WO2021196427A1 - 阻燃型锂离子电池电解液 - Google Patents

阻燃型锂离子电池电解液 Download PDF

Info

Publication number
WO2021196427A1
WO2021196427A1 PCT/CN2020/098710 CN2020098710W WO2021196427A1 WO 2021196427 A1 WO2021196427 A1 WO 2021196427A1 CN 2020098710 W CN2020098710 W CN 2020098710W WO 2021196427 A1 WO2021196427 A1 WO 2021196427A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
ion battery
trithiophosphate
battery electrolyte
lithium ion
Prior art date
Application number
PCT/CN2020/098710
Other languages
English (en)
French (fr)
Inventor
赵卫民
林红
刘永
孙建勇
程云
卢晓辉
Original Assignee
山东海容电源材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海容电源材料股份有限公司 filed Critical 山东海容电源材料股份有限公司
Publication of WO2021196427A1 publication Critical patent/WO2021196427A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • C07F9/1651Esters of thiophosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • C07F9/17Esters of thiophosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/16Esters of thiophosphoric acids or thiophosphorous acids
    • C07F9/165Esters of thiophosphoric acids
    • C07F9/173Esters of thiophosphoric acids with unsaturated acyclic alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium ion batteries, in particular to a method for preparing a flame-retardant lithium ion battery electrolyte and a trithiophosphate additive.
  • lithium-ion batteries have become one of the new energy sources with great potential. Due to the characteristics of long cycle life and high energy density, lithium-ion batteries have begun to occupy the power supply market for electronic products. However, when lithium-ion battery electrolyte is subjected to mechanical shock, thermal shock or overcharge short circuit, the following reactions will occur:
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the purpose of the present invention is to provide a flame-retardant lithium-ion battery electrolyte to improve the safety performance of the lithium-ion battery electrolyte, thereby improving the safety performance of the lithium-ion battery, thereby reducing or preventing the lithium-ion battery from being exposed to mechanical The phenomenon of fire and explosion under the conditions of shock, thermal shock, overcharge and short circuit.
  • the technical solution of the present invention provides a flame-retardant lithium ion battery electrolyte, including: lithium salt, anhydrous organic solvent, film-forming additives and trithiophosphate additives, trithiophosphate additives
  • a flame-retardant lithium ion battery electrolyte including: lithium salt, anhydrous organic solvent, film-forming additives and trithiophosphate additives, trithiophosphate additives
  • the structural formula is:
  • R 1 , R 2 and R 3 are independently hydrogen, cyano, halo(C1-C10)alkyl, (C1-C10)alkyl, (C1-C10)alkoxy, (C1-C10) alkoxycarbonyl, (C3-C12) cycloalkyl, (C3-C12) heterocycloalkyl, (C6-C12) aryl, (C3-C12) heteroaryl or (C6-C12 ) Aryl(C1-C10)alkyl.
  • trithiophosphate additives are added to the lithium ion battery electrolyte.
  • the trithiophosphate additives When the trithiophosphate additives are stimulated by the external environment, they will release free radicals with flame retardant properties.
  • the H ⁇ and HO ⁇ in the primary cell reaction prevent the chain reaction from proceeding, making the burning of the electrolyte impossible.
  • Phosphate ester flame retardants can decompose to form a non-combustible liquid film of phosphoric acid when burned.
  • the phosphoric acid is further dehydrated to form metaphosphoric acid, and metaphosphoric acid is polymerized to form polymetaphosphoric acid.
  • the trithiophosphate additives proposed in the present invention have good compatibility with the lithium ion battery electrolyte. While significantly improving the flame retardancy of the lithium ion battery, it can be fully dissolved in the lithium ion battery electrolyte. The performance of the electrolyte itself also improves the safety performance of the battery.
  • the trithiophosphate additives account for 3% to 5% of the total mass fraction of the flame-retardant lithium ion battery electrolyte.
  • the trithiophosphate additives account for 3% to 5% of the total mass fraction of the flame-retardant lithium-ion battery electrolyte, which can effectively improve the flame-retardant performance of the electrolyte.
  • the self-extinguishing time test (SET) The self-extinguishing time can reach less than 2s/g.
  • concentration of trithiophosphate additives is too low, the effect of improving electrolyte performance is poor, and it is difficult to effectively reduce the battery's heat release value and spontaneous combustion rate.
  • the concentration of trithiophosphate additives is too high. At this time, it is difficult to dissolve fully in the electrolyte, which affects other properties of the electrolyte itself. Therefore, it is more appropriate to control the trithiophosphate additives to account for 3%-5% of the total mass fraction of the flame-retardant lithium-ion battery electrolyte.
  • substituents containing "alkyl”, “alkoxy” and the remaining “alkyl” moieties described in the present invention include straight or branched forms, and preferably have 1 to 4 carbons. atom.
  • aryl group is an organic radical derived from an aromatic hydrocarbon by removing one hydrogen, and includes the form of a monocyclic or condensed ring containing 5 or 6 ring atoms in each ring, and also includes A form in which multiple aryl groups are connected by a single bond. Specific examples include phenyl, naphthyl, anthracenyl, etc., but are not limited to these.
  • the flame-retardant mechanism of the flame-retardant lithium ion electrolyte proposed by the present invention is specifically as follows:
  • Step 1 Phosphate ester flame retardants can decompose to form a non-combustible liquid film of phosphoric acid when burned.
  • the phosphoric acid is further dehydrated to form metaphosphoric acid, and metaphosphoric acid is polymerized to form polymetaphosphoric acid.
  • Step 2 The generated polymetaphosphoric acid is a strong dehydrating agent, which dehydrates and carbonizes the solvent, which changes the combustion process of the solvent and forms a carbon film on its surface to isolate the air.
  • the trithiophosphate additives are 1,2,4-tributyltrithiophosphate, and 1,2,4-tributyltrithiophosphate accounts for the total mass fraction of the flame-retardant lithium-ion battery electrolyte 5%.
  • 1,2,4-tributyl trithiophosphate is used as trithiophosphate ester additives, 1,2,4-tributyl trithiophosphate is low in cost and easy to obtain.
  • the mass ratio of 1,2,4-tributyl trithiophosphate is further optimized, and the flame retardant performance of the electrolyte is effectively improved.
  • the self-extinguishing time in the self-extinguishing time test (SET) can reach 1s/g and below. This is further conducive to improving the safety performance of the battery.
  • the lithium salt is any one or a combination of lithium hexafluorophosphate, lithium tetrafluoroborate, and lithium dioxalate borate.
  • the concentration of the lithium salt in the flame-retardant lithium ion battery electrolyte is 1.0 mol/L-1.5 mol/L.
  • the anhydrous organic solvent is dimethyl carbonate (DMC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), propylene carbonate (PC) and methyl propyl carbonate (MPC) any one or a combination of several.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • MPC methyl propyl carbonate
  • the film-forming additive is vinylene carbonate (VC) or fluoroethylene carbonate (FEC) or propylene sulfate (PCS) or [Chemical formula 2]
  • R4 and R5 are each independently hydrogen, (C1-C10) alkyl, halogen atom, (C2-C10) alkenyl, (C1-C10) alkyl substituted by halogen, or Halogen substituted (C2-C10) alkenyl,
  • R6 and R7 are each independently hydrogen, (C1-C10) alkyl, halogen atom, (C2-C10) alkenyl, (C1-C10) alkyl substituted by halogen, or Halogen substituted (C2-C10) alkenyl,
  • the anhydrous organic solvent is a mixed solution composed of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) at a mass ratio of 1:1:1;
  • the lithium salt is lithium hexafluorophosphate, lithium salt
  • the concentration is 1.2mol/L;
  • the film-forming additives are vinylene carbonate (VC) and fluoroethylene carbonate (FEC), and the film-forming additives account for 1% of the total mass fraction of the flame-retardant lithium ion battery electrolyte; trithiophosphoric acid
  • the ester additive is 1,2,4-tributyl trithiophosphate, and 1,2,4-tributyl trithiophosphate accounts for 5% of the total mass fraction of the flame-retardant lithium ion battery electrolyte.
  • the composition ratio of the flame-retardant lithium-ion battery electrolyte is further optimized, and the flame-retardant performance of the electrolyte is further improved.
  • the self-extinguishing time in the self-extinguishing time test (SET) can reach 1s/g and below , Thereby further improving the safety performance of the battery.
  • the technical solution of the second aspect of the present invention provides a preparation method of trithiophosphate additives, including the following steps:
  • reaction solution was lowered to room temperature, ice-water bath treatment was performed, hydrogen peroxide was slowly added dropwise, and the temperature was kept at 60°C for 2 hours to carry out the oxidation reaction.
  • the product obtained after the reaction was purified to obtain an oily liquid, which is a trithiophosphate additive. .
  • the preparation method of the trithiophosphate additives is simple and the operability is strong, and the trithiophosphate additives prepared by this method can be used in the preparation of lithium battery non-aqueous electrolytes.
  • Oxidation reaction reduce the reaction solution to room temperature, perform ice-water bath treatment, slowly add 30g hydrogen peroxide dropwise, keep it at 60°C for 2h, and purify the product obtained after the reaction to obtain an oily liquid that is 1,2,4-tri Butyl trithiophosphate.
  • trithiophosphate additives are added to the lithium ion battery electrolyte to be flame retardant. Because the trithiophosphate additives have the characteristics of high flash point, high boiling point and non-flammability, the heat release value and spontaneous combustion of the battery are reduced. It improves the flame retardancy of the prepared electrolyte. At the same time, the trithiophosphate additives proposed by the present invention have better compatibility with the lithium ion battery electrolyte, which can significantly improve the flame retardancy of the lithium ion battery at the same time. , It can be fully dissolved in the electrolyte of lithium-ion batteries, which not only protects the performance of the electrolyte itself, but also improves the safety performance of the battery.
  • the invention discloses a flame-retardant lithium ion battery electrolyte, and those skilled in the art can learn from the content of this article and appropriately improve the process parameters to achieve.
  • all similar replacements and modifications are obvious to those skilled in the art, and they are all deemed to be included in the present invention.
  • the method and application of the present invention have been described through the preferred embodiments. It is obvious that relevant persons can make changes or appropriate changes and combinations to the methods and applications described herein without departing from the content, spirit and scope of the present invention to achieve and Apply the technology of the present invention.
  • Oxidation reaction reduce the reaction solution to room temperature, perform ice-water bath treatment, slowly add 30g hydrogen peroxide dropwise, keep it at 60°C for 2h, and purify the product obtained after the reaction to obtain an oily liquid that is 1,2,4-tri Butyl trithiophosphate.
  • This 1,2,4-tributyl trithiophosphate can be used in the preparation of the following electrolyte.
  • the moisture content is less than 10ppm.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • Ester (FEC) and finally add a mass fraction of 1% 1,2,4-tributyl trithiophosphate flame retardant and continue to stir until the solution becomes clear.
  • the moisture content is less than 10ppm.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • Ester (FEC) and finally add 3% mass fraction of 1,2,4-tributyl trithiophosphate flame retardant and continue to stir until the solution becomes clear.
  • the moisture content is less than 10ppm.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • Ester (FEC) and finally add 5% mass fraction of 1,2,4-tributyl trithiophosphate flame retardant and continue stirring until the solution becomes clear.
  • the moisture content is less than 10ppm.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • Ester (FEC) and finally add a mass fraction of 7% 1,2,4-tributyl trithiophosphate flame retardant and continue to stir until the solution becomes clear.
  • the moisture content is less than 10ppm.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • FEC Vinyl ester
  • the electrolytes prepared in the examples and comparative examples were placed at room temperature and pressure for 5 hours to observe the dissolution state of the electrolytes and test the compatibility. The observation results are shown in Table 1 below.
  • the self-extinguishing time test (SET) was used to evaluate the flame retardant performance of the electrolytes prepared in the examples and comparative examples.
  • the specific operations of the self-extinguishing time test (SET) are as follows:
  • the glass fiber is made into a glass wool ball with a diameter of 5mm, and its mass is called M0.
  • the trithiophosphate additives added to the flame-retardant lithium-ion battery electrolyte proposed by the present invention can significantly improve the flame-retardant performance of the electrolyte, and the concentration of the additives is better if the concentration of the additives is controlled at 3%-5%. , If the concentration is too low, the additives will have a poor improvement effect on the electrolyte performance, and cannot effectively reduce the battery's heat release value and spontaneous combustion rate; if the concentration is too high, the additives cannot be fully dissolved.
  • Adding trithiophosphate additives to the lithium-ion battery electrolyte is flame retardant. Because the trithiophosphate additives have the characteristics of high flash point, high boiling point and non-flammability, the heat release value and spontaneous combustion rate of the battery are reduced, and the improvement is improved.
  • the prepared electrolyte has a flame retardant ability.
  • the trithiophosphate ester additives proposed by the present invention have better compatibility with the lithium ion battery electrolyte. While significantly improving the flame retardancy of the lithium ion battery, it can be fully dissolved in The lithium-ion battery electrolyte not only protects the performance of the electrolyte itself, but also improves the safety performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

一种阻燃型锂离子电池电解液,包括:锂盐、无水有机溶剂、成膜添加剂和三硫磷酸酯类添加剂,三硫磷酸酯类添加剂的结构式为:[化学式(1)] 其中,R 1、R 2和R 3相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。该添加剂改善提高了电解液的阻燃能力,其中三硫磷酸酯类添加剂与锂离子电池电解液的相容性较好,在明显改善锂离子电池阻燃能力的同时,能够充分溶解于锂离子电池电解液,既保障了电解液本身的性能,又提升了电池的安全性能。

Description

阻燃型锂离子电池电解液 技术领域
本发明涉及锂离子电池技术领域,具体而言,涉及一种阻燃型锂离子电池电解液和一种三硫磷酸酯类添加剂的制备方法。
背景技术
近年来,锂离子电池成为具有巨大潜力的新能源之一。由于具有循环寿命长、能量密度高等特点,锂离子电池开始占领电子产品电源市场。然而,锂离子电池电解液在受到机械冲击、热冲击或过充短路时,会发生以下反应:
RH→R·+H·
H·+O 2→HO·+O·
HO·+H 2→H·+H 2O
O·+H 2→HO·+H·
易发生火灾爆炸等现象,存在着一定的安全隐患,随着技术的发展,人们对电池安全性的要求越来越高,因此,锂离子电池在受到机械冲击、热冲击和过充短路等条件下易发生火灾爆炸的问题亟待解决。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的目的在于提供一种阻燃型锂离子电池电解液,以提高锂离子电池电解液的安全性能,进而提高锂离子电池的安全性能,从而减少或避免锂离子电池在受到机械冲击、热冲击和过充短路等条件下发生火灾爆炸的现象。
为了实现上述目的,本发明的技术方案提供了一种阻燃型锂离子电池电解液,包括:锂盐、无水有机溶剂、成膜添加剂和三硫磷酸酯类添加剂, 三硫磷酸酯类添加剂的结构式为:
[化学式1]
Figure PCTCN2020098710-appb-000001
[化学式1]中,R 1、R 2和R 3相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。
优选地,三硫磷酸酯类添加剂为
Figure PCTCN2020098710-appb-000002
Figure PCTCN2020098710-appb-000003
中的任意一种或几种的组合。
在该技术方案中,锂离子电池电解液中加入三硫磷酸酯类添加剂,当三硫磷酸酯类添加剂受到外界环境的刺激时,会释放出具有阻燃性能的自由基,该自由基通过捕获原电池反应中的H·和HO·,从而阻止链式反应的进行,使得电解液的燃烧无法进行。磷酸酯类阻燃剂在燃烧时能够分解生成磷酸的不燃性液态膜,磷酸又进一步脱水生成偏磷酸,偏磷酸聚合生成 聚偏磷酸。在这个过程中,不仅由磷酸生成的覆盖层起到覆盖效应,而且由于生成的聚偏磷酸是很强的脱水剂,使聚合物脱水而炭化,改变了聚合物的燃烧过程并在其表面形成碳膜以隔绝空气,从而发挥更强的阻燃效果。同时,本发明提出的三硫磷酸酯类添加剂与锂离子电池电解液的相容性较好,在明显改善锂离子电池阻燃能力的同时,能够充分溶解于锂离子电池电解液,在保障了电解液本身的性能的同时,提升了电池的安全性能。
优选地,三硫磷酸酯类添加剂占阻燃型锂离子电池电解液总质量分数的3%-5%。
在该技术方案中,通过三硫磷酸酯类添加剂占阻燃型锂离子电池电解液总质量分数的3%-5%,能够有效改善电解液的阻燃性能,自熄灭时间测试(SET)中自熄时间可达到低于2s/g,三硫磷酸酯类添加剂浓度过低时对电解液性能改良效果较差,难以有效降低电池放热值和自燃率,三硫磷酸酯类添加剂浓度过高时则难以在电解液中充分溶解,影响电解液本身的其他性能,因此控制三硫磷酸酯类添加剂占阻燃型锂离子电池电解液总质量分数的3%-5%较为适宜。
需要说明的是,本发明中所记载的包含「烷基」、「烷氧基」及其余的「烷基」部分的取代物均包括直链或支链的形态,优选具有1至4个碳原子。
本发明中所记载的「芳基」是通过去除一个氢而衍生自芳香族烃的有机自由基,包括在各环包含5或6个环原子的单环或稠环类的形态,并且还包括多个芳基以单键连接的形态。具体例包括苯基、萘基和蒽基等,但不限定于此。
本发明提出的阻燃型锂离子电解液的阻燃机理具体如下:
第一步:磷酸酯类阻燃剂在燃烧时能够分解生成磷酸的不燃性液态膜,磷酸又进一步脱水生成偏磷酸,偏磷酸聚合生成聚偏磷酸。
Figure PCTCN2020098710-appb-000004
第二步:生成的聚偏磷酸是很强的脱水剂,使溶剂脱水而炭化,改变了溶剂的燃烧过程并在其表面形成碳膜以隔绝空气。
Figure PCTCN2020098710-appb-000005
优选地,三硫磷酸酯类添加剂为1,2,4-三丁基三硫磷酸酯,1,2,4-三丁基三硫磷酸酯占阻燃型锂离子电池电解液总质量分数的5%。
在该技术方案中,以1,2,4-三丁基三硫磷酸酯作为三硫磷酸酯类添加剂,1,2,4-三丁基三硫磷酸酯成本较低,容易获得,同时,进一步优化了1,2,4-三丁基三硫磷酸酯的质量占比,有效改善了电解液的阻燃性能,自熄灭时间测试(SET)中自熄时间可达到1s/g及以下,从而进一步有利于提升电池的安全性能。
优选地,锂盐为六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂中的任意一种或几种的组合。
优选地,锂盐在阻燃型锂离子电池电解液中的浓度为1.0mol/L-1.5mol/L。
优选地,无水有机溶剂为碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和碳酸甲丙酯(MPC)中的任意一种或几种的组合。
优选地,成膜添加剂为碳酸亚乙烯酯(VC)或者氟代碳酸乙烯酯(FEC)或者硫酸亚丙酯(PCS)或者[化学式2]
Figure PCTCN2020098710-appb-000006
[化学式2]中,R4及R5分别独立地为氢、(C1-C10)的烷基、卤素原子、(C2-C10)的烯基、被卤素取代的(C1-C10)的烷基或被卤素取代的(C2-C10)的烯基,
或者[化学式3]
Figure PCTCN2020098710-appb-000007
[化学式3]中,R6及R7分别独立地为氢、(C1-C10)的烷基、卤素原子、(C2-C10)的烯基、被卤素取代的(C1-C10)的烷基或被卤素取代的(C2-C10)的烯基,
或者上述任意几种的组合。
优选地,无水有机溶剂为碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按质量比1:1:1组成的混合液;锂盐为六氟磷酸锂,锂盐浓度为1.2mol/L;成膜添加剂为碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),成膜添加剂占阻燃型锂离子电池电解液总质量分数的1%;三硫磷酸酯类添加剂为1,2,4-三丁基三硫磷酸酯,1,2,4-三丁基三硫磷酸酯占阻燃型锂离子电池电解液总质量分数的5%。
在该技术方案中,进一步优化了阻燃型锂离子电池电解液的组分配比,进一步改善了电解液的阻燃性能,自熄灭时间测试(SET)中自熄时间可达到1s/g及以下,从而进一步提升了电池的安全性能。
本发明的第二方面的技术方案提供了一种三硫磷酸酯类添加剂的制备方法,包括以下步骤:
在惰性气体保护氛围下,向三口烧瓶中加入硫醇,加热到60℃条件下搅拌加入三氯化磷,然后缓慢升温到100℃,快速搅拌1h,以进行取代反应,冷却得到反应液,其中,所述硫醇与所述三氯化磷的物质的量之比为硫醇:三氯化磷=3:1;
将所述反应液降至室温,进行冰水浴处理,缓慢滴加双氧水,60℃条 件下保温2h,以进行氧化反应,对反应后得到的产物进行纯化得到油状液体即为三硫磷酸酯类添加剂。
在该技术方案中,三硫磷酸酯类添加剂制备方法简单,可操作性强,以此制备的三硫磷酸酯类添加剂可在锂电池非水电解液制备中应用。
更为具体地,以1,2,4-三丁基三硫磷酸酯为例,包括以下合成步骤:
1)取代反应:惰性气体保护氛围下,往三口烧瓶中加入15.0g正丁基硫醇,加热到60℃条件下搅拌加入2.5g三氯化磷,然后缓慢升温到100℃,快速搅拌1h,冷却得到反应液。
2)氧化反应:将反应液降至室温,进行冰水浴处理,缓慢滴加双氧水30g,60℃条件下保温2h,对反应后得到的产物进行纯化得到油状液体即为1,2,4-三丁基三硫磷酸酯。
通过以上技术方案,在锂离子电池电解液中加入三硫磷酸酯类添加剂阻燃,由于三硫磷酸酯类添加剂具有闪点高、沸点高和不易燃的特点,降低了电池放热值和自燃率,改善提高了制备的电解液的阻燃能力,同时,本发明提出的三硫磷酸酯类添加剂与锂离子电池电解液的相容性较好,在明显改善锂离子电池阻燃能力的同时,能够充分溶解于锂离子电池电解液,在保障了电解液本身的性能的同时,提升了电池的安全性能。
本发明的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
具体实施方式
本发明公开了一种阻燃型锂离子电池电解液,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
下面结合实施例,进一步阐述本发明:
制备1,2,4-三丁基三硫磷酸酯,1)取代反应:惰性气体保护氛围下,往三口烧瓶中加入15.0g正丁基硫醇,加热到60℃条件下搅拌加入2.5g三氯化磷,然后缓慢升温到100℃,快速搅拌1h,冷却得到反应液。
2)氧化反应:将反应液降至室温,进行冰水浴处理,缓慢滴加双氧水30g,60℃条件下保温2h,对反应后得到的产物进行纯化得到油状液体即为1,2,4-三丁基三硫磷酸酯。
此1,2,4-三丁基三硫磷酸酯可在下述电解液的制备中应用。
实施例1
氮气密闭保护氛围下,水分<10ppm,分别取溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)质量比为1:1:1依次加入混合,用冷凝器对混合溶液进行降温保证温度不高于10℃,缓慢加入六氟磷酸锂,保证锂盐浓度为1.2mol/L,然后加入成膜添加剂质量分数分别为1%碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),最后加入质量分数为1%1,2,4-三丁基三硫磷酸酯阻燃剂继续搅拌直到溶液变得澄清。
实施例2
氮气密闭保护氛围下,水分<10ppm,分别取溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)质量比为1:1:1依次加入混合,用冷凝器对混合溶液进行降温保证温度不高于10℃,缓慢加入六氟磷酸锂,保证锂盐浓度为1.2mol/L,然后加入成膜添加剂质量分数分别为1%碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),最后加入质量分数为3%1,2,4-三丁基三硫磷酸酯阻燃剂继续搅拌直到溶液变得澄清。
实施例3
氮气密闭保护氛围下,水分<10ppm,分别取溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)质量比为1:1:1依次加入混合,用 冷凝器对混合溶液进行降温保证温度不高于10℃,缓慢加入六氟磷酸锂,保证锂盐浓度为1.2mol/L,然后加入成膜添加剂质量分数分别为1%碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),最后加入质量分数为5%1,2,4-三丁基三硫磷酸酯阻燃剂继续搅拌直到溶液变得澄清。
实施例4
氮气密闭保护氛围下,水分<10ppm,分别取溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)质量比为1:1:1依次加入混合,用冷凝器对混合溶液进行降温保证温度不高于10℃,缓慢加入六氟磷酸锂,保证锂盐浓度为1.2mol/L,然后加入成膜添加剂质量分数分别为5%碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),最后加入质量分数为7%1,2,4-三丁基三硫磷酸酯阻燃剂继续搅拌直到溶液变得澄清。
对比例
氮气密闭保护氛围下,水分<10ppm,分别取溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)质量比为1:1:1依次加入混合,用冷凝器对混合溶液进行降温保证温度不高于10℃,缓慢加入六氟磷酸锂,保证锂盐浓度为1.2mol/L,然后加入成膜添加剂质量分数分别为1%的碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),继续搅拌直到溶液变得澄清。
将实施例和对比例中所制备的电解液,在常温常压下放置5h,观察电解液的溶解状态,测试相容性,观察结果如下表1所示。
通过自熄灭时间测试(SET)来评价实施例和对比例中所制备的电解液的阻燃性能,自熄灭时间测试(SET)的具体操作如下:
把玻璃纤维做成直径为5mm的玻璃棉球,称其质量为M0,将玻璃棉球放在比较例和实施例中所制备的电解液中浸泡,称其质量为M1,把浸泡好的玻璃棉球放在圆形铁丝上迅速点燃,记录点火装置移开后到火焰自动 熄灭的时间T,自熄灭时间T1=T/(M1-M0),测量三次取平均值,测试结果如下表1所示。
表1
项目 对比例 实施例1 实施例2 实施例3 实施例4
相容性 均匀 均匀 均匀 均匀 不相容
自熄时间(s/g) >60 20.1 1.8 1.0 -
由表1可以看出本发明提出的阻燃型锂离子电池电解液加入的三硫磷酸酯类添加剂,明显改善电解液了的阻燃性能,添加剂的浓度控制在3%-5%效果较佳,浓度过低,添加剂对电解液性能的改良效果较差,不能有效的降低电池放热值和自燃率;浓度过高,添加剂不能充分的溶解。通过自熄时间实验对比可见本发明提出的阻燃型锂离子电池电解液的阻燃能力得到了明显改善,有利于电池安全性的提高。
在锂离子电池电解液中加入三硫磷酸酯类添加剂阻燃,由于三硫磷酸酯类添加剂具有闪点高、沸点高和不易燃的特点,降低了电池放热值和自燃率,改善提高了制备的电解液的阻燃能力,同时,本发明提出的三硫磷酸酯类添加剂与锂离子电池电解液的相容性较好,在明显改善锂离子电池阻燃能力的同时,能够充分溶解于锂离子电池电解液,在保障了电解液本身的性能的同时,提升了电池的安全性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种阻燃型锂离子电池电解液,其特征在于,包括:锂盐、无水有机溶剂、成膜添加剂和三硫磷酸酯类添加剂,所述三硫磷酸酯类添加剂的结构式为:
    [化学式1]
    Figure PCTCN2020098710-appb-100001
    所述[化学式1]中,R 1、R 2和R 3相互独立地为氢、氰基、卤代(C1-C10)烷基、(C1-C10)烷基、(C1-C10)烷氧基、(C1-C10)烷氧基羰基、(C3-C12)环烷基、(C3-C12)杂环烷基、(C6-C12)芳基、(C3-C12)杂芳基或(C6-C12)芳基(C1-C10)烷基。
  2. 根据权利要求1所述的阻燃型锂离子电池电解液,其特征在于,所述三硫磷酸酯类添加剂为
    Figure PCTCN2020098710-appb-100002
    Figure PCTCN2020098710-appb-100003
    中的任意一种或几种的组合。
  3. 根据权利要求2所述的阻燃型锂离子电池电解液,其特征在于,
    所述三硫磷酸酯类添加剂占所述阻燃型锂离子电池电解液总质量分数的3%-5%。
  4. 根据权利要求3所述的阻燃型锂离子电池电解液,其特征在于,
    所述三硫磷酸酯类添加剂为1,2,4-三丁基三硫磷酸酯,所述1,2,4-三丁基三硫磷酸酯占所述阻燃型锂离子电池电解液总质量分数的5%。
  5. 根据权利要求1至4中任一项所述的阻燃型锂离子电池电解液,其特征在于,
    所述锂盐为六氟磷酸锂、四氟硼酸锂、二草酸硼酸锂中的任意一种或几种的组合。
  6. 根据权利要求5所述的阻燃型锂离子电池电解液,其特征在于,
    所述锂盐在所述阻燃型锂离子电池电解液中的浓度为1.0mol/L-1.5mol/L。
  7. 根据权利要求6所述的阻燃型锂离子电池电解液,其特征在于,
    所述无水有机溶剂为碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和碳酸甲丙酯(MPC)中的任意一种或几种的组合。
  8. 根据权利要求7所述的阻燃型锂离子电池电解液,其特征在于,
    所述成膜添加剂为碳酸亚乙烯酯(VC)或者氟代碳酸乙烯酯(FEC)或者硫酸亚丙酯(PCS)或者[化学式2]
    Figure PCTCN2020098710-appb-100004
    所述[化学式2]中,R4及R5分别独立地为氢、(C1-C10)的烷基、卤素原子、(C2-C10)的烯基、被卤素取代的(C1-C10)的烷基或被卤素取代的(C2-C10)的烯基,
    或者[化学式3]
    Figure PCTCN2020098710-appb-100005
    所述[化学式3]中,R6及R7分别独立地为氢、(C1-C10)的烷基、卤素原子、(C2-C10)的烯基、被卤素取代的(C1-C10)的烷基或被卤素取代的(C2-C10)的烯基,
    或者上述任意几种的组合。
  9. 根据权利要求8所述的阻燃型锂离子电池电解液,其特征在于,
    所述无水有机溶剂为碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)按质量比1:1:1组成的混合液;
    所述锂盐为六氟磷酸锂,所述锂盐浓度为1.2mol/L;
    所述成膜添加剂为碳酸亚乙烯酯(VC)和氟代碳酸乙烯酯(FEC),所述成膜添加剂占所述阻燃型锂离子电池电解液总质量分数的1%;
    所述三硫磷酸酯类添加剂为1,2,4-三丁基三硫磷酸酯,所述1,2,4-三丁基三硫磷酸酯占所述阻燃型锂离子电池电解液总质量分数的5%。
  10. 一种三硫磷酸酯类添加剂的制备方法,其特征在于,包括以下步骤:
    在惰性气体保护氛围下,向三口烧瓶中加入硫醇,加热到60℃条件下搅拌加入三氯化磷,然后缓慢升温到100℃,快速搅拌1h,以进行取代反应,冷却得到反应液,其中,所述硫醇与所述三氯化磷的物质的量之比为硫醇:三氯化磷=3:1;
    将所述反应液降至室温,进行冰水浴处理,缓慢滴加双氧水,60℃条件下保温2h,以进行氧化反应,对反应后得到的产物进行纯化得到油状液体即为三硫磷酸酯类添加剂。
PCT/CN2020/098710 2020-03-30 2020-06-29 阻燃型锂离子电池电解液 WO2021196427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010236246.4A CN111261942B (zh) 2020-03-30 2020-03-30 阻燃型锂离子电池电解液
CN202010236246.4 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021196427A1 true WO2021196427A1 (zh) 2021-10-07

Family

ID=70955047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098710 WO2021196427A1 (zh) 2020-03-30 2020-06-29 阻燃型锂离子电池电解液

Country Status (2)

Country Link
CN (1) CN111261942B (zh)
WO (1) WO2021196427A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317078A (zh) * 2021-12-28 2022-04-12 烟台德高石油有限公司 一种新能源电动汽车多用功能液及其制备方法与应用
CN117117328A (zh) * 2023-10-23 2023-11-24 深圳华驰新能源科技有限公司 一种电解液及含有该电解液的锂离子电池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261942B (zh) * 2020-03-30 2022-03-08 山东海容电源材料有限公司 阻燃型锂离子电池电解液
CN112010894B (zh) * 2020-08-17 2023-08-11 湖州师范学院 一种硫磷酸酯化合物、包含其的非水锂离子电池电解液及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143525A (ja) * 2015-01-30 2016-08-08 株式会社日本触媒 非水電解液及びこれを備えたリチウムイオン二次電池
CN106252724A (zh) * 2016-08-29 2016-12-21 宁德时代新能源科技股份有限公司 一种添加剂,其制备方法及含有所述添加剂的锂离子电池
CN110915037A (zh) * 2017-07-17 2020-03-24 诺姆斯科技公司 含磷电解质
CN111261942A (zh) * 2020-03-30 2020-06-09 山东海容电源材料股份有限公司 阻燃型锂离子电池电解液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143525A (ja) * 2015-01-30 2016-08-08 株式会社日本触媒 非水電解液及びこれを備えたリチウムイオン二次電池
CN106252724A (zh) * 2016-08-29 2016-12-21 宁德时代新能源科技股份有限公司 一种添加剂,其制备方法及含有所述添加剂的锂离子电池
CN110915037A (zh) * 2017-07-17 2020-03-24 诺姆斯科技公司 含磷电解质
CN111261942A (zh) * 2020-03-30 2020-06-09 山东海容电源材料股份有限公司 阻燃型锂离子电池电解液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, LIYAN, AGRICULTURAL CHEMICALS MANUFACTURE, 1 January 1972 (1972-01-01), CN, pages 48 - 55, XP009531204 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114317078A (zh) * 2021-12-28 2022-04-12 烟台德高石油有限公司 一种新能源电动汽车多用功能液及其制备方法与应用
CN117117328A (zh) * 2023-10-23 2023-11-24 深圳华驰新能源科技有限公司 一种电解液及含有该电解液的锂离子电池
CN117117328B (zh) * 2023-10-23 2024-01-12 深圳华驰新能源科技有限公司 一种电解液及含有该电解液的锂离子电池

Also Published As

Publication number Publication date
CN111261942B (zh) 2022-03-08
CN111261942A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021196427A1 (zh) 阻燃型锂离子电池电解液
WO2021196426A1 (zh) 高功率锂电池用电解液及其制备方法
WO2018090594A1 (zh) 一种锂离子电池电解液及锂离子电池
WO2020000888A1 (zh) 一种锂离子电池阻燃电解液
WO2020088436A1 (zh) 电解液、其添加剂、二次电池及其应用
CN111205322B (zh) 2,4,6-三氧代-1,3,5-三嗪-三磷酸锂及其复配物用于阻燃电解质的制备方法
CN109818059B (zh) 一种锂离子二次电池的电解液
WO2019196417A1 (zh) 一种锂离子电池电解液
CN110783629B (zh) 一种锂二次电池用电解液和锂二次电池
CN103762384A (zh) 一种电池用安全型非水电解液
CN105680097A (zh) 一种高安全性锂离子电池电解液
CN109734746A (zh) 一种阻燃剂及其制备方法和应用
CN113209537B (zh) 绝缘防腐灭火剂及其制备方法
CN103326063A (zh) 一种锂离子电池阻燃电解液及其制备方法
CN110724160B (zh) 一种有机硅阻燃添加剂及阻燃型锂离子电池电解液
CN112820941B (zh) 一种用于电解液的组合物
CN113130998B (zh) 一种电解液阻燃添加剂及含该添加剂的锂离子电池电解液
CN113121602B (zh) 一种磷腈基磷酸酯添加剂和制备方法及锂电池电解液
CN112713309A (zh) 一种安全型锂离子电池电解液及其锂离子电池
CN113540565B (zh) 一种阻燃型锂离子电池电解液及其制备方法
CN111211350B (zh) 含三聚氰环的易溶于有机溶剂的阻燃电解质的制备方法
CN117895077A (zh) 一种钠离子电池阻燃电解液及其应用
CN115911552A (zh) 一种阻燃型电解液及其制备方法和应用
CN114243112A (zh) 一种阻燃电解液及其应用
CN113921910A (zh) 三氟乙氧基磷酸乙烯酯于电池电解液中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928380

Country of ref document: EP

Kind code of ref document: A1