WO2021221003A1 - 合金材およびその製造方法 - Google Patents

合金材およびその製造方法 Download PDF

Info

Publication number
WO2021221003A1
WO2021221003A1 PCT/JP2021/016573 JP2021016573W WO2021221003A1 WO 2021221003 A1 WO2021221003 A1 WO 2021221003A1 JP 2021016573 W JP2021016573 W JP 2021016573W WO 2021221003 A1 WO2021221003 A1 WO 2021221003A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy material
less
content
alloy
temperature
Prior art date
Application number
PCT/JP2021/016573
Other languages
English (en)
French (fr)
Inventor
信二 柘植
真知 川
幸男 中村
献一郎 楠
幸寛 西田
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to EP21796033.5A priority Critical patent/EP4144881A4/en
Priority to JP2022518048A priority patent/JP7460761B2/ja
Priority to US17/918,337 priority patent/US20230143965A1/en
Publication of WO2021221003A1 publication Critical patent/WO2021221003A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Definitions

  • the present invention relates to an alloy material and a method for producing the same.
  • the low expansion alloy is characterized in that its coefficient of thermal expansion is extremely small, 1/10 or less of that of iron or nickel.
  • Low-expansion alloys include Invar alloys, Super Invar alloys, Stainless Invar alloys, Fe-Pd alloys, etc. Among them, Fe-Ni based Invar alloys containing about 36% by mass of Ni in Fe are typical. be.
  • the Fe—Ni-based Invar alloy is also abbreviated as an Invar alloy.
  • the low expansion characteristics of these alloys are due to the cancellation of volume contraction due to temperature drop and volume expansion due to spontaneous volume magnetostriction.
  • an Invar alloy exhibits a small expansion characteristic below the Curie point at around 200 to 300 ° C., and the expansion coefficient rapidly increases just above the Curie point.
  • low expansion alloys include standard scales, measuring instruments, glass sealing materials, shadow masks, frame alloys for ICs, dies, structures in cryogenic environments, etc.
  • Specific applications for ultra-low temperature structures include liquefied natural gas (LNG) storage containers and pipes in the case of Invar alloys.
  • LNG liquefied natural gas
  • Invar alloy When applying Invar alloy to cryogenic structures, it is used by welding. Since the thick-walled Invar alloy material has high welding crack sensitivity, it is necessary to suppress solidification cracking and reheat cracking of the weld metal. For this reason, welding work may be performed using a special welding material containing a high concentration of C and Nb.
  • Non-Patent Document 1 when welding an inverse alloy plate having a plate thickness of 9.5 mm for LNG piping, two types of welding materials (wires) having different Nb contents are used to determine the wire feeding speed.
  • a technique for obtaining a welded portion without cracks while controlling welding heat input is disclosed.
  • the chemical composition of the weld metal can be adjusted to a desired range by controlling the mixing ratio (dilution of the base material) of the base material having a different chemical composition and a plurality of welding materials within a certain range. can.
  • Japanese Unexamined Patent Publication No. 7-102345 Japanese Unexamined Patent Publication No. 4-72037 Japanese Unexamined Patent Publication No. 10-17997 Japanese Unexamined Patent Publication No. 10-60528 Japanese Unexamined Patent Publication No. 2003-27188
  • Non-Patent Document 1 it is possible to manufacture a welded structure using a thick-walled Invar alloy as a base material (hereinafter, simply referred to as "alloy material"), but the degree of freedom in welding workability is limited. There is a problem that it is low. Further, Patent Documents 1 to 5 do not consider the degree of freedom in weldability when manufacturing a welded structure using a thick alloy material.
  • the alloy material is usually produced by hot rolling, and the alloy material after hot rolling may be air-cooled or, for example, water-cooled for the purpose of shortening the production time. That is, in the prior art, it is considered that cooling after hot rolling is performed by water cooling, but in order to improve the degree of freedom of welding workability, it is necessary to cool with a thick alloy material under what conditions. No consideration is given to what should be done.
  • the present invention provides an alloy material and a method for producing the same at low cost, which can improve the degree of freedom of weldability when manufacturing a welded structure using an alloy material while maintaining low thermal expansion characteristics.
  • the purpose is.
  • the present inventors have considered reducing the difference in the chemical composition between the alloy material and the welding material, that is, increasing the C and Nb contents of the base material.
  • the alloy material of the present invention is characterized in that it contains both C and Nb. These elements form NbC (Nb carbide) in the alloy material. At this time, since the coefficient of linear expansion increases with the surplus C ( ⁇ C) or the surplus Nb ( ⁇ Nb), the values of ⁇ C and ⁇ Nb are restricted to the upper limit or less.
  • Ta is a homologous element of Nb, and Ta may be added so as to replace a part of Nb in this alloy material. For the same reason, it is important to regulate the upper limit of excess Ta ( ⁇ Ta). be.
  • ⁇ C C-Nb / 7.7-Ta / 15
  • ⁇ Nb Nb-7.7C
  • ⁇ Ta Ta-15C
  • the present inventors have studied a manufacturing method capable of achieving a low thermal expansion rate of a thick-walled (thickness 3 mm to 80 mm) alloy material without increasing the manufacturing cost as described above. As a result, it is effective to cool the hot rolling cooling step or the cooling step after the heat treatment so that the average cooling rate in the temperature range of 600 to 300 ° C. is 2.0 ° C./s or more. Clarified. As a result, it was found that the development of the magnetic phase, which increases the coefficient of linear expansion, is suppressed and low thermal expansion is exhibited.
  • the plate temperature usually means the surface temperature. Therefore, normally, the control of the cooling rate also controls the change in the plate temperature of the alloy material. For example, in the case of a thin plate with a plate thickness of less than 3 mm, the difference in temperature history between the central part of the plate thickness and the surface is small, but in the case of an alloy material of a thick plate with a plate thickness of 3 mm or more and further 6 mm or more. It was found that sufficient performance could not be ensured by controlling the temperature change on the surface as usual.
  • the present inventors tend to reduce the cooling rate after hot rolling or heat treatment in the manufacturing process of the thick alloy material. It was found that a magnetic phase that increases the linear expansion coefficient was developed in the alloy material during the cooling process.
  • This magnetic phase is a general ferromagnetic phase that appears in Fe—Ni alloys, but it is a magnetic phase in which the atomic arrangement of Fe and Ni changes in a slightly regularized direction.
  • the present inventors can grasp the degree of development of this magnetic phase due to the difference in the cooling rate at the center of the plate thickness by capturing the Curie temperature: Tc under a specific magnetization force. It was found that the linear expansion coefficient can be kept low by controlling the cooling rate so that it becomes smaller.
  • the average cooling rate of the central portion of the thickness of the alloy material in the temperature range of 600 to 300 ° C. is 2.0 ° C./s or more. It was found that it is important to cool the product so that it becomes.
  • the present inventors have made the water density (m 3) of the cooling water of 35 ° C. or lower when the plate thickness of the alloy material is t (mm). By injecting the alloy material so that / m 2 ⁇ min) is [0.11 ln (t) + 0.02] or more, the average of the thickness center of the alloy material in the temperature range of 600 to 300 ° C. It was found that the cooling rate can be set to 2.0 ° C./s or higher, and the linear expansion coefficient can be kept low.
  • the increase in the expansion coefficient due to the mixing of impurities can be offset, so that the regulation of the concentration of impurity elements in the raw material can be relaxed.
  • C, Nb, Si, and Mn added in the alloy material of the present invention all increase the coefficient of linear expansion of the alloy material.
  • Cr, Cu, and Mo are elements that may be mixed from the front pan in which stainless steel is melted when the alloy material is melted, and are also elements that increase the linear expansion coefficient of the alloy material. As a measure to suppress the mixing of these elements, melting with a new pot is carried out, but this leads to an increase in restrictions on the chance of melting the alloy material and an increase in cost.
  • T 0 is the Curie temperature (° C.) of the alloy material
  • T 1 is the average cooling rate in the temperature range of 600 to 300 ° C. after soaking the alloy material at 900 ° C. for 1 minute. This is the Curie temperature (° C.) of the alloy material after cooling under the condition of / s.
  • the average cooling rate of 0.2 ° C./s corresponds to the cooling rate when an 80 mm thick alloy material is air-cooled.
  • the present invention has been made based on such findings, and the following alloy materials are the gist of the present invention.
  • the chemical composition is mass%, C: 0.010 to 0.10%, Si: More than 0.10% and 0.50% or less, Mn: 0.05 to 0.50%, P: 0.015% or less, S: 0.0015% or less, Cr: 0.005 to 0.50%, Ni: 34.5 to 37.0%, Cu: 0.005-1.0%, Co: 0.005 to 0.50%, Mo: 0.001 to 0.50%, Al: 0.0001 to 0.050%, Nb: 0.001 to 1.0%, N: 0.010% or less, O: 0.0060% or less, Ti: 0.0200% or less, Zr: 0.0200% or less, Hf: 0.0200% or less, V: 0.500% or less, W: 1.000% or less, Sn: 0.050% or less, Zn: 0.0020% or less, Pb: 0.0010% or less, Ta: 0-1.0%, B
  • Yield stress is 240 MPa or more, An alloy material with a plate thickness of 3.0 mm or more.
  • T 0 ⁇ T 1-2 (1) C-Nb / 7.7-Ta / 15 ⁇ 0.045 (2) Nb-7.7C ⁇ 0.30 (3) Ta-15C ⁇ 0.30 (4)
  • each element symbol in the above formula is the content (mass%) of each element
  • T 0 is the Curie temperature (° C.) of the alloy material
  • T 1 is the alloy material at 900 ° C. for 1 minute. This is the Curie temperature (° C.) of the alloy material after soaking and cooling under the condition that the average cooling rate in the temperature range of 600 to 300 ° C. is 0.2 ° C./s.
  • an alloy material while maintaining a low coefficient of thermal expansion (specifically, an average coefficient of linear expansion from room temperature to ⁇ 170 ° C. is 1.5 ⁇ 10 -6 / K or less). It is possible to provide an alloy material and a method for producing the same at low cost, which can improve the degree of freedom in weldability when manufacturing a structure.
  • FIG. 1 shows the plate thickness of the hot-rolled alloy plate and the water density (m 3 / m 2 ⁇ min) for increasing the cooling rate at the center of the plate thickness of the hot-rolled alloy plate to 2.0 ° C./s or more. It is a figure which shows the relationship.
  • FIG. 2 is a diagram showing a temperature change of magnetization in the alloy material of alloy No. 1.
  • (Chemical composition of alloy material) C 0.010 to 0.10% C is effective for increasing the strength. Therefore, the C content is set to 0.010% or more.
  • the C content is preferably 0.015% or more, and more preferably 0.020% or more.
  • the excessive content of C deteriorates the hot workability and adversely affects the thermal expansion characteristics. Therefore, the C content is set to 0.10% or less.
  • the C content is preferably 0.08% or less, more preferably 0.06% or less.
  • Si More than 0.10% and 0.50% or less Si is an element required as a deoxidizer at the time of alloy melting, like Mn described later. Therefore, the Si content is set to more than 0.10%.
  • the Si content is preferably 0.15% or more, and more preferably 0.20% or more. However, if Si is contained in an excessive amount, the expansion characteristics are adversely affected. Therefore, the Si content is set to 0.50% or less.
  • the Si content is preferably 0.40% or less, more preferably 0.30% or less.
  • Mn 0.05 to 0.50%
  • Mn is an element required as a deoxidizer during alloy melting. Mn also has the effect of fixing S, which deteriorates hot workability, as MnS. Therefore, the Mn content is set to 0.05% or more.
  • the Mn content is preferably 0.10% or more, and more preferably 0.15% or more. However, if Mn is contained in an excessive amount, the expansion characteristics are adversely affected. Therefore, the Mn content is set to 0.50% or less.
  • the Mn content is preferably 0.40% or less, and more preferably 0.30% or less.
  • P 0.015% or less
  • P is an impurity element that significantly enhances solidification crack susceptibility and weld crack susceptibility. Therefore, the P content is set to 0.015% or less.
  • the P content is preferably reduced as much as possible, but extreme restrictions on P increase manufacturing costs. Therefore, the P content is preferably 0.001% or more.
  • S 0.0015% or less
  • S is an impurity element that deteriorates hot workability. Therefore, the S content is set to 0.0015% or less.
  • the S content is preferably reduced as much as possible, but extreme restrictions on S increase manufacturing costs. Therefore, the S content is preferably 0.0001% or more.
  • Cr 0.005 to 0.50% Cr is an element mixed from a stainless steel melting facility or a raw material, and causes an adverse effect on thermal expansion characteristics. Therefore, the Cr content is set to 0.50% or less.
  • the Cr content is preferably 0.40% or less.
  • the Cr content is set to 0.005% or more.
  • Ni 34.5 to 37.0%
  • Ni is an element effective for increasing the spontaneous volume magnetostriction of the alloy and lowering the coefficient of thermal expansion. Therefore, the Ni content is set to 34.5% or more.
  • the Ni content is preferably 35.0% or more. However, if Ni is contained in excess, the manufacturing cost increases. Therefore, the Ni content is set to 37.0% or less.
  • Cu 0.005 to 1.0%
  • Cu is an element mixed from a stainless steel melting facility or a raw material, and causes an adverse effect on thermal expansion characteristics. Therefore, the Cu content is set to 1.0% or less.
  • the Cu content is preferably 0.7% or less, more preferably 0.5% or less.
  • the Cu content is set to 0.005% or more.
  • Co 0.005 to 0.50%
  • Co is an element mixed from a stainless steel melting facility or a raw material. Moreover, if it is contained in an excessive amount, the alloy cost increases. Therefore, the Co content is set to 0.50% or less.
  • the Co content is preferably 0.40% or less, more preferably 0.30% or less.
  • the Co content is set to 0.005% or more.
  • Mo 0.001 to 0.50%
  • Mo is an element mixed from a stainless steel melting facility or a raw material, and causes an adverse effect on thermal expansion characteristics. Therefore, the Mo content is set to 0.50% or less.
  • the Mo content is preferably 0.40% or less, more preferably 0.30% or less.
  • Mo content is set to 0.001% or more.
  • Al 0.0001 to 0.050%
  • Al is an effective element for deoxidation. Therefore, the Al content is set to 0.0001% or more.
  • the Al content is preferably 0.0003% or more, and more preferably 0.0005% or more.
  • the Al content is preferably 0.050% or less, and preferably 0.040% or less.
  • Nb 0.001 to 1.0%
  • Nb is an element that improves the strength and prevents cracking of the weld metal during welding to improve the weldability. Therefore, the Nb content is set to 0.001% or more.
  • the Nb content is preferably 0.010% or more, and more preferably 0.015% or more. However, if Nb is excessively contained, the hot workability is lowered and the thermal expansion characteristics are adversely affected. Therefore, the Nb content is set to 1.0% or less.
  • the Nb content is preferably 0.7% or less, more preferably 0.5% or less.
  • N 0.010% or less
  • N is an impurity element that deteriorates hot workability. Therefore, the N content is set to 0.010% or less.
  • the N content is preferably reduced as much as possible, but extreme restrictions on N increase melting costs. Therefore, the N content is preferably 0.001% or more.
  • O 0.0060% or less
  • O is an impurity element that adversely affects the thermal expansion characteristics. Therefore, the O content is set to 0.0060% or less.
  • the O content is preferably reduced as much as possible, but extreme restrictions on O increase melting costs. Therefore, the O content is preferably 0.0005% or more.
  • Ti 0.0200% or less Zr: 0.0200% or less Hf: 0.0200% or less V: 0.500% or less W: 1.000% or less Sn: 0.050% or less Zn: 0.0020% or less Pb : 0.0010% or less
  • Ti, Zr, Hf, V, W, Sn, Zn, and Pb are impurity elements that adversely affect the thermal expansion characteristics, and therefore their contents are preferably low. Therefore, the Ti content is set to 0.0200% or less.
  • the Zr content is 0.0200% or less.
  • the Hf content shall be 0.0200% or less.
  • the V content is 0.500% or less.
  • the W content is 1.000% or less.
  • the Sn content is 0.050% or less.
  • the Zn content is 0.0020% or less.
  • the Pb content is 0.0010% or less. In addition, these elements may not be contained.
  • Ta 0-1.0%
  • Ta is an element that improves strength and prevents cracking of the weld metal during welding to improve weldability. Therefore, it may be contained as needed. However, if Ta is excessively contained, the hot workability is lowered and the thermal expansion characteristics are adversely affected. Therefore, the Ta content is set to 1.0% or less. On the other hand, in order to obtain the above effect, the Ta content is preferably 0.01% or more.
  • B 0 to 0.010% Since B is an element that improves hot workability, it may be contained. However, if B is contained in an excessive amount, the thermal expansion characteristics are adversely affected. Therefore, the B content is set to 0.010% or less. When the C and Nb contents are 0.04% or less and 0.15% or less, respectively, B may not be contained. On the other hand, in order to obtain the above effect, the B content is preferably 0.0001% or more. The B content is preferably in the range of 0.0003 to 0.0030%.
  • Mg and REM may be contained because they all improve the hot workability of the alloy material. However, if these elements are excessively contained, the hot workability may be lowered and the cleanliness of the alloy may be lowered. Therefore, the Ca content is set to 0.0050% or less.
  • the Mg content is 0.0030% or less.
  • the REM content is 0.050% or less.
  • the Ca content is preferably 0.0005% or more.
  • the Mg content is preferably 0.0003% or more.
  • the REM content is preferably 0.001% or more.
  • the chemical composition of the alloy material must contain each of the above elements in a specified range and satisfy the following equations (2) and (3). Further, when the chemical composition of the alloy material contains Ta, it is necessary to further satisfy (4).
  • each element symbol in the above formula is the content (mass%) of each element.
  • the chemical composition of the alloy material contains each of the above elements, and the balance is Fe and unavoidable impurities.
  • the unavoidable impurities mean components that are mixed due to factors such as raw materials and manufacturing equipment when an alloy is industrially manufactured.
  • T 0 is the Curie temperature (° C.) of the alloy material
  • T 1 is the average cooling rate in the temperature range of 600 to 300 ° C. after soaking the alloy material at 900 ° C. for 1 minute. This is the Curie temperature (° C.) of the alloy material after cooling under the condition of / s.
  • the above equation (1) is an index showing that the alloy material was cooled under the condition that the average cooling rate of the central portion of the plate thickness in the temperature range of 600 to 300 ° C. was 2.0 ° C./s or more. That is, since the alloy material subjected to such heat treatment can offset the increase in the expansion coefficient due to the mixing of impurities, the coefficient of thermal expansion should be kept low while relaxing the regulation of the concentration of impurity elements in the raw material. Can be done.
  • T 0 and T 1 may be performed by, for example, the following procedure. Specifically, an alloy piece having dimensions of 3 mm in thickness ⁇ 5 mm in width ⁇ 1 mm in length is cut out from the hot-rolled alloy material by machining, and the surface is removed by emery wet # 600 finishing to remove the surface-processed layer to form the test piece A. do.
  • a test piece having dimensions of 3 mm in thickness ⁇ 8 mm in width ⁇ 12 mm in length is cut out from the hot-rolled alloy material by machining, a thermocouple is welded to the surface, and after soaking at 900 ° C. for 1 minute, 600 to 300 A thermal cycle is applied under the condition that the cooling rate in the ° C. section is 0.2 ° C./s.
  • a test piece having dimensions of 3 mm in thickness ⁇ 5 mm in width ⁇ 1 mm in length is cut out from the test piece to which a heat cycle has been applied by machining, and the surface is polished with Emery Wet # 600 to remove the surface processed layer, and the test piece is used. Get B.
  • the thickness direction of each test piece is set to the magnetic field application direction and the length direction is set to the sample vibration direction by a vibrating sample magnetometer (VSM) capable of raising the sample temperature.
  • VSM vibrating sample magnetometer
  • the temperature rise rate is 3 ° C./min
  • the temperature dependence of the magnetization of the sample is measured while raising the temperature from room temperature to 300 ° C.
  • the temperature at which the magnetization disappears is extrapolated from the curve of relative magnetization with respect to room temperature, and T 0 and T.
  • This alloy material contains C and Nb, and fine NbC is precipitated in the alloy. Since coarse NbC may promote weld cracking sensitivity due to eutectic melting, the average diameter (diameter equivalent to a circle) of NbC precipitated in the alloy material is preferably 1 ⁇ m or less. In this alloy material, fine dispersion of NbC has an effect of increasing the strength of the alloy plate. Therefore, the finer the NbC, the more preferable. However, if the average diameter of NbC is less than 0.002 ⁇ m, the effect of improving the strength of the alloy plate cannot be sufficiently obtained. Therefore, the average diameter of NbC is preferably 0.002 ⁇ m or more.
  • the average diameter of NbC is the Nb, C content of the alloy, the cooling rate during casting, the heating temperature for hot rolling, the rolling temperature, the plate thickness and the subsequent cooling rate, the heating rate for heat treatment, the soaking temperature, and the soaking rate. It changes depending on the heat time and the like, and generally, the higher the content of C and Nb, the lower the heating temperature of hot rolling, and the longer the soaking time of heat treatment, the larger the average diameter tends to be.
  • the average diameter of NbC can be measured by observing the structure with an extraction replica method or a transmission electron microscope using a thin film.
  • the yield stress is 240 MPa or more. If the yield strength is less than 240 MPa, sufficient strength cannot be obtained as a welded structure, and it becomes difficult to obtain a sufficient degree of freedom during welding. Therefore, the yield stress of this alloy material is set to 240 MPa or more. The yield stress is more preferably 260 MPa or more. The upper limit of the yield stress is not particularly limited, but in the case of this alloy material, it is usually 450 MPa or less. The yield stress of this alloy material shall be 0.2% proof stress when a tensile test is performed in accordance with JIS Z 2241: 2011.
  • the plate thickness is 3.0 mm or more. If the plate thickness is less than 3.0 mm, it becomes difficult to obtain a sufficient degree of freedom during welding. Therefore, the plate thickness is set to 3.0 mm or more.
  • the plate thickness is preferably 4.0 mm or more, and more preferably 6.0 mm or more.
  • the upper limit of the plate thickness is not particularly limited, but is preferably 80 mm or less in consideration of weldability.
  • the conditions for rolling between the dead are not particularly limited.
  • the ingot obtained under normal melting conditions can be rolled under normal hot rolling conditions to produce the ingot.
  • the hot rolling conditions include, for example, a temperature range of 900 to 1100 ° C., which is the recrystallization temperature of the alloy material after heating to 1050 to 1250 ° C. at which Nb and C are solid-solved, or an unrecrystallized temperature range of 900 to 700 ° C. Rolling over.
  • the reduction rate may be determined according to the target strength and other conditions.
  • the cooling conditions after hot rolling or the cooling conditions after heat treatment are important for developing a low thermal expansion rate. That is, it is necessary to carry out the operation under the condition that the average cooling rate of the central portion of the plate thickness of the alloy material is 2.0 ° C./s or more in the temperature range of 600 to 300 ° C. If the average cooling rate at the center of the thickness of the alloy material in the temperature range of 600 to 300 ° C is less than 2.0 ° C / s, the coefficient of thermal expansion will be kept low unless the concentration of impurity elements in the raw material is sufficiently regulated. You will not be able to.
  • the water content density (m 3 / m 2 ⁇ min) of the cooling water at 35 ° C. or lower is [0.11 ln (t). ) +0.02] or more, it is necessary to inject cooling water onto the alloy material. This is because the thickness of the target alloy material is 3 to 80 mm, and the above cooling rate cannot be achieved unless cooling is performed with a sufficient water density.
  • the alloy material when the alloy material is cooled after hot rolling and manufactured without heat treatment, similarly, when the plate thickness of the alloy material is t (mm), the water density (m 3) of the cooling water is 35 ° C. or lower. It is necessary to inject the alloy material so that (/ m 2 ⁇ min) is [0.11 ln (t) + 0.02] or more.
  • the alloy material of the present invention is basically manufactured by water cooling immediately after hot rolling, or by performing a heat treatment of reheating and holding after hot rolling. Immediately after cooling with water, it does not prevent the heat treatment of reheating and holding. When water cooling is performed both after hot rolling and after heat treatment, it is sufficient that at least water cooling after heat treatment satisfies the above cooling conditions. Further, since the alloy material of the present invention is used for welded structures and the like, it is necessary to increase the yield stress to 240 MPa or more as described above. From this point of view, when heat treatment is performed after hot rolling, the soaking temperature is preferably 950 ° C. or lower.
  • leveler correction may be performed in order to force warpage of the alloy material.
  • Leveler correction is preferably performed within a range that does not significantly change the characteristics of the alloy material. For example, under the condition that the increase in yield stress (0.2% proof stress) at room temperature is 3 MPa or more and 50 MPa or less. It is preferable to do so.
  • the alloys having the chemical compositions shown in Tables 1 and 2 are melted in a vacuum melting furnace, and 17 kg flat steel ingots with a wall thickness of 48 mm or 50 kg square steel ingots with a wall thickness of 110 mm are formed according to the plate thickness of the final product (alloy material). Obtained.
  • the surface of a 17 kg flat steel ingot with a wall thickness of 48 mm is cut to obtain a rolled material with a thickness of 44 mm, and this rolled material is hot-rolled to have a plate thickness of 4 mm to 20 mm.
  • a hot-rolled alloy plate was prepared.
  • a 50 kg square steel ingot having a wall thickness of 110 mm is hot forged to obtain a rolled material having a plate thickness of 100 mm or a plate thickness of 160 mm, and these rolled materials are hot.
  • Hot-rolled alloy plates having a plate thickness of 40 mm or a plate thickness of 80 mm, respectively.
  • a part of the obtained hot-rolled alloy plate was once allowed to cool to room temperature, then heat-treated to be held at various temperatures, and then water-spray cooled under various conditions. Further, the remaining portion of the obtained hot-rolled alloy plate was cooled as it was by water spray or the like.
  • a hole was formed from the side surface of the hot-rolled alloy plate toward the center of the plate thickness, and the heat treatment was performed with the thermocouple inserted in the hole. While measuring the temperature of the above, it was cooled to 300 ° C. or lower. The temperature of the cooling water used for spray cooling was in the range of 20 to 25 ° C. The water density to be injected onto the hot-rolled alloy plate was adjusted by manipulating the pressure of the cooling water supply device to change the cooling water amount in various ways to adjust the water density per unit area for a unit time (minutes).
  • FIG. 1 shows the plate thickness of the hot-rolled alloy plate and the water density (m 3 / m 2 ⁇ min) for increasing the cooling rate at the center of the plate thickness of the hot-rolled alloy plate to 2.0 ° C./s or more.
  • the relationship is shown.
  • the plate thickness of the hot-rolled alloy plate is t (mm)
  • 35 It is necessary to inject the alloy material so that the water density (m 3 / m 2 ⁇ min) of the cooling water at ° C. or lower is [0.11 ln (t) + 0.02] or more.
  • some hot-rolled alloy materials were straightened.
  • Table 3 shows various manufacturing conditions.
  • the plate thickness in Table 3 is the plate thickness of the hot-rolled alloy plate. When the water density is 0.00, it indicates that the water has not been cooled.
  • Table 4 shows the results of the following various tests on the obtained steel ingot or hot-rolled alloy material.
  • the average diameter of NbC of the obtained alloy materials of 3, 10, 13 and 23 of the present invention was measured and found to be 1 ⁇ m or less.
  • a smooth high-temperature tensile test piece of 8 mm ⁇ ⁇ 110 mmL was collected from the surface layer of a 17 kg flat steel ingot having a wall thickness of 48 mm or a 50 kg square steel ingot having a wall thickness of 110 mm.
  • the 14 mmL portion at the center of the test piece is heated at 1180 ° C. for 30 seconds by high-frequency heating, the temperature is lowered to 900 ° C. and held for 10 seconds, and then tensile fracture is performed at a speed of 20 mm / s to reduce the cross-sectional shrinkage rate: drawing (%). It was measured.
  • the results are shown in Table 1. The aperture was evaluated as good when the condition of 60% or more was satisfied.
  • test piece having dimensions of 3 mm in thickness ⁇ 8 mm in width ⁇ 12 mm in length was cut out from the obtained hot-rolled alloy material by machining, a thermocouple was welded to the surface, and after soaking at 900 ° C. for 1 minute, 600 A thermal cycle was added under the condition that the cooling rate in the section of about 300 ° C. was 0.2 ° C./s.
  • a test piece having dimensions of 3 mm in thickness ⁇ 5 mm in width ⁇ 1 mm in length is cut out from the test piece to which a heat cycle has been applied by machining, and the surface is polished with Emery Wet # 600 to remove the surface processed layer, and the test piece is used. B was obtained.
  • the thickness direction of each test piece is set to the magnetic field application direction and the length direction is set to the sample vibration direction by a vibrating sample magnetometer (VSM) capable of raising the sample temperature. It was set and the temperature change of magnetization was measured in a magnetic field of 40,000 A / m (500 Oe). The temperature rise rate was 3 ° C./min, and the temperature dependence of the magnetization of the sample was measured while raising the temperature from room temperature to 300 ° C., and the Curie temperatures T 0 and T 1 were obtained from the temperature at which the magnetization disappeared.
  • VSM vibrating sample magnetometer
  • T 0 is the Curie temperature (° C.) of the various alloy materials
  • T 1 is the central portion of the thickness of the alloy material in the temperature range of 600 to 300 ° C. after soaking the various alloy materials at 900 ° C. for 1 minute. This is the Curie temperature (° C.) of the alloy material after cooling under the condition that the average cooling rate of the alloy material is 0.2 ° C./s.
  • FIG. 2 is a diagram showing a temperature change of magnetization (relative magnetization with respect to room temperature and reciprocal of magnetization) in the alloy material of alloy No. 1.
  • the Curie temperatures T 0 and T 1 were obtained by extrapolating the temperature at which the magnetization disappears from the curve of the relative magnetization with respect to room temperature. That is, in this example, the Curie temperature (referred to as Tc in FIG. 2) is derived from the intersection of the extension line of the portion that linearly decreases with increasing temperature and the straight line having zero relative magnetization with respect to room temperature. The temperature is 244 ° C. Table 2 shows the Curie temperatures T 0 and T 1 and their differences.
  • the alloy material of the present invention can suppress deformation caused by a temperature change from room temperature to a cryogenic temperature in a structure in a cryogenic environment, for example, and is welded when manufactured as a pipe or a structure. Workability can be improved.

Abstract

質量%で、C:0.010~0.10%、Si:0.10%を超え0.50%以下、Mn:0.05~0.50%、Ni:34.5~37.0%、Nb:0.001~1.0%などの元素を含み、[T≦T-2]、[C-Nb/7.7-Ta/15≦0.045]、[Nb-7.7C≦0.30]、および[Ta-15C≦0.30]を満足する、合金材。 ただし、上記式中の各元素記号は、各元素の含有量(質量%)であり、Tは前記合金材のキュリー温度(℃)であり、Tは前記合金材を900℃で1分均熱した後、600~300℃の温度域における平均冷却速度が0.2℃/sとなる条件で冷却した後の合金材のキュリー温度(℃)である。

Description

合金材およびその製造方法
 本発明は、合金材およびその製造方法に関する。
 低膨張合金は、その熱膨張係数が鉄またはニッケルに対して1/10以下と著しく小さいことを特徴とする。低膨張合金には、インバー合金、スーパーインバー合金、ステンレスインバー合金、Fe-Pd合金などがあり、その中でも、Feに約36質量%のNiを含有させたFe-Ni系インバー合金が代表的である。以下、Fe-Ni系インバー合金を略してインバー合金とも称する。
 これらの合金の低膨張特性は、温度低下による体積収縮と自発体積磁歪による体積膨張との相殺に起因している。例えば、インバー合金においては、200~300℃付近にあるキュリー点以下では、小さな膨張特性を示し、キュリー点直上で膨張率が急増することが知られている。
 低膨張合金の用途としては、標準尺、計測機器、ガラス封着材料、シャドーマスク、IC用フレーム合金、金型、極低温環境の構造物などがある。極低温構造物の具体的な用途としては、インバー合金の場合には液化天然ガス(LNG)貯蔵容器および配管などが挙げられる。
 インバー合金を極低温構造物に適用する場合、溶接して用いられる。厚肉のインバー合金材は、溶接割れ感受性が高いため、溶接金属の凝固割れおよび再熱割れを抑制する必要がある。このため、溶接施工は、高濃度のCおよびNbを含有する特殊な溶接材料を用いて行われることがある。
 例えば、非特許文献1には、LNG配管用として、板厚9.5mmのインバー合金板を溶接する場合、Nb含有量の異なる2種類の溶接材料(ワイヤ)を用いて、ワイヤ送給速度と溶接入熱を管理しながら割れの無い溶接部を得る技術が開示されている。このような溶接施工によれば、化学組成の異なる母材と複数の溶接材料の混合比率(母材希釈)を一定範囲に制御して、溶接金属の化学組成を所望の範囲に調整することができる。
 例えば、特許文献1~5に記載されるように、従来、熱間加工性、強度、弾性定数、低熱膨張特性の改善を目的として、インバー合金材の母材自体の化学組成を調整する取り組みがなされてきている。
特開平7-102345号公報 特開平4-72037号公報 特開平10-17997号公報 特開平10-60528号公報 特開2003-27188号公報
本郷進ら、インバー合金を用いたLNG配管の開発(第3報)-厚板インバー合金の多層盛GTAW施工法に関する研究-、圧力技術第41巻第4号、p.160-167、2003年  一般社団法人 日本高圧力技術協会発行
 非特許文献1の溶接技術によれば、厚肉のインバー合金を母材(以下、単に「合金材」という)として用いた溶接構造物を製造することができるが、溶接施工性の自由度が低いという問題がある。また、特許文献1~5には、厚肉の合金材を用いた溶接構造物を製造する際の溶接施工性の自由度について考慮されていない。
 ここで、合金材は、通常、熱間圧延により製造され、熱間圧延後の合金材は空冷されるか、例えば、製造時間を短縮する目的などにより、水冷されることもあった。つまり、従来技術において、熱間圧延後の冷却を水冷により行うことまでは考慮されているが、溶接施工性の自由度を向上させるために、厚肉の合金材でどのような条件で冷却すればよいかについて考慮されていない。
 本発明は、低い熱膨張特性を維持しつつ、合金材を用いた溶接構造物を製造する際の溶接施工性の自由度を向上することができる、合金材およびその製造方法を安価に提供することを目的とする。
 本発明者らは、上記の問題を解決するために、合金材と溶接材料の化学組成の違いを小さくする、すなわち、母材のCおよびNbの含有量を高めることを考えた。
 合金材のCおよびNbの含有量を増加させると、熱間加工性が劣化する。合金材の熱間加工性を低下させる不純物元素の中で最も影響が大きい元素がSである。このため、熱間加工性を改善するためには、S含有量を低減すること、さらには、Sを固定して無害化するMnを十分含有させることが重要である。すなわち、合金材の化学組成において、CおよびNbの含有量を増加させ、S含有量を低下させ、Mnを必須元素として、適量含有させることが重要である。
 一方で、CおよびNbを多量に含有させると合金材の線膨張係数が増加する。本発明合金材では、CとNbとの双方を含有させることを成分的特徴としている。これらの元素は、合金材中でNbC(Nb炭化物)を形成する。そして、この際、線膨張係数は、余剰C(ΔC)もしくは余剰Nb(ΔNb)とともに増加するため、ΔC、ΔNbそれぞれの値を上限値以下に規制する。TaはNbの同族元素であり、本合金材ではNbの一部を置換するようにTaが添加されることがあり、同様の理由で余剰Ta(ΔTa)の上限値を規制することが重要である。
 ここに、ΔC、ΔNb、ΔTaの式を明示する。なお、Taを含まない場合には、Taの項に0を代入する。
 ΔC=C-Nb/7.7-Ta/15
 ΔNb=Nb-7.7C
 ΔTa=Ta-15C
 一方、Fe-Ni系インバー合金を用いた合金材においては、FeおよびNi以外の合金元素のほどんとが、膨張係数を高める作用を有する。膨張係数を増加させる作用は、元素毎に異なる。そこで、不純物として混入する元素の含有量が極力低減されるように原料を選別して溶解・精錬する必要がある。しかし、合金材を工業的に量産する場合には、通常のステンレス鋼の溶解・精錬設備が用いられ、そのステンレス鋼起因の不純物元素の混入が発生する。
 FeおよびNiを除くと、ステンレス鋼の主要成分の中で、Cr、Mo、Cu、Coなどが、インバー合金における主要な不純物元素となるので、これらの元素の混入量が小さくなるようにする必要がある。例えば、インバー合金の溶解・精錬のために原料として高純度の合金鉄、合金を用いること、新しく築炉された鍋(溶解のための容器)を用いることなどを要する。このような製造方法の制約は、すべてインバー合金の製造コスト上昇に反映される。
 そこで、本発明者らは、上記のような製造コストを上昇させずに、厚肉(板厚が3mm~80mm)の合金材の低熱膨張率を達成することができる製造方法について検討した。この結果、熱間圧延の冷却工程、または、熱処理後の冷却工程において、600~300℃の温度域における平均冷却速度を2.0℃/s以上となるように冷却することが有効であることを明らかにした。これにより、線膨張係数を増加させる磁性相の発達を抑制し、低い熱膨張を発現させることを見出した。
 ここで、特段の定めがない限り、板温は、通常、表面温度を意味する。このため、通常であれば、冷却速度の管理も合金材の板温の変化を管理することになる。例えば、板厚が3mm未満の薄板の場合には、板厚中心部と表面とで温度履歴の差異は小さいが、板厚が3mm以上、さらには6mm以上という厚板の合金材の場合には、通常通り、表面の温度変化を管理したのでは、十分な性能を確保することができないことが判明した。
 そして、本発明者らは、板厚中心部の温度について検討したところ、厚肉の合金材においては、その製造工程において熱間圧延または熱処理後の冷却速度が小さくなってしまいがちであり、その冷却過程で合金材中に、線膨張係数を増加させる磁性相が発達していることを知見した。
 この磁性相はFe-Ni合金に現れる一般的な強磁性の相であるが、FeとNiの原子配列がわずかに規則化する方向に変化した磁性相である。本発明者らは、板厚中心部における冷却速度の違いによるこの磁性相の発達の程度を、特定の磁化力のもとでのキュリー温度:Tcを捉えることで把握することができること、Tcが小さくなるように冷却速度を制御することで線膨張係数を低く保つことができることを知見した。
 具体的には、熱間圧延の冷却工程、または、熱処理後の冷却工程において、600~300℃の温度域における、合金材の板厚中心部の平均冷却速度が2.0℃/s以上となるように冷却することが重要であることを知見した。
 しかしながら、ラボでの実験用試験片であれば、板厚中心部の温度を測定することは可能であるが、実操業の製造工程において板厚中心部の温度を測定することは容易ではない。このため、本発明者らは、冷却工程における水量密度に着目して検討を重ねた結果、合金材の板厚をt(mm)とするとき、35℃以下の冷却水の水量密度(m/m・分)が[0.11ln(t)+0.02]以上となるように上記合金材に噴射することにより、600~300℃の温度域における、合金材の板厚中心部の平均冷却速度を2.0℃/s以上とすることができ、ひいては線膨張係数を低く保つことができることを知見した。
 これによって、不純物の混入に起因する膨張係数の増加を相殺できるので、原料中の不純物元素濃度規制を緩和できる。たとえば、本発明合金材で添加されるC、Nb、Si、Mnはいずれも合金材の線膨張係数を増加させる。Cr、Cu、Moは合金材を溶製する時にステンレス鋼を溶製した前鍋から混入する可能性がある元素であり、同様に合金材の線膨張係数を増加させる元素である。これら元素の混入を抑制する対策として、新鍋による溶製が行われるが、合金材の溶製チャンス制約の増大、コストの増大を招く。このため、板厚中心部の冷却速度を管理することにより、磁性相の発達を抑制することができるため、合金元素濃度規制を緩和することが可能となる。なお、合金材において、上記の熱処理が行われたか否かは、下記式を満たすかどうかによって判別可能である。
 T≦T-2
 ただし、Tは前記合金材のキュリー温度(℃)であり、Tは前記合金材を900℃で1分均熱した後、600~300℃の温度域における平均冷却速度が0.2℃/sとなる条件で冷却した後の合金材のキュリー温度(℃)である。
 なお、平均冷却速度が0.2℃/sは、80mm厚の合金材を空冷した時の冷却速度に相当する。
 本発明は、このような知見に基づいてなされたものであり、下記の合金材を要旨とする。
 化学組成が、質量%で、
 C:0.010~0.10%、
 Si:0.10%を超え0.50%以下、
 Mn:0.05~0.50%、
 P:0.015%以下、
 S:0.0015%以下、
 Cr:0.005~0.50%、
 Ni:34.5~37.0%、
 Cu:0.005~1.0%、
 Co:0.005~0.50%、
 Mo:0.001~0.50%、
 Al:0.0001~0.050%、
 Nb:0.001~1.0%、
 N:0.010%以下、
 O:0.0060%以下、
 Ti:0.0200%以下、
 Zr:0.0200%以下、
 Hf:0.0200%以下、
 V:0.500%以下、
 W:1.000%以下、
 Sn:0.050%以下、
 Zn:0.0020%以下、
 Pb:0.0010%以下、
 Ta:0~1.0%、
 B:0~0.010%、
 Ca:0~0.0050%、
 Mg:0~0.0030%、
 REM:0~0.050%、
 残部:Feおよび不可避的不純物であり、
 下記の(1)式、(2)式、(3)式および(4)式を満たし、
 降伏応力が240MPa以上であり、
 板厚が3.0mm以上である、合金材。
 T≦T-2  (1)
 C-Nb/7.7-Ta/15≦0.045  (2)
 Nb-7.7C≦0.30  (3)
 Ta-15C≦0.30  (4)
 ただし、上記式中の各元素記号は、各元素の含有量(質量%)であり、Tは前記合金材のキュリー温度(℃)であり、Tは前記合金材を900℃で1分均熱した後、600~300℃の温度域における平均冷却速度が0.2℃/sとなる条件で冷却した後の合金材のキュリー温度(℃)である。
 本発明によれば、低い熱膨張特性(具体的には、室温から-170℃までの平均線膨張係数が1.5×10-6/K以下)を維持しつつ、合金材を用いた溶接構造物を製造する際の溶接施工性の自由度を向上することができる、合金材およびその製造方法を安価に提供することができる。
図1は、熱延合金板の板厚と、熱延合金板の板厚中心部における冷却速度を2.0℃/s以上にするための水量密度(m/m・分)との関係を示す図である。 図2は、合金番号1の合金材における磁化の温度変化を示す図である。
 以下、本発明の合金材およびその製造方法について説明する。以下の説明において、各元素の含有量についての「%」は「質量%」を意味する。
 (合金材の化学組成)
 C:0.010~0.10%
 Cは、高強度化に有効である。このため、C含有量は、0.010%以上とする。C含有量は、0.015%以上とするのが好ましく、0.020%以上とするのがより好ましい。しかしながら、Cの過剰な含有は、熱間加工性を劣化させ、また、熱膨張特性に悪影響を及ぼす。このため、C含有量は、0.10%以下とする。C含有量は、0.08%以下とするのが好ましく、0.06%以下とするのがより好ましい。
 Si:0.10%を超え0.50%以下
 Siは、後述するMnと同様、合金溶製時の脱酸剤として必要な元素である。このため、Si含有量は、0.10%超とする。Si含有量は、0.15%以上とするのが好ましく、0.20%以上とするのがより好ましい。しかしながら、Siを過剰に含有させると、膨張特性に悪影響が生じる。このため、Si含有量は、0.50%以下とする。Si含有量は、0.40%以下とするのが好ましく、0.30%以下とするのがより好ましい。
 Mn:0.05~0.50%
 Mnは、後述するSiと同様、合金溶製時の脱酸剤として必要な元素である。また、Mnは、熱間加工性を劣化させるSをMnSとして固定する効果も有する。このため、Mn含有量は、0.05%以上とする。Mn含有量は、0.10%以上とするのが好ましく、0.15%以上とするのがより好ましい。しかしながら、Mnを過剰に含有させると、膨張特性に悪影響が生じる。このため、Mn含有量は、0.50%以下とする。Mn含有量は、0.40%以下とするのが好ましく、0.30%以下とするのがより好ましい。
 P:0.015%以下
 Pは、凝固割れ感受性、溶接割れ感受性を著しく高める不純物元素である。このため、P含有量は、0.015%以下とする。P含有量は、極力低減するのが好ましいが、Pの極端な制限は製造コストを増加させる。このため、P含有量は、0.001%以上とするのが好ましい。
 S:0.0015%以下
 Sは、熱間加工性を劣化させる不純物元素である。このため、S含有量は、0.0015%以下とする。S含有量は、極力低減するのが好ましいが、Sの極端な制限は製造コストを増加させる。このため、S含有量は、0.0001%以上とするのが好ましい。
 Cr:0.005~0.50%
 Crは、ステンレス鋼の溶製設備または原料より混入する元素であり、熱膨張特性に悪影響を生じさせる。このため、Cr含有量は、0.50%以下とする。Cr含有量は、0.40%以下とするのが好ましい。一方、Crを過剰に低減しようとすると、溶製コストが増加する。このため、Cr含有量は、0.005%以上とする。
 Ni:34.5~37.0%
 Niは、合金の自発体積磁歪を高めて、熱膨張係数を低下するのに有効な元素である。このため、Ni含有量は、34.5%以上とする。Ni含有量は、35.0%以上とするのが好ましい。しかしながら、Niを過剰に含有させると、製造コストが増加する。このため、Ni含有量は、37.0%以下とする。
 Cu:0.005~1.0%
 Cuは、ステンレス鋼の溶製設備または原料より混入する元素であり、熱膨張特性に悪影響を生じさせる。このため、Cu含有量は、1.0%以下とする。Cu含有量は、0.7%以下とするのが好ましく、0.5%以下とするのがより好ましい。一方、Cuを過剰に低減しようとすると、溶製コストが増加する。このため、Cu含有量は、0.005%以上とする。
 Co:0.005~0.50%
 Coは、ステンレス鋼の溶製設備または原料より混入する元素である。また、過剰に含有させると、合金コストが増加する。このため、Co含有量は、0.50%以下とする。Co含有量は、0.40%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、Coを過剰に低減しようとすると、溶製コストが増加する。このため、Co含有量は、0.005%以上とする。
 Mo:0.001~0.50%
 Moは、ステンレス鋼の溶製設備または原料より混入する元素であり、熱膨張特性に悪影響を生じさせる。このため、Mo含有量は、0.50%以下とする。Mo含有量は、0.40%以下とするのが好ましく、0.30%以下とするのがより好ましい。一方、Moを過剰に低減しようとすると、溶製コストが増加する。このため、Mo含有量は、0.001%以上とする。
 Al:0.0001~0.050%
 Alは、脱酸のために有効な元素である。このため、Al含有量は、0.0001%以上含有とする。Al含有量は、0.0003%以上とするのが好ましく、0.0005%以上とするのがより好ましい。しかしながら、Alを過剰に含有させると、熱膨張特性に悪影響が生じる。このため、Al含有量は、0.050%以下とし、0.040%以下とするのが好ましい。
 Nb:0.001~1.0%
 Nbは、強度を向上させる元素であるとともに、溶接時の溶接金属の割れを防止して、溶接施工性を向上させる元素である。このため、Nb含有量は、0.001%以上とする。Nb含有量は、0.010%以上とするのが好ましく、0.015%以上とするのがより好ましい。しかしながら、Nbを過剰に含有させると、熱間加工性が低下し、熱膨張特性に悪影響が生じる。このため、Nb含有量は、1.0%以下とする。Nb含有量は、0.7%以下とするのが好ましく、0.5%以下とするのがより好ましい。
 N:0.010%以下
 Nは、熱間加工性を劣化させる不純物元素である。このため、N含有量は、0.010%以下とする。N含有量は、極力低減するのが好ましいが、Nの極端な制限は溶製コストを増加させる。このため、N含有量は、0.001%以上とするのが好ましい。
 O:0.0060%以下
 Oは、熱膨張特性に悪影響を及ぼす不純物元素である。このため、O含有量は、0.0060%以下とする。O含有量は、極力低減するのが好ましいが、Oの極端な制限は溶製コストを増加させる。このため、O含有量は、0.0005%以上とするのが好ましい。
 Ti:0.0200%以下
 Zr:0.0200%以下
 Hf:0.0200%以下
 V:0.500%以下
 W:1.000%以下
 Sn:0.050%以下
 Zn:0.0020%以下
 Pb:0.0010%以下
 Ti、Zr、Hf、V、W、Sn、Zn、およびPbは、熱膨張特性に悪影響を及ぼす不純物元素であるので、その含有量は低いことが好ましい。このため、Ti含有量は、0.0200%以下とする。Zr含有量は、0.0200%以下とする。Hf含有量は、0.0200%以下とする。V含有量は、0.500%以下とする。W含有量は、1.000%以下とする。Sn含有量は、0.050%以下とする。Zn含有量は、0.0020%以下とする。Pb含有量は、0.0010%以下とする。なお、これらの元素は、含有されないこともある。
 Ta:0~1.0%
 Taは、Nbと同様に、強度を向上させる元素であるとともに、溶接時の溶接金属の割れを防止して、溶接施工性を向上させる元素である。このため、必要に応じて含有させてもよい。しかしながら、Taを過剰に含有させると、熱間加工性が低下し、熱膨張特性に悪影響が生じる。このため、Ta含有量は、1.0%以下とする。一方、上記効果を得るためには、Ta含有量は、0.01%以上とするのが好ましい。
 B:0~0.010%
 Bは、熱間加工性を向上させる元素であるので、含有させてもよい。しかしながら、Bを過剰に含有させると、熱膨張特性に悪影響が生じる。このため、B含有量は、0.010%以下とする。C、Nb含有量が、それぞれ0.04%以下、0.15%以下の場合は、Bを含有させなくてもよい。一方、上記効果を得るためには、B含有量は、0.0001%以上とするのが好ましい。B含有量は、0.0003~0.0030%の範囲とするのが好ましい。
 Ca:0~0.0050%
 Mg:0~0.0030%
 REM:0~0.050%
 Ca、MgおよびREMは、いずれも合金材の熱間加工性を向上させるので、含有させてもよい。しかしながら、これらの元素を過剰に含有させると、却って熱間加工性を低下させ、合金の清浄性を低下させる場合がある。このため、Ca含有量は、0.0050%以下とする。Mg含有量は、0.0030%以下とする。REM含有量は、0.050%以下とする。一方、上記効果を発現するためには、Ca含有量は、0.0005%以上とするのが好ましい。Mg含有量は、0.0003%以上とするのが好ましい。REM含有量は、0.001%以上とするのが好ましい。
 合金材の化学組成は、上記の各元素を、それぞれ規定される範囲で含有するとともに、下記の(2)式および(3)式を満足する必要がある。また、合金材の化学組成が、Taを含む場合には、さらに(4)を満足する必要がある。本発明合金材では、CおよびNbの双方を含有させることを成分的特徴としており、合金材中でNbC(Nb炭化物)を形成させる。この合金材の線膨張係数は、ΔC(=C-Nb/7.7-Ta/15)もしくはΔNb(=Nb-7.7C)とともに増加するため、ΔC、ΔNbそれぞれの値を上限値以下に規制する。TaはNbの同族元素であり、本合金材ではNbの一部を置換するようにTaが添加されることがあり、同様の理由でΔTa(=Ta-15C)の上限値を規制する。
 ΔC≦0.045  (2)
 ΔNb≦0.30  (3)
 ΔTa≦0.30  (4)
ただし、上記式中の各元素記号は、各元素の含有量(質量%)である。
 合金材の化学組成は、上記の各元素を含み、残部は、Feおよび不可避的不純物である。不可避的不純物とは、合金を工業的に製造する際に、原料、製造設備などの要因により混入する成分を意味する。
 (合金材のキュリー温度)
 合金材は、下記の(1)式を満たす必要がある。
 T≦T-2  (1)
 ただし、Tは前記合金材のキュリー温度(℃)であり、Tは前記合金材を900℃で1分均熱した後、600~300℃の温度域における平均冷却速度が0.2℃/sとなる条件で冷却した後の合金材のキュリー温度(℃)である。
 上記(1)式は、600~300℃の温度域における、合金材の板厚中心部の平均冷却速度が2.0℃/s以上となる条件で冷却されたことを示す指標である。すなわち、このような熱処理が施された合金材であれば、不純物の混入に起因する膨張係数の増加を相殺できるので、原料中の不純物元素濃度規制を緩和しつつ、熱膨張率を低く抑えることができる。
 なお、TおよびTの測定については、例えば、以下の手順で行えばよい。具体的には、熱延合金材から機械加工により板厚3mm×幅5mm×長さ1mmの寸法の合金片を切り出し、表面をエメリー湿式#600仕上げにより表面加工層を除去して試験片Aとする。
 同様に、熱延合金材から機械加工により板厚3mm×幅8mm×長さ12mmの寸法の試験片を切り出し、表面に熱電対を溶着して、900℃で1分均熱後に、600~300℃の区間の冷却速度が0.2℃/sとなる条件の熱サイクルを加える。熱サイクルを加えた試験片から機械加工により板厚3mm×幅5mm×長さ1mmの寸法の試験片を切り出し、表面をエメリー湿式#600にて研磨して表面加工層を除去して、試験片Bを得る。
 得られた試験片Aおよび試験片Bを用いて、試料温度を上昇させることができる振動式磁力計(VSM)により各試験片の板厚方向を磁場印加方向、長さ方向を試料振動方向に設定し、40000A/m(500 Oe)の磁場の中で、磁化の温度変化を測定する。昇温速度を3℃/分とし、室温から300℃まで昇温しながら試料の磁化の温度依存性を測定し、磁化が消失する温度を対室温相対磁化の曲線から外挿してTおよびTを求める。
 (合金材のミクロ組織)
 本合金材では、CおよびNbを含有させており、合金中に微細なNbCが析出する。粗大なNbCは、共晶融解による溶接割れ感受性を助長するおそれがあるので、合金材中に析出するNbCの平均直径(円相当直径)は、1μm以下であることが好ましい。なお、本合金材では、微細なNbCの分散が合金板の強度を上昇させる作用を有する。このため、NbCは微細なほど好ましい。しかしながら、NbCの平均直径が0.002μm未満になると合金板の強度向上効果が十分に得られない。このため、NbCの平均直径は、0.002μm以上とするのが好ましい。NbCの平均直径は、合金のNb、C含有量、鋳造時の冷却速度、熱間圧延の加熱温度、圧延温度、板厚およびその後の冷却速度や、熱処理の昇温速度、均熱温度、均熱時間などにより変化し、一般的にはCとNbの含有量が多いほど、熱間圧延の加熱温度が低いほど、熱処理の均熱時間が長いほど、その平均直径が大きくなる傾向にある。NbCの平均直径は、抽出レプリカ法や薄膜による透過電子顕微鏡による組織観察を行い、測定することができる。
 (降伏応力)
 本合金材では、降伏応力は、240MPa以上とする。降伏強度が、240MPa未満であると、溶接構造物として十分な強度が得られず、溶接施工の際に、十分な自由度を得にくくなる。このため、本合金材の降伏応力は、240MPa以上とする。降伏応力は、260MPa以上とするのがより好ましい。なお、降伏応力の上限は、特に限定しないが、本合金材の場合、通常、450MPa以下となることが多い。なお、本合金材において降伏応力は、JIS Z 2241:2011に準拠して、引張試験を行った際の0.2%耐力とする。
 (板厚)
 本合金材では、板厚は、3.0mm以上とする。板厚が、3.0mm未満であると、溶接施工の際に、十分な自由度を得にくくなる。このため、板厚は、3.0mm以上とする。板厚は、4.0mm以上とするのが好ましく、6.0mm以上とするのがより好ましい。なお、板厚の上限は、特に限定しないが、溶接施工性を考慮し、80mm以下とするのが好ましい。
 (合金材の製造方法)
 合金材を得るための製造方法については、以下記載の条件で製造するのが好ましい。滅間圧延の際の条件については、特に、限定しない。通常の溶製条件により得た鋳塊を通常の熱延条件により圧延して製造することができる。熱延条件としては、例えば、Nb、Cが固溶する1050~1250℃に加熱後、合金材の再結晶温度である900~1100℃の温度域、もしくは900~700℃の未再結晶温度域にかけて圧延することが挙げられる。圧下率は、目的とする強度その他の条件に応じて決めればよい。
 ただし、熱間圧延後の冷却条件、または、熱処理後の冷却条件については、低熱膨張率を発現するために重要である。すなわち、600~300℃の温度域における、合金材の板厚中心部の平均冷却速度が2.0℃/s以上となる条件で行う必要がある。600~300℃の温度域における、合金材の板厚中心部の平均冷却速度が2.0℃/s未満では、原料中の不純物元素濃度を十分に規制しなければ、熱膨張率を低く抑えることができなくなる。
 合金材に行う熱処理における冷却工程は、合金材の板厚をt(mm)とするとき、35℃以下である冷却水の水量密度(m/m・分)が[0.11ln(t)+0.02]以上となるように合金材に冷却水を噴射する必要がある。これは、対象である合金材の厚さが3~80mmであり、十分な水量密度での冷却でなければ、上記の冷却速度を実現できないからである。
 また、熱間圧延後に冷却し、熱処理を行わず製造される場合には、同様に、合金材の板厚をt(mm)とするとき、35℃以下である冷却水の水量密度(m/m・分)が[0.11ln(t)+0.02]以上となるように合金材に噴射する必要がある。
 なお、本発明の合金材は、基本的に、熱間圧延直後に水冷して製造されるか、熱間圧延後に、再加熱し、保持する熱処理を実施して製造されるが、熱間圧延直後に水冷した後、再加熱し、保持する熱処理を実施することを妨げない。熱間圧延後および熱処理後の双方に水冷を行う場合には、少なくとも熱処理後の水冷が、上記の冷却条件を満足しておれば足りる。また、本発明の合金材は溶接構造物等に用いられることから、上述したように、降伏応力を240MPa以上と高める必要がある。この観点から、熱間圧延後に熱処理を実施する場合は、均熱温度を950℃以下にすることが好ましい。
 この後、すなわち、熱間加工後の冷却工程の後、または、熱処理における冷却工程の後、合金材の反り等を強制するため、レベラー矯正を行ってもよい。レベラー矯正は、合金材の特性を大幅に変えない範囲で行うのが好ましく、例えば、常温の降伏応力(0.2%耐力)の上昇が3MPa以上、50MPa以下と値となるような条件で、行うのが好ましい。
 表1および2に示す化学組成を有する合金を真空溶解炉により溶製し、最終製品(合金材)の板厚に応じて、肉厚48mmの17kg扁平鋼塊または肉厚110mmの50kg角鋼塊を得た。
 最終製品の板厚が20mm以下の例については、肉厚48mmの17kg扁平鋼塊の表面を切削して、44mm厚の圧延素材とし、この圧延素材を熱間圧延して、板厚4mm~20mmの熱延合金板を作製した。一方、最終製品の板厚40mmと板厚80mmの例については、肉厚110mmの50kg角鋼塊を熱間鍛造して、板厚100mmまたは板厚160mmの圧延素材とし、これらの圧延素材を熱間圧延して、それぞれ板厚40mmまたは板厚80mmの熱延合金板を作製した。得られた熱延合金板の一部は、一旦、室温まで放冷し、その後、種々の温度で保持する熱処理を行い、種々の条件で水スプレー冷却した。また、得られた熱延合金板の残部は、そのまま水スプレー等により冷却した。
 熱処理を行った例について、熱延合金板の側面から板厚中央に向けて穴を形成し、熱電対をその穴に挿入した状態で熱処理を行い、その後、熱延合金板の板厚中心部の温度測定しながら、300℃以下になるまで冷却した。なお、スプレー冷却に用いた冷却水の水温は20~25℃の範囲にあった。熱延合金板に噴射する水量密度は、冷却水供給装置の圧力を操作することで冷却水量を種々変更して、単位時間(分)、単位面積あたりの水量密度を調整した。
 図1には、熱延合金板の板厚と、熱延合金板の板厚中心部における冷却速度を2.0℃/s以上にするための水量密度(m/m・分)との関係を示す。図1に示すように、熱延合金板の板厚をt(mm)とするとき、熱延合金板の板厚中心部における冷却速度を2.0℃/s以上にするためには、35℃以下である冷却水の水量密度(m/m・分)が[0.11ln(t)+0.02]以上となるように前記合金材に噴射する必要がある。また、一部の熱延合金材については、矯正を行った。各種製造条件を表3に示す。なお、表3中の板厚は、熱延合金板の板厚である。なお、水量密度が0.00の場合は、水冷しなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた鋼塊または熱延合金材に下記の各種試験を行った結果を表4に示す。なお、得られた本発明例の3、10、13および23の合金材について、NbCの平均直径を測定したところ、全て、1μm以下であった。
(絞り)
 肉厚48mmの17kg扁平鋼塊または肉厚110mmの50kg角鋼塊の表層部より8mmφ×110mmLの平滑高温引張試験片を採取した。高周波加熱により試験片中央部の14mmL部分を1180℃で30秒加熱し、900℃まで降温して10秒保持した後、20mm/sの速度で引張破断させ、断面収縮率:絞り(%)を測定した。その結果を表1に示す。絞りは、60%以上という条件を満たす場合を良好として評価した 。
(キュリー温度の測定)
 得られた熱延合金材から機械加工により板厚3mm×幅5mm×長さ1mmの寸法の合金片を切り出し、表面をエメリー湿式#600仕上げにより表面加工層を除去して試験片Aとした。
 一方、得られた熱延合金材から機械加工により板厚3mm×幅8mm×長さ12mmの寸法の試験片を切り出し、表面に熱電対を溶着して、900℃で1分均熱後に、600~300℃の区間の冷却速度が0.2℃/sとなる条件の熱サイクルを加えた。熱サイクルを加えた試験片から機械加工により板厚3mm×幅5mm×長さ1mmの寸法の試験片を切り出し、表面をエメリー湿式#600にて研磨して表面加工層を除去して、試験片Bを得た。
 得られた試験片Aおよび試験片Bを用いて、試料温度を上昇させることができる振動式磁力計(VSM)により各試験片の板厚方向を磁場印加方向、長さ方向を試料振動方向に設定し、40000A/m(500 Oe)の磁場の中で、磁化の温度変化を測定した。昇温速度を3℃/分とし、室温から300℃まで昇温しながら試料の磁化の温度依存性を測定し、磁化が消失する温度よりキュリー温度TおよびTを求めた。なお、Tは各種合金材のキュリー温度(℃)であり、Tは各種合金材を900℃で1分均熱した後、600~300℃の温度域における、合金材の板厚中心部の平均冷却速度が0.2℃/sとなる条件で冷却した後の合金材のキュリー温度(℃)である。
 図2には、合金番号1の合金材における磁化(対室温相対磁化および磁化の逆数)の温度変化を示す図である。図2に示すように、キュリー温度TおよびTは、磁化が消失する温度を対室温相対磁化の曲線から外挿して求めた。すなわち、この例においては、温度上昇に伴い直線的に減少する部分の延長線と、対室温相対磁化がゼロである直線との交点から、キュリー温度(図2中ではTcと記載する。)は244℃とする。表2には、キュリー温度TおよびTならびにこれらの差を示す。
(機械的強度)
 JIS Z 2241:2011に準拠して、常温(20℃±15℃)、大気中にて引張試験を実施して、引張強さTS(MPa)および降伏応力YS(MPa)を求めた。YSが240MPa以上である場合を良好として評価した。なお、降伏応力は、0.2%耐力とした。
(熱膨張率)
 得られた熱延合金板の板厚中心部から径3mm×長さ15mmの形状の試験片を採取し、押棒式熱膨張計を用いて室温から-170℃までの平均線膨張係数を求めた。平均線膨張係数は、1.5x10-6/K以下である場合を良好として評価した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明の条件をすべて満たす例1~37では、絞り、強度および線膨張係数のいずれにおいても良好であった。一方、本発明の条件を満たさない例38~52では、少なくとも線膨張係数の性能に劣っていた。
 本発明によれば、低い熱膨張特性を維持しつつ、合金材を用いた溶接構造物を製造する際の溶接施工性の自由度を向上することができる、合金材およびその製造方法を安価に提供することができる。本発明の合金材は、例えば、極低温環境の構造物などでの室温から極低温への温度変化に起因した変形を抑制することができ、また、配管類、構造物として製造する時の溶接作業性を向上することができる。

Claims (4)

  1.  化学組成が、質量%で、
     C:0.010~0.10%、
     Si:0.10%を超え0.50%以下、
     Mn:0.05~0.50%、
     P:0.015%以下、
     S:0.0015%以下、
     Cr:0.005~0.50%、
     Ni:34.5~37.0%、
     Cu:0.005~1.0%、
     Co:0.005~0.50%、
     Mo:0.001~0.50%、
     Al:0.0001~0.050%、
     Nb:0.001~1.0%、
     N:0.010%以下、
     O:0.0060%以下、
     Ti:0.0200%以下、
     Zr:0.0200%以下、
     Hf:0.0200%以下、
     V:0.500%以下、
     W:1.000%以下、
     Sn:0.050%以下、
     Zn:0.0020%以下、
     Pb:0.0010%以下、
     Ta:0~1.0%、
     B:0~0.010%、
     Ca:0~0.0050%、
     Mg:0~0.0030%、
     REM:0~0.050%、
     残部:Feおよび不可避的不純物であり、
     下記の(1)式、(2)式、(3)式および(4)式を満たし、
     降伏応力が240MPa以上であり、
     板厚が3.0mm以上である、合金材。
     T≦T-2  (1)
     C-Nb/7.7-Ta/15≦0.045  (2)
     Nb-7.7C≦0.30  (3)
     Ta-15C≦0.30  (4)
     ただし、上記式中の各元素記号は、各元素の含有量(質量%)であり、Tは前記合金材のキュリー温度(℃)であり、Tは前記合金材を900℃で1分均熱した後、600~300℃の温度域における平均冷却速度が0.2℃/sとなる条件で冷却した後の合金材のキュリー温度(℃)である。
  2.  請求項1に記載の合金材の製造方法であって、
     前記合金材に行う熱処理における冷却工程が、
     合金材の板厚をt(mm)とするとき、35℃以下である冷却水の水量密度(m/m・分)が[0.11ln(t)+0.02]以上となるように前記合金材に噴射する、
     合金材の製造方法。
  3.  請求項1に記載の合金材の製造方法であって、
     前記合金材を熱間加工した後の冷却工程が、
     合金材の板厚をt(mm)とするとき、35℃以下である冷却水の水量密度(m/m・分)が[0.11ln(t)+0.02]以上となるように前記合金材に噴射する、
     合金材の製造方法。
  4.  請求項1に記載の合金材の製造方法であって、
     請求項2または3の工程後、常温の降伏応力の上昇が3MPa以上、50MPa以下の値となる条件でレベラー矯正を行う、
     合金材の製造方法。
PCT/JP2021/016573 2020-04-28 2021-04-26 合金材およびその製造方法 WO2021221003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21796033.5A EP4144881A4 (en) 2020-04-28 2021-04-26 ALLOY MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2022518048A JP7460761B2 (ja) 2020-04-28 2021-04-26 合金材およびその製造方法
US17/918,337 US20230143965A1 (en) 2020-04-28 2021-04-26 Alloy material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079036 2020-04-28
JP2020079036 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021221003A1 true WO2021221003A1 (ja) 2021-11-04

Family

ID=78373231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016573 WO2021221003A1 (ja) 2020-04-28 2021-04-26 合金材およびその製造方法

Country Status (4)

Country Link
US (1) US20230143965A1 (ja)
EP (1) EP4144881A4 (ja)
JP (1) JP7460761B2 (ja)
WO (1) WO2021221003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423852B1 (ja) 2023-11-10 2024-01-29 日本冶金工業株式会社 Fe-Ni合金、合金管、及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472037A (ja) 1990-07-10 1992-03-06 Sumitomo Metal Ind Ltd 高強度低熱膨張合金およびその製造方法
JPH07102345A (ja) 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd 高ヤング率低熱膨張Fe−Ni合金
JPH1017997A (ja) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd 熱間加工性に優れた高強度インバ−合金
JPH1060528A (ja) 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd 高強度インバ−合金板の製造方法
JP2003027188A (ja) 2001-07-19 2003-01-29 Sumitomo Metal Ind Ltd シャド−マスク用インバ−合金とその製造法
JP2018188690A (ja) * 2017-04-28 2018-11-29 新報国製鉄株式会社 低熱膨張合金
JP2020190018A (ja) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 インバー合金板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727131B1 (fr) * 1994-11-23 1996-12-13 Imphy Sa Alliage fer-nickel a faible coefficient de dilatation
MX2016011463A (es) * 2014-03-14 2016-12-07 Aperam Aleacion de hierro-niquel que tiene soldabilidad mejorada.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472037A (ja) 1990-07-10 1992-03-06 Sumitomo Metal Ind Ltd 高強度低熱膨張合金およびその製造方法
JPH07102345A (ja) 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd 高ヤング率低熱膨張Fe−Ni合金
JPH1017997A (ja) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd 熱間加工性に優れた高強度インバ−合金
JPH1060528A (ja) 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd 高強度インバ−合金板の製造方法
JP2003027188A (ja) 2001-07-19 2003-01-29 Sumitomo Metal Ind Ltd シャド−マスク用インバ−合金とその製造法
JP2018188690A (ja) * 2017-04-28 2018-11-29 新報国製鉄株式会社 低熱膨張合金
JP2020190018A (ja) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 インバー合金板およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGOH S. ET AL.: "Pressure Engineering", vol. 41, 2003, PUBLICATION OF HIGH PRESSURE INSTITUTE OF JAPAN, article "Development of LNG Piping using Invar Alloy (Report 3), Multi-pass GTAW process for thick joint of Fe-36% Ni alloy", pages: 160 - 167
See also references of EP4144881A4
SHIN-ICHIRO YAHAGI, KATSUSHI KUSAKA: "Effect of C and Nb on the Strength and Thermal Expansion of Fe-Ni-Nb- C alloys", DENKI-SEIKO [ELECTRIC STEELMAKING], vol. 53, no. 2, 1982, pages 122 - 129, XP009532023, ISSN: 0011-8389, DOI: 10.4262/denkiseiko.53.122 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423852B1 (ja) 2023-11-10 2024-01-29 日本冶金工業株式会社 Fe-Ni合金、合金管、及びその製造方法

Also Published As

Publication number Publication date
US20230143965A1 (en) 2023-05-11
JP7460761B2 (ja) 2024-04-02
EP4144881A4 (en) 2023-11-15
EP4144881A1 (en) 2023-03-08
JPWO2021221003A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
JP5109222B2 (ja) 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP6327410B1 (ja) マルテンサイト系ステンレス鋼板
US10513756B2 (en) Nickel-based alloy
JP5596697B2 (ja) 酸化アルミニウム形成性ニッケルベース合金
JPWO2018193810A1 (ja) 高強度低熱膨張合金線
US3157495A (en) Alloy characterized by controlled thermoelasticity at elevated temperatures
WO2014157146A1 (ja) オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法
WO2021221003A1 (ja) 合金材およびその製造方法
JP2019065344A (ja) 低熱膨張合金
US5639317A (en) High strength, low thermal expansion alloy wire and method of making the wire
JPH0321622B2 (ja)
JP5155346B2 (ja) 高強度低熱膨張合金及びその製造法並びに精密機器
JPWO2017168972A1 (ja) クロム基二相合金および該二相合金を用いた製造物
JPH06316736A (ja) 磁気特性および製造性に優れたNi−Fe系磁性合金およびその製造方法
JP7333786B2 (ja) 低合金第3世代先進高張力鋼および製造プロセス
JP3535299B2 (ja) 耐食性および靱性に優れた二相ステンレス鋼の大型鋳造品、鍛造品およびその製造方法
EP1159463B1 (en) Mould steel
JP6753850B2 (ja) 高温用高強度低熱膨張鋳造合金およびその製造方法、ならびにタービン用鋳造品
JP2003321741A (ja) 高温リラクセーション特性に優れた高強度pc鋼棒およびその製造方法
JPWO2018193809A1 (ja) 高強度低熱膨張合金
JP3439062B2 (ja) 熱間加工性および極低温靱性の優れた高Mnステンレス鋼材
JPH04154938A (ja) 応力腐食割れ感受性の小さい高Mn非磁性鋼
JPH06256890A (ja) 耐熱性鋳物用鉄合金
JP2939118B2 (ja) 電子・電磁用Fe−Ni合金
JPH07188817A (ja) 磁気特性および製造性に優れたNi−Fe系磁性合金およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021796033

Country of ref document: EP

Effective date: 20221128