WO2021196426A1 - 高功率锂电池用电解液及其制备方法 - Google Patents

高功率锂电池用电解液及其制备方法 Download PDF

Info

Publication number
WO2021196426A1
WO2021196426A1 PCT/CN2020/098709 CN2020098709W WO2021196426A1 WO 2021196426 A1 WO2021196426 A1 WO 2021196426A1 CN 2020098709 W CN2020098709 W CN 2020098709W WO 2021196426 A1 WO2021196426 A1 WO 2021196426A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
power lithium
pyridine
borate
additive
Prior art date
Application number
PCT/CN2020/098709
Other languages
English (en)
French (fr)
Inventor
林红
赵卫民
任海
刘永
郭庆元
孙建勇
Original Assignee
山东海容电源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海容电源材料股份有限公司 filed Critical 山东海容电源材料股份有限公司
Publication of WO2021196426A1 publication Critical patent/WO2021196426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium battery electrolyte, in particular to an electrolyte for high-power lithium batteries and a method for preparing electrolyte for high-power lithium batteries.
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the purpose of the present invention is to provide an electrolyte for high-power lithium batteries and a method for preparing electrolyte for high-power lithium batteries to improve the performance of the positive and negative electrodes, so as to solve the problem of poor electrode film formation resulting in low lithium capacity, The problem of short cycle life and high impedance of the CEI film formed on the surface of the positive electrode.
  • the technical solution of the first aspect of the present invention provides an electrolyte for a high-power lithium battery, which includes a lithium salt and a non-aqueous organic solvent, and also includes a borate-based additive containing a B-O bond.
  • the addition of borate additives containing B-O bonds forms a relatively uniform and dense passivation film on the positive and negative electrodes, which significantly improves the cycle performance of the electrolyte.
  • the borate additives containing B-O bonds have the characteristics of high boiling point, high flash point, and non-flammability. Therefore, the electrolyte for high-power lithium batteries provided by the present invention also has certain flame retardant properties.
  • the borate additive containing BO bond of the present invention can form a compact SEI film containing BO bond and BOB bond on the surface of the negative electrode, which effectively prevents the decomposition of the electrolyte, and improves the uniformity and stability of the interface film between the electrode and the electrolyte liquid.
  • the electron-deficient boron-containing additives will also increase the solubility of LiF on the surface of the positive electrode, and the formed CEI film is thinner and has low impedance.
  • the structural formula of the borate additive is:
  • R1 and R2 are independently hydrogen, cyano, halo (C1-C10) alkyl, (C1-C10) alkyl, (C1-C10) alkoxy, (C1- C10) alkoxycarbonyl, (C3-C12) cycloalkyl, (C3-C12) heterocycloalkyl, (C6-C12) aryl, (C3-C12) heteroaryl or (C6-C12) aryl (C1-C10) alkyl. .
  • the structural formula of the borate additive is:
  • R3 and R4 are independently hydrogen, cyano, halo (C1-C10) alkyl, (C1-C10) alkyl, (C1-C10) alkoxy, (C1- C10) alkoxycarbonyl, (C3-C12) cycloalkyl, (C3-C12) heterocycloalkyl, (C6-C12) aryl, (C3-C12) heteroaryl or (C6-C12) aryl (C1-C10) alkyl.
  • the borate additives are further optimized.
  • the pyridine-3-boronic acid glycol ester additives are added to the lithium battery electrolyte.
  • the pyridine-3-boronic acid glycol ester additives can form BO-containing additives on the surface of the negative electrode of the electrode.
  • the compound of the bond and the BOB bond effectively prevents the decomposition of the electrolyte and forms a dense SEI film, which improves the uniformity and stability of the electrode and the electrolyte liquid interface film.
  • the electron-deficient boron-containing additives will also improve the surface of the positive electrode.
  • the solubility of LiF makes the CEI film thin and has low impedance.
  • the SEI film and CEI film of the electrolyte for high-power lithium batteries proposed in the present invention have good performance, thereby improving the cycle stability of the battery, and at the same time, it also has a certain resistance. Combustion performance.
  • substituents containing "alkyl”, “alkoxy” and the remaining “alkyl” moieties described in the present invention include all forms of linear or branched forms, and preferably have 1 to 4 carbon atom.
  • the "aryl group” described in the present invention is an organic radical derived from an aromatic hydrocarbon by removing one hydrogen, preferably in the form of a monocyclic or condensed ring containing 5 or 6 ring atoms, and also includes a plurality of aromatic radicals.
  • the base is connected by a single bond. Specific examples include phenyl, naphthyl, anthracenyl, etc., but are not limited to these.
  • borate additives are further optimized to As an additive, one or a combination of several of them can achieve greater effects in a smaller amount, have good film-forming properties of the positive and negative electrodes, and can significantly improve the cycle stability of the battery.
  • the mass concentration of the borate-based additives in the electrolyte for high-power lithium batteries is 0.2%-1.5%.
  • the electrolyte is injected into the battery cell with lithium cobalt oxide as the cathode material, and the product is prepared after chemical conversion and volume separation.
  • 2Ah soft pack batteries Cycle according to 1.0/1.0C charge and discharge current, the test voltage range is 3.0V-4.45V, the first-effect capacity retention rate can be as high as 80%, and the capacity retention rate after 100 weeks at 25°C can reach 77% or more.
  • the mass concentration of the borate additive is 0.2% to 1.5%, that is, 0.2 g to 1.5 g of the borate additive is added to every 100 g of the electrolyte.
  • the concentration of the lithium salt in the electrolyte for the high-power lithium battery is 1.0-1.5 mol/L.
  • the anhydrous organic solvent is any one or a combination of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC); lithium
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • lithium The salt is any one or a combination of lithium hexafluorophosphate, lithium perchlorate and lithium tetrafluoroborate.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the borate-based additive is 1,3-propanediol pyridine-3-borate, and the mass concentration of 1,3-propanediol pyridine-3-borate in the electrolyte for high-power lithium batteries is 0.5%-1.0%.
  • borate additives are further optimized, using 1,3-propanediol pyridine-3-borate as the additive and controlling the use of 1,3-propanediol pyridine-3-borate in the electrolyte for high-power lithium batteries.
  • the mass concentration of the battery is 0.5%-1.0%
  • the electrolyte is injected into the battery cell with lithium cobalt oxide as the positive electrode material, and the 2Ah soft-pack battery cell is obtained after chemical formation and volume separation.
  • Cycle according to 1.0/1.0C charge and discharge current the test voltage range is 3.0V-4.45V
  • the first-effect capacity retention rate can be as high as 83% or more
  • the capacity retention rate after 100 weeks can reach 80% or more at 25°C.
  • the anhydrous organic solvent is composed of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 1:1:1:1 Mixed solution
  • the lithium salt is lithium hexafluorophosphate
  • the concentration of the lithium salt in the electrolyte for high-power lithium batteries is 1.3 mol/L
  • the borate additives are pyridine-3-boronic acid 1,3-propanediol ester, pyridine-3-boronic acid 1
  • the mass concentration of 3-propanediol ester in the electrolyte for high-power lithium batteries is 1.0%.
  • the composition ratio of the electrolyte for high-power lithium batteries is further optimized, and the cycle performance of the electrolyte is further improved.
  • Post-production to obtain 2Ah soft-pack batteries Cycle according to 1.0/1.0C charge and discharge current, the test voltage range is 3.0V-4.45V, the first-effect capacity retention rate can be as high as 88% or more, and the capacity retention rate after 100 weeks can reach 84% or more at 25°C.
  • the technical solution of the second aspect of the present invention also provides a method for preparing an electrolyte for a high-power lithium battery, which includes the following steps: keeping the glove box moisture less than 10 ppm and oxygen content less than 1 ppm, and adding selected anhydrous organic solvents in sequence; Use a condenser to cool the added anhydrous organic solvent, slowly add the lithium salt at a temperature not higher than 10°C to make the lithium salt concentration the specified concentration, continue stirring until the solution becomes clear; add the specified quality of BO bond The borate-based additives of the phosphate, continue to stir until clear, the process is carried out under the protection of nitrogen.
  • a method for preparing an electrolyte for high-power lithium batteries is provided.
  • the preparation method is simple and can form a good SEI film and CEI film, thereby improving the cycle stability of the battery.
  • the prepared electrolyte has a certain resistance. Combustion performance.
  • the technical solution of the third aspect of the present invention provides a method for preparing 1,3-propanediol pyridine-3-boronic acid, which includes the following steps:
  • the preparation method of pyridine-3-boronic acid 1,3-propanediol ester is simple and reliable, and can be applied in the preparation of lithium battery non-aqueous electrolyte.
  • a borate-based additive containing BO bond is added to the lithium battery electrolyte.
  • the borate-based additive can form a compound containing BO bond and BOB bond on the surface of the negative electrode.
  • the dense SEI film effectively prevents the decomposition of the electrolyte. Improve the uniformity and stability of the interface film between the electrode and the electrolytic liquid phase.
  • the electron-deficient boron-containing additives will also increase the solubility of LiF on the positive electrode surface, forming a thin CEI film with low impedance, thus forming a good SEI Membrane and CEI membrane, thereby improving the cycle stability of the battery, and at the same time, the prepared electrolyte has a certain flame-retardant performance.
  • Fig. 1 shows a schematic diagram of the comparison of the mechanism of forming a CEI film on the positive electrode between a high-power lithium battery electrolyte according to an embodiment of the present invention and an existing lithium battery electrolyte without additives.
  • the invention discloses an electrolyte for a high-power lithium battery and a preparation method for an electrolyte for a high-power lithium battery.
  • Those skilled in the art can learn from the content of this article and appropriately improve the process parameters to achieve.
  • all similar replacements and modifications are obvious to those skilled in the art, and they are all deemed to be included in the present invention.
  • the method and application of the present invention have been described through the preferred embodiments. It is obvious that relevant persons can make changes or appropriate changes and combinations to the methods and applications described herein without departing from the content, spirit and scope of the present invention to achieve and Apply the technology of the present invention.
  • the pyridine boroxine compound is dissolved in toluene, ethylene glycol is added, and the reaction is carried out at a temperature of 120° C. for 2.5 hours, and the product is purified to obtain 1,3-propanediol pyridine-3-boronic acid.
  • the 1,3-propanediol pyridine-3-boronic acid ester can be used in the following preparation of electrolyte for high-power lithium batteries.
  • the volume ratio of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) is 1:1: Add 1:1 sequentially, cool the mixed solution with a condenser, slowly add lithium hexafluorophosphate at a temperature not higher than 10°C, the lithium salt concentration is 1.3mol/L, continue stirring until the solution becomes clear, and then add 0.2% Pyridine-3-boronic acid 1,3-propanediol ester, continue to stir until it is clear, the process is carried out under the protection of nitrogen.
  • the volume ratio of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) is 1:1: Add 1:1 sequentially, cool the mixed solution with a condenser, slowly add lithium hexafluorophosphate at a temperature not higher than 10°C, the lithium salt concentration is 1.3mol/L, continue stirring until the solution becomes clear, and then add 0.5% Pyridine-3-boronic acid 1,3-propanediol ester, continue to stir until clear, the process is carried out under the protection of nitrogen.
  • the volume ratio of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) is 1:1: Add 1:1 sequentially, cool the mixed solution with a condenser, slowly add lithium hexafluorophosphate at a temperature not higher than 10°C, the lithium salt concentration is 1.3mol/L, continue stirring until the solution becomes clear, and then add 1.0% Pyridine-3-boronic acid 1,3-propanediol ester, continue to stir until it is clear, the process is carried out under the protection of nitrogen.
  • the volume ratio of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) is 1:1: Add 1:1 sequentially, cool the mixed solution with a condenser, slowly add lithium hexafluorophosphate at a temperature not higher than 10°C, the lithium salt concentration is 1.3mol/L, continue stirring until the solution becomes clear, and then add 1.5% Pyridine-3-boronic acid 1,3-propanediol ester, continue to stir until it is clear, the process is carried out under the protection of nitrogen.
  • the volume ratio of dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) is 1:1: Add 1:1 sequentially, cool the mixed solution with a condenser, slowly add lithium hexafluorophosphate at a temperature not higher than 10°C, the lithium salt concentration is 1.3mol/L, continue stirring until the solution becomes clear, the process is Carried out under nitrogen protection.
  • the electrolytes prepared in the above-mentioned comparative examples and the examples were respectively injected into a battery cell with a positive electrode material of lithium cobalt oxide, after chemical formation and volume separation, a 2Ah soft-pack battery cell was obtained.
  • Example 2 Example 3
  • Example 4 First effect (%) 76.0 80.9 83.1 88.3 82.3 25°C, 100 weeks capacity retention rate (%) 69.5 77.8 79.7 84.0 78.9
  • Voltage platform (V) 3.19 3.24 3.29 3.32 3.21
  • the electrolyte for high-power lithium batteries proposed by the present invention is added with boric acid ester additives containing BO bonds, and the cycle performance of the electrolyte is significantly improved, the internal resistance of the battery becomes smaller, the voltage plateau becomes higher, and the additives
  • the mass concentration of the electrolyte is controlled at 0.5%-1.0%, the circulation performance of the electrolyte will be even better. If the concentration is too low, the additive will have a lower effect on improving electrolyte performance. If the concentration is too high, it will affect the ionic conductivity of the electrolyte.
  • the electrolyte for high-power lithium batteries significantly improves the cycle life of the battery.
  • the self-extinguishing time test (SET) is used to evaluate the flame-retardant performance of the electrolytes prepared in the above examples and comparative examples.
  • the specific operations of the self-extinguishing time test (SET) are as follows:
  • the glass fiber is made into a glass wool ball with a diameter of 5mm, and its mass is called M0.
  • the electrolyte for high-power lithium batteries proposed by the present invention has the characteristics of high flash point, high boiling point and non-flammability, which reduces the overall heat release value and spontaneous combustion rate of the battery, so that the prepared electrolyte has a certain resistance. Combustion performance.
  • the electrolyte for high-power lithium batteries proposed by the present invention improves the flame-retardant performance of the battery to a certain extent.
  • the addition of borate additives containing BO bonds can form compounds containing BO bonds and BOB bonds on the surface of the negative electrode of the electrode, effectively preventing the decomposition of the electrolyte, forming a dense SEI film, and improving The uniformity and stability of the interface film between the electrode and the electrolytic liquid phase.
  • the electron-deficient boron-containing additives will also increase the solubility of LiF on the surface of the positive electrode, forming a thinner CEI film with low impedance, and improving the performance of the positive electrode CEI film.
  • the additive has the characteristics of high flash point, high boiling point and non-flammability, which reduces the overall heat release value and spontaneous combustion rate of the battery, so that the prepared electrolyte has certain flame retardant properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种高功率锂电池用电解液和一种高功率锂电池用电解液制备方法,其中,高功率锂电池用电解液,包括锂盐和无水有机溶剂,还包括:含有B-O键的硼酸酯类添加剂。通过该技术方案,在锂电池电解液中加入含有B-O键的硼酸酯类添加剂,硼酸酯类添加剂在负极表面能够形成含B-O键和B-O-B键的化合物致密SEI膜有效的阻止了电解液的分解,提高电极与电解液相界面膜的均匀性和稳定性,同时,缺电子的含硼类添加剂也会提高正极表面的LiF的溶解度,形成CEI膜较薄并且具有低阻抗,从而形成了良好的SEI膜和CEI膜,进而提高了电池的循环稳定性,同时,制备的电解液具有一定的阻燃性能,适用于高功率锂电池。

Description

高功率锂电池用电解液及其制备方法 技术领域
本发明涉及锂电池电解液技术领域,具体而言,涉及一种高功率锂电池用电解液和一种高功率锂电池用电解液制备方法。
背景技术
随着密度电池需求量的持续增加,研究者对锂离子电池添加剂的设计、合成机理进行了深入研究。在锂离子电池的首次充放电的过程中,电解液会发生氧化分解,形成一层覆于电极材料的SEI膜。SEI膜只允许锂离子自由进出而溶剂分子无法穿越,这有效的阻止溶剂分子对电极的破坏,提高了锂电池的锂容量和循环寿命。能否在正极和负极表面形成致密和稳定的SEI膜是判断锂离子电池循环效率和可逆容量的标准之一。
因此,开发优良的添加剂来改善正负极的性能,成为改良高功率锂电池的关键。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的目的在于提供一种高功率锂电池用电解液和一种高功率锂电池用电解液制备方法,来改善正负极的性能,以解决电极成膜差导致锂容量低、循环寿命短、正极表面形成CEI膜阻抗高的问题。
为了实现上述目的,本发明的第一方面的技术方案提供了一种高功率锂电池用电解液,包括锂盐和无水有机溶剂,还包括:含有B-O键的硼酸酯类添加剂。
在该技术方案中,含有B-O键的硼酸酯类添加剂的加入,在正负极形成较为均匀致密的钝化膜,显著提高了电解液的循环性能。含有B-O键的硼酸酯类添加剂具有沸点高、闪点高以及不易燃的特点,因此本发明提出 的高功率锂电池用电解液也具备一定的阻燃性能。本发明的含有B-O键的硼酸酯类添加剂在负极表面能够形成含B-O键和B-O-B键的化合物致密SEI膜有效的阻止了电解液的分解,提高电极与电解液相界面膜的均匀性和稳定性,同时,缺电子的含硼类添加剂也会提高正极表面的LiF的溶解度,形成的CEI膜较薄并且具有低阻抗性。
优选地,硼酸酯类添加剂的结构式为:
[化学式1]
Figure PCTCN2020098709-appb-000001
其中,[化学式1]中,R1和R2相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。。
优选地,硼酸酯类添加剂的结构式为:
[化学式2]
Figure PCTCN2020098709-appb-000002
其中,[化学式2]中,R3和R4相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。
在该技术方案中,进一步优化了硼酸酯类添加剂,将吡啶-3-硼酸二醇酯类添加剂加入锂电池电解液中,吡啶-3-硼酸二醇酯类添加剂在电极负极表面能够形成含B-O键和B-O-B键的化合物有效的阻止了电解液的分解,形成致密SEI膜,提高电极与电解液相界面膜的均匀性和稳定性,同时, 缺电子的含硼类添加剂也会提高正极表面的LiF的溶解度,形成CEI膜较薄并且具有低阻抗,本发明提出的高功率锂电池用电解液的SEI膜和CEI膜性能良好,进而提高了电池的循环稳定性,同时,还具有一定的阻燃性能。
需要说明的是,本发明中所记载的包含「烷基」、「烷氧基」及其余的「烷基」部分的取代物包括直链或支链形态的所有形态,优选具有1至4个碳原子。
本发明中所记载的「芳基」作为通过去除一个氢而衍生自芳香族烃的有机自由基,优选包含5或6个环原子的单环或稠环类的形态,并且还包括多个芳基以单键连接的形态。具体例包括苯基、萘基和蒽基等,但不限定于此。
优选地,硼酸酯类添加剂为
Figure PCTCN2020098709-appb-000003
中的一种或几种的组合。
在该技术方案中,进一步优化了硼酸酯类添加剂为,以
Figure PCTCN2020098709-appb-000004
中的一种或几种的组合作为添加剂,在较少用量下,能够实现较大的效果,具有良好的正负极成膜性能,能够显著提高电池的循环稳定性。
优选地,硼酸酯类添加剂在高功率锂电池用电解液中的质量浓度为0.2%-1.5%。
在该技术方案中,通过控制锂电池电解液中硼酸酯类添加剂的质量浓度为0.2%-1.5%,将电解液注入到正极材料为钴酸锂的电芯中经过化成、分容后制得到2Ah的软包电芯。按照1.0/1.0C充放电电流进行循环,测试电压范围为3.0V-4.45V,首效容量保持率可以高达80%以上,25℃条件下, 100周后的容量保持率可以达到77%以上。
需要说明的是,硼酸酯类添加剂的质量浓度为0.2%-1.5%,也即每100g电解液中加入0.2g-1.5g硼酸酯类添加剂。
优选地,锂盐在高功率锂电池用电解液中的浓度为1.0-1.5mol/L。
优选地,无水有机溶剂为碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)中的任意一种或者几种的组合;锂盐为六氟磷酸锂、高氯酸锂和四氟硼酸锂中的任意一种或者几种的组合。
一般以碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按体积比1:1:1:1组成的混合液作为无水有机溶剂。
优选地,硼酸酯类添加剂为吡啶-3-硼酸1,3-丙二醇酯,吡啶-3-硼酸1,3-丙二醇酯在高功率锂电池用电解液中的质量浓度为0.5%-1.0%。
在该技术方案中,进一步优化了硼酸酯类添加剂,以吡啶-3-硼酸1,3-丙二醇酯作为添加剂,并控制吡啶-3-硼酸1,3-丙二醇酯在高功率锂电池用电解液中的质量浓度为0.5%-1.0%,将电解液注入到正极材料为钴酸锂的电芯中经过化成、分容后制得到2Ah的软包电芯。按照1.0/1.0C充放电电流进行循环,测试电压范围为3.0V-4.45V,首效容量保持率可以高达83%以上,25℃条件下,100周后的容量保持率可以达到80%以上。
优选地,无水有机溶剂为碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按体积比1:1:1:1组成的混合液,锂盐为六氟磷酸锂,锂盐在高功率锂电池用电解液中的浓度为1.3mol/L,硼酸酯类添加剂为吡啶-3-硼酸1,3-丙二醇酯,吡啶-3-硼酸1,3-丙二醇酯在高功率锂电池用电解液中的质量浓度为1.0%。
在该技术方案中,进一步优化了高功率锂电池用电解液的组分配比,进一步改善了电解液的循环性能,将电解液注入到正极材料为钴酸锂的电芯中经过化成、分容后制得到2Ah的软包电芯。按照1.0/1.0C充放电电流进行循环,测试电压范围为3.0V-4.45V,首效容量保持率可以高达88%以上,25℃条件下,100周后的容量保持率可以达到84%以上。
本发明的第二方面的技术方案还提供了一种高功率锂电池用电解液制备方法,包括以下步骤:保持手套箱水分<10ppm,氧分<1ppm,将选用 的无水有机溶剂依次加入;用冷凝器对加入的无水有机溶剂进行降温,在不高于10℃的温度下缓慢加入锂盐,使得锂盐浓度为指定浓度,继续搅拌直至溶液变得澄清;加入指定质量的含有B-O键的硼酸酯类添加剂,继续搅拌至澄清,该过程是在氮气保护下进行的。
在该技术方案中,提供了高功率锂电池用电解液的制备方法,制备方法简单,能够形成良好的SEI膜和CEI膜,进而提高电池的循环稳定性,同时制备的电解液具有一定的阻燃性能。
更为具体地,保持手套箱水分<10ppm,氧分<1ppm,将碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按体积比1:1:1:1的依次加入,用冷凝器对混合溶液进行降温,在温度不高于10℃情况下缓慢加入六氟磷酸锂,锂盐浓度为1.3mol/L,继续搅拌直到溶液变得澄清,而后加入1.0%吡啶-3-硼酸1,3-丙二醇酯,继续搅拌至澄清,该过程是在氮气保护下进行的。
本发明的第三方面的技术方案提供了一种吡啶-3-硼酸1,3-丙二醇酯的制备方法,包括以下步骤:
在惰性气体氛围中,将3-溴吡啶与硼酸三异丙酯溶解在甲苯和四氢呋喃混合溶剂中,加入n-丁基锂,于低温-70℃下发生取代反应,反应1h后,在低温-20℃下加入盐酸,冷却至室温后提纯即得到3-吡啶硼酸;
在惰性气体氛围中,将3-吡啶硼酸溶解在乙腈中,在酸性条件下,于70℃温度下反应30min,冷却至室温后生成吡啶环硼氧烷化合物;将吡啶环硼氧烷化合物溶解在甲苯中,加入乙二醇,于120℃温度条件下反应2.5h,对产物进行提纯后即得到吡啶-3-硼酸1,3-丙二醇酯。
在该技术方案中,吡啶-3-硼酸1,3-丙二醇酯的制备方法简单,可靠,能够在制备锂电池非水电解液中应用。
更为具体地,
Figure PCTCN2020098709-appb-000005
通过以上技术方案,在锂电池电解液中加入含有B-O键的硼酸酯类添加剂,硼酸酯类添加剂在负极表面能够形成含B-O键和B-O-B键的化合物致密SEI膜有效的阻止了电解液的分解,提高电极与电解液相界面膜的均匀性和稳定性,同时,缺电子的含硼类添加剂也会提高正极表面的LiF的溶解度,形成CEI膜较薄并且具有低阻抗,从而形成了良好的SEI膜和CEI膜,进而提高了电池的循环稳定性,同时,制备的电解液具有一定的阻燃性能。
本发明的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1示出了根据本发明的实施例的高功率锂电池用电解液与现有不加添加剂的锂电池电解液在正极形成CEI膜的机理对比示意图。
具体实施方式
本发明公开了一种高功率锂电池用电解液和一种高功率锂电池用电解液制备方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳 实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
下面结合实施例,进一步阐述本发明:
制备吡啶-3-硼酸1,3-丙二醇酯,在惰性气体氛围中,将3-溴吡啶与硼酸三异丙酯溶解在甲苯和四氢呋喃混合溶剂中,加入n-丁基锂,于低温-70℃下发生取代反应,反应1h后,在低温-20℃下加入盐酸,冷却至室温后提纯即得到3-吡啶硼酸;
在惰性气体氛围中,将3-吡啶硼酸溶解在乙腈中,在酸性条件下,于70℃温度下反应30min,冷却至室温后生成吡啶环硼氧烷化合物;
将吡啶环硼氧烷化合物溶解在甲苯中,加入乙二醇,于120℃温度条件下反应2.5h,对产物进行提纯后即得到吡啶-3-硼酸1,3-丙二醇酯。
Figure PCTCN2020098709-appb-000006
此吡啶-3-硼酸1,3-丙二醇酯可在下述制备高功率锂电池用电解液中应用。
实施例1
保持手套箱水分<10ppm,氧分<1ppm,将碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按体积比1:1:1:1 的依次加入,用冷凝器对混合溶液进行降温,在温度不高于10℃情况下缓慢加入六氟磷酸锂,锂盐浓度为1.3mol/L,继续搅拌直到溶液变得澄清,而后加入0.2%吡啶-3-硼酸1,3-丙二醇酯,继续搅拌至澄清,该过程是在氮气保护下进行的。
实施例2
保持手套箱水分<10ppm,氧分<1ppm,将碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按体积比1:1:1:1的依次加入,用冷凝器对混合溶液进行降温,在温度不高于10℃情况下缓慢加入六氟磷酸锂,锂盐浓度为1.3mol/L,继续搅拌直到溶液变得澄清,而后加入0.5%吡啶-3-硼酸1,3-丙二醇酯,继续搅拌至澄清,该过程是在氮气保护下进行的。
实施例3
保持手套箱水分<10ppm,氧分<1ppm,将碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按体积比1:1:1:1的依次加入,用冷凝器对混合溶液进行降温,在温度不高于10℃情况下缓慢加入六氟磷酸锂,锂盐浓度为1.3mol/L,继续搅拌直到溶液变得澄清,而后加入1.0%吡啶-3-硼酸1,3-丙二醇酯,继续搅拌至澄清,该过程是在氮气保护下进行的。
实施例4
保持手套箱水分<10ppm,氧分<1ppm,将碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按体积比1:1:1:1的依次加入,用冷凝器对混合溶液进行降温,在温度不高于10℃情况下缓慢加入六氟磷酸锂,锂盐浓度为1.3mol/L,继续搅拌直到溶液变得澄清,而后加入1.5%吡啶-3-硼酸1,3-丙二醇酯,继续搅拌至澄清,该过 程是在氮气保护下进行的。
对比例
保持手套箱水分<10ppm,氧分<1ppm,将碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按体积比1:1:1:1的依次加入,用冷凝器对混合溶液进行降温,在温度不高于10℃情况下缓慢加入六氟磷酸锂,锂盐浓度为1.3mol/L,继续搅拌直到溶液变得澄清,该过程是在氮气保护下进行的。
将上述对比例和实施例制备的电解液分别注入到正极材料为钴酸锂的电芯中经过化成、分容后制得到2Ah的软包电芯。按照1.0/1.0C充放电电流进行循环,测试电压范围为3.0-4.45V,记录25℃条件下,100周后的电池循环性能、电池内阻以及电压平台列于表1。
表1
项目 对比例 实施例1 实施例2 实施例3 实施例4
首效(%) 76.0 80.9 83.1 88.3 82.3
25℃,100周的容量保持率(%) 69.5 77.8 79.7 84.0 78.9
电池内阻(Ω) 0.16 0.12 0.09 0.07 0.11
电压平台(V) 3.19 3.24 3.29 3.32 3.21
由表1可见,本发明提出的高功率锂电池用电解液由于加入了含有B-O键的硼酸酯类添加剂,电解液的循环性能得到了明显改善,电池内阻变小,电压平台变高,添加剂的质量浓度控制在0.5%-1.0%时,电解液的循环性能更加,浓度过低,添加剂对电解液性能改良效果较低,浓度过高,则会影响电解质的离子导电性,本发明提出的高功率锂电池用电解液明显改善了电池的循环寿命。
将上述实施例和对比例中所制备的电解液,在常温常压下放置5h,观 察电解液的溶解状态,测试相容性,观察结果如下表2所示。
通过自熄灭时间测试(SET)来评价上述实施例和对比例中所制备的电解液的阻燃性能,自熄灭时间测试(SET)的具体操作如下:
把玻璃纤维做成直径为5mm的玻璃棉球,称其质量为M0,将玻璃棉球放在比较例和实施例中所制备的电解液中浸泡,称其质量为M1,把浸泡好的玻璃棉球放在圆形铁丝上迅速点燃,记录点火装置移开后到火焰自动熄灭的时间T,自熄灭时间T1=T/(M1-M0),测量三次取平均值,测试结果如下表2所示。
表2
项目 对比例 实施例1 实施例2 实施例3 实施例4
相容性 均匀 均匀 均匀 均匀 均匀
自熄时间(s/g) >60 45.1 32.2 26.8 18.8
由表2可见,本发明提出的高功率锂电池用电解液由于具有闪点高、沸点高和不易燃的特点,降低了电池整体放热值和自燃率,使得制备的电解液具有一定的阻燃性能。本发明提出的高功率锂电池用电解液一定程度上改善了电池的阻燃性能。
本发明提出的高功率锂电池用电解液,加入含有B-O键的硼酸酯类添加剂能够在电极负极表面形成含B-O键和B-O-B键的化合物有效的阻止了电解液的分解,形成致密SEI膜,提高电极与电解液相界面膜的均匀性和稳定性。同时,如图1所示,缺电子的含硼类添加剂也会提高正极表面的LiF的溶解度,形成CEI膜较薄并且具有低阻抗,提升了电极正极CEI膜的性能。另外,该添加剂具有闪点高、沸点高和不易燃的特点,降低了电池整体放热值和自燃率,使得制备的电解液具有一定的阻燃性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高功率锂电池用电解液,其特征在于,包括锂盐和无水有机溶剂,还包括:含有B-O键的硼酸酯类添加剂。
  2. 根据权利要求1所述的高功率锂电池用电解液,其特征在于,所述硼酸酯类添加剂的结构式为:
    [化学式1]
    Figure PCTCN2020098709-appb-100001
    其中,所述[化学式1]中,R 1和R 2相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。
  3. 根据权利要求1所述的高功率锂电池用电解液,其特征在于,所述硼酸酯类添加剂的结构式为:
    [化学式2]
    Figure PCTCN2020098709-appb-100002
    其中,所述[化学式2]中,R 3和R 4相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。
  4. 根据权利要求2所述的高功率锂电池用电解液,其特征在于,所述硼酸酯类添加剂为吡啶-3-硼酸二醇酯类添加剂,所述吡啶-3-硼酸二醇酯类添加剂为
    Figure PCTCN2020098709-appb-100003
    中的一种或几种的组合。
  5. 根据权利要求1至4中任一项所述的高功率锂电池用电解液,其特征在于,
    所述硼酸酯类添加剂在所述高功率锂电池用电解液中的质量浓度为0.2%-1.5%。
  6. 根据权利要求5所述的高功率锂电池用电解液,其特征在于,
    所述锂盐在所述高功率锂电池用电解液中的浓度为1.0-1.5mol/L;
    所述无水有机溶剂为碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)中的任意一种或者几种的组合;
    所述锂盐为六氟磷酸锂、高氯酸锂和四氟硼酸锂中的任意一种或者几种的组合。
  7. 根据权利要求6所述的高功率锂电池用电解液,其特征在于,
    所述硼酸酯类添加剂为吡啶-3-硼酸1,3-丙二醇酯,所述吡啶-3-硼酸1,3-丙二醇酯在所述高功率锂电池用电解液中的质量浓度为0.5%-1.0%。
  8. 根据权利要求7所述的高功率锂电池用电解液,其特征在于,
    所述无水有机溶剂为碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按体积比1:1:1:1组成的混合液,所述锂盐为六氟磷酸锂,所述锂盐在所述高功率锂电池用电解液中的浓度为1.3mol/L,所述硼酸酯类添加剂为吡啶-3-硼酸1,3-丙二醇酯,所述吡啶-3-硼酸1,3-丙二醇酯在所述高功率锂电池用电解液中的质量浓度为1.0%。
  9. 一种高功率锂电池用电解液制备方法,其特征在于,包括以下步骤:
    保持手套箱水分<10ppm,氧分<1ppm,将选用的无水有机溶剂依次加入;
    用冷凝器对加入的无水有机溶剂进行降温,在不高于10℃的温度下缓慢加入锂盐,使得锂盐浓度为指定浓度,继续搅拌直至溶液变得澄清;
    加入指定质量的含有B-O键的硼酸酯类添加剂,继续搅拌至澄清,该 过程是在氮气保护下进行的。
  10. 一种吡啶-3-硼酸1,3-丙二醇酯的制备方法,其特征在于,包括以下步骤:
    在惰性气体氛围中,将3-溴吡啶与硼酸三异丙酯溶解在甲苯和四氢呋喃混合溶剂中,加入n-丁基锂,于低温-70℃下发生取代反应,反应1h后,在低温-20℃下加入盐酸,冷却至室温后提纯即得到3-吡啶硼酸;
    在惰性气体氛围中,将3-吡啶硼酸溶解在乙腈中,在酸性条件下,于70℃温度下反应30min,冷却至室温后生成吡啶环硼氧烷化合物;将吡啶环硼氧烷化合物溶解在甲苯中,加入乙二醇,于120℃温度条件下反应2.5h,对产物进行提纯后即得到吡啶-3-硼酸1,3-丙二醇酯。
PCT/CN2020/098709 2020-03-30 2020-06-29 高功率锂电池用电解液及其制备方法 WO2021196426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010236233.7 2020-03-30
CN202010236233.7A CN111261941A (zh) 2020-03-30 2020-03-30 高功率锂电池用电解液及其制备方法

Publications (1)

Publication Number Publication Date
WO2021196426A1 true WO2021196426A1 (zh) 2021-10-07

Family

ID=70953328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098709 WO2021196426A1 (zh) 2020-03-30 2020-06-29 高功率锂电池用电解液及其制备方法

Country Status (2)

Country Link
CN (1) CN111261941A (zh)
WO (1) WO2021196426A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477632A (zh) * 2022-08-30 2022-12-16 惠州市宙邦化工有限公司 一种碳酸乙烯酯的提纯方法
CN115602911A (zh) * 2022-11-07 2023-01-13 中创新航科技股份有限公司(Cn) 一种锂离子电池
CN117457987A (zh) * 2023-11-28 2024-01-26 广东聚圣科技有限公司 一种电解液添加剂及其制备方法和电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755747B (zh) * 2019-03-29 2021-09-21 比亚迪股份有限公司 一种非水电解液、含有该非水电解液的电池及含有该电池的车辆
CN111261941A (zh) * 2020-03-30 2020-06-09 山东海容电源材料股份有限公司 高功率锂电池用电解液及其制备方法
CN112952197B (zh) * 2021-01-26 2023-01-24 宁德新能源科技有限公司 电解液、电化学装置和电子装置
CN116154101A (zh) * 2021-05-24 2023-05-23 宁德新能源科技有限公司 电化学装置和电子装置
CN113690487B (zh) * 2021-07-30 2022-07-22 惠州锂威新能源科技有限公司 一种二次电池电解液及二次电池
CN113764735A (zh) * 2021-09-08 2021-12-07 湖南大学 一种电解液及锂电池
CN116864811B (zh) * 2023-08-30 2023-11-28 香河昆仑新能源材料股份有限公司 一种高温性能优异的电池电解液及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440587A (zh) * 2018-04-13 2018-08-24 上海泰坦科技股份有限公司 一种单杂环硼酸的制备方法
CN108598488A (zh) * 2018-06-08 2018-09-28 东莞市杉杉电池材料有限公司 一种高能量密度锂离子电池及其电解液
CN110931862A (zh) * 2019-10-31 2020-03-27 合肥国轩高科动力能源有限公司 一种双功能电解液添加剂及含有该添加剂的锂离子电池电解液
CN111261941A (zh) * 2020-03-30 2020-06-09 山东海容电源材料股份有限公司 高功率锂电池用电解液及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943883A (zh) * 2014-04-23 2014-07-23 华南师范大学 硼酸酯类化合物作为高电压锂离子电池电解液添加剂的应用
CN105406121B (zh) * 2015-12-16 2018-08-14 东莞市杉杉电池材料有限公司 一种匹配硅碳负极锂离子电池电解液及硅碳负极锂离子电池
CN107331892B (zh) * 2016-04-28 2021-06-18 比亚迪股份有限公司 一种电解液、正极及其制备方法和一种锂离子电池
WO2018127928A1 (en) * 2017-01-09 2018-07-12 The Australian National University Synergists for improved pesticides
WO2018169112A1 (ko) * 2017-03-17 2018-09-20 울산과학기술원 리튬 이차 전지용 전해질 첨가제 및 이의 제조 방법, 상기 첨가제를 포함하는 전해질 및 이의 제조 방법, 및 상기 첨가제를 포함하는 리튬 이차 전지리륨 이차 전지
CN107221702A (zh) * 2017-04-28 2017-09-29 山东海容电源材料股份有限公司 一种4.45v高电压锂电池电解液
US10826111B2 (en) * 2018-04-24 2020-11-03 Gotion, Inc. Pre-cell formation electrodes and lithium ion batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440587A (zh) * 2018-04-13 2018-08-24 上海泰坦科技股份有限公司 一种单杂环硼酸的制备方法
CN108598488A (zh) * 2018-06-08 2018-09-28 东莞市杉杉电池材料有限公司 一种高能量密度锂离子电池及其电解液
CN110931862A (zh) * 2019-10-31 2020-03-27 合肥国轩高科动力能源有限公司 一种双功能电解液添加剂及含有该添加剂的锂离子电池电解液
CN111261941A (zh) * 2020-03-30 2020-06-09 山东海容电源材料股份有限公司 高功率锂电池用电解液及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FINCH ARTHUR, LOCKHART J. C.: "721. Cyclic boronates and their amine complexes", JOURNAL OF THE CHEMICAL SOCIETY, 1 January 1962 (1962-01-01), pages 3723, XP055854708, ISSN: 0368-1769, DOI: 10.1039/jr9620003723 *
HAN YOUNG-KYU; LEE KEONJOON; YOO JAEIK; HUH YUN SUK: "Virtual screening of borate derivatives as high-performance additives in lithium-ion batteries", THEORETICAL CHEMISTRY ACCOUNTS : THEORY, COMPUTATION, AND MODELING ; THEORETICA CHIMICA ACTA, SPRINGER, BERLIN, DE, vol. 133, no. 10, 21 August 2014 (2014-08-21), DE, pages 1 - 8, XP035403307, ISSN: 1432-881X, DOI: 10.1007/s00214-014-1562-x *
SALAZAR-MENDOZA DOMINGO, CRUZ-HUERTA JORGE, HÖPFL H., HERNÁNDEZ-AHUACTZI IRÁN F., SANCHEZ MARIO: "Macrocycles and Coordination Polymers Derived from Self-Complementary Tectons Based on N -Containing Boronic Acids", CRYSTAL GROWTH & DESIGN, ASC WASHINGTON DC, US, vol. 13, no. 6, 5 June 2013 (2013-06-05), US, pages 2441 - 2454, XP055854707, ISSN: 1528-7483, DOI: 10.1021/cg400144t *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477632A (zh) * 2022-08-30 2022-12-16 惠州市宙邦化工有限公司 一种碳酸乙烯酯的提纯方法
CN115477632B (zh) * 2022-08-30 2023-11-03 惠州市宙邦化工有限公司 一种碳酸乙烯酯的提纯方法
CN115602911A (zh) * 2022-11-07 2023-01-13 中创新航科技股份有限公司(Cn) 一种锂离子电池
CN115602911B (zh) * 2022-11-07 2023-03-03 中创新航科技股份有限公司 一种锂离子电池
CN117457987A (zh) * 2023-11-28 2024-01-26 广东聚圣科技有限公司 一种电解液添加剂及其制备方法和电池

Also Published As

Publication number Publication date
CN111261941A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021196426A1 (zh) 高功率锂电池用电解液及其制备方法
CN109818064B (zh) 一种高温高电压非水电解液及含该非水电解液的锂离子电池
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
CN108923066B (zh) 一种锂离子电池阻燃电解液
WO2021196429A1 (zh) 一种高电压锂离子电池电解液及其制备方法
CN110391457B (zh) 电解液及锂离子电池
CN109390631A (zh) 一种高镍三元正极材料电解液
WO2019196417A1 (zh) 一种锂离子电池电解液
WO2021196427A1 (zh) 阻燃型锂离子电池电解液
CN108987808A (zh) 一种高电压锂离子电池非水电解液及锂离子电池
CN109585924A (zh) 三(烷胺基)膦化合物的应用、锂离子电池及其电解液和电解液添加剂
CN112467212B (zh) 一种硅碳负极用锂离子电池电解液及锂离子电池
CN117080560A (zh) 一种低温型钠离子电池用电解液和钠离子电池
CN109786830B (zh) 一种含硅溶剂和噻吩类添加剂的电解液及使用该电解液的锂离子电池
CN114497741B (zh) 一种高电压电解液以及锂离子电池
CN114497738B (zh) 一种高温高电压型电解液及含有该电解液的电池
CN111490293B (zh) 非水电解液添加剂、非水电解液及锂离子电池
CN109802177B (zh) 一种含硅溶剂和吡啶类添加剂的电解液及使用该电解液的锂离子电池
CN111349030A (zh) 双[(三氟代甲基)磺酰基]甲烷的合成方法
CN109449480A (zh) 一种添加剂及电解液及三元锂离子电池
CN114315903B (zh) 一种环状双磷酸酯类化合物、其制备方法及其应用
CN113659210B (zh) 一种高温型锂离子电池电解液及锂离子电池
CN111883840B (zh) 一种锂电子电池阻燃电解液添加剂
CN115579521B (zh) 电解液添加剂、电解液及锂离子电池
WO2023123673A1 (zh) 一种非水电解液及含有该非水电解液的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929522

Country of ref document: EP

Kind code of ref document: A1