WO2021208245A1 - 聚酰亚胺复合材料及其制备方法和显示基板 - Google Patents

聚酰亚胺复合材料及其制备方法和显示基板 Download PDF

Info

Publication number
WO2021208245A1
WO2021208245A1 PCT/CN2020/099091 CN2020099091W WO2021208245A1 WO 2021208245 A1 WO2021208245 A1 WO 2021208245A1 CN 2020099091 W CN2020099091 W CN 2020099091W WO 2021208245 A1 WO2021208245 A1 WO 2021208245A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
composite material
inorganic nanoparticles
polyimide composite
structural unit
Prior art date
Application number
PCT/CN2020/099091
Other languages
English (en)
French (fr)
Inventor
汪亚民
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/053,222 priority Critical patent/US20210324143A1/en
Publication of WO2021208245A1 publication Critical patent/WO2021208245A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the technical field of functional materials, and in particular to a polyimide composite material, a preparation method thereof, and a display substrate.
  • the purpose of this application is to solve the above-mentioned problems and provide a polyimide composite material, a preparation method thereof, and a base substrate, which connect inorganic nanoparticles with polyimide structural units in the form of chemical bonds to make the two phases.
  • the capacity is strengthened, and at the same time, because of the enhancement effect of inorganic nano, it can effectively improve the mechanical properties and thermal stability of its own materials.
  • polyimide composite material including: the molecular structure of the polyimide composite material includes a polyimide structural unit and inorganic nanoparticles, wherein: the polyimide structural unit includes a carbonyl bond Or at least one of the phenyl phosphine oxide group; the inorganic nanoparticles are at least one of nano-magnesium oxide, nano-calcium ethoxide, or nano-barium ethoxide, and the inorganic nanoparticles are chemically bonded to The carbonyl bond or the phenyl phosphine oxide group.
  • the polyimide structural unit includes a phenyl phosphine oxide group.
  • the structural unit of the polyimide molecule is one of the following formulas I-1 to I-3:
  • the inorganic nanoparticles are one or more of nano-magnesium oxide, nano-calcium ethoxide, or nano-barium ethoxide.
  • This application also provides a preparation method of the polyimide composite material, the preparation method includes the following steps:
  • the diamine includes a phenyl phosphine oxide group.
  • diamine is at least one of the following compounds:
  • the dianhydride is (4,4'-diphenyl ether dianhydride), 3,3',4,4'-biphenyltetracarboxylic dianhydride or 3,3',4,4'-diphenylmethyl At least one of ketotetracarboxylic dianhydrides.
  • the present application also provides a display substrate, which includes a base substrate and functional devices arranged on the base substrate.
  • the material of the base substrate includes at least one of polyimide composite materials.
  • the polyimide structural unit includes a phenyl phosphine oxide group.
  • polyimide structural unit is one of the following formulas I-1 to I-3:
  • the inorganic nanoparticles are at least one of nano-magnesium oxide, nano-calcium ethoxide, or nano-barium ethoxide.
  • the functional device may be a thin film transistor (TFT) or an organic electroluminescence device (OLED).
  • TFT thin film transistor
  • OLED organic electroluminescence device
  • the compatibility of imines and inorganic nanoparticles is enhanced, and at the same time, due to the reinforcement of inorganic nanoparticles, the heat resistance of the polyimide composite material is improved, thereby improving its mechanical properties and thermal stability;
  • the polyimide composite material also has good bending resistance, can be used to prepare the base substrate described in this application and the display substrate described in this application, and is beneficial to realize flexible bending of the display panel.
  • FIG. 1 is a process schematic diagram of the first embodiment of the constant temperature manufacturing process described in this application.
  • FIG. 2 is a schematic diagram of a second embodiment of the constant temperature manufacturing process described in this application.
  • FIG. 3 is a process schematic diagram of a third embodiment of the constant temperature process described in this application.
  • FIG. 4 is a process schematic diagram of a fourth embodiment of the constant temperature manufacturing process described in this application.
  • FIG. 5 is a schematic diagram of the TGA thermal weight loss analysis of a polyimide composite material provided by this application and an existing polyimide material, where E and F represent the existing polyimide material and the current polyimide material, respectively The polyimide composite material.
  • Fig. 6 is a stress-strain curve diagram of a polyimide composite material provided by this application and an existing polyimide material, where E and F represent the existing polyimide material and the one described in this application, respectively Polyimide composite material.
  • FIG. 7 is a schematic structural diagram of an embodiment of the display substrate according to the application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a support connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection can be a support connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the polyimide structural unit includes a phenyl phosphine oxide group.
  • the polyimide structural unit including a phenyl phosphine oxide group is one or more of the following:
  • the polyimide structural unit adopts formula I-1, namely:
  • the material of the inorganic nanoparticles is an inorganic oxide.
  • the inorganic nanoparticles are inorganic oxide nanoparticles.
  • the inorganic nano-particles include at least one of nano-calcium ethoxide, nano-barium ethoxide, or nano-magnesium oxide (or magnesium oxide nanoparticles).
  • the inorganic nanoparticles may also be one or more of carbon nanotubes, nano silica, nano zinc oxide, nano titanium dioxide, nano aluminum nitride, or nano aluminum oxide.
  • the inorganic nanoparticles are magnesium oxide nanoparticles.
  • Magnesium oxide nanoparticles have obvious small size effect, surface effect, quantum size effect and macro tunnel effect. After modification, there is no agglomeration phenomenon.
  • the inorganic nanoparticles play a reinforcing role in the molecular structure, and at the same time, the added inorganic nanoparticles are not added by a simple doping method, but are chemically bonded to the inorganic nanoparticles. It is connected with the polyimide structural unit to enhance the compatibility of polyimide and inorganic nanoparticles, and at the same time, due to the reinforcement of inorganic nanoparticles, the heat resistance of the polyimide composite material can be improved, Furthermore, the mechanical properties and thermal stability of the polyimide composite material itself are improved.
  • This application also provides a method for preparing a polyimide composite material.
  • the polyimide composite material described in this application can be prepared by this method, and the preparation method includes the following steps:
  • the molecular structure of the polyimide composite material includes a polyimide structural unit and inorganic nanoparticles connected to the polyimide structural unit in a chemical bond.
  • the three preparation steps of the polyimide composite material can be correspondingly summarized as: 1) preparation of polyamic acid solution; 2) preparation of polyamic acid/inorganic nanoparticle mixture; 3) polyamic acid/inorganic The nanoparticle mixture is cross-linked and solidified.
  • the preparation method of the polyimide composite material and the implementation method of each step will be described in detail below.
  • the purpose of this step is to prepare a polyamic acid solution for preparing the polyimide composite material through diamine and dianhydride.
  • polyamic acid (PAA) is referred to as compound C
  • the diamine monomer used for preparing the polyamic acid is referred to as compound A
  • the dianhydride used for preparing the polyamic acid is referred to as compound B.
  • the compound A includes a phenyl phosphine oxide group and a diamine group.
  • the compound A is one or more of the following compounds:
  • the compound A is diamine-bis(3-aminobenzene)-3,5-bis(trifluoromethyl)phenyl phosphine oxide, namely:
  • the compound B is 4,4'-diphenyl ether dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride or 3,3',4,4'-benzophenone
  • 4,4'-diphenyl ether dianhydride, the 3,3',4,4'-biphenyltetracarboxylic dianhydride, and the 3,3',4,4'-benzophenone The structural formula of tetracarboxylic dianhydride is as follows:
  • the compound B can also be selected from other types of aromatic dianhydrides containing benzene rings, such as but not limited to pyromellitic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,3',4-Biphenyltetracarboxylic dianhydride, 4,4'-(4,4'-isopropyldiphenoxy) diphthalic anhydride, 3,3',4,4 '-Diphenyl ether tetracarboxylic dianhydride, 2,3,3',4'-Diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-Triphenyl ether tetracarboxylic dianhydride.
  • aromatic dianhydrides containing benzene rings such as but not limited to pyromellitic dianhydride, 4,4'-oxydiphthalic dianhydride, 2,3,3',4-Biphenyltetracarboxylic dian
  • the polyimide composite material can introduce stronger mechanical strength and improve the regularity of the molecular chain of the polyimide composite material.
  • the polyamic acid solution is prepared in the following manner:
  • reaction solution of compound A and the reaction solution of compound B are mixed and stirred, vacuum filtered, vacuum evacuated, and left to stand to obtain the polyamic acid solution.
  • the aprotic solvent is one or more of N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyrrolidone, and dimethylsulfoxide.
  • the purpose of this step is to introduce inorganic nanoparticles into the polyamic acid solution to obtain a polyamic acid/inorganic nanoparticle mixed liquid.
  • the material of the inorganic nanoparticles is an inorganic oxide. That is, the inorganic nanoparticles are inorganic oxide nanoparticles, such as, but not limited to, nano calcium ethoxide, nano barium ethoxide, or nano magnesium oxide.
  • an inorganic nanoparticle can be introduced into the polyamic acid solution in the following manner: first obtain the reactive additive D corresponding to the inorganic nanoparticle, and then add the reactive additive D to the polyamide In the acid solution and stirred, the inorganic nanoparticles can be introduced into the polyamic acid solution, thereby obtaining a corresponding polyamic acid/inorganic nanoparticle mixed liquid.
  • nano-magnesium oxide can be introduced into the polyamic acid solution to obtain a polyamic acid/MgO mixture (ie, a PAA/MgO mixture) .
  • Recipe constant temperature process
  • the polyamic acid/inorganic nanoparticle mixture obtained in the above steps is spin-coated on a substrate by a slit coater; after the coating is completed, the substrate is subjected to a vacuum drying (H-VCD) process to remove 40 %-70% solvent; finally, the substrate is subjected to a constant temperature process (Recipe), so that the polyamic acid in the polyamic acid/inorganic nanoparticle mixture coated on the substrate is dehydrated Cyclization, crosslinking and curing to generate polyimide, and at the same time, the inorganic nanoparticles are chemically bonded to the polyimide.
  • H-VCD vacuum drying
  • Recipe constant temperature process
  • FIGS. 1 to 5 respectively show an embodiment of performing a constant temperature process (Recipe) on the substrate, and the implementation details of the constant temperature process will be described and described in detail below with reference to FIGS. 2 to 5. It is worth noting that there are multiple implementations for the process of performing a constant temperature process (Recipe) on the substrate. Figures 1 to 4 are only four preferred embodiments of the constant temperature process. In other embodiments, a constant temperature process can also be selected. (Recipe) other implementation schemes, this application does not limit this.
  • FIG. 1 is a schematic diagram of the process of the first embodiment of the constant temperature process described in this application.
  • the constant temperature process includes a temperature rise and a constant temperature, and the maximum temperature is 450°C.
  • Fig. 2 is a schematic diagram of the process of the second embodiment of the constant temperature process described in this application.
  • the constant temperature process includes a temperature rise and a constant temperature, and the maximum temperature is 475°C.
  • Fig. 3 is a process schematic diagram of a third embodiment of the constant temperature process described in this application.
  • the constant temperature process includes three times of temperature rise and three times of constant temperature, and the maximum temperature reaches 450°C. Keep the temperature at 180°C and 350°C for 20 minutes, and at 450°C for 40 minutes.
  • Fig. 4 is a process schematic diagram of a fourth embodiment of the constant temperature process described in this application.
  • the constant temperature process includes three times of temperature rise and three times of constant temperature, and the maximum temperature reaches 450°C. Keep the temperature at 180°C and 250°C for 20 minutes, and at 470°C for 23 minutes.
  • compound A uses diamine-bis(3-aminobenzene)-3,5-bis(trifluoromethyl)phenyl phosphine oxide
  • compound B uses 4,4'-diphenyl ether dianhydride
  • the inorganic nanoparticles are magnesium oxide nanoparticles
  • the compound D is magnesium ethoxide
  • the aprotic solvent is a mixture of N,N-dimethylhexanamide (DMAC) and N-methylpyrrolidone (NMP)
  • magnesium ethoxide is dissolved in the aprotic solvent to obtain a magnesium ethoxide solution with a concentration of 1-3 mmol/L.
  • the reaction route is shown in the figure below:
  • the polyamic acid/MgO mixture is spin-coated on a substrate by means of a slit coater; after the coating is completed, the substrate is subjected to an H-VCD (vacuum drying) process for about 10 minutes to 30 minutes to remove 40%-70 % Solvent; finally, the substrate is subjected to a constant temperature process (Recipe), so that the polyamic acid/MgO mixture coated on the substrate is cross-linked and solidified to form the polyimide composite material described in this application .
  • H-VCD vacuum drying
  • Recipe constant temperature process
  • the compound B for synthesizing the polyimide composite material is 3,3',4,4'-biphenyltetracarboxylic dianhydride.
  • the reaction route for preparing the polyimide composite material is shown in the following figure:
  • the compound B for synthesizing the polyimide composite material is 3,3',4,4'-benzophenone tetracarboxylic dianhydride.
  • the reaction route for preparing the polyimide composite material is shown in the following figure:
  • FIG. 5 is a schematic diagram of TGA thermal weight loss analysis of a polyimide composite material provided by this application and an existing polyimide material.
  • FIG. 6 is a stress-strain curve diagram of a polyimide composite material provided by this application and an existing polyimide material.
  • the existing polyimide material and the polyimide composite material described in this application are denoted as compound E and compound F, respectively.
  • the existing polyimide material (compound E) has a temperature of 1% weight loss at 517°C
  • the polyimide composite material (compound F) described in this application has a temperature of 1% weight loss of 576°C.
  • the temperature of the polyimide composite material described in this application has increased by nearly 60°C. Comparing the two, it is obvious that the polyimide composite material reinforced by nano-inorganic particles involved in this application has certain advantages in this parameter performance.
  • the tensile properties of the polyimide composite material described in this application have the following changes: the maximum stress is increased from 376.3 MPa to 465.5 MPa, an increase of 23.7%; and the fracture elongation The growth rate increased from 11.75% to 22.4%, an increase of 90.6%.
  • the tensile properties of the polyimide composite materials involved in this case have been greatly improved.
  • the finally formed molecular structure of the polyimide composite material involved in the present application plays a reinforcing role.
  • the present application also provides a base substrate, the material of the base substrate includes one or more of the polyimide composite materials described in the present application.
  • the tensile properties and bending resistance of the polyimide composite material described in the present application have been significantly improved, and the flexibility of the base substrate described in the present application can be significantly improved.
  • the base substrate described in the present application can be used as a flexible base substrate or used in a flexible display panel.
  • the present application also provides a display substrate 100 which includes a base substrate 10 and functional devices 20 arranged on the base substrate 10.
  • the material of the base substrate 10 is one or more of the polyimide composite materials described in this application, or the base substrate 10 is the base substrate described in this application.
  • the bending resistance of the display substrate 100 is improved, which is beneficial to realize flexible display.
  • the functional device 20 may be a thin film transistor (TFT) or an organic electroluminescence device (OLED).
  • TFT thin film transistor
  • OLED organic electroluminescence device
  • the functional device 20 is a thin film transistor (TFT), and the display substrate 100 may be an array substrate correspondingly.
  • TFT thin film transistor
  • the functional device 20 is an organic electroluminescence device (OLED), and the display substrate 100 is correspondingly a display panel.
  • a driving circuit for driving the functional device 20 may be provided on the base substrate 10.
  • the polyimide composite material involved in this case is not limited to be used for base substrates or display substrates. It can be used in various suitable scenarios, as long as it is based on different raw material ratios. The performance parameters of the compound meet the requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种聚酰亚胺复合材料及其制备方法和显示基板,其通过将无机纳米粒子以化学键方式连接与聚酰亚胺结构单元,使两者的相容性加强,同时因为无机纳米的增强作用,能有效提高所述聚酰亚胺复合材料的机械性能和热稳定性。

Description

[根据细则37.2由ISA制定的发明名称] 聚酰亚胺复合材料及其制备方法和显示基板
本申请要求于2020年04月17日提交中国专利局、申请号为202010304210.5、发明名称为“一种聚酰亚胺复合材料及其制备方法和衬底基板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功能性材料领域技术领域,尤其涉及一种聚酰亚胺复合材料及其制备方法和显示基板。
背景技术
常规的聚酰亚胺材料具有较密集的刚性结构以及很强的分子间相互作用,而纯聚酰亚胺目前已经很少用于生产,因为各方面的性能很难达到综合性能的标准,诸如,纯的PI的拉伸性能往往只能达到10%左右,这样会限制于在某些领域应用,比如在存储和显示等领域需求的PI具有高耐热性能(560℃失重1wt%),断裂应力实现350MPa,断裂伸长率实现15%以上等要求,因为结构可调节性很强,目前制备增强复合型聚酰亚胺成为应用领域越来越关注的事。
因此,亟需提供一种聚酰亚胺复合材料及其制备方法和衬底基板,以解决上述问题。
技术问题
本申请的目的在于解决上述问题,提供一种聚酰亚胺复合材料及其制备方法和衬底基板,其通过将无机纳米粒子以化学键的形式连接与聚酰亚胺结构单元使两者的相容性加强,同时因为无机纳米的增强作用,从而能有效提高其自身材料的机械性能和热稳定性。
技术解决方案
本申请提供一种聚酰亚胺复合材料,包括:所述聚酰亚胺复合材料的分子结构式包括聚酰亚胺结构单元和无机纳米粒子,其中:所述聚酰亚胺结构单元包括羰基键或苯基氧化膦基团二者中的至少一种;所述无机纳米粒子为纳米氧化镁、纳米乙醇钙或纳米乙醇钡中的至少一种并且,所述无机纳米粒子以化学键的方式连接于所述羰基键或所述苯基氧化膦 基团上。
进一步,所述聚酰亚胺结构单元包括苯基氧化膦基团。
进一步,所述聚酰亚胺分子的结构单元为以下式I-1至I-3中的一种:
Figure PCTCN2020099091-appb-000001
进一步,所述无机纳米粒子为纳米氧化镁、纳米乙醇钙或纳米乙醇钡中的一种或多种。
本申请还提供一种聚酰亚胺复合材料的制备方法,所述制备方法包括以下步骤:
S1、由二胺和二酐进行聚合反应,得到聚酰胺酸溶液;
S2、在所述聚酰胺酸溶液中引入无机纳米粒子,得到聚酰胺酸/无机纳米粒子混合液;以及,
S3、使聚酰胺酸/无机纳米粒子混合液交联固化得到聚酰亚胺复合材料;
其中,所述聚酰亚胺复合材料的分子结构包括聚酰亚胺结构单元和无机纳米粒子,所述聚酰亚胺结构单元包括羰基键或P=O二者中的至少一种;所述无机纳米粒子以化学键的方式连接于与所述羰基键或所述P=O。
进一步,所述二胺包括苯基氧化膦基团。
进一步,所述二胺为以下化合物中的至少一种:
Figure PCTCN2020099091-appb-000002
进一步,所述二酐为(4,4’-联苯醚二酐)、3,3’,4,4’-联苯四甲酸二酐或3,3',4,4’-二苯甲酮四羧酸二酐中的至少一种。
本申请还提供一种显示基板,包括一衬底基板以及设置于所述衬底基板上的功能器件,所述衬底基板的材料包括聚酰亚胺复合材料中的至少一种,所述聚酰亚胺复合材料的分子结构包括聚酰亚胺结构单元和无机纳米粒子,其中:所述聚酰亚胺结构单元包括羰基键或P=O二者中的至少一种;所述无机纳米粒子以化学键的方式连接于所述羰基键或所述P=O。
进一步,所述聚酰亚胺结构单元包括苯基氧化膦基团。
进一步,所述聚酰亚胺结构单元为以下式I-1至I-3中的一种:
Figure PCTCN2020099091-appb-000003
进一步,所述无机纳米粒子为纳米氧化镁、纳米乙醇钙或纳米乙醇钡中的至少一种。
进一步,所述功能器件为可以是薄膜晶体管(TFT)或有机电致发光器件(OLED)。
有益效果
本申请的有益效果为:本申请所述聚酰亚胺复合材料通过共价键的方式使所述无机纳米粒子与所述聚酰亚胺结构单元的羰基键或P=O连接,使得聚酰亚 胺和无机纳米粒子的相容性增强,同时由于无机纳米粒子的增强作用,提高了所述聚酰亚胺复合材料的耐热性,进而提高了其机械性能和热稳定性;本申请所述聚酰亚胺复合材料还具有良好的抗弯折性能,能用于制备本申请所述衬底基板和本申请所述显示基板,有利于实现显示面板的柔性弯折。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请所述恒温制程的第一实施例的过程示意图。
图2为本申请所述恒温制程的第二实施例的过程示意图。
图3为本申请所述恒温制程的第三实施例的过程示意图。
图4为本申请所述恒温制程的第四实施例的过程示意图。
图5为本申请提供的一种聚酰亚胺复合材料与现有的一种聚酰亚胺材料的TGA热失重分析示意图,其中E和F分别表示现有聚酰亚胺材料和本申请所述聚酰亚胺复合材料。
图6为本申请提供的一种聚酰亚胺复合材料与现有的一种聚酰亚胺材料的应力应变曲线图,其中E和F分别表示现有聚酰亚胺材料和本申请所述聚酰亚胺复合材料。
图7为本申请所述显示基板一实施例的结构示意图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的 技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是支撑连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
本申请提供一种所述聚酰亚胺复合材料,该复合材料的分子结构式包括:聚酰亚胺结构单元和无机纳米粒子;其中所述聚酰亚胺结构单元包括羰基键或P=O二者中的至少一种,所述无机纳米粒子以化学键的方式连接与所述羰基键或所述P=O。
具体地,所述聚酰亚胺结构单元包括苯基氧化膦基团。例如,所述包括苯基氧化膦基团的聚酰亚胺结构单元为以下中的一种或多种:
Figure PCTCN2020099091-appb-000004
Figure PCTCN2020099091-appb-000005
在本实施例中,所述聚酰亚胺结构单元采用式I-1,即:
Figure PCTCN2020099091-appb-000006
具体地,所述无机纳米粒子共价键的形式连接于所述羰基键或所述P=O。
具体地,所述无机纳米粒子的材料为无机氧化物。也就是说,所述无机纳米粒子为无机氧化物纳米粒子。在本实施例中,所述无机纳米粒子包括纳米乙醇钙、纳米乙醇钡或纳米氧化镁(或者称,氧化镁纳米粒子)中的至少一种。
在其他实施例中,所述无机纳米粒子还可以是碳纳米管、纳米二氧化硅、纳米氧化锌、纳米二氧化钛、纳米氮化铝或纳米三氧化二铝中的一种或多种。
在本实施例中,所述无机纳米粒子采用氧化镁纳米粒子。氧化镁纳米粒子 具有明显的小尺寸效应、表面效应、量子尺寸效应和宏观隧道效应,经改性处理,无团聚现象。
在这里,所述无机纳米粒子对所在分子结构中的起到了补强作用,同时由于加入的所述无机纳米粒子不是通过简单的掺杂方法加入,而是通过化学键的方式将所述纳米无机粒子与聚酰亚胺结构单元连接起来,使得聚酰亚胺和无机纳米粒子的相容性增强,同时由于无机纳米粒子的增强作用,能提高所述聚酰亚胺复合物材料的耐热性,进而提高了所述聚酰亚胺复合物材料自身的机械性能和热稳定性。
本申请还提供一种聚酰亚胺复合材料的制备方法,本申请所述聚酰亚胺复合材料能通过本方法制备,所述制备方法包括以下步骤:
S1、将二胺和二酐进行聚合反应,得到聚酰胺酸溶液;
S2、在所述聚酰胺酸溶液中引入无机纳米粒子,得到聚酰胺酸/无机纳米粒子混合液;以及,
S3、使聚酰胺酸/无机纳米粒子溶液交联固化得到聚酰亚胺复合材料;
其中所述聚酰亚胺复合材料的分子结构式包括聚酰亚胺结构单元以及以化学键的方式连接与所述聚酰亚胺结构单元的无机纳米粒子。
概括地说,所述聚酰亚胺复合材料的三个制备步骤可以对应总结为:1)制备聚酰胺酸溶液;2)制备聚酰胺酸/无机纳米粒子混合液;3)聚酰胺酸/无机纳米粒子混合液交联固化。以下将详细阐述所述聚酰亚胺复合材料的制备方法和各步骤的实施方法。
1)制备聚酰胺酸溶液
本步骤的目的在于通过二胺和二酐制备得到用于制备所述聚酰亚胺复合材料的聚酰胺酸溶液。以下将聚酰胺酸(polyamic acid,PAA)记为化合物C,将用于制备所述聚酰胺酸的二胺单体记为化合物A,将用于制备所述聚酰胺酸的二酐记为化合物B。
具体地,所述化合物A包括苯基氧化膦基团和二胺基。例如,所述化合物A为以下化合物中的一种或多种:
Figure PCTCN2020099091-appb-000007
在本实施例中,所述化合物A为二胺-二(3-胺基苯)-3,5-二(三氟甲基)苯基氧化膦,即:
Figure PCTCN2020099091-appb-000008
通过选用含有苯基氧化膦基团的化合物A,能将P=O引入所述聚酰亚胺复合材料。
具体地,所述化合物B为4,4’-联苯醚二酐、3,3’,4,4’-联苯四甲酸二酐或3,3',4,4’-二苯甲酮四羧酸二酐中的一种或多种。其中,所述4,4’-联苯醚二酐、所述3,3’,4,4’-联苯四甲酸二酐以及所述3,3',4,4’-二苯甲酮四羧酸二酐的结构式如下:
Figure PCTCN2020099091-appb-000009
以及
Figure PCTCN2020099091-appb-000010
在具体实施时,所述化合物B还能选用其他种类的含苯环的芳香型二酐,例如但不限于,均苯四甲酸二酐、4,4'-氧双邻苯二甲酸二酐、2,3,3',4-联苯四甲酸二酐、4,4'-(4,4'-异丙基二苯氧基)双邻苯二甲酸酐、3,3',4,4’-二苯醚四甲酸二酐、2,3,3',4'-二苯醚四甲酸二酐、3,3',4,4'-三苯二醚四甲酸二酐。
相较于其他类型的二酐,通过采用芳香型二酐,能使得所述聚酰亚胺复合材料引入较强的机械强度,并提高所述聚酰亚胺复合材料的分子链的规整性。
具体地,以以下方式制备所述聚酰胺酸溶液:
a、将化合物A溶解于一非质子溶剂中,得到化合物A的反应溶液;
b、将化合物B溶解于另一非质子溶剂中,得到化合物B的反应溶液;以及,
c、将化合物A的反应溶液和化合物B的反应溶液进行混合揽拌、真空抽滤、真空抽气以及静置,获得所述聚酰胺酸溶液。
在具体实施时,所述非质子溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜中的一种或多种。例如,所述非质子溶剂选用N,N-二甲基己酰胺(DMAC)与N-甲基吡咯烷酮(NMP)的混合物,并且DMAC/NMP=v/v=0.2-2。
2)制备聚酰胺酸/无机纳米粒子混合液
本步骤的目的在于将无机纳米粒子引入到所述聚酰胺酸溶液中,以获得聚酰胺酸/无机纳米粒子混合液。
具体地,所述无机纳米粒子的材料为无机氧化物。也就是说,所述无机纳米粒子为无机氧化物纳米粒子,例如但不限于,纳米乙醇钙、纳米乙醇钡或纳米氧化镁。
具体地,能通过以下方式将一种无机纳米粒子引入所述聚酰胺酸溶液中:先获取该种无机纳米粒子对应的反应型添加物D,然后将该反应型添加物D加入 所述聚酰胺酸溶液中并搅拌,从而能将该种无机纳米粒子引入所述聚酰胺酸溶液中,从而获得相应的聚酰胺酸/无机纳米粒子混合液。
例如,通过乙醇镁作为反应型添加物D加入所述聚酰胺酸溶液中并搅拌,能在所述聚酰胺酸溶液中引入纳米氧化镁,获得聚酰胺酸/MgO混合物(即PAA/MgO混合物)。
需要指出的是,以上仅为将无机纳米粒子引入到所述聚酰胺酸溶液中的一种实施方法。在其他实施例中,还能采用本领域其他常规的制备方法得到聚酰胺酸/无机纳米粒子混合液。
3)聚酰胺酸/无机纳米粒子混合液的交联固化
在本步骤中,通过对所述聚酰胺酸/无机纳米粒子混合液进行恒温制程(Recipe),以使得所述聚酰胺酸交联固化形成聚酰亚胺;与此同时,所述无机纳米粒子以化学键的方式连接与所述聚酰亚胺分子中的羰基键或P=O连接起来,进而最终获得本申请涉及的所述聚酰亚胺复合材料(记为聚合物F)。
以下将结合本申请涉及的所述聚酰亚胺复合材料在一基板上形成聚酰亚胺膜层的过程,来对所述聚酰胺酸/无机纳米粒子混合液的交联固化过程做进一步的阐述和说明。
采用slit coater的方式将上述步骤得到的所述聚酰胺酸/无机纳米粒子混合液旋涂于一基板上;涂布完成后,对所述基板进行真空干燥(H-VCD)制程,以去除40%-70%的溶剂;最后,对所述基板进行恒温制程(Recipe),以使涂布于所述基板上的所述聚酰胺酸/无机纳米粒子混合液中的所述聚酰胺酸发生脱水环化从而交联固化生成聚酰亚胺,同时所述无机纳米粒子以化学键的方式连接于所述聚酰亚胺。
图1-图5分别给出对所述基板进行恒温制程(Recipe)的一实施例,以下将结合图2-图5对所述恒温制程的实施细节进行详细阐述和说明。值得指出的是,对所述基板进行恒温制程(Recipe)的过程具有多种实施方案,图1-图4仅为恒温制程的四个优选实施方案,在其他实施例中,也可以选用恒温制程(Recipe)的其他实施方案,本申请对此并不做限定。
图1为本申请所述恒温制程的第一实施例的过程示意图,如图1所示,在本实施例中,所述恒温制程包括一次升温和恒温,最高温度为450℃。
图2为本申请所述恒温制程的第二实施例的过程示意图,如图2所示,在本实施例中,所述恒温制程包括一次升温和恒温,最高温度为475℃。
图3为本申请所述恒温制程的第三实施例的过程示意图,如图3所示,在本实施例中,所述恒温制程包括三次升温和三次恒温,最高温度达到450℃。在180℃和350℃下分别恒温20min,在450℃下恒温40min。
图4为本申请所述恒温制程的第四实施例的过程示意图,如图4所示,在本实施例中,所述恒温制程包括三次升温和三次恒温,最高温度达到450℃。在180℃和250℃下分别恒温20min,在470℃下恒温23min。
以下将结合具体实施例,对本申请所述聚酰亚胺复合材料的制备过程和制备细节进行阐述和说明。
实施例一:
在本实施例中,化合物A选用二胺-二(3-胺基苯)-3,5-二(三氟甲基)苯基氧化膦,化合物B选用4,4’-联苯醚二酐,所述无机纳米粒子选用氧化镁纳米粒子,所述化合物D选用乙醇镁,所述非质子溶剂选用N,N-二甲基己酰胺(DMAC)与N-甲基吡咯烷酮(NMP)的混合物,并且DMAC/NMP=v/v=0.2-2,以制备所述聚酰亚胺复合材料。
称取1.5-10mmol的二胺-二(3-胺基苯)-3,5-二(三氟甲基)苯基氧化膦,溶解于所述非质子溶剂并搅拌均匀,得到第一反应溶液;称取1.5-17mmol的4,4’-联苯醚二酐溶解于所述非质子溶剂中并搅拌均匀得到第二反应溶液;将所述第二反应溶液加于所述反应第一溶液,在室温下揽拌24-96h,使其充分溶解;然后,在真空环境下进行抽滤,再将上述通过抽滤得到的溶液用真空泵抽气约1h,将抽气过后的溶液在室温下静置2-4h,使溶液中的气泡进一步减少,直到中无肉眼可见的气泡;得到所述聚酰胺酸溶液(即化合物C)。其具体反应路线如下图所示:
Figure PCTCN2020099091-appb-000011
将适量乙醇镁溶解于所述述非质子溶剂中,得到浓度为1-3mmol/L的乙醇镁溶液。在所述聚酰胺酸溶液中加入10-160mL的乙醇镁溶液,再次进行搅拌15-40min,直到肉眼看不见气泡,得到聚酰胺酸/MgO混合液。其反应路线如下图所示:
Figure PCTCN2020099091-appb-000012
采用slit coater的方式将所述聚酰胺酸/MgO混合液旋涂于一基板;涂布完成后,对所述基板进行H-VCD(真空干燥)制程大约10min-30min,以去除40%-70%的溶剂;最后,对所述基板进行恒温制程(Recipe),以使涂布于所述基板上的所述聚酰胺酸/MgO混合液交联固化生成本申请所述聚酰亚胺复合材料。其反应路线如下图所示:
Figure PCTCN2020099091-appb-000013
实施例二:
与实施例一的最大不同之处在于,在本实施例中,合成所述聚酰亚胺复合材料的化合物B选用3,3’,4,4’-联苯四甲酸二酐。在本实施例中,制备所述聚酰亚胺复合材料的反应路线如下图所示:
Figure PCTCN2020099091-appb-000014
Figure PCTCN2020099091-appb-000015
以及
Figure PCTCN2020099091-appb-000016
实施例三:
与实施例一的最大不同之处在于,在本实施例中,合成所述聚酰亚胺复合材料的化合物B选用3,3',4,4’-二苯甲酮四羧酸二酐。在本实施例中,制备所述聚酰亚胺复合材料的反应路线如下图所示:
Figure PCTCN2020099091-appb-000017
Figure PCTCN2020099091-appb-000018
以及
Figure PCTCN2020099091-appb-000019
图5为本申请提供的一种聚酰亚胺复合材料与现有的一种聚酰亚胺材料的 TGA热失重分析示意图。图6为本申请提供的一种聚酰亚胺复合材料与现有的一种聚酰亚胺材料的应力应变曲线图。以下将现有聚酰亚胺材料和本申请所述聚酰亚胺复合材料分别记为,化合物E和化合物F。
请参考图5,现有聚酰亚胺材料(化合物E)失重1%的温度在517℃,而本申请所述聚酰亚胺复合材料(化合物F)的失重1%的温度达到576℃,本申请所述聚酰亚胺复合材料的温度提高了近60℃。两相比较,明显本申请涉及的这种经由纳米无机粒子补强型的聚酰亚胺复合材料,在这一参数性能上具有一定优势。这也证明,通过将无机纳米粒子以共价键的形式连接于聚酰亚胺结构单元中的羰基键或P=O,使得聚酰亚胺和无机纳米粒子之间的相容性增强,同时因为无机纳米粒子的增强作用,使得其耐热性能提高。
进一步,分别对现有聚酰亚胺材料和本申请所述聚酰亚胺复合材料进行拉伸测试。请参考图6,现有聚酰亚胺材料的最大应力δmax=376.3MPa,εmax=11.75%,本申请所述聚酰亚胺复合材料进行拉伸性能δmax=465.5MPa,εmax=22.4%。
通过上述参数可以看出,通过引入无机纳米粒子,本申请所述聚酰亚胺复合材料的拉伸性能有以下变化:其最大应力从376.3MPa提升到465.5MPa,增长了23.7%;而断裂伸长率从11.75%提升到22.4%,增长了90.6%。
很显然,相比现有的聚酰亚胺材料的拉伸性能,本案涉及的聚酰亚胺复合材料其拉伸性能有了较大的提高,这里也就明确可以证明引入的纳米无机粒子对最终形成的本申请涉及的所述聚酰亚胺复合材料的分子结构起到了补强作用。
本申请还提供一种衬底基板,所述衬底基板的材料包括本申请所述的聚酰亚胺复合材料中的一种或多种。
如上所述,本申请所述聚酰亚胺复合材料的拉伸性能和抗弯折性能具有显著提升,进而本申请所述衬底基板的柔韧性能显著提高。也就是说,本申请所述衬底基板能用作柔性衬底基板,或用于柔性显示面板。
如图7所示,本申请还提供一种显示基板100,所述显示基板100包括一衬底基板10和设置于所述衬底基板10上的功能器件20。
其中,所述衬底基板10的材料为本申请所述的聚酰亚胺复合材料中的一种 或多种,或者,所述衬底基板10为本申请所述的衬底基板。通过采用本申请所述聚酰亚胺复合材料或本申请所述衬底基板,所述显示基板100的的抗弯折性能提升,有利于实现柔性显示。
具体地,所述功能器件20可以是薄膜晶体管(TFT)或有机电致发光器件(OLED)。
在一实施例中,所述功能器件20为薄膜晶体管(TFT),所述显示基板100相对应地可以为阵列基板。
在一另实施例中,所述功能器件20为有机电致发光器件(OLED),所述显示基板100相对应地为显示面板。在具体实施时,所述衬底基板10上可以设置用于驱动所述功能器件20的驱动电路。
但需要明确的是,本案涉及的所述聚酰亚胺复合材料并不限于用于衬底基板或显示基板,其可以用于各种适合的场景应用,只要其根据不同原料配比获得的目标复合物的性能参数符合要求即可。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种聚酰亚胺复合材料,其中,包括:所述聚酰亚胺复合材料的分子结构包括聚酰亚胺结构单元和无机纳米粒子,其中:
    所述聚酰亚胺结构单元包括羰基键或苯基氧化膦基团二者中的至少一种;
    所述无机纳米粒子为纳米氧化镁、纳米乙醇钙或纳米乙醇钡中的至少一种;
    并且,所述无机纳米粒子以化学键的方式连接于所述羰基键或所述苯基氧化膦基团上。
  2. 根据权利要求1所述的聚酰亚胺复合材料,其中,所述聚酰亚胺结构单元是以下式I-1至I-3中的至少一种:
    Figure PCTCN2020099091-appb-100001
    Figure PCTCN2020099091-appb-100002
  3. 一种聚酰亚胺复合材料的制备方法,其中,所述制备方法包括以下步骤:
    S1、由二胺和二酐进行聚合反应,得到聚酰胺酸溶液;
    S2、在所述聚酰胺酸溶液中引入无机纳米粒子,得到聚酰胺酸/无机纳米粒子混合液;以及,
    S3、使聚酰胺酸/无机纳米粒子混合液交联固化得到聚酰亚胺复合材料;
    其中,所述聚酰亚胺复合材料的分子结构包括聚酰亚胺结构单元和无机纳米粒子,所述聚酰亚胺结构单元包括羰基键或P=O二者中的至少一种;所述无机纳米粒子以化学键的方式连接于与所述羰基键或所述P=O。
  4. 根据权利要求3所述的聚酰亚胺复合材料的制备方法,其中,所述二胺包括苯基氧化膦基团。
  5. 根据权利要求3所述的聚酰亚胺复合材料的制备方法,其中,所述二胺是以下化合物中的至少一种:
    Figure PCTCN2020099091-appb-100003
    Figure PCTCN2020099091-appb-100004
  6. 根据权利要求3所述的聚酰亚胺复合材料的制备方法,其中,所述二酐是(4,4’-联苯醚二酐)、3,3’,4,4’-联苯四甲酸二酐或3,3',4,4’-二苯甲酮四羧酸二酐中的至少一种。
  7. 一种显示基板,包括一衬底基板以及设置于所述衬底基板上的功能器件,其中,所述衬底基板的材料包括聚酰亚胺复合材料中的至少一种,所述聚酰亚胺复合材料的分子结构包括聚酰亚胺结构单元和无机纳米粒子:
    所述聚酰亚胺结构单元包括羰基键或P=O二者中的至少一种;
    所述无机纳米粒子以化学键的方式连接于所述羰基键或所述P=O。
  8. 根据权利要求7所述的显示基板,所述聚酰亚胺结构单元包括苯基氧化膦基团。
  9. 根据权利要求7所述的显示基板,其中,所述聚酰亚胺结构单元是以下式I-1至I-3中的至少一种:
    Figure PCTCN2020099091-appb-100005
    Figure PCTCN2020099091-appb-100006
  10. 根据权利要求7所述的显示基板,其中,所述无机纳米粒子是纳米氧化镁、纳米乙醇钙或纳米乙醇钡中的至少一种。
PCT/CN2020/099091 2020-04-17 2020-06-30 聚酰亚胺复合材料及其制备方法和显示基板 WO2021208245A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/053,222 US20210324143A1 (en) 2020-04-17 2020-06-30 Polyimide composite material, manufacturing method thereof, and display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010304210.5 2020-04-17
CN202010304210.5A CN111393847B (zh) 2020-04-17 2020-04-17 一种聚酰亚胺复合材料及其制备方法和衬底基板

Publications (1)

Publication Number Publication Date
WO2021208245A1 true WO2021208245A1 (zh) 2021-10-21

Family

ID=71426511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099091 WO2021208245A1 (zh) 2020-04-17 2020-06-30 聚酰亚胺复合材料及其制备方法和显示基板

Country Status (2)

Country Link
CN (1) CN111393847B (zh)
WO (1) WO2021208245A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923330A (zh) * 2014-04-30 2014-07-16 山东中天华德科技发展有限公司 高导热性聚酰亚胺/氧化镁复合薄膜的制备方法
JP2014177554A (ja) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd 複合樹脂組成物
CN105111739A (zh) * 2015-09-14 2015-12-02 苏州嘉银绝缘材料有限公司 一种高导热聚酰亚胺薄膜及其制备方法
CN110698682A (zh) * 2019-09-27 2020-01-17 武汉华星光电半导体显示技术有限公司 一种聚酰亚胺复合物材料、其制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057035A (en) * 1997-06-06 2000-05-02 Triton Systems, Inc. High-temperature polymer/inorganic nanocomposites
CN101402796B (zh) * 2008-11-25 2010-08-25 北京航空航天大学 一种抗原子氧剥蚀的聚酰亚胺材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177554A (ja) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd 複合樹脂組成物
CN103923330A (zh) * 2014-04-30 2014-07-16 山东中天华德科技发展有限公司 高导热性聚酰亚胺/氧化镁复合薄膜的制备方法
CN105111739A (zh) * 2015-09-14 2015-12-02 苏州嘉银绝缘材料有限公司 一种高导热聚酰亚胺薄膜及其制备方法
CN110698682A (zh) * 2019-09-27 2020-01-17 武汉华星光电半导体显示技术有限公司 一种聚酰亚胺复合物材料、其制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI YINGLONG: "Study on Preparation And Properties of Polyimide/Nano-mgO Composites", CHINESE MASTER'S THESES FULL-TEXT DATABASE, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 June 2017 (2017-06-15), CN , XP055858015, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN111393847A (zh) 2020-07-10
CN111393847B (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
US8828476B2 (en) Polyimide nanocomposite and method for preparing same
CN111040450A (zh) 低介电含氟聚酰亚胺复合薄膜及其制备方法
CN108530628A (zh) 一种耐高温聚酰亚胺薄膜的制备方法
JP4497732B2 (ja) 水溶性ポリイミド前駆体、ポリイミド前駆体水溶液、その製法およびポリイミド
CN111808306B (zh) 一种低热膨胀系数的聚酰亚胺薄膜及其制备方法
WO2021031306A1 (zh) 疏水性聚酰亚胺材料及其制备方法与有机电致发光二极管
CN109251334B (zh) 一种高透光和低介电氟化石墨烯/聚酰亚胺复合薄膜的制备方法
WO2013034105A1 (zh) 液晶取向膜及其制备方法及包含该取向膜的液晶显示装置
KR101086073B1 (ko) 폴리우레아 다공질체-폴리이미드 복합체막 및 그 제조방법
CN111647159A (zh) 一种聚酰亚胺薄膜及其制备方法
CN112574411B (zh) 聚酰亚胺前体、聚酰亚胺薄膜及其制备方法以及显示装置
WO2021208245A1 (zh) 聚酰亚胺复合材料及其制备方法和显示基板
CN112409612B (zh) 一种高固含量低粘度聚酰胺酸溶液的制备方法
CN117285820A (zh) 一种聚酰亚胺高温电介质复合薄膜及其制备方法
CN112143000A (zh) 一种全有机pi/pvdf薄膜复合材料的制备方法
CN114230791B (zh) 本征型低介电含氟聚酰亚胺薄膜及其制备方法
CN112646180B (zh) 一种聚酰亚胺前体溶液及聚酰亚胺柔性显示基板
CN112625238B (zh) 一种储存稳定的高分子量聚酰亚胺前体溶液及柔性基板
CN111234218B (zh) 含胺基苯砜基六氟丙烷结构的可溶性聚酰亚胺的制备方法
KR101645064B1 (ko) 폴리이미드 및 이의 제조방법
KR20150078925A (ko) 폴리이미드실록산 공중합체 및 이로부터 제조된 필름
US20210324143A1 (en) Polyimide composite material, manufacturing method thereof, and display substrate
CN113603887B (zh) 一种钛酸钡与聚酰亚胺杂化材料的制备方法
CN110358134A (zh) 一种低介电常数聚酰亚胺薄膜及其制备方法
CN115216038B (zh) 一种高介电常数BT@SiC/PI复合薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931513

Country of ref document: EP

Kind code of ref document: A1