JP6606898B2 - 熱線遮蔽分散体および熱線遮蔽合わせ透明基材 - Google Patents

熱線遮蔽分散体および熱線遮蔽合わせ透明基材 Download PDF

Info

Publication number
JP6606898B2
JP6606898B2 JP2015142449A JP2015142449A JP6606898B2 JP 6606898 B2 JP6606898 B2 JP 6606898B2 JP 2015142449 A JP2015142449 A JP 2015142449A JP 2015142449 A JP2015142449 A JP 2015142449A JP 6606898 B2 JP6606898 B2 JP 6606898B2
Authority
JP
Japan
Prior art keywords
heat ray
ray shielding
resin
fine particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015142449A
Other languages
English (en)
Other versions
JP2016029166A (ja
Inventor
佳輔 町田
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015142449A priority Critical patent/JP6606898B2/ja
Priority to PCT/JP2015/070626 priority patent/WO2016010156A1/ja
Priority to TW104123437A priority patent/TWI666352B/zh
Publication of JP2016029166A publication Critical patent/JP2016029166A/ja
Application granted granted Critical
Publication of JP6606898B2 publication Critical patent/JP6606898B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、可視光透過性が良好で、且つ優れた熱線遮蔽機能を有しながら、所定の波長を有する近赤外光を透過する熱線遮蔽分散体および熱線遮蔽合わせ透明基材に関する。
良好な可視光透過率を有し透明性を保ちながら日射透過率を低下させる熱線遮蔽技術として、これまでさまざまな技術が提案されてきた。なかでも、導電性微粒子の分散体や合わせ透明基材を用いた熱線遮蔽技術は、その他の技術と比較して熱線遮蔽特性に優れ低コストであり電波透過性があり、さらに耐候性が高い等のメリットがある。
例えば特許文献1には、酸化錫微粉末を分散状態で含有させた透明樹脂や、酸化錫微粉末を分散状態で含有させた透明合成樹脂をシートまたはフィルムに成形したものを、透明合成樹脂基材に積層してなる赤外線吸収性合成樹脂成形品が提案されている。
特許文献2には、少なくとも2枚の対向する板ガラスの間に、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moといった金属、当該金属の酸化物、当該金属の窒化物、当該金属の硫化物、当該金属へのSbやFのドープ物、または、これらの混合物を分散させた中間層を、挟み込んだ合わせガラスが提案されている。
また、出願人は特許文献3にて、窒化チタン微粒子、ホウ化ランタン微粒子のうち少なくとも1種を分散した選択透過膜用塗布液や選択透過膜を開示している。
しかし、特許文献1〜3に開示されている赤外線吸収性合成樹脂成形品等の熱線遮蔽分散体や合わせ透明基材には、いずれも高い可視光透過率が求められたときの熱線遮蔽性能が十分でない、という問題点が存在した。例えば、特許文献1〜3に開示されている熱線遮蔽分散体や合わせ透明基材の持つ熱線遮蔽性能の具体的な数値の例として、JIS R 3106に基づいて算出される可視光透過率(本発明において、単に「可視光透過率」と記載する場合がある。)が70%のとき、同じくJIS R 3106に基づいて算出される日射透過率(本発明において、単に「日射透過率」と記載する場合がある。)は、50%を超えてしまっていた。
そこで出願人は、赤外線遮蔽材料微粒子が媒体中に分散してなる赤外線遮蔽材料微粒子分散体であって、前記赤外線遮蔽材料微粒子が、一般式M(但し、元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子を含有し、当該複合タングステン酸化物微粒子が六方晶、正方晶、または立方晶の結晶構造を有する微粒子のいずれか1種類以上を含み、前記赤外線遮蔽材料微粒子の粒子径が1nm以上800nm以下であることを特徴とする熱線遮蔽微粒子分散体を、特許文献4として開示した。
特許文献4に開示したように、前記一般式Mで表される複合タングステン酸化物微粒子を用いた熱線遮蔽微粒子分散体は高い熱線遮蔽性能を示し、可視光透過率が70%のときの日射透過率は50%を下回るまでに改善された。とりわけ元素MとしてCsやRb、Tlなど特定の元素から選択される少なくとも1種類を採用し、結晶構造を六方晶とした複合タングステン酸化物微粒子を用いた熱線遮蔽微粒子分散体は卓越した熱線遮蔽性能を示し、可視光透過率が70%のときの日射透過率は37%を下回るまでに改善された。
特開平2−136230号公報 特開平8−259279号公報 特開平11−181336号公報 国際公開番号WO2005/037932公報
しかしながら、前記一般式Mで表される複合タングステン酸化物微粒子、それを用いた熱線遮蔽微粒子分散体や合わせ透明基材が、市場での使用範囲を拡大した結果、新たな課題が見出された。その課題は、前記一般式Mで記載される複合タングステン酸化物微粒子を含有した分散体や熱線遮蔽合わせ透明基材を、窓材等の構造体に適用した場合、当該窓材等を通過する光において、波長700〜1200nmの近赤外光の透過率も大きく低下してしまうことである。
当該波長領域の近赤外光は人間の眼に対してほぼ不可視であり、また安価な近赤外LED等の光源により発振が可能であることから、近赤外光を用いた通信、撮像機器、センサー等に広く利用されている。ところが、前記一般式Mで表される複合タングステン酸化物微粒子を含有した分散体や合わせ透明基材等の構造体は、当該波長領域の近赤外光も、熱線と伴に強く吸収してしまう。
この結果、前記一般式Mで表される複合タングステン酸化物微粒子を含有した分散体や合わせ透明基材を介しての、近赤外光を用いた通信、撮像機器、センサー等の使用は断念せざるを得なかった。
例えば、特許文献4に記載された複合タングステン酸化物微粒子を含有した熱線遮蔽フィルムを一般住宅の窓に貼りつけた場合、室内に置かれた赤外線発振機と室外に置かれた赤外線受信機からなる侵入探知装置の間の近赤外光による通信が妨害され、装置は正常に動作しなかった。
上記課題が存在するにも関わらず、複合タングステン酸化物微粒子などを含有した分散体や熱線遮蔽合わせ透明基材は熱線を大きくカットする能力が高く、熱線遮蔽を望まれる市場分野においては使用が拡大した。しかし、このような熱線遮蔽分散体や熱線遮蔽合わせ透明基材を用いた場合は、近赤外光を用いる無線通信、撮像機器、センサー等を使用することが出来ないものであった。
本発明は、上記課題に着目してなされたものである。そして、その解決しようとする課題は、熱線遮蔽分散体や合わせ透明基材において熱線遮蔽特性を発揮しつつ、当該分散体や合わせ透明基材を介した近赤外光を用いる通信機器、撮像機器、センサー等の使用を可能とする、熱線遮蔽分散体および熱線遮蔽合わせ透明基材を提供することである。
本発明者らは、上記課題を解決する為、さまざまな検討を行った。
例えば、波長700〜1200nmの領域における近赤外光の透過率を単に向上させるだけであれば、熱線遮蔽分散体や熱線遮蔽合わせ透明基材における、複合タングステン酸化物微粒子の膜中濃度を適宜減少させればよいとも考えられた。しかし、複合タングステン酸化物微粒子の膜中濃度を減少させた場合、波長1200〜1800nmの領域をボトムとする熱線吸収能力も同時に低下し、熱線遮蔽効果を低下させることになってしまう。
ここで本発明者らは研究を重ね、前記一般式Mで表される複合タングステン酸化物微粒子において、タングステン原子の一部を、Mo,Ru,Cr,Ni,V,Co,Fe,Mn、Ti,Ge,Sn,Ga,Pb,Bi,In,Sb,Pd,Tlのうちから選択される1種類以上の金属原子(本発明において「元素A」と記載する場合がある。)に置き換えることで、波長1200〜1800nmをボトムとする熱線吸収能力を担保したまま、波長700〜1200nmの領域における近赤外光の透過率を向上した熱線遮蔽微粒子が得られるとの知見を得た。
しかし、波長700〜1200nmの領域に近赤外光の透過率を有する熱線遮蔽微粒子は、複合タングステン酸化物微粒子の分散体における熱線遮蔽性能の評価基準として従来用いられていた指標、例えばJIS R 3106で評価される可視光透過率に対する日射透過率を用いて評価した場合において、元素Aを含まない従来の複合タングステン酸化物と比較して、劣るのではないかとも考えられた。
そこで、当該観点から波長700〜1200nmの領域の近赤外光の透過率を有する熱線遮蔽微粒子をさらに検討したところ、当該熱線遮蔽微粒子は、従来の一般式Mで表される複合タングステン酸化物微粒子と比較して、熱線遮蔽微粒子としての性能において劣るものではないことを知見した。
これは、人間の皮膚の持つ吸光度が、波長700〜1200nmの近赤外光では小さい一方で、波長1500〜2100nmの熱線では大きい為であると考えられる。因みに、太陽光が、皮膚にじりじりと感じる暑さ(所謂、ジリジリ感)を与えるのは波長1500〜2100nmの熱線の影響が大きいためであると考えられた(例えば、尾関義一ほか、自動車技術会学術講演会前刷集 No.33−99、13(1999)参照。)。
つまり本発明に係る熱線遮蔽微粒子を用いることで、波長700〜1200nmの近赤外光の透過率が向上したとしても、波長1500〜2100nmの熱線の透過は抑制出来るので、ジリジリ感を低減する観点から見た熱線遮蔽分散体や合わせ透明基材としての特性は、従来の技術に係る一般式Mで表される複合タングステン酸化物微粒子を用いた熱線遮蔽分散体や合わせ透明基材と同等であることを知見した。
即ち、この微粒子を各種の媒体に分散させた分散体や、この微粒子を含有する合わせ透明基材は、従来の一般式Mで表される複合タングステン酸化物の持つ高い遮熱特性を保ったまま、波長700〜1200nmの近赤外光の透過率を向上した熱線遮蔽分散体や熱線遮蔽合わせ透明基材となることを知見し、本発明を完成したものである。
ここで、一般式Aで表記される熱線遮蔽微粒子について説明する。
元素Aは、Mo,Ru,Cr,Ni,V,Co,Fe,Mn、Ti,Ge,Sn,Ga,Pb,Bi,In,Sb,Pd,Tlのうちから選択される1種類以上であってタングステン原子の一部を置換する元素である。元素Mは、アルカリ金属、アルカリ土類金属のうちから選択される1種類以上の元素である。Wは、タングステンであり、Oは、酸素である。
さらに、0.001≦a/b≦0.1、0.20≦b/(a+c)≦0.61、2.2≦d/(a+c)≦3.0で表記され、六方晶の結晶構造を持つ複合タングステン酸化物微粒子であって、波長1200〜1800nmをボトムとする熱線吸収能力を担保したまま、波長700〜1200nmの領域における近赤外光の透過率が向上したものである。
ここで、タングステン原子の一部を置き換える元素Aは、複合タングステン酸化物の六方晶構造中に固溶しており、単に複合タングステン酸化物と元素Aを含む化合物との物理的混合ではない。従って、元素Aまたは元素Aを含む化合物が複合タングステン酸化物の結晶粒界などに偏析した形態をとるようなものではない。但し元素Aにおいて、複合タングステン酸化物の六方晶構造中に固溶している以外の成分が、工程上不可避的に元素Aを含む化合物として、結晶中または結晶粒界中に少量偏析する場合はある。
以上説明した熱線遮蔽微粒子が、波長1200〜1800nmをボトムとする熱線吸収能力を担保したまま、波長700〜1200nmの領域における近赤外光の透過率を向上する理由は、明確に解明されたわけではない。尤も、本発明者らは、当該理由が複合タングステン酸化物微粒子の電子構造、および、電子構造に由来する光吸収機構に起因するものと考えている。
即ち、複合タングステン酸化物微粒子が近赤外光領域に持つ幅広い吸収は、自由電子による局在表面プラズモン吸収と局在電子によるスモールポラロンの2つの吸収機構の結合からなると考えられる(例えば、J.Appl.Phys.112,074308(2012)参照。)。そして、波長700〜1200nmの波長領域の近赤外光に対する強力な吸収をもたらしているのはスモールポラロンによる吸収であると考えられる。尚、スモールポラロンの遷移エネルギーは1.5eV(波長826nm)である。
一方、波長1200〜1800nmをボトムとするさらに大きな熱線の吸収は自由電子による局在表面プラズモン共鳴による吸収である。尚、局在表面プラズモン共鳴のエネルギーの中心は0.83eV(波長1494nm)であると考えられる。
複合タングステン酸化物微粒子において、タングステン原子(W5+)を元素Aで置換することによって波長1200〜1800nmをボトムとする熱線吸収能力を担保したまま、波長700〜1200nmの領域における近赤外光の透過率を向上する理由は、元素Aが複合タングステン酸化物の結晶構造に挿入され、タングステン元素を置換することで電子構造が変化し、元素Aが結晶中で電子の吸収源となり、W5+の量を減少させることで、スモールポラロンによる吸収が弱化するためではないかと考察している。
本発明者らは、以上に説明した熱線遮蔽微粒子を分散剤と伴に有機溶媒中へ分散して有機溶媒分散液とした後、当該有機溶媒を除去することで、熱線遮蔽微粒子が分散剤中に分散した粉粒体状の熱線遮蔽微粒子分散体(本発明において「分散粉」と記載する場合がある。)を得られることを知見した。また、この熱線遮蔽微粒子や分散粉を可塑剤や樹脂中に分散することで、液体状の熱線遮蔽微粒子分散体(本発明において「可塑剤分散液」と記載する場合がある。)や、粒体状の熱線遮蔽微粒子分散体(本発明において「マスターバッチ」と記載する場合がある。)を得られることを知見した。
そして、分散粉や可塑剤分散液、マスターバッチを透明樹脂中に均一混合することにより、従来の複合タングステン酸化物の持つ高い遮熱特性を保ったまま、波長700〜1200nmの領域における近赤外光の透過率を向上した熱線遮蔽シートや熱線遮蔽フィルムを製造できることを知見した。さらに、これらの熱線遮蔽シートや熱線遮蔽フィルムを複数枚の透明基材間に存在させることで、従来の複合タングステン酸化物の持つ高い遮熱特性を保ったまま、波長700〜1200nmの近赤外光の透過率を向上した熱線遮蔽合わせ透明基材を製造できることも知見し、本発明を完成した。
すなわち、上述の課題を解決する第1の発明は、
少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含み、
前記熱線遮蔽微粒子は一般式A Cs で表記され、AはMo,Ru,Cr,Ni,V,Co,Fe,Mn、Ti,Ge,Sn,Ga,Pb,Bi,In,Sb,Pd,Tlのうちから選択される1種類以上の元素であり、Csはセシウムであり、Wはタングステンであり、Oは酸素であり、0.001≦a/b≦0.1であり、0.20≦b/(a+c)≦0.61であり、2.2≦d/(a+c)≦3.0であり、六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする熱線遮蔽分散体である。
第2の発明は、
前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることを特徴とする熱線遮蔽微粒子分散体である。
第3の発明は、 前記複合タングステン酸化物微粒子の直径が、1nm以上800nm以下であることを特徴とする熱線遮蔽微粒子分散体である。
第4の発明は、
前記複合タングステン酸化物微粒子を、0.5質量%以上80.0質量%以下含むことを特徴とする熱線遮蔽微粒子分散体である。
第5の発明は、
前記熱線遮蔽微粒子分散体が、シート形状、ボード形状またはフィルム形状であることを特徴とする熱線遮蔽微粒子分散体である。
第6の発明は、
前記熱線遮蔽微粒子分散体に含まれる単位投影面積あたりの前記熱線遮蔽微粒子の含有量が、0.1g/m以上5.0g/m以下であることを特徴とする熱線遮蔽微粒子分散体である。
第7の発明は、
可視光透過率が70%のときに、波長850nmの近赤外光の透過率が23%以上45%以下であり、且つ波長1200〜1800nmの熱線の透過率の最小値が15%以下であることを特徴とする熱線遮蔽微粒子分散体である。
第8の発明は、
複数枚の透明基材間に、本発明のいずれかに記載の熱線遮蔽微粒子分散体が存在していることを特徴とする熱線遮蔽合わせ透明基材である。
第9の発明は、
波長850nmの近赤外光の透過率が23%以上45%以下であり、且つ波長1200〜1800nmの熱線の透過率の最小値が15%以下であることを特徴とする熱線遮蔽合わせ透明基材である。
本発明によれば、従来の技術に係る複合タングステン酸化物を用いた熱線遮蔽分散体や合わせ透明基材と比較して、波長1200〜1800nmの熱線領域をボトムとする熱線遮蔽特性を保ったまま、波長700〜1200nmの近赤外光の領域において透過率の高い熱線遮蔽分散体や合わせ透明基材を得ることが出来た。その結果、熱線遮蔽特性を発揮しつつ、熱線遮蔽分散体や合わせ透明基材を介した近赤外光を用いる通信機器、撮像機器、センサー等の使用を可能とする熱線遮蔽分散体および熱線遮蔽合わせ透明基材を提供することが出来た。
以下、本発明の実施の形態について、[a]熱線遮蔽微粒子、[b]熱線遮蔽微粒子の製造方法、[c]熱線遮蔽微粒子分散体の製造方法、[d]熱線遮蔽合わせ透明基材の製造方法、の順に説明する。なお[c]熱線遮蔽微粒子分散体の製造方法については(1)粉粒体状の熱線遮蔽微粒子分散体の製造方法、(2)シート形状またはフィルム形状の熱線遮蔽微粒子分散の製造方法、の順でさらに説明する。
[a]熱線遮蔽微粒子
本発明に係る熱線遮蔽微粒子は、一般式Aで表記される複合タングステン酸化物微粒子である。但し、元素AはMo,Ru,Cr,Ni,V,Co,Fe,Mn、Ti,Ge,Sn,Ga,Pb,Bi,In,Sb,Pd,Tlのうちから選択される1種類以上の元素であり、Mは、アルカリ金属、アルカリ土類金属、のうちから選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素である。そして、0.001≦a/b≦0.1、0.20≦b/(a+c)≦0.61、2.2≦d/(a+c)≦3.0を満たす、六方晶の結晶構造を持つ複合タングステン酸化物微粒子である。
元素Aおよびタングステンの合計に対する元素Mのモル添加量「b/(a+c)」は、0.2以上0.61以下が好ましく、0.30以上0.45以下がより好ましい。これは、b/(a+c)の値が0.2以上あれば熱線吸収効果が十分に発現し、0.61以下であれば、Csを始めとする元素Aの化合物が析出して、熱線吸収効果が低減してしまう事態を回避出来るからである。
また元素Aの元素Mに対する添加割合「a/b」は、0.001以上0.1以下であることが好ましく、0.04以上0.1以下がより好ましい。これは、a/bの値が0.001以上あれば波長700〜1200nmの近赤外光の透過率を増加させる効果が得られ、0.1以下であれば波長1200〜1800nmの熱線吸収効果を担保出来るからである。
また酸素の、元素Aおよびタングステンに対する割合「d/(a+c)」の値は、2.2以上3.0以下であることが好ましい。これは、酸素が、元素Aおよびタングステンに対する化学量論比よりも少ないd/(a+c)<3.0においても、上述した元素Mの添加による自由電子の供給がある為である。自由電子の供給により、当該自由電子に起因する局在表面プラズモン共鳴による強力な近赤外吸収が発現するからである。尤も、光学特性の観点から、2.80≦d/(a+c)≦3.00であることがより好ましい。
また、複合タングステン酸化物において酸素の一部が他の元素で置換されていても構わない。当該他の元素としては、例えば、窒素や硫黄、ハロゲン等が挙げられる。
上述した、一般式Aで表される複合タングステン酸化物微粒子のうちでも、特に好ましい特性を持つものの例として、Mo0.02Cs0.330.98、Pb0.02Cs0.330.98、Sb0.02Cs0.330.98、Bi0.03Cs0.330.97、Sn0.02Cs0.330.98、Mo0.02Sn0.01Cs0.330.97等を挙げることができる。尤も、a、b、c、dの値が上述の範囲に収まるものであれば、上述した本発明に係る有用な熱線遮蔽特性を得ることができる。
本発明にかかる熱線遮蔽微粒子の粒子径は、当該熱線遮蔽微粒子や熱線遮蔽微粒子分散液を用いて製造される熱線遮蔽膜/熱線遮蔽基材の使用目的によって適宜選定することができるが、粒子径が1nm以上800nmであることが好ましい。これは粒子径が800nm以下であれば、本発明にかかる熱線遮蔽微粒子による強力な近赤外吸収を発揮でき、また粒子径が1nm以上であれば、工業的な製造が容易であるからである。
熱線遮蔽膜を透明性が求められる用途に使用する場合は、当該熱線遮蔽微粒子が40nm以下の分散粒子径を有していることが好ましい。当該熱線遮蔽微粒子が40nmよりも小さい分散粒子径を有していれば、微粒子のミー散乱およびレイリー散乱による光の散乱が十分に抑制され、可視光領域の視認性を保持し、同時に効率よく透明性を保持することが出来るからである。自動車の風防など特に透明性が求められる用途に使用する場合は、さらに散乱を抑制するため、複合タングステン酸化物の分散粒子径を30nm以下、好ましくは25nm以下とするのが良い。
[b]熱線遮蔽微粒子の製造方法
本発明に係る一般式Aで表記される熱線遮蔽微粒子は、タングステン化合物出発原料を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
まず、タングステン化合物出発原料について説明する。
本発明にかかるタングステン化合物出発原料は、タングステン、元素A、元素Mそれぞれの単体もしくは化合物を含有する混合物である。タングステン原料としてはタングステン酸粉末、三酸化タングステン粉末、二酸化タングステン粉末、酸化タングステンの水和物粉末、六塩化タングステン粉末、タングステン酸アンモニウム粉末、または、六塩化タングステン粉末をアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、または、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であることが好ましい。元素Aまたは元素Mの原料としては、元素AまたはM単体、元素AまたはMの塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、タングステン酸塩、水酸化物等が挙げられるが、これらには限定されない。
上述したタングステン化合物出発原料を秤量し、0.001≦a/b≦0.1、0.20≦b/(a+c)≦0.61を満たす所定量をもって配合し混合する。このとき、タングステン、元素A、元素Mに係るそれぞれの原料ができるだけ均一に、可能ならば分子レベルで均一混合していることが好ましい。したがって前述の各原料は溶液の形で混合することがもっとも好ましく、各原料が水や有機溶剤等の溶媒に溶解可能であることが好ましい。
各原料が水や有機溶剤等の溶媒に可溶であれば、各原料と溶媒を十分に混合したのち溶媒を揮発させることで、本発明にかかるタングステン化合物出発原料を製造することができる。もっとも各原料に可溶な溶媒がなくとも、各原料をボールミル等の公知の手段で十分に均一に混合することで、本発明にかかるタングステン化合物出発原料を製造することができる。
次に、不活性ガス雰囲気または還元性ガス雰囲気中における熱処理について説明する。まず、不活性ガス雰囲気中における熱処理条件としては、400℃以上1000℃以下が好ましい。400℃以上で熱処理された出発原料は十分な熱線吸収力を有し、熱線遮蔽微粒子として効率が良い。不活性ガスとしてはAr、N等の不活性ガスを用いることがよい。
また、還元性雰囲気中における熱処理条件としては、出発原料を300℃以上900℃以下で熱処理することが好ましい。300℃以上であれば本発明にかかる六方晶構造を持つ複合タングステン酸化物の生成反応が進行し、900℃以下であれば六方晶以外の構造を持つ複合タングステン酸化物微粒子や金属タングステンといった意図しない副反応物が生成し難く好ましい。
この時の還元性ガスは、特に限定されないが、Hが好ましい。そして、還元性ガスとしてHを用いる場合は、還元性雰囲気の組成として、例えば、Ar、N等の不活性ガスにHを体積比で0.1%以上を混合することが好ましく、さらに好ましくは0.2%以上混合したものである。Hが体積比で0.1%以上であれば効率よく還元を進めることができる。
尚、所望により、還元性ガス雰囲気中にて還元処理を行ったのち不活性ガス雰囲気中にて熱処理を行ってもよい。この場合の不活性ガス雰囲気中での熱処理は400℃以上1200℃以下の温度で行うことが好ましい。
上述した、いずれかの雰囲気中において熱処理する場合、当該熱処理後のタングステン化合物において、2.2≦d/(a+c)≦3.0となる条件にて熱処理を行う。
本発明に係る熱線遮蔽微粒子が表面処理され、Si、Ti、Zr、Alから選択される1種類以上を含有する化合物、好ましくは酸化物で被覆されていることは、耐候性向上の観点から好ましい。当該表面処理を行うには、Si、Ti、Zr、Alから選択される1種類以上を含有する有機化合物を用いて、公知の表面処理を行えばよい。例えば、本発明に係る熱線遮蔽微粒子と有機ケイ素化合物とを混合し、加水分解処理を行えばよい。
[c]熱線遮蔽微粒子分散体の製造方法
熱線遮蔽微粒子分散体の製造方法について(1)粉粒体状の熱線遮蔽微粒子分散体の製造方法、(2)シート形状またはフィルム形状の熱線遮蔽微粒子分散体(熱線遮蔽フィルム、熱線遮蔽シート)の製造方法、の順で説明する。
(1)粉粒体状の熱線遮蔽微粒子分散体の製造方法
熱線遮蔽微粒子を、分散剤と、カップリング剤および/または界面活性剤と伴に、有機溶媒中へ分散して有機溶媒分散液を得る。その後、当該有機溶媒分散液から有機溶媒を除去することで、熱線遮蔽微粒子が分散剤中に分散した本発明に係る分散粉を得ることができる。
熱線遮蔽微粒子を有機溶剤へ分散する方法は、当該微粒子が均一に有機溶剤に分散する方法であれば任意に選択できる。例としては、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用いることが出来る。
有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1−プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3−メチル−メトキシ−プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N−メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどのハロゲン化炭化水素類などを挙げることができる。
尤も、これらの中でも極性の低い有機溶剤が好ましく、特に、イソプロピルアルコール、エタノール、1−メトキシ−2−プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n−ブチルなどがより好ましい。これらの溶媒は、1種または2種以上を組み合わせて用いることができる。
分散剤、カップリング剤、界面活性剤は、用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を、官能基として有しているものであることが好ましい。これらの官能基は熱線遮蔽微粒子の表面に吸着し、当該熱線遮蔽微粒子の凝集を防ぐことで、熱線遮蔽微粒子分散体中において当該熱線遮蔽微粒子を均一に分散させる効果を発揮する。
好適に用いることのできる分散剤として、リン酸エステル化合物、高分子系分散剤、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、等があるが、これらに限定されるものではない。高分子系分散剤としては、アクリル系高分子分散剤、ウレタン系高分子分散剤、アクリル・ブロックコポリマー系高分子分散剤、ポリエーテル類分散剤、ポリエステル系高分子分散剤などが挙げられる。
さらに、有機溶媒分散液中における有機溶剤に対する熱線遮蔽微粒子の濃度は、1質量%以上50質量%以下とすることが好ましい。有機溶剤に対する熱線遮蔽微粒子の濃度が1質量%以上であれば、除去すべき有機溶剤量が多くなり過ぎて製造コストが高くなってしまう事態を回避出来る。一方、有機溶剤に対する熱線遮蔽微粒子の濃度が50質量%以下であれば、微粒子の凝集が起こり易くなり微粒子の分散が困難になる事態や、液の粘性が著しく増加し取り扱いが困難となる事態を回避出来るからである。
また、有機溶媒分散液中の熱線遮蔽微粒子は、平均分散粒子径が40nm以下で分散していることが好ましい。熱線遮蔽微粒子の平均分散粒子径が40nm以下であれば、本発明に係る熱線遮蔽微粒子分散体を用いて製造された熱線遮蔽膜におけるヘイズ等の光学特性が、より好ましく向上するからである。
有機溶媒分散液から有機溶剤を除去することで、本発明に係る分散粉や可塑剤分散液を得ることが出来る。有機溶媒分散液から有機溶剤を除去する方法としては、当該有機溶媒分散液を減圧乾燥することが好ましい。具体的には、有機溶媒分散液を攪拌しながら減圧乾燥し、熱線遮蔽微粒子含有組成物と有機溶剤成分とを分離する。当該減圧乾燥に用いる装置としては、真空攪拌型の乾燥機があげられるが、上記機能を有する装置であれば良く、特に限定されない。また、乾燥工程の減圧の際の圧力値は適宜選択される。
当該減圧乾燥法を用いることで、有機溶媒分散液からの有機溶剤の除去効率が向上すると伴に、本発明に係る分散粉や可塑剤分散液が長時間高温に曝されることがないので、分散粉や可塑剤分散液中に分散している熱線遮蔽微粒子の凝集が起こらず好ましい。さらに分散粉や可塑剤分散液の生産性も上がり、蒸発した有機溶剤を回収することも容易で、環境的配慮からも好ましい。
当該乾燥工程後に得られた本発明に係る分散粉や可塑剤分散液において、残留する有機溶剤は5質量%以下であることが好ましい。残留する有機溶媒が5質量%以下であれば、当該分散粉や可塑剤分散液を、熱線遮蔽合わせ透明基材に加工した際に気泡が発生せず、外観や光学特性が良好に保たれるからである。
また、熱線遮蔽微粒子や分散粉を樹脂中に分散させ、当該樹脂をペレット化することで、本発明に係るマスターバッチを得ることが出来る。
また、熱線遮蔽微粒子や前記分散粉と、熱可塑性樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に混合したのち、ベント式一軸若しくは二軸の押出機で混練し、一般的な溶融押出されたストランドをカットする方法によりペレット状に加工することによっても、マスターバッチを得ることが出来る。この場合、その形状としては円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。この場合には球状に近い形状をとることが一般的である。
(2)シート状またはフィルム状の熱線遮蔽微粒子分散体の製造方法
本発明に係る分散粉、可塑剤分散液、またはマスターバッチを透明樹脂中へ均一に混合することにより、本発明に係るシート状またはフィルム状の熱線遮蔽微粒子分散体を製造できる。当該シート状またはフィルム状の熱線遮蔽微粒子分散体からは、従来の技術に係る複合タングステン酸化物の持つ熱線遮蔽特性を担保し、波長700〜1200nmの近赤外光の透過率は向上した、熱線遮蔽シートや熱線遮蔽フィルムを製造できる。
本発明に係る熱線遮蔽シートや熱線遮蔽フィルムを製造する場合、当該シートやフィルムを構成する樹脂には多様な熱可塑性樹脂を用いることが出来る。そして、本発明に係る熱線遮蔽シートや熱線遮蔽フィルムが各種の窓材に適用されることを考えれば、十分な透明性を持った熱可塑性樹脂であることが好ましい。
具体的には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体といった樹脂群から選択される樹脂、または当該樹脂群から選択される2種以上の樹脂の混合物、または当該樹脂群から選択される2種以上の樹脂の共重合体から、好ましい樹脂の選択を行うことが出来る。
さらに、本発明に係る熱線遮蔽シートをそのままボード状の窓材として使用する場合は、透明性が高く、且つ窓材として要求される一般的な特性、すなわち剛性、軽量性、長期耐久性、コストなどの点を考慮すると、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂であることが好ましく、ポリカーボネート樹脂であることがさらに好ましい。
一方、本発明にかかる熱線遮蔽シートや熱線遮蔽フィルムを後述する熱線遮蔽合わせガラスの中間層として用いる場合は、透明基材との密着性、耐候性、耐貫通性などの観点から、ポリビニルアセタール樹脂やエチレン・酢酸ビニル共重合体が好ましく、ポリビニルブチラール樹脂であることがさらに好ましい。
また、熱線遮蔽シートまたは熱線遮蔽フィルムを中間層として用いる場合であって、当該シートやフィルムを構成する熱可塑性樹脂が単独では柔軟性や透明基材との密着性を十分に有しない場合、例えば熱可塑性樹脂がポリビニルアセタール樹脂である場合は、さらに可塑剤を添加することが好ましい。
可塑剤としては、本発明に係る熱可塑性樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された熱線遮蔽フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
分散粉または可塑剤分散液またはマスターバッチと、熱可塑性樹脂と、所望に応じて可塑剤その他添加剤とを混練した後、当該混練物を、押出成形法、射出成形法等の公知の方法により、例えば、平面状や曲面状のシート材に成形することにより、熱線遮蔽シートを製造することができる。
熱線遮蔽シートや熱線遮蔽フィルムの形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。
[d]熱線遮蔽合わせ透明基材の製造方法
本発明に係る熱線遮蔽シートや熱線遮蔽フィルムを、板ガラスまたはプラスチックの材質からなる複数枚の透明基材間に、中間層として介在させて成る熱線遮蔽合わせ透明基材について説明する。
熱線遮蔽合わせ透明基材は、中間層をその両側から透明基材を用いて挟み合わせたものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であるが、例えば、自動車等の輸送機器に用いる場合は、当該輸送機器の運転者や搭乗者の透視性を確保する観点から、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂といった透明樹脂が好ましが、他にも、PET樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、等が使用可能である。
本発明にかかる熱線遮蔽合わせ透明基材は、本発明に係る熱線遮蔽シートや熱線遮蔽フィルムを挟み込んで存在させた対向する複数枚の無機ガラスを、公知の方法で張り合わせ一体化することによっても得られる。得られた熱線遮蔽合わせ無機ガラスは、主に自動車のフロント用の無機ガラスや、建物の窓として使用することが出来る。
前記熱線遮蔽シート、熱線遮蔽フィルムおよび熱線遮蔽合わせ透明基材に含まれる前記熱線遮蔽微粒子の濃度は特に限定されないが、シート/フィルムの投影面積あたりの含有量が、0.1g/m以上5.0g/m以下であることが好ましい。これは0.1g/m以上であれば熱線遮蔽微粒子を含有しない場合と比較して有意に熱線遮蔽特性を発揮でき、5.0g/m以下であれば熱線遮蔽シート/フィルムが可視光の透過性を完全には失わないからである。
本発明に係る熱線遮蔽シート、熱線遮蔽フィルムまたは熱線遮蔽合わせ構造体の光学特性は、可視光透過率が70%のときに、波長850nmの近赤外光における透過率が23%以上45%以下であり、且つ、波長1200〜1800nmの熱線の透過率の最小値が15%以下である。
ここで、可視光透過率を70%に調整することは、上述した有機溶媒分散液、分散粉、可塑剤分散液またはマスターバッチに含有される熱線遮蔽微粒子の濃度、樹脂組成物を調製する際の熱線遮蔽微粒子、分散粉、可塑剤分散液またはマスターバッチの添加量、さらにはフィルムやシートの膜厚等を調整することにより、容易である。
上述した本発明に係る熱線遮蔽微粒子の透過率プロファイルの形は、添加元素Aを有しないことを除けば、これと等価な組成を有する従来の技術に係る複合タングステン酸化物微粒子を用いた場合の透過プロファイルと比較すると、次の特長を有することを知見したものである。
1.本発明に係る熱線遮蔽微粒子は、可視光透過バンドの領域が近赤外光の領域である波長700〜1200nmの領域に広がっており、当該領域において高い透過率を持つものである。
2.本発明に係る熱線遮蔽微粒子は、波長1200〜1800nmの領域に存在する透過率の最小値の値を殆ど変えていない。
以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
各実施例における熱線遮蔽微粒子分散液および熱線遮蔽微粒子分散体の、波長300〜2100nmの領域における光の透過率は、日立製作所(株)製の分光光度計U−4100を用いて測定した。
また各実施例における熱線遮蔽シート、熱線遮蔽フィルム、および合わせ透明基材の日射透過率は、上述した分光光度計で測定された波長300〜2100nmの領域の光の透過率をもとに、JIS R 3106:1998に基づいて算出した。
そして熱線遮蔽微粒子の平均粒子径は、日機装(株)製のマイクロトラック粒度分布計を用いて測定した。
[実施例1](Mo0.015Cs0.330.985を用いた熱線遮蔽シート)
タングステン酸(HWO)と、水酸化セシウム(CsOH)と、三酸化モリブデン(MoO)との各粉末を、Mo/Cs/W(モル比)=0.015/0.33/0.985相当となる割合で秤量した後、メノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、Nガスをキャリアーとした5%Hガス供給下において600℃の温度で1時間の加熱を行って還元処理を行った後、Nガス雰囲気下で800℃、30分間焼成して、複合タングステン酸化物Mo0.015Cs0.330.985(以下、粉末Aと記載する。)を得た。
粉末AをX線回折法で測定したところ、純粋な六方晶であり、三酸化モリブデンや二酸化モリブデンの回折線は観察されなかった。また、粉末Aを透過電子顕微鏡で観察したところ、六方晶セシウムタングステンブロンズの多結晶粒子が観察されたが、当該多結晶粒子の粒界にモリブデン化合物などの偏析は観察されなかった。このことから、モリブデン成分は、六方晶セシウムタングステンブロンズの結晶中に完全に固溶していると判断された。
粉末A20質量%、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、分散剤aと記載する。)10質量%、メチルイソブチルケトン70質量%を秤量した。これらを、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、複合タングステン酸化物微粒子分散液(以下、分散液Aと記載する。)を得た。ここで、分散液A内における複合タングステン酸化物微粒子の分散平均粒子径を測定したところ19nmであった。
分散液Aへ、さらに分散剤aを添加し、分散剤aと複合タングステン酸化物微粒子との質量比が[分散剤a/複合タングステン酸化物微粒子]=3となるように調製した。次に、スプレードライヤーを用いて、この複合タングステン酸化物微粒子分散液Aからメチルイソブチルケトンを除去し、複合タングステン酸化物微粒子分散粉を得た(以下、分散粉Aと記載する。)。
熱可塑性樹脂であるポリカーボネート樹脂に対して、製造される熱線遮蔽シート(1.0mm厚)の可視光透過率が70%となるように、所定量の分散粉Aを添加し、熱線遮蔽シートの製造用組成物を調製した。
この熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出して、カレンダーロール法により1.0mm厚のシート材とし、実施例1に係る熱線遮蔽シートを得た。
得られた実施例1に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長850nmにおける透過率は39%、透過率の最小値は波長1610nmにおける13%であった。そして、可視光透過率は70%、日射透過率は37%、ヘイズは0.5%と測定された。
[比較例1](Cs0.33WOを用いた熱線遮蔽シート)
タングステン酸(HWO)と水酸化セシウム(CsOH)37.4g(Cs/W(モル比)=0.33相当)とをメノウ乳鉢で十分混合して混合粉末とした。当該混合粉末を、Nガスをキャリアーとした5%Hガス供給下において加熱し600℃の温度で1時間の還元処理を行った後、Nガス雰囲気下において800℃、30分間焼成して複合タングステン酸化物Cs0.33WO(以下、微粒子αと記載する。)を得た。
微粒子α20質量%、分散剤a10質量%、メチルイソブチルケトン70質量%を秤量した。これらを、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、複合タングステン酸化物微粒子分散液(以下、分散液αと記載する。)を得た。ここで、分散液α内における複合タングステン酸化物微粒子の分散平均粒子径を測定したところ20nmであった。
分散液αへ、さらに分散剤aを添加し、分散剤aと複合タングステン酸化物微粒子の重量比が[分散剤a/複合タングステン酸化物微粒子]=3となるように調製した。次に、この複合タングステン酸化物微粒子分散液αからスプレードライヤーを用いてメチルイソブチルケトンを除去し、複合タングステン酸化物微粒子分散粉を得た(以下、分散粉αと記載する。)。
熱可塑性樹脂であるポリカーボネート樹脂に対して、製造される熱線遮蔽シート(1.0mm厚)の可視光透過率が70%となるように、所定量の分散粉αを添加し、熱線遮蔽シートの製造用組成物を調製した。
この熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出しカレンダーロール法により1.0mm厚のシート材として、比較例1に係る熱線遮蔽シートを得た。
この熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長850nmにおける透過率は22%、波長1200〜1800nmにおける透過率の最小値は10%、日射透過率は33%、ヘイズは0.6%と測定された。
[実施例2〜19](ACsを用いた熱線遮蔽シート)
添加元素Aと、添加元素Mとしてセシウムと、タングステンおよび酸素との比率が、表1に示す数値となるように実施例1と同様に、添加化合物粉末を秤量し熱処理して、実施例2〜19に係る複合タングステン酸化物粉末を作製した。但し、実施例19においては添加元素Aとしてビスマスとスズとの混合物(Bi:Sn(モル比)=1:1相当)を用いた。
当該実施例2〜19に係る複合タングステン酸化物粉末のすべてについて、X線回折測定と透過電子顕微鏡観察を行ない、添加元素Aが六方晶のセシウムタングステンブロンズ微粒子結晶内に固溶していることを確認した。
当該実施例2〜19に係る各々の複合タングステン酸化物粉末と、溶媒と、分散剤aとをペイントシェーカー中に装填し、実施例1と同様に撹拌混合して、実施例2〜19に係る微粒子分散液を作製した。当該実施例2〜19に係る微粒子分散液の各々に、さらに分散剤aを添加し、分散剤aと複合タングステン酸化物微粒子との質量比が[分散剤a/複合タングステン酸化物微粒子]=3となるように調製した。次に、当該微粒子分散液から溶媒を除去し、実施例2〜19に係る複合タングステン酸化物微粒子分散粉を作製した。
これら実施例2〜19に係る複合タングステン酸化物微粒子分散粉を用い、実施例1と同様にしてポリカーボネート樹脂に練り込んで、実施例2〜19に係るシートを作製した。この実施例2〜19に係るシートの透過率を、分光光度計を用いて測定し、可視光透過率が70%となるときの波長850nmにおける透過率と、波長1200〜1800nmでの透過率最小値、日射透過率、ヘイズ値を測定した。当該測定結果を表1に記載した。
[比較例2](WO2.72を用いた熱線遮蔽シート)
三酸化タングステン(WO)粉末を、Nガスをキャリアーとした3%Hガスを供給下において加熱し600℃の温度で1時間の還元処理を行い、タングステン酸化物WO2.72(以下、微粒子βと記載する。)を得た。
微粒子β20質量%、分散剤a10質量%、メチルイソブチルケトン70質量%を秤量した。これらを、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、13時間粉砕・分散処理し、タングステン酸化物微粒子分散液(以下、分散液βと記載する。)を得た。ここで、分散液β内におけるタングステン酸化物微粒子の分散平均粒子径を測定したところ31nmであった。
分散液βへ、さらに分散剤aを添加し、分散剤aとタングステン酸化物微粒子の重量比が[分散剤a/タングステン酸化物微粒子]=3となるように調製した。次に、このタングステン酸化物微粒子分散液βからスプレードライヤーを用いてメチルイソブチルケトンを除去し、タングステン酸化物微粒子分散粉を得た(以下、分散粉βと記載する。)。
熱可塑性樹脂であるポリカーボネート樹脂に対して、製造される熱線遮蔽シート(1.0mm厚)の可視光透過率が70%となるように、所定量の分散粉βを添加し、熱線遮蔽シートの製造用組成物を調製した。
この熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出しカレンダーロール法により1.0mm厚のシート材とした比較例2に係る熱線遮蔽シートを得た。
この熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、
波長850nmにおける透過率は49%、波長1200〜1800nmにおける透過率の最小値は39%、日射透過率は55%、ヘイズは0.9%と測定された。当該測定結果を表1に記載した。
[比較例3](LaBを用いた熱線遮蔽シート)
六ホウ化ランタン(LaB)粉末5質量%、分散剤a3質量%、メチルイソブチルケトン92質量%を秤量した。これらを、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理し、六ホウ化ランタン微粒子分散液(以下、分散液γと記載する。)を得た。ここで、分散液γ内における六ホウ化ランタン微粒子の分散平均粒子径を測定したところ31nmであった。
分散液γへ、さらに分散剤aを添加し、分散剤aと六ホウ化ランタン微粒子の重量比が[分散剤a/六ホウ化ランタン微粒子]=3となるように調製した。次に、この六ホウ化ランタン微粒子分散液γからスプレードライヤーを用いてメチルイソブチルケトンを除去し、タングステン酸化物微粒子分散粉を得た(以下、分散粉γと記載する。)。
熱可塑性樹脂であるポリカーボネート樹脂に対して、製造される熱線遮蔽シート(1.0mm厚)の可視光透過率が70%となるように、所定量の分散粉γを添加し、熱線遮蔽シートの製造用組成物を調製した。
この熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出しカレンダーロール法により1.0mm厚のシート材とし、比較例3に係る熱線遮蔽シートを得た。
この熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長850nmにおける透過率は41%であった。透過率の最小値は波長1200〜1800nmよりも短い波長領域に存在し、波長975nmにおける透過率は36%であった。また、日射透過率は48%、ヘイズは1.0%と測定された。当該測定結果を表1に記載した。
[実施例1〜19および比較例1〜3の評価]
実施例1〜19においては、従来の複合タングステン酸化物を用いた熱線遮蔽シートである比較例1と比較して、可視光透過率が70%のときの波長850nmの光の透過率が高く、複合タングステン酸化物としての高い熱線遮熱特性を保持しながら、波長700〜1200nmの近赤外光には透過率を持つ熱線遮蔽シートが得られることが判明した。
熱線遮蔽微粒子としてWO2.72を用いた比較例2や、六ホウ化ランタンを用いた比較例3に係る熱線遮蔽シートは、可視光透過率が70%のときの波長850nmの光の透過率は高い。しかし、可視光透過率が70%のときの日射透過率はそれぞれ55%、48%と、複合タングステン酸化物を用いた実施例1〜19に係る熱線遮蔽シートの34〜38%よりも大幅に高く、複合タングステン酸化物を用いた熱線遮蔽シートのような高い熱線遮蔽特性を持たなかった。
[実施例20](Mo0.015Cs0.330.985を用いた熱線遮蔽マスターバッチ)
実施例1で作製した分散粉A(複合タングステン酸化物Cs0.33Mo0.0150.985の分散粉)とポリカーボネート樹脂ペレットとを、複合タングステン酸化物の濃度が2.0質量%となるように混合し、ブレンダーを用いて均一に混合し混合物とした。当該混合物を、二軸押出機を用いて290℃で熔融混練し、押出されたストランドをペレット状にカットし、熱線遮蔽透明樹脂成形体用の実施例20に係るマスターバッチ(以下、マスターバッチAと記載する。)を得た。
ポリカーボネート樹脂ペレットへ、所定量のマスターバッチAを所定量添加し、実施例20に係る熱線遮蔽シートの製造用組成物を調製した。尚、当該所定量とは、製造される熱線遮蔽シート(1.0mm厚)の可視光透過率が70%となる量である。
当該実施例20に係る熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出し、カレンダーロール法により1.0mm厚のシート材として、実施例20に係る熱線遮蔽シートを得た。
得られた実施例20に係る熱線遮蔽シートの光学特性を測定したところ、可視光透過率が70%であり、波長850nmにおける透過率は38%、透過率の最小値は波長1610nmで10%となった。日射透過率は37%、ヘイズは0.9%と測定された。
以上の結果より、実施例1の分散粉と同様、熱線遮蔽シートの製造に好適に用いることのできる熱線遮蔽微粒子分散体であるマスターバッチが作製出来ることが確認された。
[実施例21](Mo0.015Cs0.330.985を用いた熱線遮蔽フィルムおよび熱線遮蔽合わせ透明基材)
ポリビニルブチラール樹脂に可塑剤のトリエチレングリコ−ル-ジ-2-エチルブチレ−トを添加し、ポリビニルブチラール樹脂と可塑剤との重量比が[ポリビニルブチラール樹脂/可塑剤]=100/40となるように調製した混合物を作製した。この混合物に実施例1で作製した分散粉A(複合タングステン酸化物Cs0.33Mo0.0150.985の分散粉)を、所定量添加し、熱線遮蔽フィルムの製造用組成物を調製した。尚、当該所定量とは、製造される熱線遮蔽合わせ透明基材の可視光透過率が70%となる量である。
この製造用組成物を3本ロールのミキサーを用いて70℃で30分練り込み混合し、混合物とした。当該混合物を、型押出機で180℃に昇温して厚み1mm程度にフィルム化してロールに巻き取ることで、実施例21に係る熱線遮蔽フィルムを作製した。
この実施例21に係る熱線遮蔽フィルムを10cm×10cmに裁断し、同寸法を有する厚さ2mmの無機クリアガラス板2枚の間に挟み込み、積層体とした。次に、この積層体をゴム製の真空袋に入れ、袋内を脱気して90℃で30分保持した後、常温まで戻し袋から取り出した。そして、当該積層体をオートクレーブ装置に入れ、圧力12kg/cm、温度140℃で20分加圧加熱して、実施例21に係る熱線遮蔽合わせガラスシートを作製した。
ここで比較の為、分散粉Aに代えて比較例1で作製した分散粉α(複合タングステン酸化物Cs0.33WO微粒子の分散粉)を用いて、実施例21に係る熱線遮蔽合わせガラスシートを作製と同様のプロセスを行なって、従来の技術に係る熱線遮蔽フィルムおよび熱線遮蔽合わせ透明基材を作製した。
実施例21に係る熱線遮蔽合わせ透明基材の光学特性を測定したところ、可視光透過率が70%のときに、850nmにおける透過率は35%、透過率の最小値は波長1580nmで7%となった。
一方、比較のために作製した従来の技術に係るCs0.33WOの熱線遮蔽合わせ透明基材では、可視光透過率が70%のときに、波長850nmにおける透過率は20%、透過率の最小値は波長1590nmで6%となった。
以上の結果から、元素Aとしてモリブデンを添加した実施例21に係る熱線遮蔽合わせ透明基材では、モリブデンを添加しない従来の技術に係る熱線遮蔽合わせ透明基材に比べて、熱線遮蔽特性を保持したまま近赤外光を透過させていることが確認された。
Figure 0006606898

Claims (9)

  1. 少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含み、
    前記熱線遮蔽微粒子は一般式A Cs で表記され、AはMo,Ru,Cr,Ni,V,Co,Fe,Mn、Ti,Ge,Sn,Ga,Pb,Bi,In,Sb,Pd,Tlのうちから選択される1種類以上の元素であり、Csはセシウムであり、Wはタングステンであり、Oは酸素であり、0.001≦a/b≦0.1であり、0.20≦b/(a+c)≦0.61であり、2.2≦d/(a+c)≦3.0であり、六方晶の結晶構造を持つ複合タングステン酸化物微粒子であることを特徴とする熱線遮蔽分散体。
  2. 前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
    または、前記樹脂群から選択される2種以上の樹脂の混合物、
    または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることを特徴とする請求項1に記載の熱線遮蔽微粒子分散体。
  3. 前記複合タングステン酸化物微粒子の直径が、1nm以上800nm以下であることを特徴とする請求項1または2に記載の熱線遮蔽微粒子分散体。
  4. 前記複合タングステン酸化物微粒子を、0.5質量%以上80.0質量%以下含むことを特徴とする請求項1から3のいずれかに記載の熱線遮蔽微粒子分散体。
  5. 前記熱線遮蔽微粒子分散体が、シート形状、ボード形状またはフィルム形状であることを特徴とする請求項1から4のいずれかに記載の熱線遮蔽微粒子分散体。
  6. 前記熱線遮蔽微粒子分散体に含まれる単位投影面積あたりの前記熱線遮蔽微粒子の含有量が、0.1g/m以上5.0g/m以下であることを特徴とする請求項1から5のいずれかに記載の熱線遮蔽微粒子分散体。
  7. 可視光透過率が70%のときに、波長850nmの近赤外光の透過率が23%以上45%以下であり、且つ波長1200〜1800nmの熱線の透過率の最小値が15%以下であることを特徴とする請求項1から6のいずれかに記載の熱線遮蔽微粒子分散体。
  8. 複数枚の透明基材間に、請求項1から7のいずれかに記載の熱線遮蔽微粒子分散体が存在していることを特徴とする熱線遮蔽合わせ透明基材。
  9. 波長850nmの近赤外光の透過率が23%以上45%以下であり、且つ波長1200〜1800nmの熱線の透過率の最小値が15%以下であることを特徴とする請求項8に記載の熱線遮蔽合わせ透明基材。
JP2015142449A 2014-07-18 2015-07-16 熱線遮蔽分散体および熱線遮蔽合わせ透明基材 Active JP6606898B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015142449A JP6606898B2 (ja) 2014-07-18 2015-07-16 熱線遮蔽分散体および熱線遮蔽合わせ透明基材
PCT/JP2015/070626 WO2016010156A1 (ja) 2014-07-18 2015-07-17 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材
TW104123437A TWI666352B (zh) 2014-07-18 2015-07-20 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽用夾層透明基材

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014148070 2014-07-18
JP2014148070 2014-07-18
JP2015142449A JP6606898B2 (ja) 2014-07-18 2015-07-16 熱線遮蔽分散体および熱線遮蔽合わせ透明基材

Publications (2)

Publication Number Publication Date
JP2016029166A JP2016029166A (ja) 2016-03-03
JP6606898B2 true JP6606898B2 (ja) 2019-11-20

Family

ID=55435188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142449A Active JP6606898B2 (ja) 2014-07-18 2015-07-16 熱線遮蔽分散体および熱線遮蔽合わせ透明基材

Country Status (1)

Country Link
JP (1) JP6606898B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7133932B2 (ja) * 2018-01-31 2022-09-09 共同印刷株式会社 赤外線吸収性インキ及びその製造方法
US20230059759A1 (en) 2020-02-12 2023-02-23 Kyodo Printing Co., Ltd. Infrared-absorbing uv ink and method for producing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025470A1 (ja) * 2004-08-31 2006-03-09 Sumitomo Metal Mining Co., Ltd. 導電性粒子、可視光透過型粒子分散導電体およびその製造方法、透明導電薄膜およびその製造方法、これを用いた透明導電物品、赤外線遮蔽物品
JP2009258581A (ja) * 2008-03-21 2009-11-05 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
JP6317880B2 (ja) * 2009-07-07 2018-04-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se カリウム・セシウム・タングステンブロンズ粒子
JP2011065000A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
JP2011063741A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
ITRM20100227A1 (it) * 2010-05-10 2011-11-10 Bayer Materialscience Ag Composizione polimerica con caratteristiche di assorbimento di calore ad alta stabilità.
TWI422552B (zh) * 2012-02-08 2014-01-11 Nanya Plastics Corp 一種透明隔熱材料及其製法

Also Published As

Publication number Publication date
JP2016029166A (ja) 2016-03-03

Similar Documents

Publication Publication Date Title
KR102299369B1 (ko) 열선 차폐 미립자 분산체, 열선 차폐 적층 투명 기재, 및 이들의 제조방법
JP6950691B2 (ja) 近赤外線吸収微粒子分散液、近赤外線吸収微粒子分散体、近赤外線吸収透明基材、近赤外線吸収合わせ透明基材
JP6299559B2 (ja) 熱線遮蔽粒子、熱線遮蔽粒子分散液、熱線遮蔽粒子分散体、熱線遮蔽粒子分散体合わせ透明基材、赤外線吸収透明基材、熱線遮蔽粒子の製造方法
TWI726947B (zh) 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽分散體及熱射線遮蔽夾層透明基材
WO2016010156A1 (ja) 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体および熱線遮蔽合わせ透明基材
WO2017094909A1 (ja) 熱線遮蔽微粒子、熱線遮蔽微粒子分散液、熱線遮蔽フィルム、熱線遮蔽ガラス、熱線遮蔽分散体、および、熱線遮蔽合わせ透明基材
JP6870303B2 (ja) 熱線遮蔽分散体、および熱線遮蔽合わせ透明基材
JP6613674B2 (ja) 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
JP6606898B2 (ja) 熱線遮蔽分散体および熱線遮蔽合わせ透明基材
KR102553348B1 (ko) 적외선 흡수 미립자 및 이를 사용한 분산액, 분산체, 적층된 투명 기재, 필름, 유리, 및 이의 제조 방법
TWI666352B (zh) 熱射線遮蔽微粒子、熱射線遮蔽微粒子分散液、熱射線遮蔽薄膜、熱射線遮蔽玻璃、熱射線遮蔽微粒子分散體及熱射線遮蔽用夾層透明基材
JP7472699B2 (ja) 赤外線吸収微粒子分散液、赤外線吸収微粒子分散体および赤外線吸収透明基材
JP6613675B2 (ja) 熱線遮蔽フィルムおよび熱線遮蔽ガラス
JP2017222540A (ja) 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
JP2021075676A (ja) 複合タングステン酸化物微粒子分散体および複合タングステン酸化物微粒子分散液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6606898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150