JP6870303B2 - 熱線遮蔽分散体、および熱線遮蔽合わせ透明基材 - Google Patents
熱線遮蔽分散体、および熱線遮蔽合わせ透明基材 Download PDFInfo
- Publication number
- JP6870303B2 JP6870303B2 JP2016235151A JP2016235151A JP6870303B2 JP 6870303 B2 JP6870303 B2 JP 6870303B2 JP 2016235151 A JP2016235151 A JP 2016235151A JP 2016235151 A JP2016235151 A JP 2016235151A JP 6870303 B2 JP6870303 B2 JP 6870303B2
- Authority
- JP
- Japan
- Prior art keywords
- heat ray
- shielding
- transmittance
- fine particle
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Joining Of Glass To Other Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Optical Filters (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
その課題は、前記一般式MxWyOzで記載された複合タングステン酸化物微粒子、当該複合タングステン酸化物微粒子を含有した熱線遮蔽フィルムや熱線遮蔽ガラス、当該複合タングステン酸化物微粒子を含有した分散体や熱線遮蔽合わせ透明基材を、窓材等の構造体に適用した場合、当該窓材等を通過する光において、波長700〜1200nmの近赤外光の透過率も大きく低下してしまうことである。
当該波長領域の近赤外光は人間の眼に対してほぼ不可視であり、また安価な近赤外LED等の光源により発振が可能であることから、近赤外光を用いた通信、撮像機器、センサー等に広く利用されている。ところが、前記一般式MxWyOzで表される複合タングステン酸化物微粒子を用いた窓材等の構造体、熱線遮蔽体や熱線遮蔽基材、分散体や合わせ透明基材等の構造体は、当該波長領域の近赤外光も、熱線と伴に強く吸収してしまう。
この結果、前記一般式MxWyOzで表される複合タングステン酸化物微粒子を用いた窓材等の構造体、熱線遮蔽フィルムや熱線遮蔽ガラス、分散体や合わせ透明基材を介しての、近赤外光を用いた通信、撮像機器、センサー等の使用が制限される事態になる場合も生じていた。
例えば、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材を介した場合であっても、近赤外光を用いる通信機器、撮像機器、センサー等の使用を可能とするには、波長800〜900nmの領域における近赤外光の透過率を向上させれば良いと考えられた。そして、当該波長領域における近赤外光の透過率を単に向上させるだけであれば、複合タングステン酸化物微粒子の膜中濃度、熱線遮蔽フィルムや熱線遮蔽ガラスにおける複合タングステン酸化物微粒子の濃度、熱線遮蔽分散体や熱線遮蔽合わせ透明基材における複合タングステン酸化物微粒子の膜中濃度を適宜減少させればよい、とも考えられた。
しかし、複合タングステン酸化物微粒子の濃度、熱線遮蔽分散体や熱線遮蔽合わせ透明基材における複合タングステン酸化物微粒子の膜中濃度を減少させた場合、波長1200〜1800nmの領域をボトムとする熱線吸収能力も同時に低下し、熱線遮蔽効果を低下させることになり、肌へのジリジリ感も感じることになってしまう。
そこで、当該観点から、熱処理の際の還元状態を制御して製造した複合タングステン酸化物微粒子についてさらに検討した。
これは、波長800〜900nmの近赤外光の透過率を向上させた複合タングステン酸化物微粒子において、可視光での透過率も大きくなる。従って、単位面積当たりの複合タングステン酸化物微粒子の濃度をより高く設定することが可能となる。このより高い濃度設定の結果、波長1500〜2100nmの熱線の透過を抑制できるためである。
熱線遮蔽機能を有する複合タングステン酸化物微粒子であって、前記複合タングステン酸化物微粒子による光吸収のみを算出したときの可視光透過率が85%であるときに、波長800〜900nmの範囲における透過率の平均値が30%以上60%以下であり、且つ、波長1200〜1500nmの範囲における透過率の平均値が10.4%以上20%以下であり、且つ、波長2100nmの透過率が15.5%以上22%以下である熱線遮蔽微粒子を含むことを特徴とする熱線遮蔽微粒子分散体である。
第2の発明は、
前記複合タングステン酸化物微粒子が六方晶系の結晶構造を有し、c軸の格子定数が7.56Å以上8.82Å以下であることを特徴とする熱線遮蔽微粒子分散体である。
第3の発明は、
前記熱線遮蔽微粒子分散体が熱可塑性樹脂を含み、
前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることを特徴とする熱線遮蔽微粒子分散体である。
第4の発明は、
前記複合タングステン酸化物粒子を、0.5質量%以上80.0質量%以下含むことを特徴とする熱線遮蔽微粒子分散体である。
第5の発明は、
前記熱線遮蔽微粒子分散体が、シート形状、ボード形状またはフィルム形状であることを特徴とする熱線遮蔽微粒子分散体である。
第6の発明は、
前記熱線遮蔽微粒子分散体に含まれる単位投影面積あたりの前記熱線遮蔽微粒子の含有量が、0.1g/m2以上5.0g/m2以下であることを特徴とする熱線遮蔽微粒子分散体である。
第7の発明は、
可視光透過率が70%のときに、波長800〜900nmの範囲における透過率の平均値が13%以上40%以下であり、且つ、波長1200〜1500nmの範囲に存在する透過率の平均値が3.1%以上8%以下であり、且つ、波長2100nmの透過率が2.6%以上5%以下であることを特徴とする熱線遮蔽微粒子分散体である。
第8の発明は、
複数枚の透明基材間に、第1から第7の発明のいずれかに記載の熱線遮蔽微粒子分散体が存在していることを特徴とする熱線遮蔽合わせ透明基材である。
第9の発明は、
可視光透過率が70%のときに、波長800〜900nmの範囲における透過率の平均値が12%以上40%以下であり、且つ、波長1200〜1500nmの範囲に存在する透過率の平均値が3.1%以上8%以下であり、且つ、波長2100nmの透過率が4.3%以上8.0%以下であることを特徴とする熱線遮蔽合わせ透明基材である。
第10の発明は、
タングステン酸と、Cs、Rb、K、Tl、Baから選択される1種類以上の元素の水酸化物粉末とを、所定の割合で混合して混合粉末を得る混合工程と、
当該混合粉末を、不活性ガスをキャリアーとした0.8%以下のH2ガス供給下で加熱して還元処理を行い、Cs、Rb、K、Tl、Baから選択される1種類以上の元素を含む複合タングステン酸化物粉末を得る焼成工程と、
当該複合タングステン酸化物粉末を透明樹脂中へ均一に混合して、熱線遮蔽微粒子分散体を得る工程と、を有することを特徴とする熱線遮蔽微粒子分散体の製造方法である。
但し、前記複合タングステン酸化物粉末は、熱線遮蔽機能を有する複合タングステン酸化物微粒子を含み、前記複合タングステン酸化物微粒子による光吸収のみを算出したときの可視光透過率が85%であるときに、波長800〜900nmの範囲における透過率の平均値が30%以上60%以下であり、且つ、波長1200〜1500nmの範囲における透過率の平均値が10.4%以上20%以下であり、且つ、波長2100nmの透過率が15.5%以上22%以下である。
第11の発明は、
第10の発明に記載の熱線遮蔽微粒子分散体を、透明基材で挟む工程を有することを特徴とする熱線遮蔽合わせ透明基材の製造方法である。
第12の発明は、
第10の発明に記載の熱線遮蔽微粒子分散体をフィルム状またはボード状に成型する工程を、有することを特徴とする熱線遮蔽合わせ透明基材の製造方法である。
第13の発明は、
さらに、紫外線吸収剤、HALS、酸化防止剤から選択される1種類以上を含有することを特徴とする熱線遮蔽微粒子分散体または熱線遮蔽合わせ透明基材である。
(複合タングステン酸化物微粒子)
本発明に係る熱線遮蔽微粒子は、複合タングステン酸化物微粒子による光吸収のみを算出したときの可視光透過率が85%のときに、波長800〜900nmにおける透過率の平均値が30%以上60%以下であり、且つ、波長1200〜1500nmの範囲における透過率の平均値が20%以下であり、且つ、波長2100nmの透過率が22%以下である複合タングステン酸化物微粒子である。
そして、一般式MxWOyで表記したとき、元素MはCs、Rb、K、Tl、Baから選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素である。そして、0.1≦x≦0.5、2.2≦y≦3.0を満たす複合タングステン酸化物微粒子である。
さらに、六方晶系の結晶構造を有する複合タングステン酸化物微粒子であって、c軸の格子定数が7.56Å以上8.82Å以下であることを特徴とする熱線遮蔽微粒子である。
本発明者らは、以下に説明する〈熱処理条件1〜4〉の4水準の熱処理条件を用いた以外は、後述する実施例3と同様にして複合タングステン酸化物微粒子を製造した。
N2ガスをキャリアーとした0.3%H2ガス供給下で500℃の温度で30分の加熱還元処理を行った後、N2ガス雰囲気下で800℃の温度で1時間焼成をおこなった。
後述する実施例1に係る熱処理と同様である。
N2ガスをキャリアーとした0.3%H2ガス供給下で500℃の温度で4時間の加熱還元処理を行った後、N2ガス雰囲気下で800℃の温度で1時間焼成をおこなった。
後述する実施例3に係る熱処理と同様である。
N2ガスをキャリアーとした0.3%H2ガス供給下で500℃の温度で6時間の加熱還元処理を行った後、N2ガス雰囲気下で800℃の温度で1時間焼成をおこなった。
後述する比較例1に係る熱処理と同様である。
N2ガスをキャリアーとした5%H2ガス供給下で550℃の温度で1時間の加熱還元処理を行った後、N2ガス雰囲気下で800℃の温度で1時間焼成をおこなった。
本発明者らは、複合タングステン酸化物微粒子を製造する際の熱処理において、温度条件、雰囲気条件を制御することにより、還元処理を弱い方へ制御して、複合タングステン酸化物粒子による光吸収のみを算出したときの可視光透過率が85%のときに、波長800〜900nmにおける透過率の平均値が30%以上60%以下であり、且つ、波長1200〜1500nmの範囲における透過率の平均値が20%以下であり、且つ、波長2100nmにおける透過率が22%以下である複合タングステン酸化物粒子を得ることができた。
当該複合タングステン酸化物微粒子は、六方晶系の結晶構造を有し、c軸の格子定数が7.56Å以上8.82Å以下であった。
また、当該複合タングステン酸化物微粒子は、可視光領域における透過率が増大するので、熱線遮蔽膜中の複合タングステン酸化物微粒子濃度を、若干高くすることが可能である。
(1)本発明に係る複合タングステン酸化物粒子は、可視光透過バンドの領域が近赤外光の領域である波長800〜900nmの領域にまで広がっており、当該波長領域においても高い透過率を持つものである。
(2)本発明に係る複合タングステン酸化物粒子は、波長1200〜1500nmの領域において透過率の値がほぼ一定である。
(3)本発明に係る複合タングステン酸化物粒子は、波長2100nmにおいても熱線遮蔽性能を有する。
本発明に係る複合タングステン酸化物微粒子は、タングステン化合物出発原料を還元性ガス雰囲気中で熱処理して得ることができる。
本発明にかかるタングステン化合物出発原料は、タングステン、元素Mそれぞれの単体もしくは化合物を含有する混合物である。タングステン原料としてはタングステン酸粉末、三酸化タングステン粉末、二酸化タングステン粉末、酸化タングステンの水和物粉末、六塩化タングステン粉末、タングステン酸アンモニウム粉末、または、六塩化タングステン粉末をアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、または、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であることが好ましい。元素Mの原料としては、元素M単体、元素Mの塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、タングステン酸塩、水酸化物等が挙げられるが、これらには限定されない。
各原料が水や有機溶剤等の溶媒に可溶であれば、各原料と溶媒を十分に混合したのち溶媒を揮発させることで、本発明にかかるタングステン化合物出発原料を製造することができる。もっとも各原料に可溶な溶媒がなくとも、各原料をボールミル等の公知の手段で十分に均一に混合することで、本発明にかかるタングステン化合物出発原料を製造することができる。
必要に応じて、還元性ガス雰囲気中にて還元処理を行った後、不活性ガス雰囲気中にて熱処理を行ってもよい。この場合の不活性ガス雰囲気中での熱処理は400℃以上1200℃以下の温度で行うことが好ましい。
この結果、六方晶系の結晶構造を得ることが出来る。当該複合タングステン酸化物微粒子のc軸の格子定数は7.56Å以上8.82Å以下であることが好ましく、7.56Å以上7.61Å以下であることがより好ましい。また、当該複合タングステン酸化物微粒子の粉体色は、L*a*b*表色系において、L*が30〜55、a*が−6.0〜−0.5、b*が−10〜−0である。
熱線遮蔽微粒子分散体の製造方法について[1]粉粒体状の熱線遮蔽微粒子分散体の製造方法、[2]シート形状またはフィルム形状の熱線遮蔽微粒子分散体(熱線遮蔽フィルム、熱線遮蔽シート)の製造方法、の順で説明する。
熱線遮蔽微粒子を、分散剤と、カップリング剤および/または界面活性剤と伴に、有機溶媒中へ分散して有機溶媒分散液を得る。その後、当該有機溶媒分散液から有機溶媒を除去することで、熱線遮蔽微粒子が分散剤中に分散した分散粉、可塑剤中に分散した可塑剤分散液、樹脂中に分散したマスターバッチといった、本発明に係る熱線遮蔽微粒子分散体を得ることができる。
以下、(1)溶媒、(2)分散剤、カップリング剤、(3)紫外線吸収剤、(4)光安定化剤、(5)酸化防止剤、(6)分散粉、可塑剤分散液、マスターバッチの製造方法、(7)熱線遮蔽微粒子分散体の特性、の順に説明する。
有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1−プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3−メチル−メトキシ−プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N−メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどのハロゲン化炭化水素類などを挙げることができる。
尤も、これらの中でも極性の低い有機溶剤が好ましく、特に、イソプロピルアルコール、エタノール、1−メトキシ−2−プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n−ブチルなどがより好ましい。これらの溶媒は、1種または2種以上を組み合わせて用いることができる。
分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有することが好ましい。これらの官能基は、複合タングステン酸化物微粒子の表面に吸着し、複合タングステン酸化物微粒子の凝集を防ぎ、熱線遮蔽膜中でも本発明に係る熱線遮蔽微粒子を均一に分散させる効果を持つ。
本発明に係る熱線遮蔽微粒子分散体が、さらに紫外線吸収剤を含有することで、紫外領域の光をさらにカットすることが可能となり、温度上昇の抑止効果を高めることができる。また、本発明に係る熱線遮蔽微粒子分散体が紫外線吸収剤を含有することで、本発明に係る熱線遮蔽微粒子分散体を用いて作製した熱線遮蔽フィルムや熱線遮蔽シートを貼付した窓を有する自動車車内や建造物内部の人間や内装などに対する紫外線の影響、日焼けや家具、内装の劣化などを抑制できる。
また、本発明に係る熱線遮蔽微粒子分散体はさらにヒンダードアミン系光安定化剤(本発明において「HALS」と記載する場合がある。)を含有することもできる。
上述したように、本発明に係る熱線遮蔽微粒子分散体を用いて作製した熱線遮蔽フィルム等において、紫外線吸収剤を含有することで紫外線吸収能力を高めることができる。
しかし本発明に係る熱線遮蔽微粒子分散体を用いて作製した熱線遮蔽フィルム等が実用される環境や、紫外線吸収剤の種類によっては、長時間の使用に伴って紫外線吸収剤が劣化し、紫外線吸収能力が低下してしまう場合がある。これに対して、本発明に係る熱線遮蔽微粒子分散体がHALSを含有することで、紫外線吸収剤の劣化を防止し、本発明に係る熱線遮蔽微粒子分散体や、熱線遮蔽フィルム等の紫外線吸収能力の維持に寄与することができる。
さらにHALSにおいては、それ自体が紫外線の吸収能力をもつ化合物である場合がある。この場合、当該化合物の添加によって、前述した紫外線吸収剤の添加による効果と、HALSの添加による効果とを兼ね備えることができる。
また、本実施形態の熱線遮蔽微粒子分散体はさらに酸化防止剤(抗酸化剤)を含有することもできる。
本発明に係る熱線遮蔽微粒子分散体が酸化防止剤を含有することで、熱線遮蔽微粒子分散体に含有される他の添加剤、例えば複合タングステン酸化物、酸化タングステン、分散剤、カップリング剤、界面活性剤、紫外線吸収剤、HALS等の酸化劣化が抑制され、本発明に係る熱線遮蔽フィルム等の耐候性をさらに向上させることができる。
例えば、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤等を好適に用いることができる。
熱線遮蔽微粒子を有機溶剤へ分散する方法は、当該微粒子が均一に有機溶剤に分散する方法であれば任意に選択できる。例としては、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用いることが出来る。
また、熱線遮蔽微粒子や分散粉を樹脂中に分散させ、当該樹脂をペレット化することで、本発明に係るマスターバッチを得ることが出来る。
以上説明したように本発明に係る熱線遮蔽微粒子分散体を用いた熱線遮蔽フィルム等は、透明性と熱線遮蔽能とが高いことが好ましい。そして、熱線遮蔽フィルム等の透明性と、熱線遮蔽能すなわち遮熱特性とは、それぞれ、可視光透過率と、波長1200〜1500nmの範囲における透過率の平均値と、波長2100nmの透過率とにより評価を行うことができる。
本発明に係る分散粉、可塑剤分散液、またはマスターバッチを透明樹脂中へ均一に混合することにより、本発明に係るシート状またはフィルム状の熱線遮蔽微粒子分散体を製造できる。当該シート状またはフィルム状の熱線遮蔽微粒子分散体からは、従来の技術に係る複合タングステン酸化物微粒子の持つ熱線遮蔽特性を担保し、波長800〜900nmの近赤外光の透過率は向上した、熱線遮蔽シートや熱線遮蔽フィルムを製造できる。
具体的には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体といった樹脂群から選択される樹脂、または当該樹脂群から選択される2種以上の樹脂の混合物、または当該樹脂群から選択される2種以上の樹脂の共重合体から、好ましい樹脂の選択を行うことが出来る。
一方、本発明にかかる熱線遮蔽シートや熱線遮蔽フィルムを後述する熱線遮蔽合わせガラスの中間層として用いる場合は、透明基材との密着性、耐候性、耐貫通性などの観点から、ポリビニルアセタール樹脂やエチレン・酢酸ビニル共重合体が好ましく、ポリビニルブチラール樹脂であることがさらに好ましい。
可塑剤としては、本発明に係る熱可塑性樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された熱線遮蔽フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
熱線遮蔽シートや熱線遮蔽フィルムの形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。
本発明に係る熱線遮蔽シートや熱線遮蔽フィルムを、板ガラスまたはプラスチックの材質からなる複数枚の透明基材間に、中間層として介在させて成る熱線遮蔽合わせ透明基材について説明する。
本発明に係る熱線遮蔽合わせ透明基材は、中間層をその両側から透明基材を用いて挟み合わせたものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であるが、例えば、自動車等の輸送機器に用いる場合は、当該輸送機器の運転者や搭乗者の透視性を確保する観点から、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂といった透明樹脂が好ましが、他にも、PET樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、等が使用可能である。
1.本発明に係る熱線遮蔽微粒子は、可視光透過バンドの領域が近赤外光の領域である波長800〜900nmの領域に広がっており、当該領域において高い透過率を持つものである。
2.本発明に係る熱線遮蔽微粒子は、波長1200〜1500nmの領域に存在する透過率の平均値の値を殆ど変えていない。
3.本発明に係る熱線遮蔽微粒子は、波長2100nmの熱線遮蔽性能を有する。
但し、本発明は以下の実施例に限定されるものではない。
また、実施例1〜3および比較例1において、熱線遮蔽微粒子分散液の波長300〜2100nmの光に対する透過率は、分光光度計用セル(ジーエルサイエンス株式会社製、型番:S10−SQ−1、材質:合成石英、光路長:1mm)に分散液を保持して、日立製作所(株)製の分光光度計U−4100を用いて測定した。
当該測定の際、分散液の溶媒(メチルイソブチルケトン)を、上述のセルに満たした状態で透過率を測定し、透過率測定のベースラインを求めた。この結果、以下に説明する分光透過率、および可視光透過率は、分光光度計用セル表面の光反射や、溶媒の光吸収による寄与が除外され、熱線遮蔽微粒子による光吸収のみが算出されることとなる。
T3(λ)=100×T2(λ)/T1(λ)・・・・・・・式2
ここでT3(λ)は、基材の吸収および反射の影響を除いた、熱線吸収微粒子としての透過率曲線である。尚、λは波長を意味する。
T4(λ)=100×(T3(λ)/100)^a・・・・・・式3
尚、「^」は累乗を意味する数学記号であり、A^Bは「AのB乗」を意味する。また、aは実数値をとる変数である。aの具体的な値は、T4(λ)をもとにJIS R 3106で算出される可視光透過率が85%となるように決定される。
熱線遮蔽微粒子の平均粒子径は、日機装(株)製のマイクロトラック粒度分布計を用いて測定した。
タングステン酸(H2WO4)と水酸化セシウム(CsOH)の各粉末を、Cs/W(モル比)=0.30/1.00相当となる割合で秤量したのちメノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、N2ガスをキャリアーとした0.3%H2ガス供給下で加熱し500℃の温度で4時間の還元処理を行った後、N2ガス雰囲気下で800℃、1時間焼成して、六方晶を有し、a軸の格子定数が7.4131Å、c軸の格子定数が7.5885Åで、粉体色が、L*a*b*表色系において、L*が41.86、a*が−2.90、b*が−6.76であるセシウムタングステンブロンズ粉末(以下、「粉末A」と略称する。)を得た。当該測定結果を表1に記載した。
粉末A20質量%、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、「分散剤a」と略称する。)10質量%、メチルイソブチルケトン70質量%を秤量した。これらを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、熱線遮蔽微粒子分散液(以下、「分散液A」と略称する)を得た。ここで、分散液A内における熱線遮蔽微粒子の平均分散粒子径を測定したところ25nmであった。
分散液Aへ、さらに分散剤aを添加し、分散剤aと複合タングステン酸化物微粒子との質量比が[分散剤a/複合タングステン酸化物微粒子]=3となるように調製した。次に、スプレードライヤーを用いて、この複合タングステン酸化物微粒子分散液Aからメチルイソブチルケトンを除去し、複合タングステン酸化物微粒子分散粉(以下、分散粉Aと記載する。)を得た。
得られた実施例1に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は26.8%、波長1200〜1500nmにおける透過率の平均値は3.7%、波長2100nmの透過率は2.6%、ヘイズは0.5%と測定された。当該結果を表3に記載する。
タングステン酸(H2WO4)と水酸化セシウム(CsOH)の各粉末を、Cs/W(モル比)=0.20/1.00相当となる割合で秤量したのちメノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、N2ガスをキャリアーとした0.8%H2ガス供給下で加熱し550℃の温度で20分の還元処理を行った後、N2ガス雰囲気下で800℃、1時間焼成して、六方晶を有し、a軸の格子定数が7.4143Å、c軸の格子定数が7.5766Åで、粉体色が、L*a*b*表色系において、L*が47.55、a*が−5.16、b*が−6.07であるセシウムタングステンブロンズ粉末(以下、「粉末B」と略称する。)を得た。当該測定結果を表1に記載した。
粉末B20質量%、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、分散剤bと記載する。)10質量%、メチルイソブチルケトン70質量%を秤量した。これらを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、熱線遮蔽微粒子分散液(以下、「分散液B」と略称する)を得た。ここで、分散液B内における熱線遮蔽微粒子の平均分散粒子径を測定したところ23nmであった。
分散液Bへ、さらに分散剤bを添加し、分散剤bと複合タングステン酸化物微粒子との質量比が[分散剤b/複合タングステン酸化物微粒子]=3となるように調製した以外は実施例1と同様にして複合タングステン酸化物微粒子分散粉(以下、分散粉Bと記載する。)を得た。
得られた実施例2に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は36.6%、波長1200〜1500nmにおける透過率の平均値は6.4%、波長2100nmの透過率は3.4%、ヘイズは0.6%と測定された。当該結果を表3に記載する。
タングステン酸(H2WO4)と水酸化セシウム(CsOH)の各粉末を、Cs/W(モル比)=0.33/1.00相当となる割合で秤量したのちメノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、N2ガスをキャリアーとした0.3%H2ガス供給下で加熱し500℃の温度で6時間の還元処理を行った後、N2ガス雰囲気下で800℃、1時間焼成して、六方晶を有し、a軸の格子定数が7.4097Å、c軸の格子定数が7.6033Åで、粉体色が、L*a*b*表色系において、L*が39.58、a*が−1.63、b*が−7.33であるセシウムタングステンブロンズ粉末(以下、「粉末C」と略称する。)を得た。当該測定結果を表1に記載した。
粉末C20質量%、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、分散剤cと記載する。)10質量%、メチルイソブチルケトン70質量%を秤量した。これらを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、熱線遮蔽微粒子分散液(以下、「分散液C」と略称する)を得た。ここで、分散液C内における熱線遮蔽微粒子の平均分散粒子径を測定したところ25nmであった。
分散液Cへ、さらに分散剤cを添加し、分散剤cと複合タングステン酸化物微粒子との質量比が[分散剤c/複合タングステン酸化物微粒子]=3となるように調製した以外は実施例1と同様にして複合タングステン酸化物微粒子分散粉(以下、分散粉Cと記載する。)を得た。
得られた実施例3に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は16.7%、波長1200〜1500nmにおける透過率の平均値は3.1%、波長2100nmの透過率は4.2%、ヘイズは0.6%と測定された。当該結果を表3に記載する。
粉末C100質量部に、ベンゾトリアゾール化合物を含むベンゾトリアゾール系紫外線吸収剤(BASF製、TINUVIN384−2)を1質量部、デカン二酸ビス(2,2,6,6−テトラメチル−1−(オクチルオキシ)−4−ピペリジニル)エステル、1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物を含むアミノエーテル系HALS(BASF製、TINUVIN123)を1質量部、酸化防止剤として、イソオクチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを含むヒンダードフェノール系酸化防止剤(BASF製、商品名IRGANOX1135)を1質量部となるように秤量した。これらを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、熱線遮蔽微粒子分散液(以下、「分散液D」と略称する。)を得た。ここで、分散液D内における熱線遮蔽微粒子の平均分散粒子径を測定したところ25nmであった。
分散液Dへ、さらに分散剤cを添加し、分散剤cと複合タングステン酸化物微粒子との質量比が[分散剤c/複合タングステン酸化物微粒子]=3となるように調製した以外は実施例1と同様にして複合タングステン酸化物微粒子分散粉(以下、分散粉Dと記載する。)を得た。
得られた実施例4に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は17.3%、波長1200〜1500nmにおける透過率の平均値は3.1%、波長2100nmの透過率は4.2%、ヘイズは0.6%と測定された。当該結果を表3に記載する。
N2ガスをキャリアーとした5%H2ガス供給下で加熱し550℃の温度で1時間の還元処理を行った後、N2ガス雰囲気下で800℃、1時間焼成した以外は実施例3と同様にして、六方晶を有し、a軸の格子定数が7.4080Å、c軸の格子定数が7.6111Åで、粉体色が、L*a*b*表色系において、L*が36.11、a*が0.52、b*が−5.54である比較例1に係るセシウムタングステンブロンズ粉末(以下、「粉末E」と略称する。)を得た。当該測定結果を表1に記載した。
そして、可視光透過率が85%になるように希釈率を調整して測定した時の分光透過率を測定したところ、透過率プロファイルから、波長800〜900nmにおける透過率の平均値は26.0%、波長1200〜1500nmにおける透過率の平均値は13.3%、波長2100nmの透過率は24.4%となった。
以上より、実施例1〜3に比べて波長800〜900nmにおける透過率の平均値が低く、波長2100nmの透過率の透過率が高いことが確認された。粉末Eの粉体色の測定結果を表1に、透過率の測定結果を表2に記載した。
得られた比較例1に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は11.3%、波長1200〜1500nmにおける透過率の平均値は3.9%、波長2100nmの透過率は5.1%、ヘイズは0.6%と測定された。当該結果を表3に記載する。
実施例3で作製した分散粉Cとポリカーボネート樹脂ペレットとを、複合タングステン酸化物微粒子の濃度が2.0質量%となるように混合し、ブレンダーを用いて均一に混合し混合物とした。当該混合物を、二軸押出機を用いて290℃で熔融混練し、押出されたストランドをペレット状にカットし、熱線遮蔽透明樹脂成形体用の実施例5に係るマスターバッチ(以下、マスターバッチCと記載する。)を得た。
ポリカーボネート樹脂ペレットへ、所定量のマスターバッチCを所定量添加し、実施例5に係る熱線遮蔽シートの製造用組成物を調製した。尚、当該所定量とは、製造される熱線遮蔽シート(1.0mm厚)の可視光透過率が70%となる量である。
得られた実施例5に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は27.0%、波長1200〜1500nmにおける透過率の平均値は4.3%、波長2100nmの透過率は3.6%、ヘイズは0.6%と測定された。当該結果を表3に記載する。
以上の結果より、実施例3の分散粉と同様、熱線遮蔽シートの製造に好適に用いることのできる熱線遮蔽微粒子分散体であるマスターバッチが作製出来ることが確認された。
比較例1で作製した分散粉Eとを用いた以外は実施例5と同様にして、熱線遮蔽透明樹脂成形体用の比較例2に係るマスターバッチ(以下、マスターバッチEと記載する。)を得た。
ポリカーボネート樹脂ペレットへ、所定量のマスターバッチEを所定量添加した以外は実施例5と同様にして比較例2に係る熱線遮蔽シートを得た。
得られた比較例2に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長800〜900nmにおける透過率の平均値は11.7%、波長1200〜1500nmにおける透過率の平均値は3.9%、波長2100nmの透過率は5.3%、ヘイズは0.5%と測定された。当該結果を表3に記載する。
実施例1〜5に係る熱線遮蔽微粒子おいては、従来の複合タングステン酸化物微粒子である比較例1と比較して、可視光透過率が85%のとき、波長800〜900nmの近赤外光の透過率の平均値が高く、波長1200〜1500nm、波長2100nmの透過率が低い。この結果から、複合タングステン酸化物微粒子が発揮する高い遮熱特性を担保しながら、波長800〜900nmの近赤外光では高い透過率が得られ、肌へのジリジリ感が減少することが判明した。
ポリビニルブチラール樹脂に可塑剤のトリエチレングリコ−ル−ジ−2−エチルブチレ−トを添加し、ポリビニルブチラール樹脂と可塑剤との重量比が[ポリビニルブチラール樹脂/可塑剤]=100/40となるように調製した混合物を作製した。この混合物に実施例1で作製した分散粉Aを、所定量添加し、熱線遮蔽フィルムの製造用組成物を調製した。尚、当該所定量とは、製造される熱線遮蔽合わせ透明基材の可視光透過率が70%となる量である。
この実施例6に係る熱線遮蔽フィルムを10cm×10cmに裁断し、同寸法を有する厚さ3mmの無機クリアガラス板2枚の間に挟み込み、積層体とした。次に、この積層体をゴム製の真空袋に入れ、袋内を脱気して90℃で30分保持した後、常温まで戻し袋から取り出した。そして、当該積層体をオートクレーブ装置に入れ、圧力12kg/cm2、温度140℃で20分加圧加熱して、実施例6に係る熱線遮蔽合わせガラスシートを作製した。
ポリビニルブチラール樹脂と可塑剤の混合物に、実施例2で作製した分散粉Bを所定量添加した以外は実施例6と同様にして、実施例7に係る熱線遮蔽フィルムを作製した。
この実施例7に係る熱線遮蔽フィルム用いた以外は実施例6と同様にして、実施例7に係る熱線遮蔽合わせガラスシートを作製した。
ポリビニルブチラール樹脂と可塑剤の混合物に、実施例3で作製した分散粉Cを所定量添加した以外は実施例6と同様にして、実施例8に係る熱線遮蔽フィルムを作製した。
この実施例8に係る熱線遮蔽フィルム用いた以外は実施例6と同様にして、実施例8に係る熱線遮蔽合わせガラスシートを作製した。
ポリビニルブチラール樹脂と可塑剤の混合物に、比較例1で作製した分散粉Eを所定量添加した以外は実施例6と同様にして、比較例3に係る熱線遮蔽フィルムを作製した。
この比較例3に係る熱線遮蔽フィルム用いた以外は実施例6と同様にして、比較例3に係る熱線遮蔽合わせガラスシートを作製した。
実施例6〜8に係る熱線遮蔽合わせガラスシートは、比較例3に係る従来の複合タングステン酸化物微粒子を用いた熱線遮蔽合わせガラスシートと比較して、可視光透過率が85%のとき、波長800〜900nmの近赤外光の透過率の平均値が高く、波長1200〜1500nm、波長2100nmの透過率が低い。この結果から、複合タングステン酸化物微粒子が発揮する高い遮熱特性を担保しながら、波長800〜900nmの近赤外光では高い透過率が得られ、肌へのジリジリ感が減少することが判明した。
Claims (13)
- 熱線遮蔽機能を有する複合タングステン酸化物微粒子であって、前記複合タングステン酸化物微粒子による光吸収のみを算出したときの可視光透過率が85%であるときに、波長800〜900nmの範囲における透過率の平均値が30%以上60%以下であり、且つ、波長1200〜1500nmの範囲における透過率の平均値が10.4%以上20%以下であり、且つ、波長2100nmの透過率が15.5%以上22%以下である熱線遮蔽微粒子を含むことを特徴とする熱線遮蔽微粒子分散体。
- 前記複合タングステン酸化物微粒子が六方晶系の結晶構造を有し、c軸の格子定数が7.56Å以上8.82Å以下であることを特徴とする請求項1に記載の熱線遮蔽微粒子分散体。
- 前記熱線遮蔽微粒子分散体が熱可塑性樹脂を含み、
前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることを特徴とする請求項1または2に記載の熱線遮蔽微粒子分散体。 - 前記複合タングステン酸化物粒子を、0.5質量%以上80.0質量%以下含むことを特徴とする請求項1から3のいずれかに記載の熱線遮蔽微粒子分散体。
- 前記熱線遮蔽微粒子分散体が、シート形状、ボード形状またはフィルム形状であることを特徴とする請求項1から4のいずれかに記載の熱線遮蔽微粒子分散体。
- 前記熱線遮蔽微粒子分散体に含まれる単位投影面積あたりの前記熱線遮蔽微粒子の含有量が、0.1g/m2以上5.0g/m2以下であることを特徴とする請求項1から5のいずれかに記載の熱線遮蔽微粒子分散体。
- 可視光透過率が70%のときに、波長800〜900nmの範囲における透過率の平均値が13%以上40%以下であり、且つ、波長1200〜1500nmの範囲に存在する透過率の平均値が3.1%以上8%以下であり、且つ、波長2100nmの透過率が2.6%以上5%以下であることを特徴とする請求項1から6のいずれかに記載の熱線遮蔽微粒子分散体。
- 複数枚の透明基材間に、請求項1から7のいずれかに記載の熱線遮蔽微粒子分散体が存在していることを特徴とする熱線遮蔽合わせ透明基材。
- 可視光透過率が70%のときに、波長800〜900nmの範囲における透過率の平均値が12%以上40%以下であり、且つ、波長1200〜1500nmの範囲に存在する透過率の平均値が3.1%以上8%以下であり、且つ、波長2100nmの透過率が4.3%以上8.0%以下であることを特徴とする請求項8に記載の熱線遮蔽合わせ透明基材。
- タングステン酸と、Cs、Rb、K、Tl、Baから選択される1種類以上の元素の水酸化物粉末とを、所定の割合で混合して混合粉末を得る混合工程と、
当該混合粉末を、不活性ガスをキャリアーとした0.8%以下のH2ガス供給下で加熱して還元処理を行い、Cs、Rb、K、Tl、Baから選択される1種類以上の元素を含む複合タングステン酸化物粉末を得る焼成工程と、
当該複合タングステン酸化物粉末を透明樹脂中へ均一に混合して、熱線遮蔽微粒子分散体を得る工程と、を有することを特徴とする熱線遮蔽微粒子分散体の製造方法である。
但し、前記複合タングステン酸化物粉末は、熱線遮蔽機能を有する複合タングステン酸化物微粒子を含み、前記複合タングステン酸化物微粒子による光吸収のみを算出したときの可視光透過率が85%であるときに、波長800〜900nmの範囲における透過率の平均値が30%以上60%以下であり、且つ、波長1200〜1500nmの範囲における透過率の平均値が10.4%以上20%以下であり、且つ、波長2100nmの透過率が15.5%以上22%以下である。 - 請求項10に記載の熱線遮蔽微粒子分散体を、透明基材で挟む工程を有することを特徴とする熱線遮蔽合わせ透明基材の製造方法。
- 請求項10に記載の熱線遮蔽微粒子分散体をフィルム状またはボード状に成形する工程を、有することを特徴とする熱線遮蔽合わせ透明基材の製造方法。
- さらに、紫外線吸収剤、HALS、酸化防止剤から選択される1種類以上を含有することを特徴とする請求項1から9のいずれかに記載の熱線遮蔽微粒子分散体または熱線遮蔽合わせ透明基材。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018011273-9A BR112018011273B1 (pt) | 2015-12-02 | 2016-12-02 | Método para produção de partículas finas de óxido de tungstênio compósito, líquido de dispersão de partículas finas, película ou vidro, corpo de dispersão de partículas finas, e, substrato transparente laminado de blindagem contra raios térmicos |
TW105140166A TWI726947B (zh) | 2015-12-02 | 2016-12-02 | 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽分散體及熱射線遮蔽夾層透明基材 |
US15/781,461 US11130315B2 (en) | 2015-12-02 | 2016-12-02 | Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent substrate |
AU2016364438A AU2016364438C1 (en) | 2015-12-02 | 2016-12-02 | Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material |
MX2018006804A MX2018006804A (es) | 2015-12-02 | 2016-12-02 | Particulas finas protectoras de rayos termicos, liquido de dispersion de particulas finas protectoras de rayos termicos, pelicula protectora de rayos termicos, vidrio protector de rayos termicos, cuerpo de dispersion de proteccion de rayos termicos y sustrato transparente laminado protector de rayos termicos. |
MYPI2018702155A MY191130A (en) | 2015-12-02 | 2016-12-02 | Heat ray shielding microparticle, heat ray shielding microparticle dispersion solution, heat ray shielding film, heat ray shielding glass, heat ray shielding dispersion body, and heat ray shielding laminated transparent base material |
KR1020187018703A KR102588590B1 (ko) | 2015-12-02 | 2016-12-02 | 열선 차폐 미립자, 열선 차폐 미립자 분산액, 열선 차폐 필름, 열선 차폐 유리, 열선 차폐 분산체, 및 열선 차폐 적층 투명 기재 |
PCT/JP2016/085973 WO2017094909A1 (ja) | 2015-12-02 | 2016-12-02 | 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体、および、熱線遮蔽合わせ透明基材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015235977 | 2015-12-02 | ||
JP2015235977 | 2015-12-02 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017106007A JP2017106007A (ja) | 2017-06-15 |
JP2017106007A5 JP2017106007A5 (ja) | 2019-12-26 |
JP6870303B2 true JP6870303B2 (ja) | 2021-05-12 |
Family
ID=59059078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016235151A Active JP6870303B2 (ja) | 2015-12-02 | 2016-12-02 | 熱線遮蔽分散体、および熱線遮蔽合わせ透明基材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6870303B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102547579B1 (ko) * | 2017-06-19 | 2023-06-26 | 스미토모 긴조쿠 고잔 가부시키가이샤 | 근적외선 경화형 잉크 조성물과 그의 제조 방법, 근적외선 경화막 및 광조형법 |
JP7009806B2 (ja) * | 2017-07-18 | 2022-01-26 | 住友金属鉱山株式会社 | 複合タングステン酸化物粒子含有樹脂、複合タングステン酸化物粒子分散液および複合タングステン酸化物粒子分散粉 |
JP7009807B2 (ja) * | 2017-07-18 | 2022-01-26 | 住友金属鉱山株式会社 | 六ホウ化物粒子含有樹脂、六ホウ化物粒子分散液および六ホウ化物粒子分散粉 |
JP7276159B2 (ja) * | 2018-02-08 | 2023-05-18 | 住友金属鉱山株式会社 | 近赤外線吸収材料微粒子分散体、近赤外線吸収体、近赤外線吸収物積層体および近赤外線吸収用合わせ構造体 |
JP7398689B2 (ja) * | 2018-02-16 | 2023-12-15 | 住友金属鉱山株式会社 | 複合タングステン酸化物粒子の製造方法 |
JP7282326B2 (ja) * | 2019-04-05 | 2023-05-29 | 住友金属鉱山株式会社 | 光吸収透明基材、光吸収粒子分散体、および光吸収合わせ透明基材 |
JP7544579B2 (ja) | 2020-12-01 | 2024-09-03 | 帝人株式会社 | 熱可塑性樹脂組成物およびそれからなる成形品 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4096205B2 (ja) * | 2003-10-20 | 2008-06-04 | 住友金属鉱山株式会社 | 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子 |
JP2005226008A (ja) * | 2004-02-13 | 2005-08-25 | Sumitomo Metal Mining Co Ltd | 日射遮蔽体形成用分散液及び日射遮蔽体並びにその製造方法 |
JP4702615B2 (ja) * | 2005-12-14 | 2011-06-15 | 住友金属鉱山株式会社 | 紫外線遮蔽用酸化亜鉛微粒子の製造方法、および該微粒子を用いた紫外線遮蔽体形成用分散液並びに紫外線遮蔽体 |
JP4998781B2 (ja) * | 2007-03-16 | 2012-08-15 | 住友金属鉱山株式会社 | 窓用紫外・近赤外光遮蔽分散体および窓用紫外・近赤外光遮蔽体 |
JP5585812B2 (ja) * | 2010-02-02 | 2014-09-10 | 住友金属鉱山株式会社 | 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子の製造方法、並びに近赤外線遮蔽材料微粒子 |
-
2016
- 2016-12-02 JP JP2016235151A patent/JP6870303B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017106007A (ja) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6870303B2 (ja) | 熱線遮蔽分散体、および熱線遮蔽合わせ透明基材 | |
TWI726947B (zh) | 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽分散體及熱射線遮蔽夾層透明基材 | |
JP6686719B2 (ja) | 熱線遮蔽微粒子分散体、熱線遮蔽合わせ透明基材、およびそれらの製造方法 | |
JP6950691B2 (ja) | 近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散体、近赤外線吸収透明基材、近赤外線吸収合わせ透明基材 | |
WO2017094909A1 (ja) | 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体、および、熱線遮蔽合わせ透明基材 | |
WO2016010156A1 (ja) | 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材 | |
JP6613674B2 (ja) | 熱線遮蔽微粒子および熱線遮蔽微粒子分散液 | |
JP6819250B2 (ja) | 熱線遮蔽微粒子および熱線遮蔽微粒子分散液 | |
JP6866620B2 (ja) | 熱線遮蔽フィルムおよび熱線遮蔽ガラス | |
JP6606898B2 (ja) | 熱線遮蔽分散体および熱線遮蔽合わせ透明基材 | |
TWI666352B (zh) | 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽用夾層透明基材 | |
BR112018011273B1 (pt) | Método para produção de partículas finas de óxido de tungstênio compósito, líquido de dispersão de partículas finas, película ou vidro, corpo de dispersão de partículas finas, e, substrato transparente laminado de blindagem contra raios térmicos | |
WO2024106140A1 (ja) | 赤外線吸収材料微粒子分散液と赤外線吸収材料微粒子分散体 | |
WO2024106139A1 (ja) | 赤外線吸収材料微粒子分散液と赤外線吸収材料微粒子分散体 | |
JP2022020365A (ja) | 赤外線吸収微粒子分散液、赤外線吸収微粒子分散体および赤外線吸収透明基材 | |
KR20220154232A (ko) | 암색분 분산액, 암색분 분산체 그리고 착색층을 구비한 기재 | |
JP2016029477A (ja) | 熱線遮蔽フィルムおよび熱線遮蔽ガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191111 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210122 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210329 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6870303 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |