WO2021246055A1 - 暗色粉分散液、暗色粉分散体ならびに着色層付基材 - Google Patents

暗色粉分散液、暗色粉分散体ならびに着色層付基材 Download PDF

Info

Publication number
WO2021246055A1
WO2021246055A1 PCT/JP2021/015021 JP2021015021W WO2021246055A1 WO 2021246055 A1 WO2021246055 A1 WO 2021246055A1 JP 2021015021 W JP2021015021 W JP 2021015021W WO 2021246055 A1 WO2021246055 A1 WO 2021246055A1
Authority
WO
WIPO (PCT)
Prior art keywords
dark
powder dispersion
pigment
pigments
composite
Prior art date
Application number
PCT/JP2021/015021
Other languages
English (en)
French (fr)
Inventor
孝郁 伊藤
啓一 佐藤
美香 岡田
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020191647A external-priority patent/JP7415890B2/ja
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US17/924,438 priority Critical patent/US20230272225A1/en
Priority to EP21818569.2A priority patent/EP4163108A1/en
Priority to CN202180040473.2A priority patent/CN115698205A/zh
Priority to KR1020227036522A priority patent/KR20220154232A/ko
Publication of WO2021246055A1 publication Critical patent/WO2021246055A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/032Powdery paints characterised by a special effect of the produced film, e.g. wrinkle, pearlescence, matt finish
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D157/00Coating compositions based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D157/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C09D157/12Homopolymers or copolymers containing elements other than carbon and hydrogen containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/031Powdery paints characterised by particle size or shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • C09D5/035Coloring agents, e.g. pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • C03C2217/485Pigments

Definitions

  • the present invention relates to a dark-colored powder dispersion, a dark-colored powder dispersion, and a base material with a colored layer used for coloring window glass of automobiles and buildings.
  • a light-shielding film to the window glass of an automobile or a building, it is possible to prevent the inside or the interior of the vehicle from being seen through from the outside or the outside, to protect privacy and enhance fashionability.
  • Such a light-shielding film has a colored layer provided on the surface of a transparent film base material such as a PET film, and the colored layer is a pigment dispersion in which a pigment is dispersed in a resin of a solid medium.
  • pigments include Cu—Fe—Mn composite oxide pigments, Cu—Cr composite oxide pigments, Cu—Cr—Mn composite oxide pigments, Cu—Cr—Mn—Ni composite oxide pigments, and Cu—Cr.
  • Patent Document 1 discloses a technique for a light-shielding film having a low haze value.
  • the light-shielding film is required to have a deep black color with low saturation.
  • the dark powder dispersion in which the dark pigment is dispersed in a solid medium such as a resin has high saturation due to the color of the dark pigment, and may not be able to obtain deep black with low saturation.
  • moisture resistance and heat resistance may be required depending on the intended use of the light-shielding film.
  • the present invention has been made under the above-mentioned circumstances, and the problems to be solved are a dark powder dispersion having low saturation and showing a deep black color, a base material with a colored layer, and these.
  • the present invention is to provide a dark color powder dispersion liquid for forming the above, and further to provide a dark color powder dispersion excellent in moisture and heat resistance, a base material adhering to a colored layer, and a dark color powder dispersion liquid for forming these. To do.
  • the first invention that solves the above-mentioned problems is Contains dark pigments, composite tungsten oxide particles and solvents, It is a dark powder dispersion liquid characterized in that the value of the mass ratio (mass of dark pigment / mass of composite tungsten oxide fine particles) between the dark pigment and the composite tungsten oxide particles is 0.01 or more and 5 or less.
  • the dark powder dispersion liquid according to the present invention contains a dark pigment, composite tungsten oxide particles, and a solvent, and the mass ratio of the dark pigment to the composite tungsten oxide particles (mass of dark pigment / mass of composite tungsten oxide fine particles). The value of is 0.01 or more and 5 or less.
  • the dark-colored powder dispersion is used for producing a dark-colored powder dispersion or a colored base material.
  • the dark-colored pigment is a pigment that colors the dark-colored powder dispersion in the colored layer of the light-shielding film and lowers the visible light transmittance.
  • dark pigments may have a yellowish or greenish color tone. Therefore, it may be difficult to obtain a deep blackness with low saturation only by using these dark pigments.
  • the present inventors have Cu—Fe—Mn composite oxide pigment, Cu—Cr composite oxide pigment, Cu—Cr—Mn composite oxide pigment, Cu—Cr—Mn—Ni composite oxide pigment, Cu. -Cr-Fe composite oxide pigment, Fe-Cr composite oxide pigment, Co-Cr-Fe composite oxide pigment, titanium black, titanium nitride, titanium oxynitride, dark azo pigment, perylene black pigment, aniline black pigment, carbon I came up with a configuration in which a dark pigment (black pigment) selected from black and a composite tungsten oxide fine particle described later are mixed and used.
  • Cu-Fe-Mn composite oxide pigment Cu-Cr composite oxide pigment, Cu-Cr-Mn composite oxide pigment, Cu-Cr-Mn-Ni composite oxide pigment, Cu-Cr-Fe.
  • Composite oxide pigments, Fe—Cr composite oxide pigments and Co—Cr—Fe composite oxide pigments are known to be composite oxides having a spinel structure. Then, it is synthesized by firing a compound such as Cu, Fe, Mn or the like as a raw material at a temperature of 500 ° C. or higher.
  • the color of the pigment for example, when a material that shields light in the short wavelength region is used, the short wavelength region (blue) of visible light is also slightly shielded, and the dark powder dispersion becomes yellowish.
  • the long wavelength region (red) of visible light when a material that shields light in the long wavelength region is used, the long wavelength region (red) of visible light is also slightly shielded, and the dark powder dispersion becomes bluish.
  • the dark powder dispersion becomes greenish. Therefore, it was conceived that a deep black color with low saturation can be expressed in the dark color powder dispersion according to the present invention by combining the dark color pigment and the composite tungsten oxide fine particles.
  • the composite tungsten oxide fine particles absorb and shield near infrared rays more than visible light
  • the dark powder dispersion according to the present invention is used for the light shielding film
  • the near infrared rays contained in the sunlight are emitted. It can absorb and shield, prevent it from entering the room, and have the effect of suppressing the rise in room temperature.
  • the average dispersed particle size of the dark pigment is preferably 200 nm or less, more preferably 1 nm or more and 100 nm or less. This is because when the average dispersed particle size of the dark pigment exceeds 200 nm, the haze of the dark powder dispersion may increase.
  • the average dispersed particle size of the dark pigment can be measured by using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • composite tungsten oxide fine particles used in the present invention will be described in the order of (a) properties of the composite tungsten oxide fine particles and (b) a method for producing the composite tungsten oxide fine particles.
  • the composite tungsten oxide fine particles are of the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe.
  • W is tungsten
  • O oxygen
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz will be further described.
  • the values of the M element, x, y, and z in the general formula MxWyOz and their crystal structures are closely related to the free electron density of the near-infrared absorbing fine particles and have a great influence on the near-infrared absorption characteristics.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, to the tungsten oxide.
  • the M element is Cs, Rb, K, Tl, Ba, Cu, Al, Mn, and In are preferable, and when the M element is Cs and Rb, the composite tungsten oxide easily has a hexagonal structure, transmits visible light, and absorbs and shields near infrared rays. Demonstrate.
  • the findings of the present inventors regarding the value of x indicating the amount of M element added will be described.
  • the value of x / y is 0.001 or more, a sufficient amount of free electrons are generated and the desired near-infrared absorption characteristic can be obtained.
  • the amount of M element added increases, the amount of free electrons supplied increases and the near-infrared absorption characteristics also increase, but the effect is saturated when the value of x / y is about 1.
  • the value of x / y is 1 or less, it is preferable because it is possible to avoid the formation of an impurity phase in the composite tungsten fine particles.
  • the value of z / y is preferably 2.0 ⁇ z / y ⁇ 3.0, more preferably 2.2 ⁇ z / y ⁇ 3.0. , More preferably 2.6 ⁇ z / y ⁇ 3.0, and most preferably 2.7 ⁇ z / y ⁇ 3.0. If the value of z / y exceeds 2.0, it is possible to avoid the appearance of the crystal phase of WO 2 which is a compound other than the target in the composite tungsten oxide, and as a material.
  • the composite tungsten oxide fine particles have a tetragonal or cubic tungsten bronze structure in addition to the hexagonal crystal, and any of these structures is effective as a near-infrared absorbing material.
  • the absorption position in the near-infrared region tends to change depending on the crystal structure of the composite tungsten oxide fine particles. That is, the absorption position in the near-infrared region tends to move to the longer wavelength side when the tetragonal crystal is than the cubic crystal, and to move to the longer wavelength side when the hexagonal crystal is used than when the tetragonal crystal is used.
  • the absorption in the visible light region is the least in the hexagonal crystal, followed by the tetragonal crystal, and the cubic crystal is the largest among them.
  • hexagonal tungsten bronze for applications in which light in the visible light region is more transmitted and light in the near infrared region is more shielded.
  • the composite tungsten oxide fine particles have a hexagonal crystal structure, the transmission of the fine particles in the visible light region is improved, and the absorption in the near infrared region is improved.
  • the amount of the added M element added is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0. .29 ⁇ x / y ⁇ 0.39.
  • Theoretically, when z / y 3, the value of x / y becomes 0.33, so that the added M element is considered to be arranged in all the hexagonal voids.
  • the average dispersed particle size of the composite tungsten oxide fine particles is preferably 800 nm or less and 1 nm or more, and more preferably 200 nm or less and 1 nm or more.
  • the average dispersed particle size of the composite tungsten oxide fine particles is preferably 200 nm or less is the same for the composite tungsten oxide fine particles in the dark-colored powder dispersion. This is because if the average dispersed particle size is 200 nm or less, the haze can be suppressed to a low level.
  • the average dispersed particle size is preferably 1 nm or more, more preferably 10 nm or more.
  • the average dispersed particle size can be measured by using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the composite tungsten oxide fine particle dispersion in which these composite tungsten oxide fine particles are dispersed alone in a solid medium such as a resin has a negative a *, b * in the L *, a *, b * color system. Shows a value and is bluish.
  • the bluish coloring is not so strong in the region where the visible light transmittance exceeds 70%, but it is strongly colored in the region where the visible light transmittance is as low as 5 to 70%. Further, when the visible light transmittance is extremely low, less than 1%, the film becomes black and the bluish color becomes inconspicuous, but the saturation is high and a deep black color cannot be realized.
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz can be obtained by heat-treating a tungsten compound starting material in an inert gas atmosphere or a reducing gas atmosphere.
  • the starting material for the tungsten compound will be described.
  • Tungsten compound The starting material is tungsten trioxide powder, tungsten dioxide powder, or tungsten oxide hydrate, or tungsten hexachloride powder, ammonium tungsten powder, or tungsten hexachloride after being dissolved in alcohol.
  • Tungsten oxide hydrate powder obtained by drying or tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate, and drying this.
  • any one or more selected from a tungsten compound powder obtained by drying an aqueous solution of ammonium tungstenate and a metallic tungsten powder is preferable.
  • tungsten oxide fine particles When producing composite tungsten oxide fine particles, it is more preferable to use an aqueous ammonium tungstate solution or a tungsten hexachloride solution from the viewpoint that each element whose starting material is a solution can be easily and uniformly mixed. Using these raw materials, heat treatment can be performed in an inert gas atmosphere or a reducing gas atmosphere to obtain composite tungsten oxide fine particles. Further, a tungsten compound containing the element M in the form of a simple substance or a compound is used as a starting material.
  • tungsten compound starting material containing the element M is dissolved in a solvent such as water or an organic solvent.
  • a solvent such as water or an organic solvent.
  • examples thereof include, but are not limited to, tungstic acid salts, chloride salts, nitrates, sulfates, oxalates, oxides, carbonates, hydroxides and the like containing the element M, but are in the form of a solution. Is preferable.
  • the heat treatment conditions in the atmosphere of the inert gas are preferably 650 ° C. or higher.
  • the starting material heat-treated at 650 ° C. or higher has sufficient near-infrared absorbing power and is efficient as heat ray-shielding fine particles.
  • the inert gas it is preferable to use an inert gas such as Ar or N 2.
  • the heat treatment conditions in the reducing atmosphere the starting material is first heat-treated in the reducing gas atmosphere at 100 ° C. or higher and 650 ° C. or lower, and then in the inert gas atmosphere at 650 ° C. or higher and 1200 ° C. or lower.
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • H 2 is preferable.
  • the composition of the reducing atmosphere for example, Ar, preferably mixed with 0.1% or more by volume of H 2 in an inert gas such as N 2, More preferably, it is a mixture of 0.2% or more. If H 2 is 0.1% or more by volume, the reduction can be efficiently promoted.
  • the starting raw material powder reduced with hydrogen contains a magnetic phase and exhibits good heat ray shielding properties. Therefore, even in this state, it can be used as heat ray shielding fine particles.
  • the surface of the composite tungsten oxide fine particles according to the present invention is surface-treated with a compound containing at least one of Si, Ti, Zr, and Al, preferably an oxide, improves weather resistance.
  • a known surface treatment may be performed using a compound organic compound containing at least one of Si, Ti, Zr, and Al.
  • the composite tungsten oxide fine particles and the organosilicon compound may be mixed and hydrolyzed.
  • the dark-colored powder dispersion according to the present invention is a mixture and dispersion of the above-mentioned dark pigment and composite tungsten oxide in an appropriate solvent.
  • (A) Blending ratio of dark pigment and composite tungsten oxide fine particles Mixing ratio of dark pigment and composite tungsten oxide fine particles contained in the dark powder dispersion according to the present embodiment (dark pigment mass / composite tungsten oxide fine particle mass) ) Is 0.01 or more and 5 or less, preferably 0.05 or more and 1 or less, and more preferably 0.1 or more and 0.2 or less.
  • the dark pigment and the composite tungsten oxide fine particles in a predetermined ratio, the yellowish and greenish colors of the dark pigment are supplemented with the bluish tint of the composite tungsten oxide fine particles, thereby achieving a deep black color with low saturation. It was done.
  • the color of the pigment when a material that shields ultraviolet rays is used, the short wavelength region (blue) of visible light is also slightly shielded, and the dark powder dispersion becomes yellowish.
  • the dark color pigment when a material that shields near infrared rays is used, the long wavelength region (red) of visible light is also slightly shielded and becomes bluish.
  • the dark color pigment when a material that shields both ultraviolet rays and near infrared rays is used, it becomes greenish. Therefore, by combining the dark color pigment and the composite tungsten oxide fine particles, it was conceived that a deep black color having low saturation can be expressed in the dark color powder dispersion of the present embodiment.
  • the composite tungsten oxide fine particles absorb and shield near infrared rays rather than visible light
  • the dark powder dispersion according to the present embodiment is used as a light-shielding film or as a base material with a colored layer
  • sunlight rays are used.
  • By absorbing and shielding near-infrared rays contained in the film it is possible to prevent it from entering the room or the car and suppress the rise in temperature.
  • the solvent used for the dark powder dispersion liquid according to the present invention is not particularly limited, and when the coating / kneading conditions, the coating / kneading environment, and the inorganic binder and the resin binder are contained, the solvent is not particularly limited. It may be appropriately selected according to the binder. For example, water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, alcohols such as diacetone alcohol, methyl ether, ethyl ether, propyl ether and the like.
  • organic solvents such as ethers, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl ketone and other ketones, and toluene and other aromatic hydrocarbons can be used.
  • a resin monomer or oligomer may be used as the solvent.
  • a liquid resin obtained by dissolving styrene resin or the like in toluene, or a liquid plasticizer for plastics may be used.
  • a mixture of the above-mentioned solvents may be used.
  • the dark powder dispersion liquid of the present embodiment contains 50 parts by mass or more and 2000 parts by mass or less of the solvent with respect to 100 parts by mass in total of the dark pigment and the composite tungsten oxide fine particles, and 200 parts by mass or more is further contained. desirable.
  • (C) Dispersant In order to further improve the dispersion stability of the fine particles in the dark powder dispersion, it is of course possible to add various dispersants, surfactants, coupling agents and the like. When water or a water-soluble organic substance is used as the solvent, an acid or an alkali may be added as necessary to adjust the pH of the dispersion.
  • the dispersant is preferably a polymer dispersant having an amino group. It is adsorbed on the surface of the above-mentioned dark-colored pigment particles and composite tungsten oxide fine particles, prevents aggregation of the composite tungsten oxide fine particles, and exhibits the effect of uniformly dispersing these fine particles in the dark-colored powder dispersion.
  • the amine value of the polymer dispersant having an amino group is preferably 5 to 100 mgKOH / g, and the molecular weight Mw is preferably 2000 to 200,000.
  • the amino group polymer dispersant according to the present embodiment is a compound having a basic group such as an amino group in the molecule of the dispersant.
  • the compound having a basic group such as an amino group in the molecule of such a dispersant include a polyolefin resin, a polyester resin, an acrylic resin, a polyurethane resin, and an amide resin in the main chain. More preferred is a compound having an acrylic resin in the main chain.
  • Disperbyk-112, Disperbyk-116, Disperbyk-130, Disperbyk-161, Disperbyk-162, Disperbyk-164, Disperbyk-166, etc. Big Chemie Japan's Big Chemie Japan Co., Ltd.
  • Amino Group Polymer Dispersant Ajisper 11 B Amino group polymer dispersants manufactured by Ajinomoto Fine Techno Co., Ltd., Disparon 1860, Disparon DA703-50, Disparon DA7400 and other amino group polymer dispersants manufactured by Kusumoto Kasei Co., Ltd., EFKA-4400, EFKA-4401, EFKA-5044 , EFKA-5207, EFKA-6225, EFKA-4330, EFKA-4047, EFKA-4060 and the like, amino group polymer dispersants manufactured by BASF Japan, and the like.
  • a dispersant having a hydroxyl group and / or a carboxyl group may be used in combination with the amino group polymer dispersant, or the polymer dispersant having an amino group may have a hydroxyl group and / or a carboxyl group. All of these polymer dispersants have the effect of adsorbing on the surface of the above-mentioned composite tungsten oxide fine particles, preventing aggregation of the composite tungsten oxide fine particles, and uniformly dispersing these fine particles in the dark-colored powder dispersion. It is the one that demonstrates.
  • the OH value of the polymer dispersant having a hydroxyl group is preferably 10 to 200 mgKOH / g, and the molecular weight Mw is preferably 1000 to 150,000.
  • the polymer dispersant having a hydroxyl group according to the present embodiment include an acrylic resin having a hydroxyl group (sometimes referred to as an acrylic polyol), an acrylic / styrene copolymer having a hydroxyl group, and the like.
  • Examples of the polymer dispersant having the hydroxyl group include acrylic polyols and commercially available products such as the UH series manufactured by Toagosei Corporation.
  • the acid value of the polymer dispersant having a carboxyl group is preferably 0.1 to 100 mgKOH / g, and the molecular weight Mw is preferably 2000 to 200,000.
  • the polymer dispersant having a carboxyl group according to the present embodiment include an acrylic resin having a carboxyl group, an acrylic / styrene copolymer, and the like.
  • the polymer dispersant having a carboxyl group include commercially available acrylic resins having an acid value of 1 or more, UC series and UF series manufactured by Toagosei Co., Ltd., and the like.
  • the total content of these polymer dispersants is 20 parts by mass or more as the solid content of the dispersant with respect to 100 parts by mass in total of the dark pigment and the composite tungsten oxide fine particles. It is preferably 200 parts by mass or less. This is because when the content of the polymer dispersant is within the range, the dark pigment and the composite tungsten oxide fine particles are uniformly dispersed in the dark powder dispersion, and low haze can be realized. Specifically, the haze value of the dark color powder dispersion can be reduced by containing 20 parts by mass or more of the amino group polymer dispersant with respect to 100 parts by mass in total of the dark color pigment and the composite tungsten oxide fine particles. By containing 200 parts by mass or less, the mechanical strength of the dark powder dispersion can be ensured.
  • the dispersion method for producing the dark powder dispersion may be any method as long as the dark pigment and the composite tungsten oxide fine particles are uniformly dispersed in the dispersion, for example, bee.
  • a particle mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like can be used.
  • a composite containing a pigment dispersion containing a dark pigment, a solvent and a polymer dispersant appropriately added, and a composite tungsten oxide fine particles and a solvent and a polymer dispersant appropriately added may be prepared by the above-mentioned dispersion method and mixed so that the blending ratio of the dark pigment and the composite tungsten oxide fine particles becomes a predetermined value.
  • the dark powder dispersion or the base material with a colored layer according to the present invention may be used in a situation where moisture resistance is required, and therefore, the dark powder dispersion or the base material with a colored layer is used.
  • Moisture invading from the air, metal ions derived from dark powder, ultraviolet rays from the outside, etc. are catalytically applied to the solid medium or transparent film substrate constituting the dark powder dispersion or the substrate with the colored layer. By acting, it causes decomposition and deterioration.
  • the near-infrared shielding property deteriorates with time because the decomposition product (radical) generated during the decomposition deterioration desorbs the element M in the composite tungsten oxide fine particles.
  • the present inventors added a metal inactivating agent or a metal salt as an additive to the dark powder dispersion to eliminate metal in the dark powder dispersion or the substrate with a colored layer.
  • a metal inactivating agent or a metal salt as an additive to the dark powder dispersion to eliminate metal in the dark powder dispersion or the substrate with a colored layer.
  • I came up with a composition that allows the presence of activators and metal salts. With this configuration, metal inactivating agents and metal salts are present in the vicinity and / or on the surface of the infrared shielding material fine particles. Then, due to the action of the metal inactivating agent or the metal salt, the moisture entering from the air or the like is sufficiently captured.
  • metal inactivating agent and the metal salt due to the action of the metal inactivating agent and the metal salt, metal ions derived from dark powder, radicals generated by ultraviolet rays and the like are also captured, and the generation of harmful radicals in a chain reaction is suppressed. As a result, it was conceived that the deterioration of the infrared shielding property with time was suppressed.
  • the actions of these metal inactivating agents and metal salts there are many unclear points about the actions of these metal inactivating agents and metal salts, and it is possible that actions other than the above are working, so the action is not limited to the above.
  • the metal inactivating agent examples include N- (2H-1,2,4-triazole-5-yl) salicylamide, which is a salicylic acid derivative, and N, N-bis (6,5-di-t-butylsali). Hydrazine derivatives such as tyroyl) hydrazine and N, N-bis (6-t-butylmethylsalicyloyl) hydrazine [N2- (2-hydroxybenzoyl) hydrazine], 3- (3,5) -Di-tert-butyl-4-hydroxyphenyl) -N'-[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanoyl] propane hydrazide, etc.
  • Oxalic acid derivative N, N'-bis [2- [2- (3,5-di-tert-butyl-4-hydroxyphenyl) ethylcarbonyloxy] ethyl] oxamide, N'-benzylidene hydrazide, oxalyl-bis (Benzylidene hydrazide) and the like can be preferably mentioned.
  • lactate such as magnesium lactate, aluminum lactate, calcium lactate and the like
  • carbonates such as calcium carbonate, magnesium carbonate (magnesium carbonate) and strontium carbonate can be preferably mentioned. I can.
  • the amount of the metal inactivating agent or the metal salt added (however, in the present invention, when the metal inactivating agent or the metal salt contains water of crystallization or water of hydration, the mass of the water of crystallization or water of hydration is used.
  • the amount of the metal inactivating agent or the metal salt itself to be removed is preferably 2 times or more and 10 times or less in terms of mass ratio with respect to the dark color pigment. This is because the effects of the metal inactivating agent and the metal salt can be obtained by adding the amount of the dark pigment more than twice in mass ratio. On the other hand, by adding an amount of 10 times or less by mass to the dark pigment, it is possible to prevent the film from being unable to maintain its transparency due to light scattering by the metal inactivating agent or the metal salt.
  • the metal inactivating agent or the metal salt is a powder
  • a particle size of 5 nm to 100 nm is desirable. If it is 100 nm or less, light scattering can be suppressed and the transparency of the film can be ensured.
  • it is 5 nm or more it is possible to avoid the situation where the metal inactivating agent and the metal salt are over-crushed, which is preferable from the viewpoint of productivity.
  • the powdered metal inactivating agent or the metal salt when the metal inactivating agent or the metal salt is in the form of powder, the powdered metal inactivating agent or the metal salt may be mixed with an appropriate solvent and pulverized to prepare a pulverized solution.
  • the solvent is not particularly limited, and may be appropriately selected depending on the dark powder dispersion system, the dark powder dispersion, and the substrate with a colored layer.
  • organic solvents such as ethers, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl ketone, ketones such as methyl isobutyl ketone, and aromatic hydrocarbons such as toluene can be used.
  • a resin monomer or oligomer may be used as the solvent.
  • a liquid resin obtained by dissolving styrene resin or the like in toluene, or a liquid plasticizer for plastics may be used.
  • a mixture of the above-mentioned solvents may be used.
  • pulverization treatment a general pulverization method may be used, and a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like can be used.
  • a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, or the like can be used.
  • the prepared pulverized liquid is added to the dark powder dispersion, it is preferable that the pulverized liquid is uniformly dispersed in the dark powder dispersion by, for example, performing ultrasonic treatment for 5 to 10 minutes.
  • the dark-colored powder dispersion according to the present invention is obtained by dispersing the above-mentioned dark-colored pigment and composite tungsten oxide fine particles in an appropriate solid medium. Specifically, a resin constituting a solid medium is added to the dark-colored powder dispersion liquid to obtain a dark-colored powder dispersion forming dispersion liquid (coating liquid). Then, the surface of the appropriate substrate is coated with the dispersion liquid for forming the dark powder dispersion, the solvent is removed by a predetermined method such as evaporation, and the resin is cured, so that the dark powder dispersion is formed on the surface of the substrate. A substrate with a colored layer provided as a colored layer can be obtained.
  • the dark powder dispersion obtained from the dark powder dispersion according to the present invention maintains the dispersed state and blending ratio of the dark pigment and the composite tungsten oxide fine particles in the dark powder dispersion.
  • the dark-colored powder dispersion according to the present invention has a visible light transmittance of 5 to 70% by using a solid medium resin for a dispersion liquid (coating liquid) for forming a dark-colored powder dispersion and a master batch described later.
  • a saturation c * of 10 or less and a near-infrared transmittance of 50% or less can be realized.
  • the saturation c * is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
  • the dark color powder dispersion mixed with the composite tungsten oxide fine particles, the resin as a medium, or the like is used.
  • the visible light transmittance and near-infrared transmittance are set to desired values while keeping the c * value at 4.5 or less. I was able to do it. As a result, it becomes easy to develop a dark-colored powder dispersion having optical characteristics according to the application and the like, which is a preferable configuration.
  • the solvent of the dark powder dispersion liquid according to the present invention a resin monomer that becomes a solid medium by curing may be used.
  • the coating method is not particularly limited as long as the near-infrared shielding material fine particle dispersion can be uniformly coated on the surface of the base material, but is not particularly limited, and is, for example, a bar coating method, a gravure coating method, or a spray coating. Examples include the method and the dip coat method.
  • the dark color powder dispersion in which the dark color pigment and the composite tungsten oxide fine particles are directly dispersed in the binder resin does not need to evaporate the solvent after being applied to the surface of the substrate, which is environmentally and industrially preferable.
  • UV curable resin thermosetting resin, electron beam curable resin, room temperature curable resin, thermoplastic resin and the like can be selected as the resin according to the purpose.
  • polyethylene resin polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluororesin, polycarbonate resin, acrylic resin.
  • Polyvinyl butyral resin can be mentioned. These resins may be used alone or in combination.
  • the solvent component of the dark color powder dispersion liquid containing the polymer dispersant is volatilized, and the temperature of the dark color pigment dispersion powder containing the dark color pigment, the composite tungsten oxide fine particles and the polymer dispersant is raised above the melting temperature.
  • a masterbatch containing a dark pigment is produced by mixing with a melted polycarbonate resin or the like, and the masterbatch is melt-mixed with a polycarbonate resin or the like melted by raising the temperature above the melting temperature to form a film or plate by a known method. It can also be formed into a (board) shape to form a dark powder dispersion.
  • the dark powder dispersion according to the present invention is provided on the surface of a transparent base material such as a transparent glass base material or a transparent film base material as a colored layer, the base material with a colored layer can be used. ..
  • a plate glass such as soda lime glass can be used as the transparent glass base material, and a resin film such as PET film can be used as the transparent film base material.
  • the dark powder dispersion may be sandwiched between two or more transparent substrates to form a substrate with a colored layer.
  • the measured spectral transmittance is converted into the tint values of X 10 , Y 10 , and Z 10 in a D65 light source and a field of view of 10 °.
  • the converted color values of X 10 , Y 10 , and Z 10 are converted into L *, a *, and b * based on JIS Z 8781-4 2013.
  • Dispersed average particle size The average dispersed particle size was measured using ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering method.
  • a dispersion liquid of a Cu—Cr composite oxide pigment as a dark powder dispersion liquid will be described. Put 100 parts by mass of Cu—Cr composite oxide pigment (Dainichiseika Dipiroxide Black # 9510), 800 parts by mass of MIBK as a solvent, and 100 parts by mass of dispersant a in a container, and use 0.3 mm zirconia beads. , Grinded in a paint shaker for 20 hours. Then, a dispersion liquid of a Cu—Fe—Mn composite oxide pigment having an average dispersed particle diameter of 150 nm was obtained.
  • Preparation composite tungsten oxide particle dispersion liquid of the composite tungsten oxide fine particle dispersion describes the preparation of Cs 0.33 WO 3 particle dispersion. Put 100 parts by mass of Cs 0.33 WO 3 particles (manufactured by Sumitomo Metal Mining Co., Ltd.), 300 parts by mass of MIBK as a solvent, and 100 parts by mass of dispersant a in a container, and use 0.3 mm zirconia beads in a paint shaker 20. Grinded for hours. Then, to obtain a Cs 0.33 WO 3 particle dispersion liquid having an average dispersed particle diameter 30 nm.
  • magnesium carbonate manufactured by Kanto Chemical Co., Inc. was added so as to be 800 parts by mass with respect to 100 parts by mass of 3 particles of Cs 0.33 WO.
  • magnesium lactate manufactured by Kanto Chemical Co., Inc.
  • the amount added as magnesium lactate including hydrated water was 800 parts by mass.
  • Example 12 to Cs 0.33 WO 3 particles 100 parts by weight, salicylic acid derivatives (N-(2H-1,2,4-triazol-5-yl) salicylamide) ( ADEKA) was added so as to be 200 parts by mass.
  • Table 1 shows the blending ratios of the dark powder dispersions according to Examples 1 to 12 and Comparative Examples 1 to 8.
  • An ultraviolet curable resin (Aronix UV3701 manufactured by Toagosei) was mixed with each of the adjusted dark powder dispersions according to Examples 1 to 12 and Comparative Examples 1 to 8 to obtain Examples 1 to 12 and Comparative Examples 1 to 8.
  • a dispersion liquid (coating liquid) for forming the dark powder dispersion was prepared.
  • Example 1 the visible light transmittance of the cured dark powder dispersion described later is determined in Example 1.
  • Example 2 35%, Example 3, 65%, Example 5, 50%, Example 6, 35%, Example 7, 20%
  • Example 8. 65%, 55% in Example 9, 65% in Example 10, 65% in Example 11, 65% in Example 12, 15% in Comparative Example 1, 30% in Comparative Example 2, 40 in Comparative Example 3.
  • the dispersion liquid (coating liquid) for forming the dark color powder dispersion according to Examples 1 to 12 and Comparative Examples 1 to 8 is each a PET film having a thickness of 50 ⁇ m. No. 4-No.
  • a coating film was obtained by applying with a 10 bar coater. After the solvent was evaporated and dried from the obtained coating film (heated at 70 ° C. for 1 minute), the coating film was cured by irradiating with ultraviolet rays using a high-pressure mercury lamp to provide a dark powder dispersion on the surface of the PET film. ..
  • the dark powder dispersion provided was a colored layer, and a colored layer was formed on the surface of the PET film to form a sample film. Therefore, the base material with a colored layer according to Examples 1 to 12 and Comparative Examples 1 to 8. Is prepared. Saturation c *, visible light transmittance and near-infrared transmittance were measured for the prepared substrates with colored layers according to Examples 1 to 12 and Comparative Examples 1 to 8. The results are shown in Table 1. In the measurement of saturation, visible light transmittance, and near-infrared transmittance, the values including the PET film of the base material were measured.
  • the evaluation of the base material sample (sample film) with a colored layer was performed by the following procedure. First, the transmission spectrum of the prepared sample film in the wavelength range of 200 nm to 2600 nm was measured, and the transmittance at a wavelength of 1000 nm was determined. Then, the sample film was put into a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 90%. After a predetermined number of days had passed after the sample film was charged, the sample film was taken out, the transmission spectrum was measured in the above wavelength range, and the transmittance at a wavelength of 1000 nm was determined.
  • the sample film was put into the constant temperature and humidity chamber under the above-mentioned temperature and humidity conditions again, and after a predetermined number of days had passed, the sample film was taken out again and the transmittance at a wavelength of 1000 nm was repeatedly determined. Then, the transmittance at the wavelength of 1000 nm was converted into the absorbance using the following equation 3, and the rate of change in the absorbance from the start of the test was determined.
  • Table 2 shows the values of the rate of change in the absorbance of the colored layered base material according to Examples 8 and 10 to 12 after a predetermined number of days from the start of the test, and the predetermined number of days from the start of the test. Later, the state of the rate of change in absorbance in the sample film is shown in FIG. In FIG.
  • the vertical axis represents the rate of change in absorbance at a wavelength of 1000 nm
  • the horizontal axis represents the number of days elapsed.
  • the data of the sample film according to Example 8 is shown by a short dashed line
  • the data of the sample film according to Example 10 is shown by a solid line
  • the data of the sample film according to Example 11 is shown by a dashed line
  • the data of the sample film according to Example 12 is shown by a long broken line.
  • Absorbance -log (transmittance) ... Equation 3
  • Example 1 Summary Comparing Example 1, Comparative Example 3, and Comparative Example 6, which are formulations aiming at a visible light transmittance of 40%, the measured value of the visible light transmittance is about 40% in each case.
  • the saturation c * was found to be low in Example 1.
  • Example 3 Comparative Example 2, and Comparative Example 7, which are formulations aiming at a visible light transmittance of 30%, the measured value of the visible light transmittance is about 30% in each case.
  • the saturation c * was found to be low in Example 3.
  • Example 7 and Comparative Example 8 which are formulations aiming at a visible light transmittance of 20%, the measured value of the visible light transmittance is about 20% in each case.
  • Example 7 the saturation c * was found to be low in Example 7.
  • Example 4 and Comparative Example 5 which are formulations aiming at a visible light transmittance of 65%
  • the measured value of the visible light transmittance is about 65% in each case.
  • the saturation c * was found to be low in Example 4.
  • Examples 1 to 12 Cu—Fe—Mn composite oxide pigment and Cu—Cr composite oxide pigment are selected as dark pigments, and a mixture of the composite tungsten oxide fine particles and a resin or the like as a medium is used.
  • a certain dark powder dispersion by changing the mixing ratio, it was possible to set the visible light transmittance and the near infrared transmittance to desired values while keeping the value of c * at a value of 4.5 or less. ..
  • Example 8 Comparing Example 8 and Example 10, it was found that the rate of change in absorbance over time was smaller in Example 10. This carbonate ion in the carbonate is additive, by capturing the metal ions in the color layer with the base material, it is estimated that because of suppressing deterioration of the Cs 0.33 WO 3 particles. Similarly, when Example 8 and Example 11 were compared, it was found that the rate of change in absorbance with time was smaller in Example 11.
  • This lactate ions in magnesium lactate is additive, by capturing the metal ions in the color layer with the base material, it is estimated that because of suppressing deterioration of the Cs 0.33 WO 3 particles.
  • Example 8 and Example 12 were compared, it was found that the rate of change in absorbance with time was smaller in Example 12.
  • This salicylic acid derivative of the additive by capturing the metal ions in the color layer with the base material, it is estimated that because of suppressing deterioration of the Cs 0.33 WO 3 particles.
  • the additive-free dark powder was dispersed by adding the metal inactivating agent or the metal salt to the film using the dark powder dispersion. It was found that the rate of change in absorbance after 15 days (360 hours) at a wavelength of 1000 nm can be suppressed by 30% to 50% as compared with the film using the liquid.
  • a dark color pigment a salicylic acid derivative or a metal salt is added to a dark color powder dispersion which is a mixture of a Cu-Fe-Mn composite oxide pigment, a composite tungsten oxide fine particle, and a resin or the like as a medium. Therefore, it was found that the change in the absorbance of the dark powder dispersion can be suppressed, that is, the moisture and heat resistance can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする暗色粉分散液を提供する。

Description

暗色粉分散液、暗色粉分散体ならびに着色層付基材
 本発明は、自動車や建物の窓ガラス等の着色に用いる暗色粉分散液、暗色粉分散体ならびに着色層付基材に関する。
 一般に自動車や建物の窓ガラスに遮光フィルムを貼着することにより、車外または屋外から車内または室内を透視し得ないようにして、プライバシーを保護し且つファッション性を高めることが行われている。
 このような遮光フィルムは、PETフィルムなどの透明フィルム基材の表面に着色層を設けたもので、当該着色層は顔料を固体媒体の樹脂に分散した顔料分散体である。このような顔料には、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料およびCo―Cr―Fe複合酸化物顔料、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックを用いることができることが知られている。
 例えば、特許文献1にはヘイズ値を低く抑えた遮光フィルムの技術が開示されている。
特開2000-214310号公報
 一般に、自動車や建物の意匠性向上のため、遮光フィルムには彩度の低い深い黒色が求められている。ところが、暗色顔料を樹脂などの固体媒体に分散した暗色粉分散体は、当該暗色顔料が有する色彩のため、彩度が高くなり、彩度の低い深い黒色が得られない場合がある。
 また、当該遮光フィルムの使用用途によっては、耐湿熱性が求められる場合もあった。
 本発明は、上述の状況のもとで為されたものであり、その解決しようとする課題は、彩度が低く、深い黒色を示す暗色粉分散体や、着色層付基材、また、これらを形成するための暗色粉分散液を提供することにあり、さらには、耐湿熱性に優れた暗色粉分散体や、着色層付着基材、また、これらを形成するための暗色粉分散液を提供することにある。
 即ち、上述の課題を解決する第1の発明は、
 暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、
 前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする暗色粉分散液である。
 本発明によれば、彩度の低い深い黒色を示す暗色粉分散体、着色層付基材を実現することができる。
実施例8、10~12に係る着色層付基材を用いた耐湿熱評価結果を示すグラフである。
 本発明に係る暗色粉分散液は、暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする。そして、当該暗色粉分散液は、暗色粉分散体や着色基材を製造するのに用いられるものである。
 以下、本発明について、(1)暗色顔料、(2)複合タングステン酸化物微粒子、(3)暗色粉分散液、(4)暗色粉分散体、(5)着色層付基材、の順に説明する。
(1)暗色顔料
 暗色顔料は、遮光フィルムの着色層の暗色粉分散体に着色し、可視光透過率を下げる顔料である。
 しかし、暗色顔料は、色調として黄色みを帯びたり、緑味を帯びたりすることがある。
そのため、これらの暗色顔料を用いただけでは、彩度の低い深い黒味を出すことが困難な場合がある。
 なお、本発明において彩度とは、JIS Z 8701 1999およびJIS Z 8781-4 2013に基づくL*、a*、b*表色系における彩度c*のことである。そして、彩度c*は次式1で示される。
 
  彩度c*=(a*+b*1/2・・・・式1
 
 ここで、本発明者らは、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料、Co―Cr―Fe複合酸化物顔料、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックから選択される暗色顔料(黒色顔料)と、後述する複合タングステン酸化物微粒子とを混合使用する構成に想到した。
 つまり、暗色顔料の黄色味や緑味を、複合タングステン酸化物微粒子の青味で補うことで、彩度の低い深い黒色を実現したものである。
 これら暗色顔料のうちCu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料およびCo―Cr―Fe複合酸化物顔料は、スピネル構造を有する複合酸化物であることが知られている。そして、Cu、Fe、Mn等の化合物等を原料として、500℃以上の温度で焼成して合成されるものである。
 顔料の色は、例えば、短波長領域の光を遮蔽する材料を用いると可視光の短波長領域(青色)も若干遮蔽され、暗色粉分散体は黄色味を帯びる。一方、長波長領域の光を遮蔽する材料を用いると可視光の長波長領域(赤色)も若干遮蔽され、暗色粉分散体は青みを帯びる。そして、短波長および長波長の両領域の光を遮蔽する材料を用いた場合、暗色粉分散体は緑味を帯びる。そのため、暗色顔料と複合タングステン酸化物微粒子を組み合わせることで、本発明に係る暗色粉分散体において、彩度の低い深い黒色が表現出来ることに想到したものである。
 そして好ましいことには、複合タングステン酸化物微粒子が、可視光線よりも近赤外線を吸収して遮蔽するため、本発明に係る暗色粉分散体を遮光フィルムに用いると、太陽光線に含まれる近赤外線を吸収し遮蔽して、室内に入り込むことを防ぎ、室温上昇を抑制する効果を得ることができる。
 暗色顔料の平均分散粒子径は、200nm以下が好ましく、1nm以上100nm以下がさらに好ましい。これは、暗色顔料の平均分散粒子径が200nmを超えると、暗色粉分散体のヘイズが高くなることがあるからである。なお、暗色顔料の平均分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
(2)複合タングステン酸化物微粒子
 本発明に用いる複合タングステン酸化物微粒子について、(a)複合タングステン酸化物微粒子の性状、(b)複合タングステン酸化物微粒子の製造方法、の順に説明する。
 (a)複合タングステン酸化物微粒子の性状
 複合タングステン酸化物微粒子が、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される組成を有するとき近赤外線吸収する特性を発揮し、近赤外線吸収微粒子となることから好ましい構成である。
 当該一般式MxWyOzで示される複合タングステン酸化物微粒子について、さらに説明する。
 一般式MxWyOz中のM元素、x、y、zの値およびその結晶構造は、近赤外線吸収微粒子の自由電子密度と密接な関係があり、近赤外線吸収特性に大きな影響を及ぼす。
 一般に、三酸化タングステン(WO)中には有効な自由電子が存在しないため、近赤外線吸収特性が低い。
 ここで本発明者らは、当該タングステン酸化物へ、M元素(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種以上の元素を添加して複合タングステン酸化物とすることで、当該複合タングステン酸化物中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線吸収材料として有効なものとなり、且つ、当該複合タングステン酸化物は化学的に安定な状態を保ち、耐候性に優れた近赤外線吸収材料として有効なものとなることを知見したものである。さらに、M元素は、Cs、Rb、K、Tl,Ba、Cu、Al、Mn、Inが好ましいこと、なかでも、M元素がCs、Rbであると、当該複合タングステン酸化物が六方晶構造を取り易くなり、可視光線を透過し、近赤外線を吸収し遮蔽する特性を発揮する。
 ここで、M元素の添加量を示すxの値についての本発明者らの知見を説明する。
 x/yの値が0.001以上であれば、十分な量の自由電子が生成され目的とする近赤外線吸収特性を得ることが出来る。そして、M元素の添加量が多いほど、自由電子の供給量が増加し、近赤外線吸収特性も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1以下であれば、複合タングステン微粒子に不純物相が生成されるのを回避できるので好ましい。
 次に、酸素量の制御を示すzの値についての本発明者らの知見を説明する。
 一般式MxWyOzで示される複合タングステン微粒子において、z/yの値は2.0<z/y≦3.0であることが好ましく、より好ましくは2.2≦z/y≦3.0であり、さらに好ましくは2.6≦z/y≦3.0、最も好ましくは2.7≦z/y≦3.0である。このz/yの値が2.0を超えていれば、当該複合タングステン酸化物中に目的以外の化合物であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので、有効な近赤外線吸収材料として適用できるためである。一方、このz/yの値が3.0以下であれば当該タングステン酸化物中に必要とされる量の自由電子が生成され、効率よい近赤外線吸収材料となる。
 当該複合タングステン酸化物微粒子は、六方晶以外に、正方晶、立方晶のタングステンブロンズの構造をとるが、いずれの構造をとるときも近赤外線吸収材料として有効である。しかしながら、当該複合タングステン酸化物微粒子がとる結晶構造によって、近赤外線領域の吸収位置が変化する傾向がある。即ち、近赤外線領域の吸収位置は、立方晶よりも正方晶のときが長波長側に移動し、六方晶のときは正方晶のときよりも、さらに長波長側へ移動する傾向がある。また、当該吸収位置の変動に付随して、可視光線領域の吸収は六方晶が最も少なく、次に正方晶であり、立方晶はこの中では最も大きい。
 以上の知見から、可視光領域の光をより透過させ、近赤外線領域の光をより遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、近赤外領域の吸収が向上する。
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加M元素の添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.29≦x/y≦0.39である。理論的にはz/y=3の時、x/yの値が0.33となることで、添加M元素が六角形の空隙の全てに配置されると考えられる。
 当該複合タングステン酸化物微粒子の平均分散粒子径は、800nm以下1nm以上であることが好ましく、さらに好ましくは、200nm以下1nm以上である。複合タングステン酸化物微粒子の平均分散粒子径が、200nm以下であることが好ましいことは、暗色粉分散液中の複合タングステン酸化物微粒子においても同様である。これは、平均分散粒子径が200nm以下であれば、ヘイズを低く抑えることができるからである。平均分散粒子径は1nm以上であることが好ましく、より好ましくは10nm以上である。なお、平均分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
 そして、これらの複合タングステン酸化物微粒子を、単独で樹脂などの固体媒体に分散した複合タングステン酸化物微粒子分散体は、L*、a*、b*表色系でa*、b*が負の値を示し、青みを帯びる。可視光透過率が70%を超える高い領域では青みの着色はそれほど強くないが、可視光透過率が5~70%と低い領域では強く着色する。さらに可視光透過率が1%未満と極端に低い場合には膜が黒くなり青みが目立たなくなるが、彩度が高く、深みのある黒色は実現できない。
 (b)複合タングステン酸化物微粒子の製造方法
 一般式MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
 まず、タングステン化合物出発原料について説明する。
 タングステン化合物出発原料には、三酸化タングステン粉末、二酸化タングステン粉末、または酸化タングステンの水和物、または、六塩化タングステン粉末、またはタングステン酸アンモニウム粉末、または、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、またはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であることが好ましい。
 複合タングステン酸化物微粒子を製造する場合には、出発原料が溶液である各元素は容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や、六塩化タングステン溶液を用いることがさらに好ましい。これら原料を用い、不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して複合タングステン酸化物微粒子を得ることができる。さらに、元素Mを元素単体または化合物の形態で含有するタングステン化合物を出発原料とする。
 ここで、各成分が分子レベルで均一混合した出発原料を製造するためには各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物出発原料が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物等が挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。
 次に、不活性ガス雰囲気または還元性ガス雰囲気中における熱処理について説明する。
 まず、不活性ガス雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な近赤外線吸収力を有し熱線遮蔽微粒子として効率が良い。不活性ガスとしてはAr、N等の不活性ガスを用いることがよい。
 また、還元性雰囲気中における熱処理条件としては、出発原料を、まず還元性ガス雰囲気中にて100℃以上650℃以下で熱処理し、次いで不活性ガス雰囲気中にて650℃以上1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないが、Hが好ましい。そして、還元性ガスとしてHを用いる場合は、還元性雰囲気の組成として、例えば、Ar、N等の不活性ガスにHを体積比で0.1%以上を混合することが好ましく、さらに好ましくは0.2%以上混合したものである。Hが体積比で0.1%以上であれば効率よく還元を進めることができる。
 水素で還元された出発原料粉末は、マグネリ相を含み、良好な熱線遮蔽特性を示す。従って、この状態でも熱線遮蔽微粒子として使用可能である。
 本発明に係る複合タングステン酸化物微粒子の表面が、Si、Ti、Zr、Alの1種類以上を含有する化合物、好ましくは、酸化物で被覆された表面処理されていることは、耐候性向上の観点から好ましい。前記表面処理を行うには、Si、Ti、Zr、Alの1種類以上を含有する化合物有機化合物を用いて公知の表面処理を行えばよい。例えば、複合タングステン酸化物微粒子と有機ケイ素化合物を混合し、加水分解等を行えばよい。
(3)暗色粉分散液
 本発明に係る暗色粉分散液は、上述した暗色顔料と複合タングステン酸化物とを適宜な溶媒中に混合・分散したものである。
 以下、本発明に係る暗色粉分散液について、(a)暗色顔料と複合タングステン酸化物微粒子の配合割合、(b)溶媒、(c)分散剤、(d)暗色粉分散液の製造方法、(e)その他の添加剤、の順に説明する。
 (a)暗色顔料と複合タングステン酸化物微粒子の配合割合
 本実施形態に係る暗色粉分散液に含まれる、暗色顔料と複合タングステン酸化物微粒子との配合割合(暗色顔料質量/複合タングステン酸化物微粒子質量)の値は0.01以上5以下、好ましくは0.05以上1以下、より好ましくは0.1以上0.2以下である。
つまり、暗色顔料と複合タングステン酸化物微粒子とを所定比率で組み合わせることで、暗色顔料の黄色味や緑味を、複合タングステン酸化物微粒子の青味で補うことで、彩度の低い深い黒色を実現したものである。
 顔料の色は、紫外線を遮蔽する材料を用いると可視光の短波長領域(青色)も若干遮蔽され、暗色粉分散体は黄色味を帯びる。一方、近赤外線を遮蔽する材料を用いると可視光の長波長領域(赤色)も若干遮蔽され青みを帯びる。そして、紫外線および近赤外線両方を遮蔽する材料を用いた場合、緑味を帯びる。そのため、暗色顔料と複合タングステン酸化物微粒子を組み合わせることで、本実施形態の暗色粉分散体において、彩度の低い深い黒色が表現出来ることに想到したものである。
 そして、複合タングステン酸化物微粒子は、可視光線よりも近赤外線を吸収して遮蔽するため、本実施形態に係る暗色粉分散体を遮光フィルムに用いたり、着色層付基材に用いると、太陽光線に含まれる近赤外線を吸収し遮蔽して、室内や車内に入り込むことを防ぎ、温度の上昇を抑制することができる。
 (b)溶媒
 本発明に係る暗色粉分散液に用いる溶媒は、特に限定されるものではなく、塗布・練り込み条件、塗布・練り込み環境、さらに、無機バインダーや樹脂バインダーを含有させるときは、当該バインダーに合わせて適宜選択すれば良い。例えば、水、エタノ-ル、プロパノ-ル、ブタノ-ル、イソプロピルアルコ-ル、イソブチルアルコ-ル、ジアセトンアルコ-ルなどのアルコ-ル類、メチルエ-テル、エチルエ-テル、プロピルエ-テルなどのエ-テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能である。
 さらに、当該溶媒には、樹脂のモノマーやオリゴマーを用いてもよい。さらには、スチレン樹脂などをトルエンに溶解した液状樹脂、プラスチック用の液状の可塑剤を用いてもよい。
 また、上述した溶媒の混合物を用いてもよい。
 本実施形態の暗色粉分散液には、暗色顔料と複合タングステン酸化物微粒子の合計100質量部に対して溶媒が50質量部以上2000質量部以下含まれることが望しく、200質量部以上がさらに望ましい。
 (c)分散剤
 暗色粉分散液中における微粒子の分散安定性を一層向上させるために、各種の分散剤、界面活性剤、カップリング剤などの添加も勿論可能である。また、溶媒に水や水溶性の有機物を用いる場合は、必要に応じて酸やアルカリを添加して、当該分散液のpH調整をしてもよい。
 分散剤は、アミノ基を備えた高分子分散剤が望ましい。上述した暗色顔料粒子や複合タングステン酸化物微粒子の表面に吸着し、当該複合タングステン酸化物微粒子の凝集を防ぎ、暗色粉分散体中でこれらの微粒子を均一に分散させる効果を発揮するものである。アミノ基を備えた高分子分散剤のアミン価は5~100mgKOH/gであることが好ましく、分子量Mwは2000~200000であることが好ましい。
 本実施形態に係るアミノ基高分子分散剤は、当該分散剤の分子にアミノ基などの塩基性基を備えた化合物である。このような分散剤の分子にアミノ基などの塩基性基を有する化合物としては、主鎖にポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、アマイド樹脂が例示される。より好ましいのは、主鎖にアクリル樹脂を備える化合物である。
 また、このようなアミノ基を備えた高分子分散剤の好ましい市販品例としては、Disperbyk-112、Disperbyk-116、Disperbyk-130、Disperbyk-161、Disperbyk-162、Disperbyk-164、Disperbyk-166、Disperbyk-167、Disperbyk-168、Disperbyk-2001、Disperbyk-2020、Disperbyk-2050、Disperbyk-2070、Disperbyk-2150等のビックケミー・ジャパン社製のアミノ基高分子分散剤、アジスパーPB821、アジスパーPB822、アジスパーPB711等の味の素ファインテクノ社製のアミノ基高分子分散剤、ディスパロン1860、ディスパロンDA703-50、ディスパロンDA7400等の楠本化成社製のアミノ基高分子分散剤、EFKA-4400、EFKA-4401、EFKA-5044、EFKA-5207、EFKA-6225、EFKA-4330、EFKA-4047、EFKA-4060等のBASFジャパン社製のアミノ基高分子分散剤、等が挙げられる。
 さらに、アミノ基高分子分散剤へ水酸基および/またはカルボキシル基を有する分散剤を併用してもよいし、アミノ基を備えた高分子分散剤が水酸基および/またはカルボキシル基を備えてもよい。このような高分子分散剤は、いずれも上述した複合タングステン酸化物微粒子の表面に吸着し、当該複合タングステン酸化物微粒子の凝集を防ぎ、暗色粉分散体中でこれらの微粒子を均一に分散させる効果を発揮するものである。
 水酸基を備えた高分子分散剤のOH価は、10~200mgKOH/gであることが好ましく、分子量Mwは1000~150000であることが好ましい。
 本実施形態に係る水酸基を備えた高分子分散剤としては、水酸基を備えたアクリル樹脂(アクリルポリオールということもある)、水酸基を有するアクリル・スチレン共重合体などが挙げられる。
 当該水酸基を備えた高分子分散剤には、アクリルポリオール類や、東亜合成社製のUHシリーズ等の市販品が挙げられる。
 カルボキシル基を備えた高分子分散剤の酸価は0.1~100mgKOH/gであることが好ましく、分子量Mwは2000~200000であることが好ましい。
 本実施形態に係るカルボキシル基を備えた高分子分散剤としては、カルボキシル基をを備えたアクリル樹脂やアクリル・スチレン共重合体等が挙げられる。
 カルボキシル基を備えた高分子分散剤には、酸価が1以上の市販のアクリル樹脂や、東亜合成社製のUCシリーズやUFシリーズ等が挙げられる。
 本発明に係る暗色粉分散液において、これらの高分子分散剤の合計の含有量は、暗色顔料と複合タングステン酸化物微粒子との合計100質量部に対し、分散剤の固形分として20質量部以上200質量部以下であることが好ましい。これは高分子分散剤の含有量が当該範囲にあることで、暗色顔料と複合タングステン酸化物微粒子とが暗色粉分散体中で均一に分散し、低いヘイズを実現できるからである。具体的には、暗色顔料と複合タングステン酸化物微粒子の合計100質量部に対し、アミノ基高分子分散剤を20質量部以上含有させることで暗色粉分散体のヘイズ値を低減させることが出来、200質量部以下含有させることで、暗色粉分散体の機械的強度を確保できる。
 (d)暗色粉分散液の製造方法
 暗色粉分散液を製造する際の分散方法は、暗色顔料と複合タングステン酸化物微粒子を分散液中へ均一に分散する方法であればよく、例えば、ビ-ズミル、ボ-ルミル、サンドミル、ペイントシェーカー、超音波ホモジナイザ-など用いることができる。
 また、暗色粉分散液を得るために、暗色顔料と溶媒と適宜添加される高分子分散剤を含む顔料分散液と、複合タングステン酸化物微粒子と溶媒と適宜添加される高分子分散剤を含む複合タングステン酸化物分散液を、それぞれ上述の分散方法で調製し、暗色顔料と複合タングステン酸化物微粒子の配合割合が所定の値になるように混合してもよい。
 (e)その他の添加剤
 後述する「(4)暗色粉分散体」や「(5)着色層付基材」において耐湿熱性が求められる場合、当該耐湿熱性の向上の為、それらの製造に用いる暗色粉分散液ヘ、さらに添加剤を添加することも好ましい構成である。
 本発明者らは、本発明に係る暗色粉分散体や着色層付基材が、耐湿熱性を求められる状況下で使用される場合もあることに鑑み、暗色粉分散体や着色層付基材の近赤外線遮蔽特性が、水分や熱により経時的に低下する原因について研究を行った。そして、空気中から侵入してきた水分や、暗色粉由来の金属イオンあるいは外界からの紫外線等が、当該暗色粉分散体や着色層付基材を構成する固体媒体や透明フィルム基材へ触媒的に作用することで、分解劣化を引き起こす。そして、当該分解劣化の際に発生した分解物(ラジカル)が、複合タングステン酸化物微粒子中の元素Mを脱離させてしまうため、近赤外線遮蔽特性が経時的に低下すると推察するに至った。
 本発明者らは、上述の推察に基づき、暗色粉分散液中へ、添加材として金属不活剤や金属塩を添加することにより、暗色粉分散体中や着色層付基材中へ金属不活剤や金属塩を存在させる構成に想到した。当該構成により、金属不活剤や金属塩が赤外線遮蔽材料微粒子の近傍または/および表面に存在することとなる。すると、当該金属不活剤や金属塩の作用により、空気中等から侵入する水分が十分に捕捉される。また、この金属不活剤や金属塩の作用により、暗色粉由来の金属イオンや、紫外線等によって発生したラジカルも補足され、有害ラジカルが連鎖的に発生することが抑制される。この結果、赤外線遮蔽特性の経時的な低下が抑制されることに想到した。
 尤も、これら金属不活剤や金属塩の作用については未解明な点も多く、前記以外の作用が働いている可能性も考えられる為、前記作用に限定されるわけではない。
 金属不活化剤の具体例としては、サリチル酸誘導体であるN-(2H-1,2,4-トリアゾール-5-イル)サリチルアミド、N,N─ビス(6,5─ジ─t─ブチルサリチロイル)ヒドラジン、N,N─ビス(6─t─ブチルメチルサリチロイル)ヒドラジン等、ヒドラジン誘導体であるドデカン二酸ビス[N2-(2-ヒドロキシベンゾイル)ヒドラジド]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-N´-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパノイル]プロパンヒドラジド等、
 シュウ酸誘導体であるN,N´-ビス[2-[2-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エチルカルボニルオキシ]エチル]オキサミド、N´-ベンジリデンヒドラジド、オキサリル-ビス(ベンジリデンヒドラジド)等を好ましく挙げることが出来る。
 また、金属塩の具体例としては、乳酸塩である乳酸マグネシウム、乳酸アルミニウム、乳酸カルシウム等や、炭酸塩である炭酸カルシウム、炭酸マグネシウム(炭酸水酸化マグネシウム)、炭酸ストロンチウム等、を好ましく挙げることが出来る。
 また、金属不活化剤や金属塩の添加量(但し、本発明においては、当該金属不活化剤や金属塩が、結晶水や水和水を含む場合、当該結晶水や水和水の質量を除いた、金属不活化剤や金属塩自体の質量を添加量とする。)は、暗色顔料に対し質量比で2倍以上10倍以下とすることが好ましい。これは、暗色顔料に対し質量比で2倍以上の添加量することで、金属不活化剤や金属塩の効果を得ることが出来ることによる。一方、暗色顔料に対し質量比で10倍以下の添加量とすることで、金属不活化剤や金属塩による光の散乱の為にフィルムの透明性が維持出来なくなることを回避出来ることによる。
 暗色粉分散液ヘ各種の金属不活化剤や金属塩を添加するのは、暗色粉分散液を調製した後に添加することが好ましい。そして、金属不活化剤や金属塩が粉末の場合は、暗色粉分散体中や着色層付基材における光の散乱の発生を抑制するために、粒径を小さくすることが好ましい。具体的には、5nm~100nmの粒径が望ましい。100nm以下であれば光の散乱を抑制でき、フィルムの透明度を担保することが出来る。5nm以上であれば、金属不活化剤や金属塩が過粉砕となる事態を回避出来、生産性の観点からも好ましい。
 上述の観点から、金属不活化剤や金属塩が粉末状である場合、粉末状の金属不活化剤や金属塩と、適宜な溶媒とを混合して粉砕処理し、粉砕液を調製することが好ましい。
 溶媒は、特に限定されるものではなく、暗色粉分散系や、暗色粉分散体、着色層付基材に合わせて適宜選択すれば良い。例えば、水、エタノ-ル、プロパノ-ル、ブタノ-ル、イソプロピルアルコ-ル、イソブチルアルコ-ル、ジアセトンアルコ-ルなどのアルコ-ル類、メチルエ-テル、エチルエ-テル、プロピルエ-テルなどのエ-テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能である。さらに、当該溶媒として、樹脂のモノマーやオリゴマーを用いてもよい。さらには、スチレン樹脂などをトルエンに溶解した液状樹脂、プラスチック用の液状の可塑剤を用いてもよい。
 また、上述した溶媒の混合物を用いてもよい。
 上述した粉砕処理の方法としては、一般的な粉砕方法で良く、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどを用いることができる。
 調製された粉砕液を暗色粉分散液に添加する際は、例えば、超音波処理を5分間~10分間行うことで、粉砕液を暗色粉分散液ヘ均一に分散させることが好ましい。
(4)暗色粉分散体
 本発明に係る暗色粉分散体は、上述した暗色顔料と複合タングステン酸化物微粒子とを適宜な固体媒体中に分散して得られる。
 具体的には、暗色粉分散液に固体媒体を構成する樹脂を添加し、暗色粉分散体形成用分散液(塗工液)を得る。そして、適宜な基材表面へ、当該暗色粉分散体形成用分散液をコーティングし、溶媒を蒸発等の所定の方法で除去して樹脂を硬化させれば、基材表面に暗色粉分散体が着色層として設けられた着色層付基材が得られる。
 本発明に係る暗色粉分散液から得られる暗色粉分散体は、当該暗色粉分散液における暗色顔料や複合タングステン酸化物微粒子の分散状態と配合割合とを維持している。その結果として、本発明に係る暗色粉分散体は、暗色粉分散体形成用分散液(塗工液)や、後述するマスターバッチを、固体媒体の樹脂により可視光透過率が5~70%になるように希釈して形成すると、彩度c*が10以下、近赤外透過率が50%以下を実現できる。彩度c*は、5以下であることが好ましく、4以下がより好ましく、3以下がさらに好ましい。彩度c*がより低くなることで、目視で確認出来る深い黒色を実現出来、自動車や建物の窓を深い黒色とすることが出来るので意匠性が向上する。
 さらに、暗色顔料としてCu-Fe-Mn複合酸化物顔料および/またはCu-Cr複合酸化物顔料を選択した場合、複合タングステン酸化物微粒子や媒体である樹脂等と混合した暗色粉分散体において、当該暗色顔料、複合タングステン酸化物微粒子、樹脂等の混合比を制御することにより、c*の値を4.5以下の値に保ちながら、可視光透過率や近赤外透過率を所望値に設定することが出来た。この結果、用途等に応じた光学的特性を有する暗色粉分散体の開発が容易になり、好ましい構成である。
 また、本発明に係る暗色粉分散液の溶媒には、硬化により固体媒体となる樹脂のモノマーを用いてもよい。溶媒として樹脂のモノマーを用いた場合、コーティングの方法は、基材表面に近赤外線遮蔽材料微粒子分散体が均一にコートできればよく、特に限定されないが、例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が挙げられる。また、暗色顔料と複合タングステン酸化物微粒子とを、直接バインダー樹脂中に分散した暗色粉分散体は、基材表面に塗布後、溶媒を蒸発させる必要が無く、環境的、工業的に好ましい。
 上述した固体媒体としては、例えば、樹脂としてUV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が目的に応じて選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂が挙げられる。これらの樹脂は、単独使用であっても混合使用であっても良い。
 さらに、高分子分散剤を含有する暗色粉分散液の溶媒成分を揮発させ、暗色顔料と複合タングステン酸化物微粒子と高分子分散剤とを含む暗色顔料分散粉と、溶融温度以上に温度を上げて溶融させたポリカーボネート樹脂等とを混合して暗色顔料含有マスターバッチを製造し、当該マスターバッチと溶融温度以上に温度を上げて溶融させたポリカーボネート樹脂等と溶融混合し、公知の方法でフィルムや板(ボード)状に形成し暗色粉分散体を作ることも出来る。
(5)着色層付基材
 本発明に係る暗色粉分散体を着色層として、透明ガラス基材や透明フィルム基材といった透明基材表面に設ければ、着色層付基材とすることができる。透明ガラス基材には、ソーダライムガラスなどの板ガラス、透明フィルム基材には、PETフィルムのような樹脂フィルムを用いることができる。
 もちろん、2枚以上の透明基材で暗色粉分散体を挟んで、着色層付基材としてもよい。
 本発明について、実施例を参照しながらより具体的に説明する。
 まず、評価方法について、(1)可視光透過率と近赤外透過率、(2)L*、a*、b*表色系の特性と彩度c*、(3)分散平均粒子径、の順に説明する。
(1)可視光透過率と近赤外透過率
 試料の可視光透過率と近赤外透過率とは、分光光度計(日立製作所製UH4150)で測定した。そして、可視光透過率と近赤外透過率はISO9050に準拠して波長750nmから1500nmにおいて測定した。
(2)L*、a*、b*表色系の特性と彩度c*
 試料のL*、a*、b*表色系の特性は、分光光度計(日立製作所製UH4150)で測定した。彩度c*は次式2で算出した。
 
  彩度c*=(a*+b*1/2・・・・式2
 
 なお、L*、a*、b*表色系の特性は、次の手順で測定した。
 試料の分光透過率(透過率の波長依存性)を測定する。
 測定された分光透過率をJIS Z 8701 1999に基づいて、D65光源・10°の視野でのX10、Y10、Z10の色味値に変換する。
 変換されたX10、Y10、Z10の色味値をJIS Z 8781-4 2013に基づいて、L*、a*、b*に変換する。
(3)分散平均粒子径
 平均分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定した。
(実施例1~12、比較例1~8)
 (a)暗色粉分散液の調製
 暗色粉分散液として、Cu-Fe-Mn複合酸化物顔料の分散液の調製について説明する。
 Cu-Fe-Mn複合酸化物顔料(大日精化製ダイピロキサイドTMブラック#3550)100質量部と、溶媒としてMIBK800質量部と、分散剤a(アミンを含有する基とアクリル主鎖を有する分散剤、アミン価42mgKOH/g)100質量部とを容器に入れ、0.3mmジルコニアビーズを用いて、ペイントシェーカーにて20時間粉砕した。そして、平均分散粒子径100nmのCu-Fe-Mn複合酸化物顔料の分散液を得た。
 暗色粉分散液として、Cu-Cr複合酸化物顔料の分散液の調製について説明する。
 Cu-Cr複合酸化物顔料(大日精化製ダイピロキサイドブラック#9510)100質量部と、溶媒としてMIBK800質量部と、分散剤a100質量部とを容器に入れ、0.3mmジルコニアビーズを用いて、ペイントシェーカーにて20時間粉砕した。そして、平均分散粒子径150nmのCu-Fe-Mn複合酸化物顔料の分散液を得た。
 (b)複合タングステン酸化物微粒子分散液の調製
 複合タングステン酸化物微粒子分散液として、Cs0.33WO粒子分散液の調製について説明する。
 Cs0.33WO粒子(住友金属鉱山製)100質量部と、溶媒としてMIBK300質量部と、分散剤a100質量部とを容器に入れ、0.3mmジルコニアビーズを用いて、ペイントシェーカーにて20時間粉砕した。そして、平均分散粒子径30nmのCs0.33WO粒子分散液を得た。
 (c)暗色粉分散液と暗色粉分散体形成用分散液(塗工液)の調製
 Cu-Fe-Mn複合酸化物顔料の分散液100質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例1~3に係る暗色粉分散液を調製した。
 Cu-Fe-Mn複合酸化物顔料の分散液20質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例4~7に係る暗色粉分散液を調製した。
 Cu-Fe-Mn複合酸化物顔料の分散液10質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例8、10~12に係る暗色粉分散液を調製した。
 Cu-Cr複合酸化物顔料の分散液20質量部とCs0.33WO粒子分散液100質量部とを混合して、実施例9に係る暗色粉分散液を調製した。
 Cs0.33WO粒子分散液100質量部のみをもって、比較例1~5に係る暗色粉分散液とした。
 Cu-Fe-Mn複合酸化物顔料の分散液100質量部のみをもって、比較例6~8に係る暗色粉分散液とした。
 さらに、実施例10に係る暗色粉分散液では、Cs0.33WO粒子100質量部に対し、炭酸水酸化マグネシウム(関東化学製)が800質量部となるように添加した。
 さらに、実施例11に係る暗色粉分散液では、Cs0.33WO粒子100質量部に対し、乳酸マグネシウム(関東化学製)が632質量部となるように添加した。
 尚、当該乳酸マグネシウム(関東化学製)は3水和物であったので、水和水込みの乳酸マグネシウムとしての添加量は800質量部となった。
 さらに、実施例12に係る暗色粉分散液では、Cs0.33WO粒子100質量部に対し、サリチル酸誘導体(N-(2H-1,2,4-トリアゾール-5-イル)サリチルアミド)(ADEKA製)が200質量部となるように添加した。
 以上、実施例1~12、比較例1~8に係る暗色粉分散液の配合比率を表1に記載する。
 調整した実施例1~12、比較例1~8に係る暗色粉分散液のそれぞれへ、紫外線硬化樹脂(東亜合成製 アロニックスUV3701)を混合して、実施例1~12、比較例1~8に係る暗色粉分散体形成用分散液(塗工液)を調製した。
 ここで、実施例1~12、比較例1~8に係る暗色粉分散体形成用分散液(塗工液)において、後述する硬化後の暗色粉分散体の可視光透過率が、実施例1では40%、実施例2では35%、実施例3では30%、実施例4では65%、実施例5では50%、実施例6では35%、実施例7では20%、実施例8では65%、実施例9では55%、実施例10では65%、実施例11では65%、実施例12では65%、比較例1では15%、比較例2では30%、比較例3では40%、比較例4では50%、比較例5では65%、比較例6では40%、比較例7では30%、比較例8では20%となることを目論んで、暗色粉分散液と紫外線硬化樹脂とを混合したものである。
 (d)暗色粉分散体および着色層付基材の調製
 実施例1~12、比較例1~8に係る暗色粉分散体形成用分散液(塗工液)を、それぞれ厚さ50μmのPETフィルムにNo.4~No.10バーコータで塗布して塗布膜を得た。得られた塗布膜から溶媒を蒸発乾燥させた後(70℃、1分間加熱)、高圧水銀ランプを用いて紫外線照射して塗布膜を硬化させてPETフィルムの表面に暗色粉分散体を設けた。なお、当該設けられた暗色粉分散体は着色層であり、PETフィルムの表面に着色層を形成し試料フィルムとしたので、実施例1~12、比較例1~8に係る着色層付基材を調製したこととなる。
 調製された実施例1~12、比較例1~8に係る着色層付基材について、彩度c*、可視光透過率と近赤外透過率とを測定した。その結果を表1に示す。尚、彩度、可視光透過率、近赤外透過率の測定においては、基材のPETフィルムを含めた値を測定した。
 (e)着色層付基材の耐湿熱評価
 実施例8、10~12に係る着色層付基材(試料フィルム)について、温度85℃、相対湿度90%の環境下における透過スペクトルの変化を測定し、その後、当該透過スペクトルから計算される波長1000nmにおける吸光度の経時変化を評価した。
 着色層付基材試料(試料フィルム)の評価は以下の手順で行った。
 まず作製した試料フィルムの波長200nmから2600nmの範囲における透過スペクトルを測定し、波長1000nmにおける透過率を求めた。その後、温度85℃、相対湿度90%の恒温恒湿槽に試料フィルムを投入した。
 当該試料フィルムの投入後、所定日数が経過したら試料フィルムを取り出し、上述の波長範囲において透過スペクトルを測定し、波長1000nmにおける透過率を求めた。その後、試料フィルムを上述の温湿条件の恒温恒湿槽に再び投入し、所定日数が経過したら再び試料フィルムを取り出し、波長1000nmにおける透過率を求めることを繰り返した。
 そして、当該波長1000nmにおける透過率を、次式3を用いて吸光度に換算し、試験開始時からの吸光度の変化率を求めた。
 実施例8、10~12に係る着色層付基材の、試験開始時から所定の経過日数後の、試料フィルムにおける吸光度の変化率の値を表2に示し、試験開始時から所定の経過日数後の、試料フィルムにおける吸光度の変化率の状態を図1に示す。
 尚、図1において、縦軸は、波長1000nmにおける吸光度の変化率であり、横軸は、経過日数である。
 そして、実施例8係る試料フィルムのデータは短破線、実施例10係る試料フィルムのデータは実線、実施例11係る試料フィルムのデータは一点鎖線、実施例12係る試料フィルムのデータは長破線で示した。
 
  吸光度=-log(透過率)・・・・式3
 
 (f)まとめ
 可視光透過率40%を目論んだ配合である実施例1、比較例3、比較例6とを比べると、可視光透過率の実測値は、いずれも40%程度である。一方、彩度c*は、実施例1が低いことが判明した。
 同様に、可視光透過率30%を目論んだ配合である実施例3、比較例2、比較例7とを比べると、可視光透過率の実測値は、いずれも30%程度である。一方、彩度c*は、実施例3が低いことが判明した。
 同様に、可視光透過率20%を目論んだ配合である実施例7、比較例8とを比べると、可視光透過率の実測値は、いずれも20%程度である。一方、彩度c*は、実施例7が低いことが判明した。
 同様に、可視光透過率65%を目論んだ配合である実施例4、比較例5とを比べると、可視光透過率の実測値は、いずれも65%程度である。一方、彩度c*は、実施例4が低いことが判明した。
 そして、実施例1~12において、暗色顔料として、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料を選択し、複合タングステン酸化物微粒子と、媒体である樹脂等との混合物である暗色粉分散体において、当該混合比を変えることにより、c*の値を4.5以下の値に保ちながら、可視光透過率や近赤外透過率を所望値に設定することが出来た。
 次に、実施例8、10~12に係る着色層付基材を用いた耐湿熱評価結果を示す図1より、以下のことが判明した。
 実施例8と実施例10とを比較すると、吸光度の経時変化率は実施例10の方が小さいことが判明した。これは添加剤である炭酸塩中の炭酸イオンが、着色層付基材中の金属イオンを捕捉することにより、Cs0.33WO粒子の劣化を抑制したためと推定される。
 同様に、実施例8と実施例11とを比較すると、吸光度の経時変化率は実施例11の方が小さいことが判明した。これは添加剤である乳酸マグネシウム中の乳酸イオンが、着色層付基材中の金属イオンを捕捉することにより、Cs0.33WO粒子の劣化を抑制したためと推定される。
 同様に、実施例8と実施例12とを比較すると、吸光度の経時変化率は実施例12の方が小さいことが判明した。これは添加剤のサリチル酸誘導体が、着色層付基材中の金属イオンを捕捉することにより、Cs0.33WO粒子の劣化を抑制したためと推定される。
 実施例8、10~12に係る着色層付基材を用いた耐湿熱評価より、暗色粉分散液を用いたフィルムへ金属不活剤や金属塩を添加することで、無添加の暗色粉分散液を用いたフィルムに比べて、波長1000nmにおける15日(360時間)以降の吸光度の変化率を30%~50%抑制できることが判明した。
 以上より、暗色顔料として、Cu-Fe-Mn複合酸化物顔料、複合タングステン酸化物微粒子と、媒体である樹脂等との混合物である暗色粉分散体に対し、サリチル酸誘導体や金属塩を添加することにより、当該暗色粉分散体の吸光度の変化を抑制、つまり耐湿熱性を向上させることが出来ることが判明した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 

Claims (14)

  1.  暗色顔料と複合タングステン酸化物粒子と溶媒とを含み、
     前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする暗色粉分散液。
  2.  前記複合タングステン酸化物微粒子が六方晶の結晶構造を含むことを特徴とする請求項1に記載の暗色粉分散液。
  3.  前記暗色顔料が、平均分散粒子径200nm以下の粒子であることを特徴とする請求項1または2に記載の暗色粉分散液。
  4.  前記暗色顔料が、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料、Co―Cr―Fe複合酸化物顔料、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックから選択される1種類以上であることを特徴とする請求項1から3のいずれかに記載の暗色粉分散液。
  5.  前記暗色粉分散液が、金属不活剤または金属塩から選択される1種類以上を含む請求項1から4のいずれかに記載の暗色粉分散液。
  6.  前記溶媒が、水、有機溶媒、油脂、液状樹脂、プラスチック用の液状の可塑剤、または、これらの混合物から選択されることを特徴とする請求項1から5のいずれかに記載の暗色粉分散液。
  7.  暗色顔料と複合タングステン酸化物粒子と固体媒体とを含み、
     前記暗色顔料と前記複合タングステン酸化物粒子との質量比(暗色顔料質量/複合タングステン酸化物微粒子質量)の値が0.01以上5以下であることを特徴とする暗色粉分散体。
  8.  前記複合タングステン酸化物微粒子が六方晶の結晶構造を含むことを特徴とする請求項7に記載の暗色粉分散体。
  9.  前記暗色顔料が、平均分散粒子径200nm以下の粒子であることを特徴とする請求項7または8に記載の暗色粉分散体。
  10.  前記暗色顔料が、Cu-Fe-Mn複合酸化物顔料、Cu-Cr複合酸化物顔料、Cu-Cr―Mn複合酸化物顔料、Cu-Cr―Mn―Ni複合酸化物顔料、Cu-Cr―Fe複合酸化物顔料、Fe-Cr複合酸化物顔料、Co―Cr―Fe複合酸化物顔料、チタンブラック、窒化チタン、酸窒化チタン、暗色アゾ顔料、ペリレンブラック顔料、アニリンブラック顔料、カーボンブラックから選択される1種類以上であることを特徴とする請求項7から9のいずれかに記載の暗色粉分散体。
  11.  前記分散体が、金属不活剤または金属塩から選択される1種類以上を含む請求項7から10のいずれかに記載の暗色粉分散体。
  12.  前記固体媒体が樹脂であることを特徴とする請求項7から11のいずれかに記載の暗色粉分散体。
  13.  透明基材の少なくとも一方の表面に着色層が設けられ、前記着色層が請求項7から12のいずれかに記載の暗色粉分散体であることを特徴とする着色層付基材。
  14.  前記透明基材が、透明フィルム基材または透明ガラス基材であることを特徴とする請求項13に記載の着色層付基材。
PCT/JP2021/015021 2020-06-05 2021-04-09 暗色粉分散液、暗色粉分散体ならびに着色層付基材 WO2021246055A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/924,438 US20230272225A1 (en) 2020-06-05 2021-04-09 Dark powder dispersion liquid, dark powder dispersion body and colored layer-attached base material
EP21818569.2A EP4163108A1 (en) 2020-06-05 2021-04-09 Substrate with dark-colored powder dispersion liquid, dark-colored powder dispersion body, and colored layer
CN202180040473.2A CN115698205A (zh) 2020-06-05 2021-04-09 深色粉末分散液、深色粉末分散体和带有着色层的基材
KR1020227036522A KR20220154232A (ko) 2020-06-05 2021-04-09 암색분 분산액, 암색분 분산체 그리고 착색층을 구비한 기재

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-098196 2020-06-05
JP2020098196 2020-06-05
JP2020191647A JP7415890B2 (ja) 2020-06-05 2020-11-18 暗色粉分散液、暗色粉分散体ならびに着色層付基材
JP2020-191647 2020-11-18

Publications (1)

Publication Number Publication Date
WO2021246055A1 true WO2021246055A1 (ja) 2021-12-09

Family

ID=78830390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015021 WO2021246055A1 (ja) 2020-06-05 2021-04-09 暗色粉分散液、暗色粉分散体ならびに着色層付基材

Country Status (5)

Country Link
US (1) US20230272225A1 (ja)
EP (1) EP4163108A1 (ja)
KR (1) KR20220154232A (ja)
CN (1) CN115698205A (ja)
WO (1) WO2021246055A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214310A (ja) 1999-01-21 2000-08-04 Sumitomo Osaka Cement Co Ltd 遮光フィルム
JP2007311208A (ja) * 2006-05-18 2007-11-29 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルター及びその製造方法、並びにプラズマディスプレイパネル
JP2007314752A (ja) * 2006-04-24 2007-12-06 Sumitomo Metal Mining Co Ltd 日射遮蔽分散体、日射遮蔽体、および、それらの製造方法
JP2008231164A (ja) * 2007-03-16 2008-10-02 Sumitomo Metal Mining Co Ltd 紫外・近赤外光遮蔽分散体および紫外・近赤外光遮蔽体
WO2009020207A1 (ja) * 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. 近赤外線吸収性組成物、及び近赤外線吸収フィルタ
JP2012229388A (ja) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材
JP2013170239A (ja) * 2012-02-22 2013-09-02 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
JP2015196622A (ja) * 2014-04-01 2015-11-09 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽透明基材、自動車および建造物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701735B1 (ko) * 2003-10-20 2007-03-29 스미토모 긴조쿠 고잔 가부시키가이샤 적외선 차폐재료 미립자 분산체, 적외선 차폐체, 및 적외선차폐재료 미립자의 제조방법, 및 적외선 차폐재료 미립자
JP2008194563A (ja) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd 日射遮蔽膜および波長選択型遮蔽膜
JP5773567B2 (ja) * 2009-11-02 2015-09-02 石原産業株式会社 赤外線反射材料及びその製造方法並びにそれを含有した塗料、樹脂組成物
JP6160830B2 (ja) * 2013-12-20 2017-07-12 住友金属鉱山株式会社 偽造防止インクの印刷膜および偽造防止印刷物
CN106905843A (zh) * 2017-04-05 2017-06-30 沙河市湡久新材料有限公司 日照遮蔽膜形成用涂布液及相关的粘合剂、日照遮蔽膜和基材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214310A (ja) 1999-01-21 2000-08-04 Sumitomo Osaka Cement Co Ltd 遮光フィルム
JP2007314752A (ja) * 2006-04-24 2007-12-06 Sumitomo Metal Mining Co Ltd 日射遮蔽分散体、日射遮蔽体、および、それらの製造方法
JP2007311208A (ja) * 2006-05-18 2007-11-29 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルター及びその製造方法、並びにプラズマディスプレイパネル
JP2008231164A (ja) * 2007-03-16 2008-10-02 Sumitomo Metal Mining Co Ltd 紫外・近赤外光遮蔽分散体および紫外・近赤外光遮蔽体
WO2009020207A1 (ja) * 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. 近赤外線吸収性組成物、及び近赤外線吸収フィルタ
JP2012229388A (ja) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材
JP2013170239A (ja) * 2012-02-22 2013-09-02 Sumitomo Metal Mining Co Ltd 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
JP2015196622A (ja) * 2014-04-01 2015-11-09 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽透明基材、自動車および建造物

Also Published As

Publication number Publication date
CN115698205A (zh) 2023-02-03
US20230272225A1 (en) 2023-08-31
EP4163108A1 (en) 2023-04-12
KR20220154232A (ko) 2022-11-21

Similar Documents

Publication Publication Date Title
JP6769562B2 (ja) 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法
JP6950691B2 (ja) 近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散体、近赤外線吸収透明基材、近赤外線吸収合わせ透明基材
KR20180095006A (ko) 근적외선 차폐 초미립자 분산체, 일사 차폐용 중간막, 적외선 차폐 적층 구조체, 및 근적외선 차폐 초미립자 분산체의 제조 방법
JP5050470B2 (ja) 日射遮蔽分散体、日射遮蔽体、および、それらの製造方法
KR102042751B1 (ko) 근적외선 흡수 필터 및 촬상소자
TW201631226A (zh) 熱射線屏蔽粒子、熱射線屏蔽粒子分散液、熱射線屏蔽粒子分散體、熱射線屏蔽粒子分散體層合透明基材、紅外線吸收透明基材、熱射線屏蔽粒子之製造方法
JP6870303B2 (ja) 熱線遮蔽分散体、および熱線遮蔽合わせ透明基材
JP6879127B2 (ja) 熱線遮蔽粒子、熱線遮蔽粒子の製造方法、熱線遮蔽粒子分散液、熱線遮蔽粒子分散液の製造方法、熱線遮蔽粒子分散体、熱線遮蔽合わせ透明基材、熱線遮蔽透明基材
WO2021153693A1 (ja) 電磁波吸収粒子分散体、電磁波吸収積層体、電磁波吸収透明基材
JP6613674B2 (ja) 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
WO2020153035A1 (ja) 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、および、赤外線吸収基材
JP2011026440A (ja) 近赤外線遮蔽ポリエステル樹脂組成物、近赤外線遮蔽ポリエステル樹脂積層体並びに成形体
WO2021246055A1 (ja) 暗色粉分散液、暗色粉分散体ならびに着色層付基材
JP2021191832A (ja) 暗色粉分散液、暗色粉分散体ならびに着色層付基材
JP6819250B2 (ja) 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
JP6866620B2 (ja) 熱線遮蔽フィルムおよび熱線遮蔽ガラス
JP7367686B2 (ja) 赤外線吸収材料微粒子分散液とその製造方法
JP6949304B2 (ja) 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体
JP6575443B2 (ja) 熱線遮蔽フィルムおよび熱線遮蔽ガラス
JP7472699B2 (ja) 赤外線吸収微粒子分散液、赤外線吸収微粒子分散体および赤外線吸収透明基材
JP6623944B2 (ja) 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
JP7322321B1 (ja) マンガン酸化物、マンガン酸化物粒子、近赤外線透過材料、及び近赤外線透過膜
JP7282326B2 (ja) 光吸収透明基材、光吸収粒子分散体、および光吸収合わせ透明基材
WO2023145737A1 (ja) 近赤外線吸収粒子、近赤外線吸収粒子の製造方法、近赤外線吸収粒子分散液、近赤外線吸収粒子分散体、近赤外線吸収積層体、近赤外線吸収透明基材
WO2024106139A1 (ja) 赤外線吸収材料微粒子分散液と赤外線吸収材料微粒子分散体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227036522

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021818569

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021818569

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE