CN114824242A - 一种金属氧化物包覆锂离子电池正极材料的制备方法 - Google Patents

一种金属氧化物包覆锂离子电池正极材料的制备方法 Download PDF

Info

Publication number
CN114824242A
CN114824242A CN202210504194.3A CN202210504194A CN114824242A CN 114824242 A CN114824242 A CN 114824242A CN 202210504194 A CN202210504194 A CN 202210504194A CN 114824242 A CN114824242 A CN 114824242A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
anode material
battery anode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210504194.3A
Other languages
English (en)
Other versions
CN114824242B (zh
Inventor
朱永明
朱梓萌
高鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN202210504194.3A priority Critical patent/CN114824242B/zh
Publication of CN114824242A publication Critical patent/CN114824242A/zh
Application granted granted Critical
Publication of CN114824242B publication Critical patent/CN114824242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种金属氧化物包覆锂离子电池正极材料的制备方法,属于锂离子电池正极材料技术领域。本发明利用化学沉淀法,通过金属盐在沉淀剂的作用下的沉淀反应将金属氢氧化物包覆在锂离子电池正极材料表面,通过煅烧转化成金属氧化物,形成表面保护层;分两步加入沉淀剂,并控制金属盐溶液的滴加速率,能够避免沉淀反应速度过快导致的包覆不均匀,从而实现金属氧化物在锂离子电池正极材料表面的均匀包覆,以防锂离子电池正极材料受到电解液侵蚀。实验结果表明,通过元素表面分布EDS表征图可以看出,金属氧化物中的金属元素表面分布区域与锂离子电池正极材料中的金属元素分布区域近乎一致,表明包覆情况良好。

Description

一种金属氧化物包覆锂离子电池正极材料的制备方法
技术领域
本发明属于锂离子电池正极材料技术领域,具体涉及一种金属氧化物包覆锂离子电池正极材料的制备方法。
背景技术
近年来,电动汽车作为新能源动力汽车的发展趋势愈发强烈。而锂离子电池由于高比能量、高功率、高循环寿命的特点被广泛用作动力电池,作为电动力车的核心。优秀锂离子电池材料的开发有助于降低电动汽车成本、增加续航里程。大量研究表明,在锂离子电池正极材料表面包覆一层合适的涂层可减少正极材料在循环过程中与电解液的副反应,进一步提高材料的电化学性能。
一些金属氧化物如氧化铌、氧化锰等材料具有良好的电子电导率和理想的锂离子传导速率,被广泛应用于锂离子电池材料的包覆改性。目前,包覆改性的方案一般是通过材料与包覆源物理混合的方式将包覆源粘覆在材料表面,例如中国专利CN114335551A中,利用铟源与正极材料在溶液中的充分混合实现表面包覆;再例如中国专利CN106784675A中利用包覆源与正极材料在混料机中的均匀混合实现表面包覆。这些包覆方法固然操作简便、条件可控,但往往难以使包覆材料均匀覆盖在锂离子电池正极材料表面,导致部分锂离子电池正极材料暴露在电解液中。因此,如何实现金属氧化物在锂离子电池正极材料表面均匀包覆,以防正极材料受到电解液侵蚀成为本领域亟待解决的难题。
发明内容
本发明的目的在于提供一种金属氧化物包覆锂离子电池正极材料的制备方法。本发明提供的制备方法能够实现金属氧化物在锂离子电池正极材料表面的均匀包覆,防止锂离子电池正极材料受到电解液侵蚀。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种金属氧化物包覆锂离子电池正极材料的制备方法,包括如下步骤:
(1)将含有锂离子电池正极材料的悬浊液与沉淀剂混合,得到悬浊液;
(2)在所述步骤(1)得到的悬浊液中同时滴加金属盐溶液和沉淀剂,进行沉淀反应,得到金属氢氧化物包覆锂离子电池正极材料;所述金属盐溶液的滴加速率为0.1~5mL/min;
(3)将所述步骤(2)得到的金属氢氧化物包覆锂离子电池正极材料煅烧,得到金属氧化物包覆锂离子电池正极材料。
优选地,所述步骤(1)中锂离子电池正极材料为NCM三元正极材料、NCA三元正极材料、锰酸锂、磷酸铁锂和富锂锰基材料中的一种。
优选地,所述步骤(1)和步骤(2)中的沉淀剂为氢氧化钠溶液、氢氧化钾溶液、氨水和尿素溶液中的一种。
优选地,所述步骤(1)中沉淀剂的浓度为1~8mol/L。
优选地,当所述步骤(2)中的金属盐溶液中的金属离子为两种以上时,所述步骤(1)和步骤(2)中还包括加入络合剂。
优选地,所述络合剂为氨水、磺基水杨酸溶液、柠檬酸钾溶液和柠檬酸钠溶液中的一种。
优选地,所述步骤(2)中络合剂与金属盐溶液和沉淀剂同时滴加。
优选地,所述金属盐溶液与络合剂的滴加速率之比为(1~10):1。
优选地,所述步骤(2)中金属盐溶液的浓度为0.5~4mol/L。
优选地,所述步骤(2)中沉淀反应的时间为1~30min
本发明提供了本发明提供了一种金属氧化物包覆锂离子电池正极材料的制备方法,包括如下步骤:将含有锂离子电池正极材料的悬浊液与沉淀剂混合,得到悬浊液;在所述悬浊液中同时滴加金属盐溶液和沉淀剂,进行沉淀反应,得到金属氢氧化物包覆锂离子电池正极材料;所述金属盐溶液的滴加速率为0.1~5mL/min;将所述金属氢氧化物包覆锂离子电池正极材料煅烧,得到金属氧化物包覆锂离子电池正极材料。本发明利用化学沉淀法,通过金属盐在沉淀剂的作用下的沉淀反应将金属氢氧化物包覆在锂离子电池正极材料表面,通过煅烧转化成金属氧化物,形成表面保护层;分两步加入沉淀剂,并控制金属盐溶液的滴加速率,能够避免沉淀反应速度过快导致的包覆不均匀,从而实现金属氧化物在锂离子电池正极材料表面的均匀包覆,以防锂离子电池正极材料受到电解液侵蚀。实验结果表明,通过元素表面分布EDS表征图可以看出,金属氧化物中的金属元素表面分布区域与锂离子电池正极材料中的金属元素分布区域近乎一致,表明包覆情况良好。
附图说明
图1为实施例1制备得到的金属氢氧化物包覆锂离子电池正极材料的形貌图;
图2为实施例1制备得到的金属氢氧化物包覆锂离子电池正极材料的EDS表征图;
图3为应用例1和对比应用例1制备得到的半电池的首周充放电曲线;
图4为实施例2制备得到的金属氢氧化物包覆锂离子电池正极材料的形貌图;
图5为实施例2制备得到的金属氢氧化物包覆锂离子电池正极材料的EDS表征图;
图6为应用例2和对比应用例1制备得到的半电池的首周充放电曲线。
具体实施方式
本发明提供了一种金属氧化物包覆锂离子电池正极材料的制备方法,包括如下步骤:
(1)将含有锂离子电池正极材料的悬浊液与沉淀剂混合,得到悬浊液;
(2)在所述步骤(1)得到的悬浊液中同时滴加金属盐溶液和沉淀剂,进行沉淀反应,得到金属氢氧化物包覆锂离子电池正极材料;所述金属盐溶液的滴加速率为0.1~5mL/min;
(3)将所述步骤(2)得到的金属氢氧化物包覆锂离子电池正极材料煅烧,得到金属氧化物包覆锂离子电池正极材料。
本发明将含有锂离子电池正极材料的悬浊液与沉淀剂混合,得到悬浊液。本发明将含有锂离子电池正极材料的悬浊液与沉淀剂混合能够提供后续沉淀反应所需的起始反应溶液环境。
在本发明中,所述锂离子电池正极材料优选为NCM三元正极材料、NCA三元正极材料、锰酸锂、磷酸铁锂和富锂锰基材料中的一种。在本发明中,所述锂离子电池正极材料的粒径优选为2~20μm。本发明对所述锂离子电池正极材料的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。
在本发明中,所述锂离子电池正极材料的悬浊液中的溶剂优选为去离子水、甲醇、乙醇、丙醇、异丙醇和正丁醇中的一种或多种;所述锂离子电池正极材料与溶剂的质量比优选为1:(5~20)。本发明对所述溶剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。
在本发明中,所述含有锂离子电池正极材料的悬浊液的制备方法优选为:将锂离子电池正极材料与溶剂混合。
在本发明中,所述锂离子电池正极材料与溶剂的混合优选在搅拌条件下进行;所述搅拌的时间优选为10~20min。
在本发明中,所述沉淀剂优选为氢氧化钠溶液、氢氧化钾溶液、氨水和尿素溶液中的一种;所述沉淀剂的浓度优选为1~8mol/L,更优选为3~6mol/L;所述氢氧化钠溶液、氢氧化钾溶液和尿素溶液的溶剂独立地优选为去离子水、甲醇、乙醇、丙醇、异丙醇和正丁醇中的一种或多种。本发明对所述溶剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。本发明对所述沉淀剂的配制方法没有特殊的限定,只要保证沉淀剂的浓度满足要求即可。在本发明中,所述沉淀剂有利于后续沉淀反应的进行。
本发明对所述沉淀剂的用量没有特殊的限定,只要保证得到的悬浊液中的pH值在10~12范围内即可。在本发明中,所述沉淀剂优选采用滴加的方式加入;所述沉淀剂的滴加速率优选为0.1~1mL/min,更优选为0.6~1mL/min。本发明通过控制沉淀剂的滴加速率更易于控制悬浊液的pH值。
在本发明中,所述含有锂离子电池正极材料的悬浊液与沉淀剂的混合优选在搅拌条件下进行;所述搅拌的温度优选为40~60℃。本发明对所述搅拌的时间和转速没有特殊的限定,只要能够保证含有锂离子电池正极材料的悬浊液与沉淀剂混合均匀即可。
得到悬浊液后,本发明在所述悬浊液中同时滴加金属盐溶液和沉淀剂,进行沉淀反应,得到金属氢氧化物包覆锂离子电池正极材料。
在本发明中,所述金属盐优选为硫酸铌、硫酸镍、硫酸锰、硫酸钴、硫酸铜、硫酸铝、硫酸镁、氯化铌、氯化镍、氯化锰、氯化钴、氯化铜、氯化铝、氯化镁、硝酸镍、硝酸锰、硝酸钴、硝酸铜、硝酸铝、硝酸镁和草酸铌中的至少一种;所述金属盐溶液的溶剂优选为去离子水、甲醇、乙醇、丙醇、异丙醇和正丁醇中的一种或多种;所述金属盐溶液的浓度优选为0.5~4mol/L,更优选为1~2mol/L。本发明对所述金属盐和溶剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。本发明对所述金属盐溶液的配制方法没有特殊的限定,只要保证金属盐溶液的浓度满足要求即可。
在本发明中,所述沉淀剂优选与前述制备悬浊液所用的沉淀剂种类相同,在此不再赘述。本发明对所述沉淀剂的用量没有特殊的限定,只要保证沉淀反应时反应溶液的pH值在10~12范围内即可。
在本发明中,所述金属盐溶液的滴加速率为0.1~5mL/min,优选为0.2~3mL/min,进一步优选为0.3~2mL/min,更优选为0.8~1mL/min;所述沉淀剂的滴加速率优选为0.1~4mL/min,更优选为0.5~2mL/min;所述悬浊液与金属盐溶液的质量比优选为(2~10):1,更优选为(5~8):1。本发明通过控制金属盐溶液的滴加速率,能够避免沉淀反应速度过快导致的包覆不均匀,从而实现金属氧化物在锂离子电池正极材料表面的均匀包覆,以防锂离子电池正极材料受到电解液侵蚀。
本发明优选在滴加所述金属盐溶液和沉淀剂时进行搅拌。本发明对所述搅拌的操作没有特殊的限定,采用本领域技术人员熟知的搅拌操作即可。
在本发明中,所述沉淀反应的时间优选为1~30min,更优选为5~20min;所述沉淀反应的温度优选为45~55℃,更优选为50℃。本发明通过控制沉淀反应的工艺参数能够进一步促进沉淀反应的进行,从而有利于实现金属氧化物在锂离子电池正极材料表面的均匀包覆。
在本发明中,当所述金属盐溶液中的金属离子为两种以上时,所述制备悬浊液和制备金属氢氧化物包覆锂离子电池正极材料的步骤中优选还包括加入络合剂。
在本发明中,所述络合剂优选为氨水、磺基水杨酸溶液、柠檬酸钾溶液和柠檬酸钠溶液中的一种;所述磺基水杨酸溶液、柠檬酸钾溶液和柠檬酸钠溶液的溶剂独立地优选为去离子水、甲醇、乙醇、丙醇、异丙醇和正丁醇中的一种或多种;所述络合剂的浓度优选为0.4~10mol/L,进一步优选为0.5~6mol/L,更优选为1~2mol/L。本发明对所述络合剂的配制方法没有特殊的限定,只要保证络合剂的浓度满足要求即可。本发明对所述溶剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。在本发明中,所述络合剂有助于多种金属离子的共沉淀反应。
当所述制备悬浊液的步骤中包括加入络合剂时,本发明优选先将含有锂离子电池正极材料的悬浊液与络合剂混合,再加入沉淀剂,得到悬浊液。
在本发明中,所述含有锂离子电池正极材料的悬浊液与络合剂的质量比优选为1:(0.5~15),进一步优选为1:(0.9~10),更优选为1:(0.9~5)。本发明通过控制含有锂离子电池正极材料的悬浊液与络合剂的质量比能够为后续沉淀反应提供所需的起始反应溶液环境。
在本发明中,所述含有锂离子电池正极材料的悬浊液与络合剂的混合优选在搅拌条件下进行;所述搅拌的温度优选为40~60℃。本发明对所述搅拌的时间和转速没有特殊的限定,只要保证含有锂离子电池正极材料的悬浊液与络合剂混合均匀即可。
在本发明中,所述再加入沉淀剂的操作与前述含有锂离子电池正极材料的悬浊液与沉淀剂混合的操作相同,在此不再赘述。
当所述制备金属氢氧化物包覆锂离子电池正极材料的步骤中包括加入络合剂时,所述络合剂优选与金属盐溶液和沉淀剂同时滴加。在本发明中,所述金属盐溶液与络合剂的滴加速率之比优选为(1~10):1,进一步优选为(2~8):1,更优选为5:1;所述金属盐溶液与络合剂的质量比优选为1:(0.1~1),更优选为1:(0.3~0.5)。本发明通过控制金属盐溶液与络合剂的滴加速率之比,能够避免沉淀反应速度过快导致的包覆不均匀,从而实现金属氧化物在锂离子电池正极材料表面的均匀包覆,以防锂离子电池正极材料受到电解液侵蚀。
沉淀反应完成后,本发明优选对所述沉淀反应得到的产物依次进行陈化、过滤、洗涤和干燥,得到金属氢氧化物包覆锂离子电池正极材料。本发明通过陈化能够使沉淀反应更加充分。
在本发明中,所述陈化优选在搅拌条件下进行;所述陈化的温度优选为40~60℃;所述陈化的时间优选为0.5~2h,更优选为1~1.5h。本发明对所述搅拌的操作没有特殊的限定,采用本领域技术人员熟知的搅拌操作即可。
在本发明中,所述过滤优选为抽滤。本发明对所述抽滤的操作没有特殊的限定,采用本领域技术人员熟知的抽滤操作即可。
在本发明中,所述洗涤所用的溶剂优选为离子水、甲醇、乙醇、丙醇、异丙醇和正丁醇中的一种或多种。本发明对所述溶剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。本发明对所述洗涤的其他操作没有特殊的限定,采用本领域技术人员熟知的洗涤操作即可。
在本发明中,所述干燥优选为真空干燥;所述干燥的温度优选为100~150℃,更优选为120℃;所述干燥的时间优选为1~6h。
得到金属氢氧化物包覆锂离子电池正极材料后,本发明将所述金属氢氧化物包覆锂离子电池正极材料煅烧,得到金属氧化物包覆锂离子电池正极材料。本发明通过煅烧将金属氢氧化物转化成金属氧化物,形成表面保护层。
在本发明中,所述煅烧优选在氧气气氛中进行;所述煅烧的温度优选为400~600℃,更优选为500~550℃;所述煅烧的温度优选为2~5h,更优选为3~4h;升温至所述煅烧的温度的速率优选为1~10℃/min,更优选为5~8℃/min。本发明通过控制煅烧的工艺参数能够进一步提高金属氢氧化物的转化率,从而更有利于表面保护层的形成。
煅烧完成后,本发明优选将所述煅烧得到的产物冷却至室温,得到金属氧化物包覆锂离子电池正极材料。
在本发明中,所述冷却的速率优选为1~10℃/min,更优选为5~8℃/min。
本发明利用化学沉淀法或共沉淀法,通过金属盐在沉淀剂的作用下的沉淀反应将金属氢氧化物包覆在锂离子电池正极材料表面,通过煅烧转化成金属氧化物,形成表面保护层;分两步加入沉淀剂,并控制金属盐溶液的滴加速率,能够避免沉淀反应速度过快导致的包覆不均匀,从而实现金属氧化物在锂离子电池正极材料表面的均匀包覆,以防锂离子电池正极材料受到电解液侵蚀。
本发明提供的制备方法流程简单,条件可控,材料来源广泛,适合于工业化生产;所制备材料表面包覆层均匀,在循环过程中抗电解液侵蚀能力提高,循环性能良好。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种金属氧化物包覆锂离子电池正极材料的制备方法,为如下步骤:
(1)在含有锂离子电池正极材料的悬浊液滴加6mol/L沉淀剂氨水将溶液pH值调至10,得到悬浊液;其中,锂离子电池正极材料为NCM811三元正极材料,粒径为2~20μm;所述含有锂离子电池正极材料的悬浊液的制备方法为:将5g锂离子电池正极材料与50mL去离子水在搅拌条件下混合20min,至固体颗粒混合均匀;沉淀剂的滴加速率为0.1mL/min;滴加沉淀剂时在搅拌条件下进行;搅拌的温度为50℃;
(2)将0.6mol/L的草酸铌水溶液以0.3mL/min的速度滴加到所述步骤(1)得到的悬浊液中,在滴加草酸铌水溶液的同时,滴加6mol/L沉淀剂氨水控制反应溶液的pH值维持在10,进行沉淀反应5min,再在50℃条件下进行搅拌陈化30min,随后抽滤,并采用去离子水进行洗涤,最后于真空干燥箱中120℃干燥6h,得到金属氢氧化物包覆锂离子电池正极材料;其中,滴加在搅拌条件下进行;沉淀剂的滴加速率为0.3mL/min;悬浊液与草酸铌水溶液的质量比为5:1;沉淀反应的温度为50℃;
(3)将所述步骤(2)得到的金属氢氧化物包覆锂离子电池正极材料在管式炉中进行煅烧,得到金属氧化物包覆锂离子电池正极材料;其中,所述煅烧在氧气气氛中进行;煅烧的程序为以5℃/min的升温速率升温至500℃,随后恒温煅烧3h,再以5℃/min的降温速率冷却至室温。
图1为实施例1制备得到的金属氢氧化物包覆锂离子电池正极材料的形貌图;图2为实施例1制备得到的金属氢氧化物包覆锂离子电池正极材料的EDS表征图。从图1和2可以看出,铌元素表面分布区域与三元材料中镍钴锰元素分布区域近乎一致,说明铌在表面的包覆情况良好。
应用例1
将实施例1制备得到的金属氢氧化物包覆锂离子电池正极材料与粘结剂聚偏氟乙烯、导电剂superP按照质量比8:1:1的比例在N-甲基吡咯烷酮溶剂中混合,并涂覆于铝箔之上,紧接着将上述材料于120℃的真空条件烘干10h,裁片并与负极锂片、隔膜Celgard 3501及溶有1.0M LiPF6的碳酸乙酯/碳酸甲乙脂/碳酸二甲酯(EC/EMC/DMC,体积比为1:1:1)混合电解质溶液组装成半电池。
对比应用例1
将NCM811正极材料与粘结剂聚偏氟乙烯、导电剂superP按照质量比8:1:1的比例在N-甲基吡咯烷酮溶剂中混合,并涂覆于铝箔之上,紧接着将上述材料于120℃的真空条件烘干10h,裁片并与负极锂片、隔膜Celgard3501及溶有1.0M LiPF6的碳酸乙酯/碳酸甲乙脂/碳酸二甲酯(EC/EMC/DMC,体积比为1:1:1)混合电解质溶液组装成半电池。
图3为应用例1和对比应用例1制备得到的半电池的首周充放电曲线。从图3可以看出,应用例1制备得到的半电池0.1C首周放电容量和充放电效率分别为204.87mAh/g和89.69%,显著优于对比应用例1的188.61mAh/g和85.55%,体现了包覆层在缓解电解液侵蚀、降低首周不可逆容量损失方面的优异表现。
实施例2
一种金属氧化物包覆锂离子电池正极材料的制备方法,为如下步骤:
(1)先将含有锂离子电池正极材料的悬浊液在50℃搅拌条件下与6mol/络合剂氨水混合,再滴加1mol/L沉淀剂氢氧化钠水溶液,将溶液pH值调至11.50,得到悬浊液;其中,锂离子电池正极材料为NCM811三元正极材料,粒径为2~20μm;含有锂离子电池正极材料的悬浊液的制备方法为:将5g锂离子电池正极材料与26mL去离子水在搅拌条件下混合20min,至固体颗粒混合均匀;含有锂离子电池正极材料的悬浊液与络合剂的质量比为26:24;沉淀剂的滴加速率为1mL/min;
(2)将0.8mol/L硫酸钴、0.2mol/L硫酸锰的混合盐水溶液和6mol/L的络合剂氨水溶液分别以0.5mL/min和0.1mL/min的速度滴加至所述步骤(1)得到的悬浊液中,在滴加混合盐水溶液的同时,滴加2mol/L沉淀剂氢氧化钠水溶液控制反应溶液的pH值维持在11.50,进行沉淀反应10min,再在50℃条件下进行搅拌陈化30min,随后抽滤,并采用去离子水进行洗涤,最后于真空干燥箱中120℃干燥6h,得到金属氢氧化物包覆锂离子电池正极材料;其中,滴加在搅拌条件下进行;沉淀剂的滴加速率为0.6mL/min;悬浊液与混合水盐溶液的质量比为10:1;混合盐水溶液与络合剂的质量比为5:1;沉淀反应的温度为50℃;
(3)将所述步骤(2)得到的金属氢氧化物包覆锂离子电池正极材料在管式炉中进行煅烧,得到金属氧化物包覆锂离子电池正极材料;其中,所述煅烧在氧气气氛中进行;煅烧的程序为以5℃/min的升温速率升温至500℃,随后恒温煅烧3h,再以5℃/min的降温速率冷却至室温。
图4为实施例2制备得到的金属氢氧化物包覆锂离子电池正极材料的形貌图;图5为实施例2制备得到的金属氢氧化物包覆锂离子电池正极材料的EDS表征图。从图4和5可以看出,钴锰元素表面分布区域与三元材料中镍元素分布区域近乎一致,且信号强度远大于镍元素,说明钴锰在表面的包覆情况良好。
应用例2
将实施例2制备得到的金属氢氧化物包覆锂离子电池正极材料与粘结剂聚偏氟乙烯、导电剂superP按照质量比8:1:1的比例在N-甲基吡咯烷酮溶剂中混合,并涂覆于铝箔之上,紧接着将上述材料于120℃的真空条件烘干10h,裁片并与负极锂片、隔膜Celgard 3501及溶有1.0M LiPF6的碳酸乙酯/碳酸甲乙脂/碳酸二甲酯(EC/EMC/DMC,体积为1:1:1)混合电解质溶液组装成半电池。
图6为应用例2和对比应用例1制备得到的半电池的首周充放电曲线。从图6可以看出,应用例2制备得到的半电池0.1C首周放电容量和充放电效率分别为200.29mAh/g和89.20%,显著优于对比应用例1的188.61mAh/g和85.55%,体现了包覆层在缓解电解液侵蚀、降低首周不可逆容量损失方面的优异表现。
从以上实施例和对比例可以看出,本发明提供的制备方法能够实现金属氧化物在锂离子电池正极材料表面的均匀包覆,防止锂离子电池正极材料受到电解液侵蚀。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种金属氧化物包覆锂离子电池正极材料的制备方法,包括如下步骤:
(1)将含有锂离子电池正极材料的悬浊液与沉淀剂混合,得到悬浊液;
(2)在所述步骤(1)得到的悬浊液中同时滴加金属盐溶液和沉淀剂,进行沉淀反应,得到金属氢氧化物包覆锂离子电池正极材料;所述金属盐溶液的滴加速率为0.1~5mL/min;
(3)将所述步骤(2)得到的金属氢氧化物包覆锂离子电池正极材料煅烧,得到金属氧化物包覆锂离子电池正极材料。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中锂离子电池正极材料为NCM三元正极材料、NCA三元正极材料、锰酸锂、磷酸铁锂和富锂锰基材料中的一种。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)和步骤(2)中的沉淀剂为氢氧化钠溶液、氢氧化钾溶液、氨水和尿素溶液中的一种。
4.根据权利要求1或3所述的制备方法,其特征在于,所述步骤(1)和步骤(2)中沉淀剂的浓度为1~8mol/L。
5.根据权利要求1所述的制备方法,其特征在于,当所述步骤(2)中的金属盐溶液中的金属离子为两种以上时,所述步骤(1)和步骤(2)中还包括加入络合剂。
6.根据权利要求5所述的制备方法,其特征在于,所述络合剂为氨水、磺基水杨酸溶液、柠檬酸钾溶液和柠檬酸钠溶液中的一种。
7.根据权利要求5所述的制备方法,其特征在于,所述步骤(2)中络合剂与金属盐溶液和沉淀剂同时滴加。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤(2)中金属盐溶液与络合剂的滴加速率之比为(1~10):1。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中金属盐溶液的浓度为0.5~4mol/L。
10.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中沉淀反应的时间为1~30min。
CN202210504194.3A 2022-05-10 2022-05-10 一种金属氧化物包覆锂离子电池正极材料的制备方法 Active CN114824242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210504194.3A CN114824242B (zh) 2022-05-10 2022-05-10 一种金属氧化物包覆锂离子电池正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210504194.3A CN114824242B (zh) 2022-05-10 2022-05-10 一种金属氧化物包覆锂离子电池正极材料的制备方法

Publications (2)

Publication Number Publication Date
CN114824242A true CN114824242A (zh) 2022-07-29
CN114824242B CN114824242B (zh) 2023-09-15

Family

ID=82514067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210504194.3A Active CN114824242B (zh) 2022-05-10 2022-05-10 一种金属氧化物包覆锂离子电池正极材料的制备方法

Country Status (1)

Country Link
CN (1) CN114824242B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232069A (zh) * 2013-03-20 2013-08-07 江苏凯力克钴业股份有限公司 一种锂离子电池富锂锰基正极材料的制备方法
CN103247793A (zh) * 2013-04-18 2013-08-14 河南科隆新能源有限公司 高性能复合型球形锂离子二次电池正极材料及制备方法
EP2698345A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-iron phosphate
WO2015039490A1 (zh) * 2013-09-22 2015-03-26 中兴通讯股份有限公司 富锂正极材料及其制备方法
KR20150104675A (ko) * 2014-03-05 2015-09-16 전자부품연구원 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
CN106129348A (zh) * 2016-06-23 2016-11-16 四川省有色冶金研究院有限公司 一种Al2O3包覆改性的镍锰酸锂正极材料及其制备方法
CN106848298A (zh) * 2017-03-31 2017-06-13 中南大学 一种锂离子电池正极材料表面包覆金属氧化物的方法
CN111087031A (zh) * 2019-12-26 2020-05-01 天津巴莫科技有限责任公司 一种包覆型正极材料的制备方法
CN113428912A (zh) * 2021-08-26 2021-09-24 蜂巢能源科技有限公司 一种四元正极材料及其制备方法和应用
WO2021238050A1 (zh) * 2020-05-25 2021-12-02 蜂巢能源科技有限公司 镍锰酸锂复合材料、其制备方法及锂离子电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698345A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-iron phosphate
CN103232069A (zh) * 2013-03-20 2013-08-07 江苏凯力克钴业股份有限公司 一种锂离子电池富锂锰基正极材料的制备方法
CN103247793A (zh) * 2013-04-18 2013-08-14 河南科隆新能源有限公司 高性能复合型球形锂离子二次电池正极材料及制备方法
WO2015039490A1 (zh) * 2013-09-22 2015-03-26 中兴通讯股份有限公司 富锂正极材料及其制备方法
KR20150104675A (ko) * 2014-03-05 2015-09-16 전자부품연구원 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
CN106129348A (zh) * 2016-06-23 2016-11-16 四川省有色冶金研究院有限公司 一种Al2O3包覆改性的镍锰酸锂正极材料及其制备方法
CN106848298A (zh) * 2017-03-31 2017-06-13 中南大学 一种锂离子电池正极材料表面包覆金属氧化物的方法
CN111087031A (zh) * 2019-12-26 2020-05-01 天津巴莫科技有限责任公司 一种包覆型正极材料的制备方法
WO2021238050A1 (zh) * 2020-05-25 2021-12-02 蜂巢能源科技有限公司 镍锰酸锂复合材料、其制备方法及锂离子电池
CN113428912A (zh) * 2021-08-26 2021-09-24 蜂巢能源科技有限公司 一种四元正极材料及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
吴坚;李建营;李绍敏;刘昊;: "均匀沉淀法助力Li_2ZrO_3包覆LiNi_(0.85)Co_(0.1)Mn_(0.05)O_2提升电化学性能", 材料导报, no. 06 *
左成;杜云慧;张鹏;王玉洁;曹海涛;: "Al_2O_3包覆Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂正极材料的电化学性能", 材料研究学报, no. 08 *
张秋歌;丁举宣;杜一博;: "LiZr_2(PO_4)_3包覆LiNi_(0.8)Co_(0.15)Al_(0.05)O_2的制备与改性研究", 安徽化工, no. 03 *
肖劲;曾雷英;陈召勇;赵浩;彭忠东;: "离子电池正极材料LiNi_(0.5)Mn_(0.5)O_2的合成", 无机化学学报, no. 04 *
胡国荣;邓新荣;彭忠东;肖政伟;杨亚男;: "非均匀沉淀法包覆合成LiNi_(0.9)Co_(0.07)Mn_(0.03)O_2锂离子正极材料", 粉末冶金技术, no. 03 *

Also Published As

Publication number Publication date
CN114824242B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN111170377B (zh) 一种富锂锰基正极材料的制备方法
CN104393277B (zh) 表面包覆金属氧化物的锂离子电池三元材料及其制备方法
CN108899531B (zh) 一种磷酸盐包覆镍钴铝三元正极材料的制备方法
CN104953172A (zh) 一类钠离子电池正极材料及其制备方法、钠离子电池
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
CN110890535A (zh) 一种正极材料、其制备方法和在锂离子电池中的应用
CN102244236A (zh) 一种锂离子电池富锂正极材料的制备方法
CN104638227A (zh) 一种锂离子电池正极材料的改性方法
CN108767226B (zh) 一种金属酞菁化合物包覆的三元正极材料及其制备方法
CN106486657B (zh) 一种表面原位包覆的富锂材料及其制备方法
CN103137960A (zh) 锂离子电池正极材料及其制备方法以及锂离子电池
CN112047399B (zh) 一种网状结构前驱体和复合氧化物粉体及其制备方法和应用
CN105449191A (zh) 一种锂离子电池正极材料的制备方法
CN111056578A (zh) 一种富锂锰基正极材料改性方法
CN108400299B (zh) 一种用于钠离子电池的CuFe2O4/C复合负极材料的制备方法
CN112174227B (zh) 一种单晶材料前驱体和复合氧化物粉体及其制备方法和应用
CN105655579A (zh) 一种镍钴铝酸锂电极材料及其制备方法和应用
CN108767231A (zh) 一种LiNixCoyMnl-x-yO2/Li2O·B2O3复合正极材料的制备方法
CN112028045A (zh) 一种导电磷酸铁锂及其制备方法和应用
CN108002444B (zh) 一种KMn8O16正极材料的制备方法
CN108199034B (zh) 锂离子电池用硫化锌/硫化亚铁负极复合材料及制备方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN114824242B (zh) 一种金属氧化物包覆锂离子电池正极材料的制备方法
CN112125340B (zh) 一种锰酸锂及其制备方法和应用
CN115050940A (zh) 一种高熵陶瓷改性正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant