WO2021238050A1 - 镍锰酸锂复合材料、其制备方法及锂离子电池 - Google Patents

镍锰酸锂复合材料、其制备方法及锂离子电池 Download PDF

Info

Publication number
WO2021238050A1
WO2021238050A1 PCT/CN2020/124465 CN2020124465W WO2021238050A1 WO 2021238050 A1 WO2021238050 A1 WO 2021238050A1 CN 2020124465 W CN2020124465 W CN 2020124465W WO 2021238050 A1 WO2021238050 A1 WO 2021238050A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
lithium
composite material
temperature
preparation
Prior art date
Application number
PCT/CN2020/124465
Other languages
English (en)
French (fr)
Inventor
马加力
杨红新
江卫军
乔齐齐
孙明珠
许鑫培
施泽涛
王鹏飞
陈思贤
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to EP20937347.1A priority Critical patent/EP3974389A4/en
Priority to KR1020227028921A priority patent/KR20220130768A/ko
Priority to JP2022509706A priority patent/JP7352727B2/ja
Priority to US17/641,820 priority patent/US20230079339A1/en
Publication of WO2021238050A1 publication Critical patent/WO2021238050A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion batteries, in particular to a lithium nickel manganate composite material, a preparation method thereof, and a lithium ion battery.
  • Cathode material is one of the three key materials restricting the rapid development of lithium-ion batteries.
  • lithium cobalt oxide cathode materials have higher working voltage and better rate performance, but their lower actual capacity greatly limits the application of lithium cobalt oxide cathode materials.
  • Olivine-type lithium iron phosphate cathode material has the advantages of stable structure, good cycle performance, and low raw material price, but the theoretical capacity is low.
  • the ternary layered cathode material fully combines the advantages of lithium manganate, lithium cobaltate and lithium nickelate, and has the advantages of higher discharge specific capacity, better cycle performance, and lower cost. .
  • ternary cathode materials have been commercialized, such as NCM523, NCM622, NCM811 and other ternary cathode materials, which meet the needs of power vehicles to a certain extent.
  • cobalt is a strategic metal, and its expensive price makes the cost of the ternary cathode material NCM higher.
  • cobalt resources are limited and the market fluctuates greatly. Therefore, the development of cobalt-free cathode materials is very necessary.
  • the positive electrode material When the positive electrode material is synthesized, the residual alkali content on the surface of the material is high, which is easy to absorb water, which makes the battery easy to decompose during the charging and discharging process. Material homogenization will be affected by the pH of the material. If the pH of the positive electrode material is high, the viscosity of the slurry will be unstable and homogenization will be difficult, resulting in poor battery processing performance.
  • the most common solution at present is to coat the positive electrode material, that is, coat a layer of uniform nano-oxide on the surface of the material, but this coating method is basically difficult to form a uniform coating layer on the surface of the material. , And the binding force between the covering and the material itself is weak, it is very likely that the covering will fall off during the subsequent processing, which will not form an effective protection.
  • the main purpose of the present invention is to provide a lithium nickel manganate composite material, a preparation method thereof, and a lithium ion battery, so as to solve the problem that the existing ternary positive electrode material has a coating layer that is easy to fall off, resulting in poor cycle performance of the ion battery. .
  • one aspect of the present invention provides a method for preparing a lithium nickel manganese oxide composite material.
  • a manganese precursor; and the oxide-coated nickel manganese precursor and the lithium source material are subjected to a second calcination process to obtain a lithium nickel manganese oxide composite material, and the temperature of the first calcination process is lower than the temperature of the second calcination process.
  • the preparation method further includes: subjecting the nano-oxide and the nickel-manganese precursor to a first mixing process to obtain a first mixture; preferably, the first mixing process is performed at 2000-3000 rpm Mix for 10-20 minutes at a rotating speed; preferably, the nano-oxide is selected from two or more of the group consisting of aluminum oxide, zirconium oxide, titanium oxide, niobium oxide, tungsten oxide, lanthanum oxide and molybdenum oxide; more preferably , The particle size of nano oxide is 300-700nm.
  • the first calcination process is a temperature-programmed process; preferably, the first calcination process includes: raising the temperature of the first calcination reaction system to the first target temperature at a rate of 3 to 5°C/min under an oxygen atmosphere, The holding time is 4-6 hours, wherein the first target temperature is 300-600°C; and the temperature of the first calcination reaction system is lowered to room temperature to obtain an oxide-coated nickel-manganese precursor.
  • the nickel-manganese precursor is represented by Ni x Mn y (OH) 2 , where 0.50 ⁇ x ⁇ 0.92, 0.50 ⁇ y ⁇ 0.8, and when the nano-oxide is a mixture of zirconia and alumina, zirconia, oxide
  • the weight ratio of aluminum and nickel-manganese precursor is (0.001 ⁇ 0.003):(0.001 ⁇ 0.003):1.
  • the preparation method further includes: subjecting the oxide-coated nickel-manganese precursor and the lithium source material to a second mixing process to obtain a second mixture; preferably, the second mixing process is Mixing for 10-20 minutes at a rotation speed of 2000-3000 rpm; preferably, the preparation method further includes: sieving the product system of the first calcination process to obtain an oxide-coated nickel manganese precursor, and the sieving aperture of the sieving process For 300 to 400 mesh.
  • the second calcination process is a temperature-programming process; preferably, the second calcination process includes: raising the temperature of the second calcination reaction system to the second target temperature at a rate of 3 to 5°C/min under an oxygen atmosphere, The holding time is 8-12h, where the second target temperature is 910-950°C; the temperature of the second calcination reaction system is lowered to room temperature to obtain a lithium nickel manganate composite material; preferably, the second calcination process also includes: After the temperature of the second calcination reaction system is lowered to room temperature, a second calcination product is obtained; and the product of the second calcination process is subjected to ultracentrifugal grinding and sieving, wherein the sieving device used in the sieving process has an aperture of 300-400 In order to obtain a lithium nickel manganate composite material in the form of a single crystal.
  • the ratio of the number of moles of Li element in the lithium source material to the sum of the number of moles of Ni element and Mn element in the oxide-coated nickel-manganese precursor is (1.00 ⁇ 1.05):1.
  • Another aspect of the present application also provides a lithium nickel manganese oxide composite material, which is prepared by the above-mentioned preparation method.
  • the coating amount of the nano-oxide is 0.1-0.3%.
  • Another aspect of the present application also provides a lithium ion battery, including a positive electrode material, and the positive electrode material includes the above-mentioned lithium nickel manganate composite material.
  • calcining the nano-oxide and the nickel-manganese precursor at a lower temperature can melt the nano-oxide and form a denser nano-oxide coating layer on the surface of the nickel-manganese precursor ,
  • the oxide-coated nickel-manganese precursor is obtained; then at a higher temperature, the oxide-coated nickel-manganese precursor and the lithium source material are calcined a second time, which can make the nano-oxide, nickel-manganese material and lithium
  • the elements are combined to a deeper level, so as to solve the problem that the nano oxide layer is easy to fall off, thereby greatly improving the cycle performance of the lithium nickel manganate composite material.
  • Figure 1 shows a scanning electron micrograph of a lithium nickel manganate composite material prepared according to Example 1 of the present invention
  • Figure 2 shows the electrochemical performance of the lithium nickel manganate composite material prepared according to Example 1 of the present invention.
  • FIG. 3 shows a scanning electron microscope image of a lithium nickel manganate composite material prepared according to an existing method.
  • the existing ternary positive electrode material has the problem that the coating layer is easy to fall off, resulting in poor cycle performance of the lithium ion battery.
  • the present application provides a method for preparing a lithium nickel manganate composite material.
  • the preparation method includes: subjecting the nano oxide and the nickel manganese precursor to a first calcination process to obtain oxide-coated nickel manganese The precursor; and the oxide-coated nickel-manganese precursor and the lithium source material are subjected to a second calcination process to obtain a lithium nickel manganese oxide composite material, and the temperature of the first calcination process is lower than the temperature of the second calcination process.
  • Calcining the nano-oxide and the nickel-manganese precursor at a lower temperature can melt the nano-oxide and form a denser nano-oxide coating layer on the surface of the nickel-manganese precursor to obtain an oxide-coated Nickel-manganese precursor; then at a higher temperature, the oxide-coated nickel-manganese precursor and the lithium source material are calcined a second time, which can make the nano-oxide, nickel-manganese material and lithium element more deeply bond, Therefore, the problem that the nano oxide layer is easy to fall off is solved, and the cycle performance of the lithium nickel manganate composite material can be greatly improved.
  • the preparation method before performing the first calcination process, further includes: subjecting the nano-oxide and the nickel-manganese precursor to a first mixing process to obtain a first mixture.
  • mixing the lithium source material and the nickel-manganese precursor is beneficial to improve the mixing uniformity and bonding degree of the two raw materials, and is beneficial to improve the uniformity of the lithium nickel manganate material of the oxide coating layer.
  • the first mixing process is mixed for 10-20 minutes at a rotation speed of 2000-3000 rpm.
  • the use of nano-oxide for coating can improve the compactness of the oxide coating layer, thereby helping to improve the overall performance of the battery formed.
  • the nano oxide includes, but is not limited to, two or more of the group consisting of aluminum oxide, zirconium oxide, titanium oxide, niobium oxide, tungsten oxide, lanthanum oxide, and molybdenum oxide.
  • the particle size of the nano oxide is 300-700 nm.
  • the particle size of the nano oxide includes but is not limited to the above range, and when the particle size of the nano oxide is larger, the compactness of the oxide coating layer will become poor, which in turn leads to poor electrochemical performance of the prepared cathode material; and the particle size When it is smaller, the cost of nano-oxide is higher.
  • lithium source materials can be selected from commonly used types in the art, such as lithium hydroxide and/or lithium carbonate.
  • the first calcination process is a temperature programmed process; preferably, the first calcination process includes: in an oxygen atmosphere, the temperature of the first calcination reaction system is increased at a rate of 3 to 5°C/min To the first target temperature, the holding time is 4-6 hours, where the first target temperature is 300-600°C; the temperature of the first calcination reaction system is lowered to room temperature to obtain an oxide-coated nickel manganese precursor.
  • the temperature and treatment time of the first calcination process include but are not limited to the above range, and limiting it to the above range is beneficial to further improve the compactness and bonding stability of the lithium nickel manganate surface coating layer.
  • the lithium nickel manganate composite material prepared by the above preparation method has the advantages of stable structure and good cycle performance.
  • the nickel-manganese precursor is represented by Ni x Mn y (OH) 2 , where 0.50 ⁇ x ⁇ 0.92, 0.50 ⁇ y ⁇ 0.08, and when the nano-oxide is a mixture of zirconia and alumina At this time, the weight ratio of zirconia, alumina and nickel-manganese precursor is (0.001 ⁇ 0.003):(0.001 ⁇ 0.003):1.
  • Limiting the weight ratio of zirconia, alumina and nickel manganese precursor within the above range is beneficial to further improve the structural stability and bonding force of the oxide coating layer, thereby further improving the subsequent formation of oxide-coated nickel manganic acid Cycle performance of lithium materials.
  • the above preparation method further includes: subjecting the oxide-coated nickel-manganese precursor and the lithium source material to a second mixing process to obtain a second mixture; Before calcination, mixing the oxide-coated nickel-manganese precursor with the lithium source material is beneficial to improve the uniformity and combination of the two raw materials, and is beneficial to improve the stability of the oxide-coated lithium nickel manganate material . In order to further improve the mixing uniformity and the degree of combination of the two raw materials, preferably, the second mixing process is mixed for 10-20 minutes at a rotation speed of 2000-3000 rpm.
  • the preparation method further includes: sieving the product system of the first calcination process to obtain an oxide-coated nickel manganese precursor, and the sieve aperture of the sieving process is 300-400 mesh (38 ⁇ 48 ⁇ m).
  • the product of the first calcination process is first subjected to a screening process, which is beneficial to improve the stability of the electrochemical performance of the subsequent lithium nickel manganate composite material.
  • the second calcination process is a temperature programmed process; preferably, the second calcination process includes: in an oxygen atmosphere, the temperature of the second calcination reaction system is increased at a rate of 3 to 5°C/min To the second target temperature, the holding time is 8-12 hours, where the second target temperature is 910-950°C; the temperature of the second calcination reaction system is lowered to room temperature to obtain a lithium nickel manganate composite material.
  • the temperature and treatment time of the second calcination process include but are not limited to the above range, and limiting it to the above range is beneficial to further improve the cycle performance and electrical capacity of the oxide-coated lithium nickel manganate material.
  • the oxygen atmosphere referred to in this application refers to an oxygen concentration greater than 99.99%, and more preferably, the flow rate of oxygen is 5-10 L/min.
  • the ratio of the number of moles of Li element in the lithium source material to the sum of the number of moles of Ni element and Mn element in the oxide-coated nickel-manganese precursor is (1.00 ⁇ 1.05):1. Limiting the ratio of the number of moles of Li element in the lithium source material to the sum of the number of moles of Ni element and Mn element in the nickel-manganese precursor within the above range is beneficial to further improve the energy density, capacitance and structural stability of the cathode material.
  • the above-mentioned preparation method further includes: after the temperature of the second calcination reaction system is lowered to room temperature, the second calcination product is obtained; and the second calcination product is subjected to ultracentrifugal grinding and sieving, wherein the sieving
  • the sieving device used in the separation process has an aperture of 300-400 mesh (38-48 ⁇ m) to obtain a lithium nickel manganate composite material in the form of a single crystal.
  • the surface of the above-mentioned single crystal material can fully contact and react with the electrolyte, and form a stable positive solid electrolyte interface film during the initial cycle.
  • the contraction and expansion of the charge and discharge in the later cycle will not produce new grain boundary interfaces like polycrystalline particles, and side reactions will not occur. Therefore, the above-mentioned lithium nickel manganese oxide single crystal material can greatly reduce gas production and improve cycle performance during application.
  • Another aspect of the present application provides a lithium nickel manganate composite material, which is prepared by the above-mentioned preparation method.
  • Calcining the nano-oxide and the nickel-manganese precursor at a lower temperature can melt the nano-oxide and form a denser nano-oxide coating layer on the surface of the nickel-manganese precursor to obtain an oxide-coated Nickel-manganese precursor; then at a higher temperature, the oxide-coated nickel-manganese precursor and the lithium source material are calcined for the second time, which can make the nano-oxide, nickel-manganese material and lithium element combine to a greater degree Therefore, the problem that the nano oxide layer is easy to fall off is solved, and the cycle performance of the battery using the lithium nickel manganate composite material as the positive electrode material can be greatly improved.
  • the coating amount of the nano-oxide is 0.1-0.3%. Limiting the coating amount of the nano-oxide within the above range can make it play a better synergistic effect with lithium, nickel and manganese, so that the lithium nickel manganate composite material can have more excellent electrical properties. Such as long cycle performance and high capacity.
  • a lithium ion battery including a positive electrode material, and the positive electrode material includes the foregoing lithium nickel manganate composite material provided in the present application.
  • the oxide layer in the lithium nickel manganate composite material prepared by the above method is not easy to fall off, and the lithium ion battery prepared by using it as a positive electrode material can greatly improve the cycle performance of the battery.
  • a method for synthesizing long-cycle lithium nickel manganate NM single crystal cathode material includes:
  • the temperature is increased to 500°C at 4°C/min, the holding time is 5h, and then it is naturally reduced to
  • the base material is obtained at room temperature, and the obtained base material is sieved with a mesh of 400 meshes, and the obtained material is denoted as NMZA.
  • Calcining stage using a box-type atmosphere furnace, in an oxygen atmosphere (concentration greater than 99.99%, oxygen flow rate: 5-10L/min) at a heating rate of 4°C/min to 950°C, holding time 10h, and then naturally cooled to room temperature ,
  • the obtained material is ultracentrifugally ground and sieved, the screen is 400 meshes, and finally the lithium nickel manganese oxide single crystal cathode material NM is obtained, in which the coating amount of alumina is 0.2%, and the coating amount of zirconia is 0.2% .
  • the obtained lithium nickel manganese oxide single crystal positive electrode material NM is mixed with a conductive agent and a binder, and after uniform mixing, coating, rolling, cutting and assembling button batteries are carried out to test the electrochemical performance of the positive electrode material.
  • the Zeiss scanning electron microscope was used to detect the lithium nickel manganese oxide composite material, as shown in Figure 1.
  • the surface coating layer of the lithium nickel manganese oxide single crystal particles synthesized by the coating method used in this application is more uniform, and the thickness of the coating layer More uniform, the particle size is about 3.5 ⁇ m.
  • the charge and discharge test method was used to test the electrochemical performance of the lithium nickel manganese oxide composite material.
  • the test data is shown in Table 1, and the electrochemical performance curve is shown in Fig. 2.
  • the first discharge capacity of the material is 187.5mAh/g
  • the first discharge coulombic efficiency is 86.0%
  • the 50-week cycle retention rate is 98.6%.
  • the cycle curve that the lithium nickel manganate composite material is used as a positive electrode material, and its cycle performance is good, and there is basically no attenuation after 50 cycles of cycles.
  • Example 2 The difference from Example 1 is that the temperature of the first calcination process is 300°C, and the temperature of the second calcination process is 950°C.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material at 50 weeks is 96.4%, and the discharge capacity is 185.2Ah/g.
  • Example 1 The difference from Example 1 is that the temperature of the first calcination process is 600°C, and the temperature of the second calcination process is 910°C.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material in 50 weeks is 95.1%, and the discharge capacity is 183.8Ah/g.
  • Example 1 The difference from Example 1 is that the temperature of the first calcination process is 700°C.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material at 50 weeks was 93.4%, and the discharge capacity was 181.6Ah/g.
  • Example 1 The difference from Example 1 is that the temperature of the second calcination process is 970°C.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material in 50 weeks is 92.6%, and the discharge capacity is 180.5Ah/g.
  • Example 1 The difference from Example 1 is that the ratio of the number of moles of Li element in the lithium source material to the sum of the number of moles of Ni element and Mn element in the nickel-manganese precursor is 1:1.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material in 50 weeks is 95.7%, and the discharge capacity is 184.7Ah/g.
  • Example 1 The difference from Example 1 is that the ratio of the number of moles of Li element in the lithium source material to the sum of the number of moles of Ni element and Mn element in the nickel-manganese precursor is 1.05:1.
  • the cycle capacity retention rate of the lithium nickel manganate composite material in 50 weeks is 97.2%, and the discharge capacity is 186.3Ah/g.
  • Example 1 The difference from Example 1 is that the ratio of the number of moles of Li element in the lithium source material to the sum of the number of moles of Ni element and Mn element in the nickel-manganese precursor is 1.5:1.
  • the cycle capacity retention rate of the lithium nickel manganate composite material at 50 weeks was 92.1%, and the discharge capacity was 181.2Ah/g.
  • Example 1 The difference from Example 1 is that after the second calcination treatment, the ultracentrifugal grinding and sieving process is not performed.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material in 50 weeks is 94.5%, and the discharge capacity is 184.1Ah/g.
  • Example 1 The difference from Example 1 is that the coating amount of alumina is 0.5%, and the coating amount of zirconia is 0.5%.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material at 50 weeks is 92.7%, and the discharge capacity is 182.0Ah/g.
  • Example 2 The difference from Example 1 is that the oxide coating agent is titanium oxide and niobium oxide.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material at 50 weeks is 95.8%, and the discharge capacity is 186.4Ah/g.
  • Example 2 The difference from Example 1 is that the oxide coating agent is niobium oxide and tungsten oxide.
  • the cycle capacity retention rate of the lithium nickel manganate composite material at 50 weeks was 95.2%, and the discharge capacity was 185.9 Ah/g.
  • Example 2 The difference from Example 1 is that the oxide coating agent is alumina and lanthanum oxide.
  • the cycle capacity retention rate of the lithium nickel manganese oxide composite material in 50 weeks is 94.7%, and the discharge capacity is 184.8Ah/g.
  • the traditional method mainly includes two parts: matrix synthesis and matrix coating.
  • the main process flow is as follows:
  • Raw material mixing LiOH and precursor Ni 0.75 Mn 0.25 (OH) 2 are mixed with high-speed mixing equipment, mixing time: 20 min, rotation speed: 2000 rpm.
  • High temperature reaction The mixed materials are reacted in an oxygen atmosphere (concentration greater than 99.99%, oxygen flow rate: 5-10L/min) in a box-type atmosphere furnace at a high temperature of 930°C for 10 hours, and the base material is obtained after natural cooling, and the base material is used
  • the crushing equipment is used for crushing, and the obtained powder material is sieved with a mesh of 400 mesh.
  • Dry coating This step is to uniformly coat the coating agent zirconia and alumina on the base material.
  • the specific steps of the process add the zirconia and alumina to the base material in a mass ratio of 0.002:0.002:1.
  • the mixing is carried out in the mixing equipment, mixing time: 20 min, rotation speed: 2000 rpm.
  • Annealing treatment the coated material is treated at 500°C for 5h at a high temperature, and the high temperature treatment is carried out in an oxygen atmosphere (concentration range of 20-100%), 400 mesh sieving to obtain the final product of lithium nickel manganate single crystal cathode material NM.
  • the synthesized lithium nickel manganate single crystal positive electrode material has a cycle capacity retention rate of 92.5% at 50 weeks and a discharge capacity of 180.7 Ah/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提供一种镍锰酸锂复合材料、其制备方法及锂离子电池。该制备方法包括:将纳米氧化物与镍锰前驱体进行第一煅烧过程,得到氧化物包覆的镍锰前驱体;将氧化物包覆的镍锰前驱体与锂源材料进行第二煅烧过程,得到镍锰酸锂复合材料,其中第一煅烧过程的温度低于第二煅烧过程的温度。由此得到的镍锰酸锂复合材料,以及将该复合材料用作正极材料的锂离子电池。该方法解决了纳米氧化物层易脱落的问题,提高了镍锰酸锂复合材料的循环性能。

Description

镍锰酸锂复合材料、其制备方法及锂离子电池 技术领域
本发明涉及锂离子电池领域,具体而言,涉及一种镍锰酸锂复合材料、其制备方法及锂离子电池。
背景技术
正极材料是制约锂离子电池快速发展的三大关键材料之一。通常钴酸锂正极材料的工作电压较高,倍率性能较好,但其较低的实际容量极大地限制了钴酸锂正极材料的应用。橄榄石型磷酸铁锂正极材料具有结构稳定、循环性能好、原料价格低廉的优点,但理论容量较低。三元层状正极材料(NCM)充分结合了锰酸锂、钴酸锂和镍酸锂三者的优点,同时具备了较高的放电比容量、较好的循环性能以及较低的成本等优点。在当前动力市场上,三元正极材料已经商业化,例如NCM523、NCM622、NCM811等三元正极材料,在一定程度上满足了动力汽车的需求。但是,钴作为战略金属,其昂贵的价格使得三元正极材料NCM的成本较高,同时钴资源有限,市场行情波动较大。因此,开发无钴正极材料是非常有必要的。
在合成正极材料时,材料表面残余碱含量较高,容易吸水,从而使得电池在充放电过程中易分解,同时会发生歧化反应,导致电池循环性能较低;同时,在电池制备过程中,正极材料匀浆会受到材料的pH影响,若正极材料pH高,浆料粘度不稳定,匀浆困难,从而导致电池加工性能变差。对于这一问题,目前最普遍的解决办法是对正极材料进行包覆,即在材料表面包覆一层均匀的纳米氧化物,但这种包覆方法基本很难在材料表面形成均匀包覆层,且包覆物与材料本身之间的结合力较弱,后续加工过程中极有可能使包覆物脱落,从而形不成有效的保护。
鉴于上述问题的存在,有必要提供一种包覆层不易脱落,且电池循环性能较好的无钴正极材料。
发明内容
本发明的主要目的在于提供一种镍锰酸锂复合材料、其制备方法及锂离子电池,以解决现有的三元正极材料存在包覆层易脱落,导致离子电池的循环性能较差的问题。
为了实现上述目的,本发明一方面提供了一种镍锰酸锂复合材料的制备方法,该制备方法包括:将纳米氧化物与镍锰前驱体进行第一煅烧过程,得到氧化物包覆的镍锰前驱体;及将氧化物包覆的镍锰前驱体与锂源材料进行第二煅烧过程,得到镍锰酸锂复合材料,且第一煅烧过程的温度低于第二煅烧过程的温度。
进一步地,在进行第一煅烧过程之前,该制备方法还包括:使纳米氧化物与镍锰前驱体进行第一混合处理,得到第一混合物;优选地,第一混合处理过程在2000~3000rpm的转速 下,混合10~20min;优选地,纳米氧化物选自氧化铝、氧化锆、氧化钛、氧化铌、氧化钨、氧化镧和氧化钼组成的组中的两种或多种;更优选地,纳米氧化物的粒度为300~700nm。
进一步地,第一煅烧过程为程序升温过程;优选地,第一煅烧过程包括:在氧气气氛下,使第一煅烧反应体系的温度以3~5℃/min的速率升至第一目标温度,保温时间为4~6h,其中,第一目标温度为300~600℃;及将第一煅烧反应体系的温度降至室温,得到氧化物包覆的镍锰前驱体。
进一步地,镍锰前驱体以Ni xMn y(OH) 2表示,其中0.50≤x≤0.92,0.50≤y≤0.8,且当纳米氧化物为氧化锆和氧化铝的混合物时,氧化锆、氧化铝和镍锰前驱体的重量比为(0.001~0.003):(0.001~0.003):1。
进一步地,在进行第二煅烧过程之前,制备方法还包括:使氧化物包覆的镍锰前驱体与锂源材料进行第二混合处理,得到第二混合物;优选地,第二混合处理过程在2000~3000rpm的转速下,混合10~20min;优选地,制备方法还包括:将第一煅烧过程的产物体系进行筛分,得到氧化物包覆的镍锰前驱体,筛分过程的筛分孔径为300~400目。
进一步地,第二煅烧过程为程序升温过程;优选地,第二煅烧过程包括:在氧气气氛下,使第二煅烧反应体系的温度以3~5℃/min的速率升至第二目标温度,保温时间为8~12h,其中,第二目标温度为910~950℃;将第二煅烧反应体系的温度降至室温,得到镍锰酸锂复合材料;优选地,第二煅烧过程还包括:将第二煅烧反应体系的温度降至室温后,得到第二煅烧产物;及将第二煅烧过程的产物进行超离心研磨和筛分,其中筛分过程中采用的筛分装置的孔径为300~400目,得到以单晶形式存在的镍锰酸锂复合材料。
进一步地,锂源材料中Li元素摩尔数与氧化物包覆的镍锰前驱体中的Ni元素与Mn元素的摩尔数之和的比值为(1.00~1.05):1。
本申请的另一方面还提供了一种镍锰酸锂复合材料,镍锰酸锂复合材料采用上述制备方法制得。
进一步地,镍锰酸锂复合材料中,纳米氧化物的包覆量为0.1~0.3%。
本申请的又一方面还提供了一种锂离子电池,包括正极材料,正极材料包括上述镍锰酸锂复合材料。
应用本发明的技术方案,将纳米氧化物与镍锰前驱体在较低的温度下进行煅烧,能够使纳米氧化物发生熔融,并在镍锰前驱体表面形成较为致密的纳米氧化物包覆层,得到氧化物包覆的镍锰前驱体;然后在较高温度下,将氧化物包覆的镍锰前驱体与锂源材料进行第二次煅烧,能够使纳米氧化物、镍锰材料与锂元素进行更深程度的结合,从而解决纳米氧化物层易脱落的问题,进而能够大大提高镍锰酸锂复合材料的循环性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明实施例1制得的镍锰酸锂复合材料的扫描电镜图;
图2示出了根据本发明的实施例1制得的镍锰酸锂复合材料的电化学性能;以及
图3示出了根据采用现有方法的制得的镍锰酸锂复合材料的扫描电镜图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术所描述的,现有的三元正极材料存在包覆层易脱落,导致锂离子电池的循环性能较差的问题。为了解决上述技术问题,本申请提供了一种镍锰酸锂复合材料的制备方法,该制备方法包括:将纳米氧化物与镍锰前驱体进行第一煅烧过程,得到氧化物包覆的镍锰前驱体;及将氧化物包覆的镍锰前驱体与锂源材料进行第二煅烧过程,得到镍锰酸锂复合材料,且第一煅烧过程的温度低于第二煅烧过程的温度。
将纳米氧化物与镍锰前驱体在较低的温度下进行煅烧,能够使纳米氧化物发生熔融,并在镍锰前驱体表面形成较为致密的纳米氧化物包覆层,得到氧化物包覆的镍锰前驱体;然后在较高温度下,将氧化物包覆的镍锰前驱体与锂源材料进行第二次煅烧,能够使纳米氧化物、镍锰材料与锂元素进行更深程度的结合,从而解决纳米氧化物层易脱落的问题,进而能够大大提高镍锰酸锂复合材料的循环性能。
上述第一煅烧过程和第二煅烧过程均为有氧煅烧过程,可以采用本领域常用的装置和工艺实现。在一种优选的实施例中,在进行第一煅烧过程之前,该制备方法还包括:使纳米氧化物与镍锰前驱体进行第一混合处理,得到第一混合物。在进行煅烧之前,先将锂源材料和镍锰前驱体进行混合有利于提高两种原料的混合均匀性以及结合程度,并有利于提高氧化物包覆层的镍锰酸锂材料的均匀性。为了进一步提高两种原料的混合均匀性和结合程度,优选地,第一混合处理过程在2000~3000rpm的转速下,混合10~20min。
采用纳米氧化物进行包覆能够提高氧化物包覆层的致密性,从而有利于提高其形成的电池的综合性能。在一种优选的实施例中,纳米氧化物包括但不限于氧化铝、氧化锆、氧化钛、氧化铌、氧化钨、氧化镧和氧化钼组成的组中的两种或多种。优选地,纳米氧化物的粒度为300~700nm。纳米氧化物的粒度包括但不限于上述范围,而纳米氧化物的粒度较大时,氧化物包覆层的致密性会变差,进而导致制得的正极材料的电化学性能较差;而粒度较小时,纳米氧化物的成本较高。
上述锂源材料可以选用本领域常用的种类,比如氢氧化锂和/或碳酸锂。
在一种优选的实施例中,第一煅烧过程为程序升温过程;优选地,第一煅烧过程包括:在氧气气氛下,使第一煅烧反应体系的温度以3~5℃/min的速率升至第一目标温度,保温时间为4~6h,其中,第一目标温度为300~600℃;将第一煅烧反应体系的温度降至室温,得到氧化物包覆的镍锰前驱体。第一煅烧过程的温度和处理时间包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高镍锰酸锂表面包覆层的致密性和结合稳定性。
采用上述制备方法制得的镍锰酸锂复合材料具有结构稳定和循环性能好等优点。在一种优选的实施例中,镍锰前驱体以Ni xMn y(OH) 2表示,其中0.50≤x≤0.92,0.50≤y≤0.08,且当纳米氧化物为氧化锆和氧化铝的混合物时,氧化锆、氧化铝和镍锰前驱体的重量比为(0.001~0.003):(0.001~0.003):1。将氧化锆、氧化铝和镍锰前驱体的重量比限定在上述范围内有利于进一步提高氧化包覆层的结构稳定性和结合力,从而有利于进一步提高后续形成的氧化物包覆镍锰酸锂材料的循环性能。
通过第二煅烧过程能够提高氧化层与镍锰酸锂的结合程度,进而有利于提高正极材料的循环性能。在一种优选的实施例中,在进行第二煅烧过程之前,上述制备方法还包括:使氧化物包覆的镍锰前驱体与锂源材料进行第二混合处理,得到第二混合物;在进行煅烧之前,先将氧化物包覆的镍锰前驱体与锂源材料进行混合有利于提高两种原料的混合均匀性以及结合程度,并有利于提高氧化物包覆镍锰酸锂材料的稳定性。为了进一步提高两种原料的混合均匀性和结合程度,优选地,第二混合处理过程在2000~3000rpm的转速下,混合10~20min。
在一种优选的实施例中,该制备方法还包括:将第一煅烧过程的产物体系进行筛分,得到氧化物包覆的镍锰前驱体,筛分过程的筛分孔径为300~400目(38~48μm)。在进行第二煅烧过程之前,先对第一煅烧过程的产物进行筛分过程,有利于提高后续镍锰酸锂复合材料的电化学性能的稳定性。
在一种优选的实施例中,第二煅烧过程为程序升温过程;优选地,第二煅烧过程包括:在氧气气氛下,使第二煅烧反应体系的温度以3~5℃/min的速率升至第二目标温度,保温时间为8~12h,其中,第二目标温度为910~950℃;将第二煅烧反应体系的温度降至室温,得到镍锰酸锂复合材料。第二煅烧过程的温度和处理时间包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高氧化物包覆镍锰酸锂材料的循环性能和电容量。
本申请所指的氧气气氛是指氧气浓度大于99.99%,更优选地,氧气的流量为5~10L/min。
在一种优选的实施例中,锂源材料中Li元素摩尔数与氧化物包覆的镍锰前驱体中的Ni元素与Mn元素的摩尔数之和的比值为(1.00~1.05):1。将锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值限定在上述范围内有利于进一步提高正极材料的能量密度和电容量及结构稳定性。
在一种优选的实施例中,上述制备方法还包括:将第二煅烧反应体系的温度降至室温后,得到第二煅烧产物;及将第二煅烧产物进行超离心研磨和筛分,其中筛分过程中采用的筛分装置的孔径为300~400目(38~48μm),得到以单晶形式存在的镍锰酸锂复合材料。在初始的充放电过程中,上述单晶材料的表面可以和电解液充分接触反应,并在初始循环中形成稳 定的正极固态电解质界面膜。而在后期循环的充放电的收缩膨胀不会像多晶形貌颗粒产生新的晶界界面,也不会发生副反应。因而上述镍锰酸锂单晶材料在应用过程中能够大大减少产气,并提高循环性能。
本申请的另一方面提供了一种镍锰酸锂复合材料,镍锰酸锂复合材料采用上述制备方法制得。
将纳米氧化物与镍锰前驱体在较低的温度下进行煅烧,能够使纳米氧化物发生熔融,并在镍锰前驱体表面形成较为致密的纳米氧化物包覆层,得到氧化物包覆的镍锰前驱体;然后在较高温度下,将氧化物包覆的镍锰前驱体与锂源材料进行第二次煅烧,能够使纳米氧化物、镍锰材料与锂元素进行更大程度的结合,从而解决纳米氧化物层易脱落的问题,进而能够大大提高以上述镍锰酸锂复合材料作为正极材料的电池的循环性能。
在一种优选的实施例中,镍锰酸锂复合材料中,纳米氧化物的包覆量为0.1~0.3%。将纳米氧化物的包覆量限定在上述范围内能够使其与锂元素、镍元素及锰元素发挥更好的协同增效作用,从而能够使镍锰酸锂复合材料具有更加优异的电学性能,如长循环性能和高容量。
本申请又一方面还提供了一种锂离子电池,包括正极材料,正极材料包括本申请提供的上述镍锰酸锂复合材料。
采用上述方法制得的镍锰酸锂复合材料中氧化层不易脱落,将其作为正极材料制得锂离子电池能够大大提高电池的循环性能。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
一种长循环镍锰酸锂NM单晶正极材料的合成方法,该合成方法包括:
(1)氧化锆和氧化铝共包覆氢氧化镍锰Ni xMn y(OH) 2前驱体混料阶段
将氧化锆、氧化铝和前驱体Ni 0.75Mn 0.25(OH) 2按重量比0.002:0.002:1称好,并在高速混合设备中混合均匀,其中搅拌转速为2500rpm,混料时间为15min,得到氧化锆和氧化铝共包覆的氢氧化镍锰Ni xMn y(OH) 2前驱体。
(2)氧化锆和氧化铝共包覆氢氧化镍锰Ni xMn y(OH) 2前驱体煅烧阶段:
将上述基体材料置于在箱式气氛炉中,在氧气氛围(浓度大于99.99%,氧气流量:5-10L/min)中以4℃/min升温至500℃,保温时间5h,然后自然降到室温得到基体材料,将得到的基体材料进行过筛,筛网为400目,得到的材料记为NMZA。
(3)镍锰酸锂单晶正极材料合成阶段:
混料阶段:将氢氧化锂与基体材料NMZA以Li/Me=1.03(Me是指基体材料中Ni元素与Mn元素的摩尔数之和)在高速混合设备中进行混合均匀,其中搅拌转速为2000rpm,混料时间为10min,得到基体材料NMZA与氢氧化锂混合均匀的混合物。
煅烧阶段:采用箱式气氛炉,在氧气氛围(浓度大于99.99%,氧气流量:5~10L/min)下以4℃/min的升温速率升温至950℃,保温时间10h,然后自然降到室温,得到的材料进行超离心研磨并过筛,筛网为400目,最终得到镍锰酸锂单晶正极材料NM,其中氧化铝的包覆量为0.2%,氧化锆的包覆量为0.2%。
最终将得到的镍锰酸锂单晶正极材料NM与导电剂、粘结剂进行混合,混合均匀后进行涂布、辊压、裁片以及组装扣式电池,测试正极材料的电化学性能。
采用Zeiss扫描电镜对镍锰酸锂复合材料进行检测,见图1;由图1可知,采用本申请所用包覆方法合成的镍锰酸锂单晶颗粒表面包覆层更均匀,包覆层厚度更均一,粒径在3.5μm左右。
采用充放电测试方法测试镍锰酸锂复合材料的电化学性能,测试数据见表1,电化学性能曲线见图2。
表1
Figure PCTCN2020124465-appb-000001
由表1和图2可知,材料首次放电容量为187.5mAh/g,首次放电库伦效率为86.0%,50周循环保持率为98.6%。从循环曲线可知,将镍锰酸锂复合材料作为正极材料使用,其循环性能较好,50周循环后基本无衰减。
实施例2
与实施例1的区别为:第一煅烧过程的温度为300℃,第二煅烧过程的温度为950℃。
镍锰酸锂复合材料在50周的循环容量保持率为96.4%,放电容量为185.2Ah/g。
实施例3
与实施例1的区别为:第一煅烧过程的温度为600℃,第二煅烧过程的温度为910℃。
镍锰酸锂复合材料在50周的循环容量保持率为95.1%,放电容量为183.8Ah/g。
实施例4
与实施例1的区别为:第一煅烧过程的温度为700℃。
镍锰酸锂复合材料在50周的循环容量保持率为93.4%,放电容量为181.6Ah/g。
实施例5
与实施例1的区别为:第二煅烧过程的温度为970℃。
镍锰酸锂复合材料在50周的循环容量保持率为92.6%,放电容量为180.5Ah/g。
实施例6
与实施例1的区别为:锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值为1:1。
镍锰酸锂复合材料在50周的循环容量保持率为95.7%,放电容量为184.7Ah/g。
实施例7
与实施例1的区别为:锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值为1.05:1。
镍锰酸锂复合材料在50周的循环容量保持率为97.2%,放电容量为186.3Ah/g。
实施例8
与实施例1的区别为:锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值为1.5:1。
镍锰酸锂复合材料在50周的循环容量保持率为92.1%,放电容量为181.2Ah/g。
实施例9
与实施例1的区别为:第二煅烧处理后,不进行超离心研磨及筛分过程。
镍锰酸锂复合材料在50周的循环容量保持率为94.5%,放电容量为184.1Ah/g。
实施例10
与实施例1的区别为:氧化铝的包覆量为0.5%,氧化锆的包覆量为0.5%。
镍锰酸锂复合材料在50周的循环容量保持率为92.7%,放电容量为182.0Ah/g。
实施例11
与实施例1的区别为:氧化物包覆剂为氧化钛和氧化铌。
镍锰酸锂复合材料在50周的循环容量保持率为95.8%,放电容量为186.4Ah/g。
实施例12
与实施例1的区别为:氧化物包覆剂为氧化铌和氧化钨。
镍锰酸锂复合材料在50周的循环容量保持率为95.2%,放电容量为185.9Ah/g。
实施例13
与实施例1的区别为:氧化物包覆剂为氧化铝和氧化镧。
镍锰酸锂复合材料在50周的循环容量保持率为94.7%,放电容量为184.8Ah/g。
对比例1
传统方法主要包括两部分内容:基体合成和基体包覆。主要工艺流程如下:
(1)基体合成
原料混合:将LiOH和前驱体Ni 0.75Mn 0.25(OH) 2采用高速混合设备进行混合,混合时间:20min,转速:2000rpm。
高温反应:将混合好的物料在氧气氛围(浓度大于99.99%,氧气流量:5~10L/min),在箱式气氛炉中930℃高温反应10h,自然降温后得到基体材料,将基体材料使用破碎设备进行粉碎,得到的粉末材料进行过筛,筛网为400目。
(2)基体包覆
干法包覆:该步骤为将包覆剂氧化锆和氧化铝均匀包覆到基体材料上,该过程具体步骤将氧化锆和氧化铝与基体材料按质量比为0.002:0.002:1一起加入到混合设备中进行混合,混合时间:20min,转速:2000rpm。
退火处理:将包覆完的物料在500℃高温处理5h,高温处理氧气氛围(浓度范围在20-100%)进行,400目筛分得到最终产品镍锰酸锂单晶正极材料NM。
所合成的镍锰酸锂单晶正极材料在50周的循环容量保持率为92.5%,放电容量为180.7Ah/g。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
比较实施例1至13及对比例1可知,采用本申请提供的方法制得的镍锰酸锂复合材料具有更加优异的循环性能和电容量,同时由于不含钴元素使得正极材料还具有成本较低。
比较实施例1至5可知,将第一烧结处理和第二烧结处理过程的温度限定在本申请优选的范围内有利于进一步提高镍锰酸锂复合材料的循环性能和电容量。
比较实施例1、6至8可知,将锂源材料中Li元素的摩尔数与镍锰前驱体中Ni元素和Mn元素的摩尔数之和的比值限定在本申请优选的范围内有利于进一步提高镍锰酸锂复合材料的循环性能和电容量。
比较实施例1、10至13可知,采用本申请优选的包覆剂,并将包覆量限定在本申请优选的范围内有利于提高镍锰酸锂复合材料的循环性能和电容量。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种镍锰酸锂复合材料的制备方法,其特征在于,所述制备方法包括:
    将纳米氧化物与镍锰前驱体进行第一煅烧过程,得到氧化物包覆的镍锰前驱体;及将所述氧化物包覆的镍锰前驱体与锂源材料进行第二煅烧过程,得到所述镍锰酸锂复合材料,且所述第一煅烧过程的温度低于所述第二煅烧过程的温度。
  2. 根据权利要求1所述的制备方法,其特征在于,在进行所述第一煅烧过程之前,所述制备方法还包括:
    使所述纳米氧化物与镍锰前驱体进行第一混合处理,得到第一混合物;
    优选地,所述第一混合处理过程在2000~3000rpm的转速下,混合10~20min;
    优选地,所述纳米氧化物选自氧化铝、氧化锆、氧化钛、氧化铌、氧化钨、氧化镧和氧化钼组成的组中的两种或多种;更优选地,所述纳米氧化物的粒度为300~700nm。
  3. 根据权利要求2所述的制备方法,其特征在于,所述第一煅烧过程为程序升温过程;
    优选地,所述第一煅烧过程包括:
    在氧气气氛下,使第一煅烧反应体系的温度以3~5℃/min的速率升至第一目标温度,保温时间为4~6h,其中,所述第一目标温度为300~600℃;及
    将所述第一煅烧反应体系的温度降至室温,得到所述氧化物包覆的镍锰前驱体。
  4. 根据权利要求2或3所述的制备方法,其特征在于,所述镍锰前驱体以Ni xMn y(OH) 2表示,其中0.50≤x≤0.92,0.50≤y≤0.8,且当所述纳米氧化物为氧化锆和氧化铝的混合物时,所述氧化锆、所述氧化铝和所述镍锰前驱体的重量比为(0.001~0.003):(0.001~0.003):1。
  5. 根据权利要求1至4中任一项所述的制备方法,其特征在于,在进行所述第二煅烧过程之前,所述制备方法还包括:
    使所述氧化物包覆的镍锰前驱体与所述锂源材料进行第二混合处理,得到第二混合物;
    优选地,所述第二混合处理过程在2000~3000rpm的转速下,混合10~20min;
    优选地,所述制备方法还包括:将所述第一煅烧过程的产物体系进行筛分,得到所述氧化物包覆的镍锰前驱体,所述筛分过程的筛分孔径为300~400目。
  6. 根据权利要求5所述的制备方法,其特征在于,所述第二煅烧过程为程序升温过程;
    优选地,所述第二煅烧过程包括:
    在氧气气氛下,使第二煅烧反应体系的温度以3~5℃/min的速率升至第二目标温 度,保温时间为8~12h,其中,所述第二目标温度为910~950℃;
    将所述第二煅烧反应体系的温度降至室温,得到所述镍锰酸锂复合材料;
    优选地,所述第二煅烧过程还包括:将所述第二煅烧反应体系的温度降至室温后,得到第二煅烧产物;及将第二煅烧过程的产物进行超离心研磨和筛分,其中筛分过程中采用的筛分装置的孔径为300~400目,得到以单晶形式存在的所述镍锰酸锂复合材料。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述锂源材料中Li元素摩尔数与所述氧化物包覆的镍锰前驱体中的Ni元素与Mn元素的摩尔数之和的比值为(1.00~1.05):1。
  8. 一种镍锰酸锂复合材料,其特征在于,所述镍锰酸锂复合材料采用权利要求1至7中任一项所述的制备方法制得。
  9. 根据权利要求8所述的镍锰酸锂复合材料,其特征在于,所述镍锰酸锂复合材料中,所述纳米氧化物的包覆量为0.1~0.3%。
  10. 一种锂离子电池,包括正极材料,其特征在于,所述正极材料包括权利要求8或9所述的镍锰酸锂复合材料。
PCT/CN2020/124465 2020-05-25 2020-10-28 镍锰酸锂复合材料、其制备方法及锂离子电池 WO2021238050A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20937347.1A EP3974389A4 (en) 2020-05-25 2020-10-28 LITHIUM NICKEL MANGANESE OXIDE COMPOSITE MATERIAL AND METHOD OF PREPARING IT, AND LITHIUM-ION BATTERY
KR1020227028921A KR20220130768A (ko) 2020-05-25 2020-10-28 리튬 니켈 망간 산화물 복합 재료, 이의 제조 방법 및 리튬 이온 배터리
JP2022509706A JP7352727B2 (ja) 2020-05-25 2020-10-28 ニッケルマンガン酸リチウム複合材、その製造方法及びリチウムイオン電池
US17/641,820 US20230079339A1 (en) 2020-05-25 2020-10-28 Lithium nickel manganese oxide composite material, preparation method thereof and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010450693.XA CN111592052B (zh) 2020-05-25 2020-05-25 镍锰酸锂复合材料、其制备方法及锂离子电池
CN202010450693.X 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021238050A1 true WO2021238050A1 (zh) 2021-12-02

Family

ID=72181559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124465 WO2021238050A1 (zh) 2020-05-25 2020-10-28 镍锰酸锂复合材料、其制备方法及锂离子电池

Country Status (6)

Country Link
US (1) US20230079339A1 (zh)
EP (1) EP3974389A4 (zh)
JP (1) JP7352727B2 (zh)
KR (1) KR20220130768A (zh)
CN (1) CN111592052B (zh)
WO (1) WO2021238050A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824242A (zh) * 2022-05-10 2022-07-29 哈尔滨工业大学(威海) 一种金属氧化物包覆锂离子电池正极材料的制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11862794B2 (en) * 2020-05-06 2024-01-02 Battelle Memorial Institute Cost effective synthesis of oxide materials for lithium ion batteries
CN111592052B (zh) * 2020-05-25 2022-04-12 蜂巢能源科技股份有限公司 镍锰酸锂复合材料、其制备方法及锂离子电池
CN112614990A (zh) * 2020-12-11 2021-04-06 格林美股份有限公司 一种镍锰二元复合正极材料及其制备方法
CN113517425B (zh) * 2021-04-29 2022-08-09 厦门大学 一种锂离子电池正极材料及其制备方法
CN113666430A (zh) * 2021-07-30 2021-11-19 蜂巢能源科技有限公司 富锂正极材料及其制备方法、锂离子电池
CN113603158A (zh) * 2021-08-06 2021-11-05 湖南杉杉能源科技有限公司 一种无钴正极材料前驱体及其制备方法
CN113725418A (zh) * 2021-09-01 2021-11-30 中国科学院长春应用化学研究所 一种稀土氧化物包覆改性的锂离子电池用三元正极材料及其制备方法
CN114014381B (zh) * 2021-10-29 2023-06-16 蜂巢能源科技有限公司 一种正极材料的界面复合改性方法、正极材料及应用
CN114039031A (zh) * 2021-11-02 2022-02-11 远景动力技术(江苏)有限公司 钨单包覆正极材料及其制备方法与应用
CN114094095B (zh) * 2021-11-09 2023-11-28 远景动力技术(江苏)有限公司 尖晶石型正极材料及其制备方法与锂离子电池正极片
KR20230085517A (ko) * 2021-12-07 2023-06-14 주식회사 엘지에너지솔루션 황화물계 전고체 전지용 양극활물질
CN114122385B (zh) * 2022-01-26 2022-04-26 瑞浦能源有限公司 一种锂离子电池用低钴三元正极材料及其制备方法、锂离子电池正极极片和锂离子电池
CN114551862B (zh) * 2022-02-28 2023-11-17 宜宾锂宝新材料有限公司 无钴二元单晶材料及其制备方法
CN114613985B (zh) * 2022-03-07 2024-07-12 宁波容百新能源科技股份有限公司 一种高单晶分散性的高电压镍锰材料及其制备方法、应用
CN114843501B (zh) * 2022-05-11 2024-09-27 宁波容百新能源科技股份有限公司 一种镍锰酸锂正极材料及其制备方法、应用
CN115050946B (zh) * 2022-07-22 2023-11-24 珠海冠宇电池股份有限公司 正极活性材料及其制备方法、正极片和电池
US12077879B2 (en) * 2022-08-05 2024-09-03 City University Of Hong Kong Preparation of single-crystal layered cathode materials for lithium- and sodium-ion batteries
CN115520911B (zh) * 2022-10-21 2024-04-19 巴斯夫杉杉电池材料有限公司 一种锂镍复合氧化物正极材料及其制备方法
CN117239087A (zh) * 2023-09-25 2023-12-15 巴斯夫杉杉电池材料有限公司 一种改性三元正极材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178258A (zh) * 2013-01-21 2013-06-26 宁德新能源科技有限公司 氧化铝包覆改性锂镍钴锰氧正极材料的制备方法
CN103606660A (zh) * 2013-11-06 2014-02-26 中国科学院化学研究所 氧化铝包覆型颗粒及其制备方法与应用
CN104319386A (zh) * 2014-09-19 2015-01-28 青岛乾运高科新材料股份有限公司 一种锂离子电池正极多元复合材料及制备方法
CN111592052A (zh) * 2020-05-25 2020-08-28 蜂巢能源科技有限公司 镍锰酸锂复合材料、其制备方法及锂离子电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281163A (ja) * 2003-03-14 2004-10-07 Seimi Chem Co Ltd 正極活物質粉末用の焼成容器,正極活物質粉末およびリチウムイオン二次電池
US9822015B2 (en) * 2009-12-07 2017-11-21 Sumitomo Chemical Company, Limited Method for producing lithium composite metal oxide, lithium composite metal oxide, and nonaqueous electrolyte secondary battery
CN103068770B (zh) * 2010-08-17 2015-03-25 尤米科尔公司 经铝干式涂覆的阴极材料前体
EP2606524B1 (en) * 2010-08-17 2016-10-12 Umicore Aluminum dry-coated and heat treated cathode material precursors
WO2013169826A1 (en) * 2012-05-07 2013-11-14 Seeo, Inc Coated particles for lithium battery cathodes
KR102446217B1 (ko) * 2016-08-31 2022-09-22 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
CN107394193B (zh) * 2017-06-30 2018-11-06 湖南金富力新能源股份有限公司 锂离子电池正极材料及其制法和应用
JP7052806B2 (ja) * 2017-10-31 2022-04-12 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池及び非水系電解質二次電池用正極活物質の製造方法
CN109811412B (zh) * 2018-12-28 2021-06-11 广东邦普循环科技有限公司 一种单晶形貌的层状镍锰酸锂正极材料及其制备方法
CN109888208A (zh) * 2019-01-25 2019-06-14 高点(深圳)科技有限公司 锂离子电池正极材料及其制法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178258A (zh) * 2013-01-21 2013-06-26 宁德新能源科技有限公司 氧化铝包覆改性锂镍钴锰氧正极材料的制备方法
CN103606660A (zh) * 2013-11-06 2014-02-26 中国科学院化学研究所 氧化铝包覆型颗粒及其制备方法与应用
CN104319386A (zh) * 2014-09-19 2015-01-28 青岛乾运高科新材料股份有限公司 一种锂离子电池正极多元复合材料及制备方法
CN111592052A (zh) * 2020-05-25 2020-08-28 蜂巢能源科技有限公司 镍锰酸锂复合材料、其制备方法及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN LEI, QIU YONGHUA;FAN JUNHAO;TIAN YIZE;DING YAXI: "Mechanical grinding and coating modification to prepare high performance LNMO", HUAGONG XINXING CAILIAO - NEW CHEMICAL MATERIALS, ZHONGGUO HUAGONG XINXI ZHONGXIN, CN, vol. 48, no. 2, 29 February 2020 (2020-02-29), CN , XP055873286, ISSN: 1006-3536, DOI: 10.19817/j.cnki.issn1006-3536.2020.02.032 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824242A (zh) * 2022-05-10 2022-07-29 哈尔滨工业大学(威海) 一种金属氧化物包覆锂离子电池正极材料的制备方法
CN114824242B (zh) * 2022-05-10 2023-09-15 哈尔滨工业大学(威海) 一种金属氧化物包覆锂离子电池正极材料的制备方法

Also Published As

Publication number Publication date
EP3974389A1 (en) 2022-03-30
CN111592052B (zh) 2022-04-12
CN111592052A (zh) 2020-08-28
JP7352727B2 (ja) 2023-09-28
JP2022544326A (ja) 2022-10-17
EP3974389A4 (en) 2023-07-26
US20230079339A1 (en) 2023-03-16
KR20220130768A (ko) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2021238050A1 (zh) 镍锰酸锂复合材料、其制备方法及锂离子电池
JP7369277B2 (ja) コバルトフリー正極材料、その製造方法及びリチウムイオン電池
WO2022000889A1 (zh) 正极材料、其制备方法及锂离子电池
TWI398033B (zh) 用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法
EP3965188A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
CN108390022A (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN109192969B (zh) 一种三元镍钴锰复合材料、其制备方法与锂离子电池
TW200818569A (en) Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
CN108172825B (zh) 一种高电压高压实低成本钴酸锂正极材料及其制备方法
WO2022111093A1 (zh) 一种三元正极材料及其制备方法和应用
CN111435747B (zh) 无钴层状正极材料及其制备方法、锂离子电池
WO2022206910A1 (zh) 无钴高镍正极材料、其制备方法及应用
JPWO2021238050A5 (zh)
CN107681147B (zh) 一种固态电解质包覆改性锂离子电池正极材料的制备方法与应用
WO2022062321A1 (zh) 一种硅基负极复合材料和锂二次电池
CN106784820B (zh) 锂离子电池用纳米钛酸锂负极材料及其制法和应用
CN109216678B (zh) 一种包覆磷酸钴锂的富镍三元材料的制备方法
CN102315440A (zh) 一种尖晶石复合材料及其制备方法和用途
CN110817978A (zh) 一种锂电池用正极材料前驱体及其制备方法
WO2024093082A1 (zh) 一种包覆型正极材料及其制备方法和锂离子电池
WO2023050763A1 (zh) 高镍三元镍钴锰酸锂正极材料及其制备方法
CN109786703B (zh) 导电陶瓷氧化物包覆锂离子电池正极材料及其制备方法
WO2022237110A1 (zh) 氟掺杂锂正极材料及其制备方法和应用
CN102088084A (zh) 一种锂电池复合电极活性材料及其制备方法
CN118156491A (zh) 一种超低温磷酸类正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020937347

Country of ref document: EP

Effective date: 20211221

ENP Entry into the national phase

Ref document number: 2022509706

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028921

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE