甲酰氯的正己烷溶液中,室温下反应10min后进行泡水和吹干;重复该步骤1次;
(4)将步骤(3)所得的物料放置在阴凉处风干后放入50℃烘箱中热处理15min,之后随炉冷却,即得对比膜。
膜管性能测试:将本对比例制得的对比膜在室温和0.6MPa的压力条件下进行测试,其纯水通量57LHM,对0.2wt%的硫酸镁溶液截留率96%。
对比例2
(1)使用改性的Hummers方法制备浓度为1-5mg/mL的氧化石墨烯水溶液;
(2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液,其中,聚多巴胺的浓度为0.1wt%,氧化石墨烯的浓度为0.03wt%,二乙胺的浓度为1wt%;
(3)将经过乙醇和水洗后的50KD聚醚砜支撑体浸泡于上述水相溶液中,室温反应10min后进行泡水和吹干,再浸泡于浓度为0.1wt%的均苯三甲酰氯的正己烷溶液中,室温下反应10min后进行泡水和吹干;重复该步骤1次;
(4)将步骤(3)所得的物料放置在阴凉处风干后放入50℃烘箱中热处理15min,之后随炉冷却,即得对比膜。
膜管性能测试:将本对比例制得的对比膜在室温和0.6MPa的压力条件下进行测试,其纯水通量60LHM,对0.2wt%的硫酸镁溶液截留率95%。
对比例3
(1)使用改性的Hummers方法制备浓度为1-5mg/mL的氧化石墨烯水溶液;
(2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液,其中,聚多巴胺的浓度为0.1wt%,氧化石墨烯的浓度为0.12wt%,二乙胺的浓度为1wt%;
(3)将经过乙醇和水洗后的50KD聚醚砜支撑体浸泡于上述水相溶液中,室温反应10min后进行泡水和吹干,再浸泡于浓度为0.1wt%的均苯三甲酰氯的正己烷溶液中,室温下反应10min后进行泡水和吹干;重复该步骤1次;
(4)将步骤(3)所得的物料放置在阴凉处风干后放入50℃烘箱中热处理15min,之后随炉冷却,即得对比膜。
膜管性能测试:将本对比例制得的对比膜在室温和0.6MPa的压力条件下进行测试,其纯水通量64LHM,对0.2wt%的硫酸镁溶液截留率93%。
实施例1
(1)使用改性的Hummers方法制备浓度为1-5mg/mL的氧化石墨烯水溶液;
(2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液,其中,聚多巴胺的浓度为0.1wt%,氧化石墨烯的浓度为0.06wt%, 二乙胺的浓度为1wt%;
(3)将经过乙醇和水洗后的50KD聚醚砜支撑体浸泡于上述水相溶液中,室温反应10min后进行泡水和吹干,再浸泡于浓度为0.1wt%的均苯三甲酰氯的正己烷溶液中,室温下反应10min后进行泡水和吹干;重复该步骤1次;
(4)将步骤(3)所得的物料放置在阴凉处风干后放入50℃烘箱中热处理15min,之后随炉冷却,即得所述氧化石墨烯改性聚多巴胺复合纳滤膜。
膜管性能测试:将本实施例制得的氧化石墨烯改性聚多巴胺复合纳滤膜在室温和0.6MPa的压力条件下进行测试,其纯水通量74LHM,对0.2wt%的硫酸镁溶液截留率96%。
实施例2
(1)使用改性的Hummers方法制备浓度为1-5mg/mL的氧化石墨烯水溶液;
(2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液,其中,聚多巴胺的浓度为0.1wt%,氧化石墨烯的浓度为0.08wt%,二乙胺的浓度为1wt%;
(3)将经过乙醇和水洗后的50KD聚醚砜支撑体浸泡于上述水相溶液中,室温反应10min后进行泡水和吹干,再浸泡于浓度为0.1wt%的均苯三甲酰氯的正己烷溶液中,室温下反应10min后进行泡水和吹干;重复该步骤1次;
(4)将步骤(3)所得的物料放置在阴凉处风干后放入50℃烘箱中热处理15min,之后随炉冷却,即得如图1所示的所述氧化石墨烯改性聚多巴胺复合纳滤膜。
膜管性能测试:将本实施例制得的氧化石墨烯改性聚多巴胺复合纳滤膜在室温和0.6MPa的压力条件下进行测试,其纯水通量80LHM,对0.2wt%的硫酸镁溶液截留率98%。
实施例3
(1)使用改性的Hummers方法制备浓度为1-5mg/mL的氧化石墨烯水溶液;
(2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液,其中,聚多巴胺的浓度为0.1wt%,氧化石墨烯的浓度为0.1wt%, 二乙胺的浓度为1wt%;
(3)将经过乙醇和水洗后的50KD聚醚砜支撑体浸泡于上述水相溶液中,室温反应10min后进行泡水和吹干,再浸泡于浓度为0.1wt%的均苯三甲酰氯的正己烷溶液中,室温下反应10min后进行泡水和吹干;重复该步骤1次;
(4)将步骤(3)所得的物料放置在阴凉处风干后放入50℃烘箱中热处理15min,之后随炉冷却,即得所述氧化石墨烯改性聚多巴胺复合纳滤膜。
膜管性能测试:将本实施例制得的氧化石墨烯改性聚多巴胺复合纳滤膜在室温和0.6MPa的压力条件下进行测试,其纯水通量76LHM,对0.2wt%的硫酸镁溶液截留率98%。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法,包括聚醚砜支撑体和设于该聚醚砜支撑体上的有机功能层,该有机功能层以水相单体、有机相单体和酸接受剂为原料通过界面聚合反应于聚醚砜支撑体上形成。本发明通过氧化石墨烯添加聚多巴胺复合纳滤膜,提高膜层表面的亲水性和粗糙度从而提高膜层的水通量,具有工业实用性。

Claims (10)

  1. 一种氧化石墨烯改性聚多巴胺复合纳滤膜,其特征在于:包括聚醚砜支撑体和设于该聚醚砜支撑体上的有机功能层,该有机功能层以水相单体、有机相单体和酸接受剂为原料通过界面聚合反应于聚醚砜支撑体上形成;
    上述水相单体由聚多巴胺和氧化石墨烯组成;
    上述有机相单体为均苯三甲酰氯;
    上述酸接受剂为多元胺。
  2. 如权利要求1所述的一种氧化石墨烯改性聚多巴胺复合纳滤膜,其特征在于:所述多元胺为二乙胺。
  3. 如权利要求1所述的一种氧化石墨烯改性聚多巴胺复合纳滤膜,其特征在于:所述聚醚砜支撑体的孔径为10-30KD。
  4. 如权利要求1所述的一种氧化石墨烯改性聚多巴胺复合纳滤膜,其特征在于:所述聚多巴胺与氧化石墨烯的质量比为1:0.6-1。
  5. 如权利要求4所述的一种氧化石墨烯改性聚多巴胺复合纳滤膜,其特征在于:所述聚多巴胺、氧化石墨烯和多元胺的质量比为1:0.6-1:9-11。
  6. 权利要求1至5中任一权利要求所述的一种氧化石墨烯改性聚多巴胺复合纳滤膜的制备方法,其特征在于:包括:以聚多巴胺和氧化石墨烯的混合物作为水相单体,以均苯二甲酰氯作为有机单体,以多元胺为酸接受剂,通过界面聚合反应在所述聚醚砜支撑体上形成所述有机功能层,即得所述氧化石墨烯改性聚多巴胺复合纳滤膜。
  7. 如权利要求6所述的制备方法,其特征在于:包括如下步骤:
    (1)使用改性的Hummers方法制备氧化石墨烯水溶液;
    (2)将聚多巴胺和氧化石墨烯水溶液搅拌混合均匀,再加入多元胺,超声处理后,获得水相溶液;所述聚多巴胺的浓度为0.1wt%,氧化石墨烯的浓度为0.06-0.1wt%,二乙胺的浓度为1wt%;
    (3)将经过乙醇和水洗后的聚醚砜支撑体浸泡于上述水相溶液中,室温反应后进行泡水和吹干,再浸泡于均苯三甲酰氯的正己烷溶液中,室温下反应后进行泡水和吹干;重复该步骤至少1次;
    (4)将步骤(3)所得的物料阴干后,再于50-80℃热处理,之后随炉冷却,即得所述氧化石墨烯改性聚多巴胺复合纳滤膜。
  8. 如权利要求7所述的制备方法,其特征在于:所述氧化石墨烯水溶液的浓度为1-5mg/L。
  9. 如权利要求7所述的制备方法,其特征在于:所述步骤(4)中,所述多元胺在所述水相溶液中的浓度为0.8-1.2wt%。
  10. 如权利要求7所述的制备方法,其特征在于:所述均苯三甲酰氯的正己烷溶液的浓度为0.08-0.12wt%。
PCT/CN2020/142057 2020-06-12 2020-12-31 一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法 WO2021248899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010539691.8 2020-06-12
CN202010539691.8A CN113797772A (zh) 2020-06-12 2020-06-12 一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2021248899A1 true WO2021248899A1 (zh) 2021-12-16

Family

ID=78846929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142057 WO2021248899A1 (zh) 2020-06-12 2020-12-31 一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法

Country Status (2)

Country Link
CN (1) CN113797772A (zh)
WO (1) WO2021248899A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478024A (zh) * 2022-03-02 2022-05-13 哈尔滨工业大学(威海) 一种荷负电耐污染陶瓷膜的制备方法
CN114570221A (zh) * 2022-03-22 2022-06-03 四川农业大学 基于改性石墨相氮化碳的多层复合膜及其制备方法与应用
WO2023185303A1 (zh) * 2022-03-28 2023-10-05 中国华能集团清洁能源技术研究院有限公司 一种纳滤复合膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879701A (zh) * 2016-05-06 2016-08-24 北京林业大学 一种二维纳米材料嵌层的新型复合正渗透膜及其制备方法
CN107106986A (zh) * 2014-10-03 2017-08-29 威廉马歇莱思大学 表面改性多孔膜用于流体蒸馏的用途
CN110124527A (zh) * 2019-05-31 2019-08-16 江南大学 一种多巴胺辅助沉积制备高通量氧化石墨烯量子点复合纳滤膜的方法
CN110496533A (zh) * 2019-09-06 2019-11-26 中国科学院上海高等研究院 一种含聚合物涂层的高性能纳滤复合膜

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518226B2 (en) * 2011-05-16 2019-12-31 Dileep Agnihotri Membranes with polydopamine coatings
CN105169969B (zh) * 2015-07-11 2018-08-17 河南工程学院 水处理用高性能复合膜的制备方法
EP3389836B1 (en) * 2015-12-17 2020-03-04 Nitto Denko Corporation Selectively permeable graphene oxide membrane
CN105664738B (zh) * 2016-04-11 2018-08-07 江西师范大学 一种用于放射性废水处理的氧化石墨烯基复合膜
CN106890570A (zh) * 2017-03-03 2017-06-27 浙江工业大学 一种氧化石墨烯掺杂的中空纤维纳滤膜的制备方法
CN107469651B (zh) * 2017-08-22 2021-08-03 中国海洋大学 一种高通量交联聚酰亚胺耐溶剂纳滤膜的制备方法及其应用
CN108568217A (zh) * 2018-03-29 2018-09-25 同济大学 一种改性全芳香聚酰胺膜及其制备方法
CN109772177A (zh) * 2019-03-12 2019-05-21 江西理工大学 一种氧化石墨烯改性纳滤膜的制备方法和应用
CN110280143B (zh) * 2019-06-27 2022-04-19 三达膜科技(厦门)有限公司 一种多巴胺/氧化石墨烯/聚乙烯醇复合纳滤膜的制备方法
CN110339725A (zh) * 2019-07-09 2019-10-18 浙江海纳环保科技有限公司 基于多巴胺改性纳米粒子杂化高性能反渗透膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106986A (zh) * 2014-10-03 2017-08-29 威廉马歇莱思大学 表面改性多孔膜用于流体蒸馏的用途
CN105879701A (zh) * 2016-05-06 2016-08-24 北京林业大学 一种二维纳米材料嵌层的新型复合正渗透膜及其制备方法
CN110124527A (zh) * 2019-05-31 2019-08-16 江南大学 一种多巴胺辅助沉积制备高通量氧化石墨烯量子点复合纳滤膜的方法
CN110496533A (zh) * 2019-09-06 2019-11-26 中国科学院上海高等研究院 一种含聚合物涂层的高性能纳滤复合膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI HYEON-GYU, SHAH AATIF ALI, NAM SEUNG-EUN, PARK YOU-IN, PARK HOSIK: "Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis", DESALINATION, vol. 449, no. 1, 1 January 2019 (2019-01-01), pages 41 - 49, XP055879279, ISSN: 0011-9164, DOI: 10.1016/j.desal.2018.10.012 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478024A (zh) * 2022-03-02 2022-05-13 哈尔滨工业大学(威海) 一种荷负电耐污染陶瓷膜的制备方法
CN114570221A (zh) * 2022-03-22 2022-06-03 四川农业大学 基于改性石墨相氮化碳的多层复合膜及其制备方法与应用
CN114570221B (zh) * 2022-03-22 2023-07-07 四川农业大学 基于改性石墨相氮化碳的多层复合膜及其制备方法与应用
WO2023185303A1 (zh) * 2022-03-28 2023-10-05 中国华能集团清洁能源技术研究院有限公司 一种纳滤复合膜及其制备方法

Also Published As

Publication number Publication date
CN113797772A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021248899A1 (zh) 一种氧化石墨烯改性聚多巴胺复合纳滤膜及其制备方法
WO2020200289A1 (zh) 一种有机无机哌嗪聚酰胺复合陶瓷纳滤膜的制备方法
Huang et al. Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites
CN108435002B (zh) 一种功能化碳量子点改性的复合纳滤膜的制备方法
Ghanbari et al. Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination
CN110280144B (zh) 一种氧化铝/氧化石墨烯/聚乙烯醇复合纳滤膜的制备方法
CN110280143B (zh) 一种多巴胺/氧化石墨烯/聚乙烯醇复合纳滤膜的制备方法
CN110614041A (zh) 一种负载中空mof的氧化石墨烯复合膜及其制备方法和用途
CN106031847B (zh) 一种掺杂无机/有机纳米粒子正渗透膜的制备方法
CN107158953B (zh) 一种膜蒸馏用纳米线疏水膜的制备方法
CN108479429A (zh) 一种利用纳米Fe3O4改性PVDF微滤膜的制备方法及其运用
CN113797770B (zh) 一种多巴胺改性氧化二硫化钼掺杂哌嗪聚酰胺复合陶瓷纳滤膜及其制备方法
CN113648850B (zh) 具有高通量和高去除率MXene/还原多孔氧化石墨烯(r-HGO)复合膜的制备方法
CN107349787A (zh) 一种添加氨基化石墨烯量子点的正渗透膜制备方法、所制备的正渗透膜以及该膜的应用
CN112210081B (zh) 磺化氧化石墨烯负载金属有机框架改性正渗透纳米复合膜及其制备方法
CN110559889A (zh) 一种中空纳米颗粒复合纳滤膜及其制备方法和用途
CN110559888B (zh) 一种两亲性氧化石墨烯改性超薄复合纳滤膜及其制备方法与应用
CN111701465A (zh) 超亲水性SiO2/PDAus/PVDF复合膜的制备
CN110813241A (zh) 一种氮氧共掺杂多孔碳材料及其制备方法和应用
CN110947308B (zh) 一种以GO/ZnO制备复合反渗透膜的方法
CN113797771B (zh) 一种氧化石墨烯-二氧化钛-银掺杂哌嗪聚酰胺复合纳滤膜及其制备方法
CN113797768B (zh) 一种氧化二硫化钼掺杂哌嗪聚酰胺复合陶瓷纳滤膜及其制备方法
CN115814617A (zh) 植酸-氮掺杂碳量子点复合物作为水相单体在制备聚酰胺纳滤膜中的应用
CN114130197A (zh) 一种氧化石墨烯二氧化钛-多巴胺pei纳滤膜及其制备方法
CN113797769B (zh) 一种多巴胺改性二氧化钛氧化石墨烯聚酰胺纳滤膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939743

Country of ref document: EP

Kind code of ref document: A1