WO2018090594A1 - 一种锂离子电池电解液及锂离子电池 - Google Patents

一种锂离子电池电解液及锂离子电池 Download PDF

Info

Publication number
WO2018090594A1
WO2018090594A1 PCT/CN2017/085814 CN2017085814W WO2018090594A1 WO 2018090594 A1 WO2018090594 A1 WO 2018090594A1 CN 2017085814 W CN2017085814 W CN 2017085814W WO 2018090594 A1 WO2018090594 A1 WO 2018090594A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
additive
ion battery
lithium ion
lithium
Prior art date
Application number
PCT/CN2017/085814
Other languages
English (en)
French (fr)
Inventor
陈晓琴
甘朝伦
戴建才
岳立
陈俊彩
张力
王峰
Original Assignee
张家港市国泰华荣化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港市国泰华荣化工新材料有限公司 filed Critical 张家港市国泰华荣化工新材料有限公司
Priority to EP23198865.0A priority Critical patent/EP4282869A3/en
Priority to EP17872846.5A priority patent/EP3544109B1/en
Publication of WO2018090594A1 publication Critical patent/WO2018090594A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/65812Cyclic phosphazenes [P=N-]n, n>=3
    • C07F9/65815Cyclic phosphazenes [P=N-]n, n>=3 n = 3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of electrochemistry, and particularly relates to a lithium ion battery electrolyte and a lithium ion battery.
  • Lithium-ion batteries are becoming more and more widely used in people's production and life, which makes its safety issue a key point of concern. Safety is a major challenge for lithium-ion batteries. When large currents are charged and discharged and the battery is overcharged, the heat accumulation inside the battery can easily lead to thermal runaway, and even cause the battery to burn and explode.
  • the overcharge additive preferentially oxidizes and polymerizes, and an insulating polymer film is formed on the positive electrode interface, thereby blocking The breaking current flows inside the battery to prevent the battery from continuing to overcharge and burn or explode.
  • a flame retardant is added to the electrolyte to make a low-flame point or non-combustible electrolyte, which is passed when an unsafe event occurs. The flame retardancy of the electrolyte is to avoid burning or explosion of the battery.
  • overcharge additives mainly BP (biphenyl) and CHB (cyclohexylbenzene)
  • BP biphenyl
  • CHB cyclohexylbenzene
  • Common flame retardant additives are phosphorus flame retardants, halogen flame retardants and composite flame retardant additives (such as fluorophosphazene).
  • Trimethyl phosphate TMP
  • tris-(2,2,2-trifluoroethyl)phosphite TTFP
  • fluorinated phosphate such as tris-(2,2,2-trifluoroethyl)phosphate (TFP), di-(2,2,2-trifluoroethyl)-methyl phosphate (BMP)
  • fluorinated cyclic carbonate fluorophosphazene, etc.
  • the flame retardant additive must achieve a flame retardant effect, and the addition thereof must reach a certain amount, and the excessive addition of the flame retardant additive increases the viscosity of the electrolyte, lowers the electrical conductivity of the electrolyte, and affects the electrical properties of the battery, thereby hindering the resistance.
  • the technical problem to be solved by the present invention is to design and synthesize a series of compounds having both flame retardant and overcharge functional groups.
  • the electrolyte can prevent overcharging, have a flame retardant effect, and have good properties. Performance.
  • An object of the present invention is to provide an additive M having the following structural formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkene, haloalkyl, haloalkoxy, haloalkenyl, hydroxy, carboxy, ether oxygen Any one of a group and a halogen, wherein the halogen is F, Cl or Br, the halogen is partially substituted or fully substituted; A is a group consisting of O, S, N or P; R 6 , R 7 , R 8 , R 9 and R 10 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxy, phenyl, fluoroalkyl, fluorocycloalkyl, fluoroalkoxy, fluorophenyl, fluorobenzene An oxy group, any one of fluoro groups consisting of O, S, N and P, wherein the fluoro group is fully substituted or partially substituted.
  • R 1 , R 2 , R 3 , R 4 and R 5 are independently selected from the group consisting of a haloalkyl group, a haloalkoxy group, a halogenated alkene group, a hydroxyl group, a carboxyl group, an etheroxy group, and a halogen. Further preferably, R 1 , R 2 , R 3 , R 4 and R 5 are independently halogen. More preferably, R 1 , R 2 , R 3 , R 4 and R 5 are F.
  • R 8 is selected from the group consisting of alkyl, cycloalkyl, alkoxy, phenyl, fluoroalkyl, fluorocycloalkyl, fluoroalkoxy, fluorophenyl, fluorophenoxy Any one wherein fluoro is fully substituted or partially substituted, and R 6 , R 7 , R 9 and R 10 are hydrogen.
  • the additive M is one or more of the substances shown by the following structural formula:
  • the compound has a large amount of N, P, F elements, so that it has a good flame retardant effect;
  • the compound has benzene, biphenyl, cyclohexylbenzene or fluorinated benzene, biphenyl, cyclohexylbenzene
  • a substance containing these functional groups is oxidized, polymerization can occur.
  • the electrolyte using such a compound preferentially oxidizes to form an insulating polymer before the normal electrolyte decomposition potential when the battery is overcharged, and blocks the positive and negative electrodes.
  • the compound can also form a more stable SEI film on the surface of the electrode with other additives during the battery formation process, avoiding the damage of the cycle performance and high temperature performance of the commonly used overcharge additive and flame retardant additive. .
  • Another object of the present invention is to provide a process for preparing the additive M, which comprises reacting the compound 1 with the compound 2 in the presence of an acid binding agent and an organic solvent at 80 to 100 ° C to prepare the additive M.
  • the compound 1 is Compound 2 is
  • R 1 , R 2 , R 3 , R 4 , R 5 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkene, haloalkyl, haloalkoxy, haloalkenyl, hydroxy, carboxy, ether oxygen Any one of a group and a halogen, wherein the halogen is F, Cl or Br, the halogen is partially substituted or fully substituted;
  • A is a group consisting of O, S, N or P;
  • R 6 , R 7 , R 8 , R 9 and R 10 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxy, phenyl, fluoroalkyl, flu
  • the acid binding agent is triethylamine
  • the organic solvent is acetonitrile
  • the compound 1 is hexafluorocyclotriphosphazene
  • the compound 2 is p-cyclohexylphenol, p-tert-butylphenol, 3,4-difluorobiphenol or p-tert-amylphenol.
  • a third object of the present invention is to provide a lithium ion battery electrolyte comprising a lithium salt, a solvent and an additive, the additive comprising an additive M, the additive M being one or more selected from the following structural formulas The combination:
  • R 1 , R 2 , R 3 , R 4 , R 5 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkene, haloalkyl, haloalkoxy, haloalkenyl, hydroxy, carboxy, ether oxygen Any one of a group and a halogen, wherein the halogen is F, Cl or Br, the halogen is partially substituted or fully substituted; A is a group consisting of O, S, N or P; R 6 , R 7 , R 8 , R 9 and R 10 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxy, phenyl, fluoroalkyl, fluorocycloalkyl, fluoroalkoxy, fluorophenyl, fluorobenzene An oxy group, any one of fluoro groups consisting of O, S, N and P, wherein the fluoro group is fully substituted or partially substituted.
  • R 1 , R 2 , R 3 , R 4 and R 5 are independently selected from the group consisting of a haloalkyl group, a haloalkoxy group, a halogenated alkene group, a hydroxyl group, a carboxyl group, an etheroxy group, and a halogen. Further preferably, R 1 , R 2 , R 3 , R 4 and R 5 are independently halogen. More preferably, R 1 , R 2 , R 3 , R 4 and R 5 are all F.
  • A is O.
  • R 8 is selected from the group consisting of alkyl, cycloalkyl, alkoxy, phenyl, fluoroalkyl, fluorocycloalkyl, fluoroalkoxy, fluorophenyl, fluorophenoxy Any of those wherein fluoro is fully substituted or partially substituted. Further preferably, R 8 is a cycloalkyl group or an alkyl group or a fluorophenyl group.
  • R 6 , R 7 , R 9 and R 10 are all H.
  • the additive M is one or more of the substances shown by the following structural formula: (cyclohexylphenoxypentafluorotripolyphosphazene), (tert-butylphenoxypentafluorotripolyphosphazene), (3,4-difluorobiphenoxypentafluorotripolyphosphazene), (tert-pentylphenoxypentafluorotripolyphosphazene).
  • the additive M is prepared by reacting the compound 1 and the compound 2 in the presence of an acid binding agent and an organic solvent at 80 to 100 ° C to obtain the additive M, wherein the additive M is obtained.
  • Compound 1 is Compound 2 is Wherein R 1 , R 2 , R 3 , R 4 , R 5 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, alkene, haloalkyl, haloalkoxy, haloalkenyl, hydroxy, carboxy, ether oxygen Any one of a group and a halogen, wherein the halogen is F, Cl or Br, the halogen is partially substituted or fully substituted; A is a group consisting of O, S, N or P; R 6 , R 7 , R 8 , R 9 and R 10 are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkoxy, phenyl, fluoroalkyl, fluorocycloalkyl, fluoro
  • the acid binding agent is triethylamine.
  • the organic solvent is acetonitrile.
  • the compound 1 is hexafluorocyclotriphosphazene.
  • the compound 2 is p-cyclohexylphenol, p-tert-butylphenol, 3,4-difluorobiphenol or p-tert-amylphenol.
  • the additive M is prepared by: hexafluorocyclotriphosphazene with p-cyclohexylphenol or p-tert-butylphenol or 3,4-difluorobiphenol in an acid binding agent and It is obtained by reacting at 80 to 100 ° C in the presence of an organic solvent.
  • the acid binding agent is triethylamine; and the organic solvent is acetonitrile.
  • the additive M is prepared by reacting hexafluorocyclotriphosphazene with p-tert-amylphenol in the presence of an acid binding agent and an organic solvent at 80 to 100 ° C. be made of.
  • the acid binding agent is triethylamine; and the organic solvent is acetonitrile.
  • the additive M is added in an amount of 0.5 to 20%, more preferably 1 to 5%, still more preferably 2 to 4%, based on the total mass of the electrolyte.
  • the additive further comprises 0.01 to 20% of other additives based on the total mass of the electrolyte, and the other additives are selected from the group consisting of vinylene carbonate, 1,3-propane sultone, and ethylene carbonate.
  • the other additives are selected from the group consisting of vinylene carbonate, 1,3-propane sultone, and ethylene carbonate.
  • the solvent comprises a cyclic carbonate-based solvent and/or a chain carbonate-based solvent
  • the cyclic carbonate-based solvent is selected from the group consisting of ⁇ -butyrolactone (GBL) and ethylene carbonate (EC).
  • the chain carbonate solvent is selected from the group consisting of dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) ), methyl propyl carbonate (MPC), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl acetate (MA), ethyl acetate (EA), acetic acid
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEEC diethyl carbonate
  • MPC methyl propyl carbonate
  • MP methyl propionate
  • EP ethyl propionate
  • PP propyl propionate
  • MA methyl acetate
  • EA ethyl acetate
  • acetic acid One or more of ester (PA), methyl butyrate (MB), ethyl butyrate (EB), and propyl butyrate (PB).
  • the lithium salt comprises lithium hexafluorophosphate (LiPF 6 ).
  • the lithium hexafluorophosphate has a molar concentration of 0.5 to 1.5 mol/L, more preferably 0.9 to 1.1 mol/L.
  • the lithium salt further includes other lithium salts selected from lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and anhydrous lithium perchlorate ( LiClO 4 ), lithium bis(trifluoromethylsulfonyl)imide (LiN(SO 2 CF 3 ) 2 ), lithium trifluoromethanesulfonate (LiSO 3 CF 3 ), lithium dioxalate borate (LiC 2 O 4 BC 2 O 4 ), one or more of lithium oxalate difluoroborate (LiF 2 BC 2 O 4 ), lithium bisfluorosulfonimide (LiN(SO 2 F) 2 ).
  • LiBF 4 lithium tetrafluoroborate
  • LiAsF 6 lithium hexafluoroarsenate
  • LiClO 4 anhydrous lithium perchlorate
  • LiClO 4 lithium bis(trifluoromethylsulfony
  • a fourth object of the present invention is to provide a lithium ion battery comprising the lithium ion battery electrolyte.
  • the present invention has the following advantages over the prior art:
  • the additive M of the present invention has both a flame retardant and an overcharge functional group, so that the electrolyte added with the additive M has a good flame retardant effect and an overcharge prevention function, and has a negative influence on battery performance.
  • Figure 3 is a TCD diagram of cyclohexylbenzene pentafluorotripolyphosphazene prepared in Preparation Example 1;
  • Figure 4 is a MS chart of the tert-amylphenoxypentafluorotripolyphosphazene obtained in Preparation Example 4;
  • Figure 5 is a GC diagram of the tert-amylphenoxypentafluorotripolyphosphazene obtained in Preparation Example 4;
  • Figure 6 is a TCD diagram of the tert-amylphenoxypentafluorotripolyphosphazene obtained in Preparation Example 4;
  • FIG. 7 is a graph showing test results of lithium cobalt oxide graphite batteries selected in Examples 1 to 6, Comparative Example 1, and Comparative Example 2, which were formed by charging and discharging at 0.1 C and performing 1 C normal temperature cycle;
  • Figure 8 is a graph showing the oxidation potential of the electrolyte of Example 7 using the LCO/Li/Li three-electrode system
  • Figure 10 is a graph showing the oxidation potential of the electrolyte of Example 8 using the LMO/Li/Li three-electrode system
  • Figure 11 is a graph showing the oxidation potential of the electrolyte tested by the LMO/Li/Li three-electrode system of Example 9;
  • Figure 12 is a graph showing the test results of the lithium cobaltate graphite battery of Examples 10 to 12 and Comparative Example 4, which was formed by charging and discharging at 0.1 C and performing 1 C normal temperature cycle;
  • Figure 13 is a test graph of the lithium cobaltate graphite battery of Example 13 and Comparative Example 4, which was subjected to overcharge test by 3C, 10V first constant current and then constant voltage charging;
  • Fig. 14 is a graph showing the formation of dQ/dV to V in Comparative Example 1, Comparative Example 2, and Example 4.
  • triethylamine is selected as the acid binding agent
  • acetonitrile is selected as the organic solvent
  • the mixture is charged into the autoclave at a time, and the mixture is heated rapidly to 90 ° C. The reaction was completed in 4 hours. After cooling to room temperature, it was filtered to obtain 3,4-difluorobiphenoxypentafluorotripolyphosphazene.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 1% of the tert-butylphenoxypentafluorotrifluorophosphazene obtained in Preparation Example 2 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions. A lithium ion battery electrolyte is prepared.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 5% of the tert-butylphenoxypentafluorotrifluorophosphazene obtained in Preparation Example 2 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions. A lithium ion battery electrolyte is prepared.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 1% of the cyclohexylphenoxypentafluorotrifluorotripolyphosphazene obtained in Preparation Example 1 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions to prepare. A lithium ion battery electrolyte is obtained.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 5% of the cyclohexylphenoxypentafluorotrifluorophosphazene obtained in Preparation Example 1 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions to prepare. A lithium ion battery electrolyte is obtained.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7. The formation of the electrolyte into dQ/dV to V is shown in Fig. 14.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 1% of 3,4-difluorobiphenyloxypentafluorotripolyphosphazene obtained in Preparation Example 3 was added according to the total mass of the electrolyte, under normal temperature conditions. The mixture was sufficiently stirred to prepare a lithium ion battery electrolyte.
  • LiPF 6 Lithium hexafluorophosphate having a lithium ion concentration of 1 mol/L, and 1% of 3,4-difluorobiphenyloxypentafluorotripolyphosphazene obtained in Preparation Example 3 was added according to the total mass of the electrolyte, under normal temperature conditions. The mixture was sufficiently stirred to prepare a lithium ion battery electrolyte.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 5% of the 3,4-difluorobiphenyloxypentafluorotripolyphosphazene obtained in Preparation Example 3 was added according to the total mass of the electrolyte, under normal temperature conditions. The mixture was sufficiently stirred to prepare a lithium ion battery electrolyte.
  • LiPF 6 Lithium hexafluorophosphate having a lithium ion concentration of 1 mol/L, and 5% of the 3,4-difluorobiphenyloxypentafluorotripolyphosphazene obtained in Preparation Example 3 was added according to the total mass of the electrolyte, under normal temperature conditions. The mixture was sufficiently stirred to prepare a lithium ion battery electrolyte.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L was sufficiently stirred under normal temperature conditions to prepare a lithium ion battery electrolyte.
  • Table 1 shows the performance test results of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2. Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7. The formation of the electrolyte into dQ/dV to V is shown in Fig. 14.
  • Lithium hexafluorophosphate LiPF 6 having a lithium ion concentration of 1 mol/L, and adding 3% cyclohexylbenzene and 3% ethoxy pentafluorotripolyphosphazene according to the total mass of the electrolyte, and sufficiently stirred under normal temperature conditions to prepare lithium ions Battery electrolyte.
  • Table 1 shows the performance of the lithium ion battery electrolytes prepared in Inventive Examples 1 to 6 and Comparative Examples 1 and 2.
  • Test Results Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 7. The formation of the electrolyte into dQ/dV to V is shown in Fig. 14.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L was sufficiently stirred under normal temperature conditions to prepare a lithium ion battery electrolyte.
  • Lithium cobaltate graphite battery was selected, and the overcharge test was carried out by using 3C, 10V first constant current and then constant voltage charging. The test curve is shown in Fig. 9.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 3% of the tert-butylphenoxypentafluorotrifluorophosphazene obtained in Preparation Example 2 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions. A lithium ion battery electrolyte is prepared.
  • the oxidation potential of the electrolyte was tested by LCO/Li/Li three-electrode system.
  • the test curve is shown in Figure 8.
  • the lithium cobalt oxide graphite battery was used, and the overcharge test was carried out with 3C, 10V constant current and constant voltage charging.
  • the test curve was as follows.
  • Figure 9 shows.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 3% of the cyclohexylphenoxypentafluorotrifluorotripolyphosphazene obtained in Preparation Example 1 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions to prepare. A lithium ion battery electrolyte is obtained.
  • Lithium cobaltate graphite battery was selected, and the overcharge test was carried out by using 3C, 10V first constant current and then constant voltage charging. The test curve is shown in Fig. 9.
  • the oxidation potential of the electrolyte was tested using a LMO/Li/Li three-electrode system.
  • the test curve is shown in FIG.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L, and 3% of the 3,4-difluorobiphenyloxypentafluorotripolyphosphazene obtained in Preparation Example 3 was added according to the total mass of the electrolyte, under normal temperature conditions. The mixture was sufficiently stirred to prepare a lithium ion battery electrolyte.
  • the oxidation potential of the electrolyte was tested using a LMO/Li/Li three-electrode system.
  • the test curve is shown in FIG.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L was added, and 1% of the tert-amylphenoxypentafluorotrifluorotripolyphosphazene obtained in Preparation Example 4 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions. , a lithium ion battery electrolyte is prepared.
  • Table 1 shows the performance test results of the lithium ion battery electrolyte prepared in the inventive examples and comparative examples. Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 12.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L was added, and 3% of the tert-amylphenoxypentafluorotrifluorotripolyphosphazene obtained in Preparation Example 4 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions. , a lithium ion battery electrolyte is prepared.
  • Table 1 shows the performance test results of the lithium ion battery electrolyte prepared in the inventive examples and comparative examples. Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 12.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L was added, and 5% of the tert-amylphenoxypentafluorotrifluorotripolyphosphazene prepared in Preparation Example 4 was added according to the total mass of the electrolyte, and the mixture was sufficiently stirred under normal temperature conditions. , a lithium ion battery electrolyte is prepared.
  • Table 1 shows the performance test results of the lithium ion battery electrolyte prepared in the inventive examples and comparative examples. Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 12.
  • Lithium cobaltate graphite battery was selected, and the overcharge test was carried out by using 3C, 10V first constant current and then constant voltage charging. The test curve is shown in FIG.
  • Lithium hexafluorophosphate (LiPF 6 ) having a lithium ion concentration of 1 mol/L was added, and the mixture was sufficiently stirred under normal temperature conditions to prepare a lithium ion battery electrolyte.
  • Table 1 shows the performance test results of the lithium ion battery electrolyte prepared in the inventive examples and comparative examples. Lithium cobaltate graphite battery was selected, and the battery was formed by charging and discharging at 0.1 C and subjected to 1 C normal temperature cycle. The test results are shown in Fig. 12.
  • Lithium cobaltate graphite battery was selected, and the overcharge test was carried out by using 3C, 10V first constant current and then constant voltage charging. The test curve is shown in FIG.
  • Example 1 Uniform 6.75 59.78
  • Example 2 Uniform 6.15 5.86
  • Example 3 Uniform 6.69 40.68
  • Example 4 Uniform 6.02 2.10
  • Example 5 Uniform 6.70 30.15
  • Example 6 Uniform 6.01 0.95 Comparative example 4
  • Example 10 Uniform 10.25 82.2
  • Example 11 Uniform 10.09 72.6
  • Example 12 Uniform 9.91 69.1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂离子电池电解液,包括锂盐、溶剂和添加剂,添加剂M为选自如下结构式中的一种或几种的组合:其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中卤代或氟代为全取代或部分取代。本发明的锂离子电池电解液同时具有防过充和阻燃功能,且对电池性能的负面影响较小。

Description

一种锂离子电池电解液及锂离子电池 技术领域
本发明属于电化学技术领域,具体涉及一种锂离子电池电解液及锂离子电池。
背景技术
锂离子电池越来越广泛地深入到人们的生产生活当中,这使得它的安全问题成为关注的要点,安全问题是对锂离子电池的一个重大挑战。大电流充放电以及电池过充电时,电池内部的热量积累极易导致热失控,甚至会引起电池燃烧和爆炸。
在电解液方面的解决途径主要有两方面,一方面是通过添加过充添加剂,使电池发生过充时,过充添加剂优先氧化聚合,在正极界面上生成一层绝缘的聚合物膜,从而阻断电流在电池内部的流通,防止电池继续过充发生燃烧或者爆炸;另一方面,是在电解液中添加阻燃剂,做成低燃点或者不燃的电解液,在不安全事件发生时,通过电解液的阻燃性尽量避免电池的燃烧或者爆炸。目前使用的过充添加剂,主要是BP(联苯)和CHB(环己基苯),他们具有较好的过充性能,但是对电池的循环、高温性能有害。常见的阻燃添加剂有磷系阻燃剂、卤系阻燃剂和复合阻燃添加剂(如氟代磷腈)。磷酸三甲酯(TMP)、三-(2,2,2-三氟乙基)亚磷酸酯(TTFP)、氟化磷酸酯如三-(2,2,2-三氟乙基)磷酸酯(TFP)、二-(2,2,2-三氟乙基)-甲基磷酸酯(BMP)、氟代环状碳酸酯、氟代磷腈等都是较为理想的阻燃添加剂。但是阻燃添加剂要达到阻燃的效果,其加入必需达到一定量,而阻燃添加剂加入量过大,会增加电解液的粘度,降低电解液的电导率,影响电池的电性能,从而阻碍阻燃添加剂在电解液中的应用。
发明内容
本发明所要解决的技术问题是设计并合成一系列同时具有阻燃和过充功能团的化合物,在电解液中添加这类化合物,电解液就能防止过充、具有阻燃作用,同时具有良好的性能。
为达到上述目的,本发明采用的技术方案是:
本发明的一个目的是提供一种添加剂M,所述的添加剂M的结构通式如下:
Figure PCTCN2017085814-appb-000001
其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代。
优选地,R1、R2、R3、R4、R5独立地选自卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种。进一步优选地,R1、R2、R3、R4、R5独立地为卤素。更为优选地,R1、R2、R3、R4、R5为F。
优选地,R8为选自烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基中的任一种,其中氟代为全取代或部分取代,R6、R7、R9、R10为氢。
更优选地,所述的添加剂M为如下结构式所示的物质中的一种或多种:
Figure PCTCN2017085814-appb-000002
Figure PCTCN2017085814-appb-000003
首先,该类化合物具有大量的N、P、F元素,使其具有良好的阻燃效果;其次,该类化合物具有苯、联苯、环己基苯或者氟代的苯、联苯、环己基苯,含这些官能团的物质在氧化时,能发生聚合反应,使用这类化合物的电解液,在电池过充时,会在正常电解液分解电位前优先氧化生成绝缘的聚合物,阻断正负极达到保护的目的;第三,该类化合物还能在电池化成过程中,与其他添加剂在电极表面形成更稳定的SEI膜,避免常用过充添加剂、阻燃添加剂对电池循环性能、高温性能的损害。
本发明的另一个目的是提供一种所述的添加剂M的制备方法,将化合物1与化合物2在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得所述的添加剂M,其中,所述的化合物1为
Figure PCTCN2017085814-appb-000004
化合物2为
Figure PCTCN2017085814-appb-000005
其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代;X为F、Cl或Br。
优选地,所述的缚酸剂为三乙胺,所述的有机溶剂为乙腈。
优选地,所述的化合物1为六氟环三磷腈,所述的化合物2为对环己基苯酚、对叔丁基苯酚、3,4-二氟联苯酚或对叔戊基苯酚。
本发明的第三个目的是提供一种锂离子电池电解液,包括锂盐、溶剂和添加剂,所述的添加剂包括添加剂M,所述的添加剂M为选自如下结构式中的一种或几种的组合:
Figure PCTCN2017085814-appb-000006
其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代。
优选地,R1、R2、R3、R4、R5独立地选自卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种。进一步优选地,R1、R2、R3、R4、R5独立地为卤素。更优选地,R1、R2、R3、R4、R5均为F。
优选地,A为O。
优选地,R8为选自烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基中的任一种,其中氟代为全取代或部分取代。进一步优选地,R8为环烷基或烷基或氟代苯基。
优选地,R6、R7、R9、R10均为H。
进一步优选地,所述的添加剂M为如下结构式所示的物质中的一种或多种:
Figure PCTCN2017085814-appb-000007
(环 己基苯氧基五氟三聚磷腈)、
Figure PCTCN2017085814-appb-000008
(叔丁基苯氧基五氟三聚磷腈)、
Figure PCTCN2017085814-appb-000009
(3,4-二氟联苯氧基五氟三聚磷腈)、
Figure PCTCN2017085814-appb-000010
(叔戊基苯氧基五氟三聚磷腈)。
本发明中,所述的添加剂M的制备方法为将化合物1与化合物2在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得所述的添加剂M,其中,所述的化合物1为
Figure PCTCN2017085814-appb-000011
化合物2为
Figure PCTCN2017085814-appb-000012
其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代;X为F、Cl或Br。
优选地,所述的缚酸剂为三乙胺。优选地,所述的有机溶剂为乙腈。
优选地,所述的化合物1为六氟环三磷腈。优选地,所述的化合物2为对环己基苯酚、对叔丁基苯酚、3,4-二氟联苯酚或对叔戊基苯酚。
根据本发明的一个实施方式,所述的添加剂M的制备方法为:将六氟环三磷腈与对环己基苯酚或对叔丁基苯酚或3,4-二氟联苯酚在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得。
具体地,所述的缚酸剂为三乙胺;所述的有机溶剂为乙腈。
根据本发明的另一个实施方式,所述的添加剂M的制备方法为:将六氟环三磷腈与对叔戊基苯酚在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得。
具体地,所述的缚酸剂为三乙胺;所述的有机溶剂为乙腈。
优选地,所述的添加剂M的添加质量为所述的电解液总质量的0.5~20%,进一步优选为1~5%,更优选为2~4%。
优选地,所述的添加剂还包括占所述的电解液总质量0.01~20%的其他添加剂,所述的其他添加剂为选自碳酸亚乙烯酯、1,3-丙烷磺内酯、碳酸乙烯亚乙酯、硫酸丙烯酯、磷酸三辛酯中的一种或几种的组合。
优选地,所述的溶剂包括环状碳酸酯类溶剂和/或链状碳酸酯类溶剂,所述的环状碳酸酯类溶剂为选自γ-丁内酯(GBL)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)中的一种或几种;所述的链状碳酸酯类溶剂为选自碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸甲丙酯(MPC)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丁酸甲酯(MB)、丁酸乙酯(EB)、丁酸丙酯(PB)中的一种或几种。
优选地,所述的锂盐包括六氟磷酸锂(LiPF6)。进一步优选地,所述的六氟磷酸锂的摩尔浓度为0.5~1.5mol/L,更优选为0.9~1.1mol/L。
进一步优选地,所述的锂盐还包括其他锂盐,所述的其他锂盐为选自四氟硼酸锂(LiBF4)、六氟砷 酸锂(LiAsF6)、无水高氯酸锂(LiClO4)、二(三氟甲基磺酸酰)亚胺锂(LiN(SO2CF3)2)、三氟甲基磺酸锂(LiSO3CF3)、二草酸硼酸锂(LiC2O4BC2O4)、单草酸双氟硼酸锂(LiF2BC2O4)、双氟磺酰亚胺锂(LiN(SO2F)2)中的一种或者几种。
本发明的第四个目的是提供一种锂离子电池,包括所述的锂离子电池电解液。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明的添加剂M同时具有阻燃和过充功能团,从而使得添加该添加剂M的电解液具有良好的阻燃效果和防过充功能,且对电池性能的负面影响较小。
附图说明
附图1为制备例1制得的环己基苯五氟三聚磷腈的MS图;
附图2为制备例1制得的环己基苯五氟三聚磷腈的GC图;
附图3为制备例1制得的环己基苯五氟三聚磷腈的TCD图;
附图4为制备例4制得的叔戊基苯氧基五氟三聚磷腈的MS图;
附图5为制备例4制得的叔戊基苯氧基五氟三聚磷腈的GC图;
附图6为制备例4制得的叔戊基苯氧基五氟三聚磷腈的TCD图;
附图7为实施例1至6、比较例1及比较例2的选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环的测试结果图;
附图8为实施例7的采用LCO/Li/Li三电极体系测试电解液的氧化电位曲线图;
附图9为实施例7和8、比较例3的选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试的测试曲线图;
附图10为实施例8的采用LMO/Li/Li三电极体系测试电解液的氧化电位曲线图;
附图11为实施例9的采用LMO/Li/Li三电极体系测试电解液的氧化电位曲线图;
附图12为实施例10至12、比较例4的选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环的测试结果图;
附图13为实施例13和比较例4的选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试的测试曲线图;
附图14为比较例1、比较例2以及实施例4的化成dQ/dV~V图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
制备例1:环己基苯氧基五氟三聚磷腈的制备
以环己基苯酚和六氟环三磷腈为原料,选择三乙胺为缚酸剂,选择乙腈为有机溶剂,向高压釜中一次性投料,快速搅拌,升温到90℃,反应4小时结束。冷却到室温后过滤得到环己基苯氧基五氟三聚磷腈。环己基苯五氟三聚磷腈的MS图参见图1,GC图参见图2,TCD图参见图3。
反应方程式为:
Figure PCTCN2017085814-appb-000013
制备例2:叔丁基苯氧基五氟三聚磷腈
以对叔丁基苯酚和六氟环三磷腈为原料,选择三乙胺为缚酸剂,选择乙腈为有机溶剂,向高压釜中一次性投料,快速搅拌,升温到90℃,反应4小时结束。冷却到室温后过滤得到叔丁基苯氧基五氟三聚磷腈。
制备例3:3,4-二氟联苯氧基五氟三聚磷腈
以3,4-二氟联苯酚和六氟环三磷腈为原料,选择三乙胺为缚酸剂,选择乙腈为有机溶剂,向高压釜中一次性投料,快速搅拌,升温到90℃,反应4小时结束。冷却到室温后过滤得到3,4-二氟联苯氧基五氟三聚磷腈。
制备例4:叔戊基苯氧基五氟三聚磷腈
以对叔戊基苯酚和六氟环三磷腈为原料,选择三乙胺为缚酸剂,选择乙腈为有机溶剂,向在高压釜中一次性投料,快速搅拌,升温到90℃,反应4小时结束。冷却到室温后过滤得到叔戊基苯氧基五氟三聚磷腈。
叔戊基苯氧基五氟三聚磷腈的MS图参见图4,GC图参见图5,TCD图参见图6。
实施例1:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加1%的制备例2制得的叔丁基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。
实施例2:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加5%的制备例2制得的叔丁基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。
实施例3:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加1%的制备例1制得的环己基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。
实施例4:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加5%的制备例1制得的环己基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。该电解液的化成dQ/dV~V图参见附图14。
实施例5:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加1%的制备例3制得的3,4-二氟联苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。
实施例6:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加5%的制备例3制得的3,4-二氟联苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。
比较例1:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),在常温条件下搅拌充分,制备得到锂离子电池电解液。
记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。该电解液的化成dQ/dV~V图参见附图14。
比较例2:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶2混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加3%环己基苯以及3%乙氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例1至6和比较例1和2制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图7所示。该电解液的化成dQ/dV~V图参见附图14。
比较例3:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),在常温条件下搅拌充分,制备得到锂离子电池电解液。
选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试,测试曲线如图9所示。
实施例7:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加3%的制备例2制得的叔丁基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
采用LCO/Li/Li三电极体系测试电解液的氧化电位,测试曲线如图8所示;选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试,测试曲线如图9所示。
结果比较例3中的电池电压迅速升高,最终电池爆炸、起火,而实施例7中的电池不爆炸、不起火。
实施例8:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加3%的制备例1制得的环己基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试,测试曲线如图9所示。
结果比较例3中的电池电压迅速升高,最终电池爆炸、起火,而实施例8中的电池不爆炸、不起火。
采用LMO/Li/Li三电极体系测试电解液的氧化电位,测试曲线如图10所示。
实施例9:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加3%的制备例3制得的3,4-二氟联苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
采用LMO/Li/Li三电极体系测试电解液的氧化电位,测试曲线如图11所示。
实施例10:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加1%的制备例4制得的叔戊基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例和比较例制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图12所示。
实施例11:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加3%的制备例4制得的叔戊基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例和比较例制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图12所示。
实施例12:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),按照电解液总质量计算添加5%的制备例4制得的叔戊基苯氧基五氟三聚磷腈,在常温条件下搅拌充分,制备得到锂离子电池电解液。
观察上述添加剂与溶剂及盐的相容性,记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例和比较例制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图12所示。
选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试,测试曲线如图13所示。
结果下述比较例4中的电池电压迅速升高,最终电池爆炸、起火,而实施例12中的电池不爆炸、不起火。
比较例4:
在充氩气的手套箱中(H2O<10ppm),将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)以质量比1∶1∶1混合均匀,加入锂离子浓度为1mol/L的六氟磷酸锂(LiPF6),在常温条件下搅拌充分,制备得到锂离子电池电解液。
记录每克燃烧时间以及电导率,结果见表1,表1为发明实施例和比较例制备的锂离子电池电解液的性能测试结果。选用钴酸锂石墨电池,以0.1C充放电对电池进行化成并做1C常温循环,测试结果如图12所示。
选用钴酸锂石墨电池,用3C、10V先恒流再恒压充电进行过充测试,测试曲线如图13所示。
表1
  相容性 电导率(ms/cm) 每克燃烧时间(s)
对比例1 均匀 6.91 71.53
对比例2 均匀 6.35 25.12
实施例1 均匀 6.75 59.78
实施例2 均匀 6.15 5.86
实施例3 均匀 6.69 40.68
实施例4 均匀 6.02 2.10
实施例5 均匀 6.70 30.15
实施例6 均匀 6.01 0.95
比较例4 均匀 10.38 116.2
实施例10 均匀 10.25 82.2
实施例11 均匀 10.09 72.6
实施例12 均匀 9.91 69.1
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (37)

  1. 一种添加剂M,其特征在于:所述的添加剂M的结构通式如下:
    Figure PCTCN2017085814-appb-100001
    其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代。
  2. 根据权利要求1所述的添加剂M,其特征在于:R1、R2、R3、R4、R5独立地选自卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种。
  3. 根据权利要求2所述的添加剂M,其特征在于:R1、R2、R3、R4、R5独立地为卤素。4、根据权利要求3所述的添加剂M,其特征在于:R1、R2、R3、R4、R5为F。
  4. 根据权利要求1所述的添加剂M,其特征在于:R8为选自烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基中的任一种,其中氟代为全取代或部分取代。
  5. 根据权利要求1所述的添加剂M,其特征在于:R6、R7、R9、R10为氢。
  6. 根据权利要求1至6中任一项所述的添加剂M,其特征在于:所述的添加剂M为如下结构式所示的物质中的一种或多种:
    Figure PCTCN2017085814-appb-100002
  7. 一种如权利要求1至7中任一项所述的添加剂M的制备方法,其特征在于:将化合物1与化合物2在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得所述的添加剂M,其中,所述的化合物1为
    Figure PCTCN2017085814-appb-100003
    化合物2为
    Figure PCTCN2017085814-appb-100004
    其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代;X为F、Cl或Br。
  8. 根据权利要求8所述的添加剂M的制备方法,其特征在于:所述的缚酸剂为三乙胺。
  9. 根据权利要求8所述的添加剂M的制备方法,其特征在于:所述的有机溶剂为乙腈。
  10. 根据权利要求8所述的添加剂M的制备方法,其特征在于:所述的化合物1为六氟环三磷腈。
  11. 根据权利要求8所述的添加剂M的制备方法,其特征在于:所述的化合物2为对环己基苯酚、对叔丁基苯酚、3,4-二氟联苯酚或对叔戊基苯酚。
  12. 一种锂离子电池电解液,包括锂盐、溶剂和添加剂,其特征在于:所述的添加剂包括添加剂M,所述的添加剂M为选自如下结构式中的一种或几种的组合:
    Figure PCTCN2017085814-appb-100005
    其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代。
  13. 根据权利要求13所述的锂离子电池电解液,其特征在于:R1、R2、R3、R4、R5独立地选自卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种。
  14. 根据权利要求14所述的锂离子电池电解液,其特征在于:R1、R2、R3、R4、R5独立地为卤素。
  15. 根据权利要求15所述的锂离子电池电解液,其特征在于:R1、R2、R3、R4、R5为F。
  16. 根据权利要求13所述的锂离子电池电解液,其特征在于:R8为选自烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基中的任一种,其中氟代为全取代或部分取代。
  17. 根据权利要求13所述的锂离子电池电解液,其特征在于:R6、R7、R9、R10为氢。
  18. 根据权利要求13至18中任一项所述的锂离子电池电解液,其特征在于:所述的添加剂M为如下结构式所示的物质中的一种或多种:
    Figure PCTCN2017085814-appb-100006
  19. 根据权利要求13所述的锂离子电池电解液,其特征在于:所述的添加剂M的制备方法为将化合物1与化合物2在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得所述的添加剂M,其中,所述的化合物1为
    Figure PCTCN2017085814-appb-100007
    化合物2为
    Figure PCTCN2017085814-appb-100008
    其中,R1、R2、R3、R4、R5独立地选自氢、烷基、烷氧基、烯烃基、卤代烷基、卤代烷氧基、卤代烯烃基、羟基、羧基、醚氧基、卤素中的任一种,其中,卤素为F、Cl或Br,卤代为部分取代或全取代;A为O、S、N或P构成的基团;R6、R7、R8、R9、R10独立的选自氢、烷基、环烷基、烷氧基、苯基、氟代烷基、氟代环烷基、氟代烷氧基、氟代苯基、氟代苯氧基、由O、S、N以及P构成的氟代基团中的任一种,其中氟代为全取代或部分取代;X为F、Cl或Br。
  20. 根据权利要求20所述的锂离子电池电解液,其特征在于:所述的缚酸剂为三乙胺。
  21. 根据权利要求20所述的锂离子电池电解液,其特征在于:所述的有机溶剂为乙腈。
  22. 根据权利要求20所述的锂离子电池电解液,其特征在于:所述的化合物1为六氟环三磷腈。
  23. 根据权利要求20所述的锂离子电池电解液,其特征在于:所述的化合物2为对环己基苯酚、对叔丁基苯酚、3,4-二氟联苯酚或对叔戊基苯酚。
  24. 根据权利要求19所述的锂离子电池电解液,其特征在于:所述的添加剂M的制备方法为:将六氟环三磷腈与对环己基苯酚或对叔丁基苯酚或3,4-二氟联苯酚在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得。
  25. 根据权利要求25所述的锂离子电池电解液,其特征在于:所述的缚酸剂为三乙胺;所述的有机 溶剂为乙腈。
  26. 根据权利要求19所述的锂离子电池电解液,其特征在于:所述的添加剂M的制备方法为:将六氟环三磷腈与对叔戊基苯酚在缚酸剂和有机溶剂的存在下,在80~100℃下反应制得。
  27. 根据权利要求27所述的锂离子电池电解液,其特征在于:所述的缚酸剂为三乙胺;所述的有机溶剂为乙腈。
  28. 根据权利要求13至19中任一项所述的锂离子电池电解液,其特征在于:所述的添加剂M的添加质量为所述的电解液总质量的0.5~20%。
  29. 根据权利要求29所述的锂离子电池电解液,其特征在于:所述的添加剂M的添加质量为所述的电解液总质量的1~5%。
  30. 根据权利要求30所述的锂离子电池电解液,其特征在于:所述的添加剂M的添加质量为所述的电解液总质量的2~4%。
  31. 根据权利要求13至19中任一项所述的锂离子电池电解液,其特征在于:所述的添加剂还包括占所述的电解液总质量0.01~20%的其他添加剂,所述的其他添加剂为选自碳酸亚乙烯酯、1,3-丙烷磺内酯、碳酸乙烯亚乙酯、硫酸丙烯酯、磷酸三辛酯中的一种或几种的组合。
  32. 根据权利要求13至19中任一项所述的锂离子电池电解液,其特征在于:所述的溶剂包括环状碳酸酯类溶剂和/或链状碳酸酯类溶剂,所述的环状碳酸酯类溶剂为选自γ-丁内酯、碳酸乙烯酯、碳酸丙烯酯中的一种或几种;所述的链状碳酸酯类溶剂为选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丁酸甲酯、丁酸乙酯、丁酸丙酯中的一种或几种。
  33. 根据权利要求13至19中任一项所述的锂离子电池电解液,其特征在于:所述的锂盐包括六氟磷酸锂。
  34. 根据权利要求34所述的锂离子电池电解液,其特征在于:所述的六氟磷酸锂的摩尔浓度为0.5~1.5mol/L。
  35. 根据权利要求35所述的锂离子电池电解液,其特征在于:所述的六氟磷酸锂的摩尔浓度为0.9~1.1mol/L。
  36. 根据权利要求34所述的锂离子电池电解液,其特征在于:所述的锂盐还包括其他锂盐,所述的其他锂盐为选自四氟硼酸锂、六氟砷酸锂、无水高氯酸锂、二(三氟甲基磺酸酰)亚胺锂、三氟甲基磺酸锂、二草酸硼酸锂、单草酸双氟硼酸锂、双氟磺酰亚胺锂中的一种或者几种。
  37. 一种锂离子电池,其特征在于:包括权利要求13至37中任一项所述的锂离子电池电解液。
PCT/CN2017/085814 2016-11-17 2017-05-25 一种锂离子电池电解液及锂离子电池 WO2018090594A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23198865.0A EP4282869A3 (en) 2016-11-17 2017-05-25 Lithium-ion battery electrolyte and lithium-ion battery
EP17872846.5A EP3544109B1 (en) 2016-11-17 2017-05-25 Lithium-ion battery electrolyte and lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611009970.3A CN106532117A (zh) 2016-11-17 2016-11-17 一种锂离子电池电解液及锂离子电池
CN201611009970.3 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018090594A1 true WO2018090594A1 (zh) 2018-05-24

Family

ID=58353302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085814 WO2018090594A1 (zh) 2016-11-17 2017-05-25 一种锂离子电池电解液及锂离子电池

Country Status (3)

Country Link
EP (2) EP4282869A3 (zh)
CN (1) CN106532117A (zh)
WO (1) WO2018090594A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162316A (zh) * 2018-11-08 2020-05-15 张家港市国泰华荣化工新材料有限公司 一种非水电解液及二次锂电池
CN112204795A (zh) * 2020-01-11 2021-01-08 山东理工大学 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法
CN112713306A (zh) * 2020-12-24 2021-04-27 清华大学深圳国际研究生院 一种遇空气或湿气可固化的电解液及制备方法和应用
CN114614094A (zh) * 2022-03-28 2022-06-10 杭州瀛拓科技有限公司 一种电解质及锂离子电池电解液

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532117A (zh) * 2016-11-17 2017-03-22 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池
CN106972197B (zh) * 2017-04-28 2019-07-02 山东海容电源材料股份有限公司 一种防过充锂电池电解液及其制备方法
CN108933294B (zh) * 2017-05-26 2020-08-28 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
CN107256983A (zh) * 2017-06-12 2017-10-17 无锡九宇宝新能源科技有限公司 用于锂离子电池的宽温高效阻燃电解液及其制备方法
CN109422774B (zh) * 2017-08-30 2021-03-30 张家港市国泰华荣化工新材料有限公司 五氟乙氧基环三磷腈的制备方法
CN109346761B (zh) * 2018-10-18 2021-03-05 欣旺达电子股份有限公司 锂离子电池、锂离子电池电解液及其制备方法
CN109802177B (zh) * 2018-12-25 2020-10-16 杉杉新材料(衢州)有限公司 一种含硅溶剂和吡啶类添加剂的电解液及使用该电解液的锂离子电池
CN109687022B (zh) * 2018-12-25 2020-12-01 杉杉新材料(衢州)有限公司 一种含氟溶剂和吡啶类添加剂的电解液及使用该电解液的锂离子电池
CN112189278B (zh) * 2020-01-11 2022-07-29 山东理工大学 易溶于有机溶剂的阻燃锂离子电池电解质的制备方法
CN115036571A (zh) * 2021-03-09 2022-09-09 张家港市国泰华荣化工新材料有限公司 一种电解液及锂离子电池
CN114421015B (zh) * 2022-02-23 2024-05-24 复旦大学 一种具有醚氧键官能团的碳酸酯基电解液及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080651A (ja) * 2005-09-14 2007-03-29 Bridgestone Corp ポリマーゲル電解質及びそれを用いたポリマー電池
JP2009158460A (ja) * 2007-12-05 2009-07-16 Sony Corp 非水電解液二次電池
CN102569890A (zh) * 2012-02-13 2012-07-11 东莞新能源科技有限公司 一种锂离子二次电池及其电解液
CN103208653A (zh) * 2013-03-21 2013-07-17 东莞新能源科技有限公司 一种镍基阴极锂离子电池用电解液及锂离子电池
CN104140559A (zh) * 2013-05-10 2014-11-12 信汇科技有限公司 环状磷腈化合物作为阻燃剂在制备树脂中的应用
US20150221987A1 (en) * 2012-10-11 2015-08-06 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery
CN105047994A (zh) * 2015-09-22 2015-11-11 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN106532117A (zh) * 2016-11-17 2017-03-22 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027530A1 (ja) * 2009-09-02 2011-03-10 パナソニック株式会社 非水溶媒、並びにそれを用いた非水電解液および非水系二次電池
JP5780481B2 (ja) * 2011-01-24 2015-09-16 積水化学工業株式会社 電解質、電解質膜、リチウムイオン二次電池及びホスファゼン化合物
CN110010968A (zh) * 2011-02-10 2019-07-12 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质二次电池
WO2015008496A1 (ja) * 2013-07-19 2015-01-22 パナソニック株式会社 非水電解液およびそれを用いた非水電解質二次電池
US20170207486A1 (en) * 2014-07-23 2017-07-20 Basf Corporation Electrolytes for lithium transition metal phosphate batteries
CN104218258A (zh) * 2014-09-17 2014-12-17 宜春金晖新能源材料有限公司 防过充阻燃电池电解液
JP2016162523A (ja) * 2015-02-27 2016-09-05 富士フイルム株式会社 非水二次電池用電解液および非水二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080651A (ja) * 2005-09-14 2007-03-29 Bridgestone Corp ポリマーゲル電解質及びそれを用いたポリマー電池
JP2009158460A (ja) * 2007-12-05 2009-07-16 Sony Corp 非水電解液二次電池
CN102569890A (zh) * 2012-02-13 2012-07-11 东莞新能源科技有限公司 一种锂离子二次电池及其电解液
US20150221987A1 (en) * 2012-10-11 2015-08-06 Fujifilm Corporation Electrolytic solution for non-aqueous secondary battery, and non-aqueous electrolytic solution secondary battery
CN103208653A (zh) * 2013-03-21 2013-07-17 东莞新能源科技有限公司 一种镍基阴极锂离子电池用电解液及锂离子电池
CN104140559A (zh) * 2013-05-10 2014-11-12 信汇科技有限公司 环状磷腈化合物作为阻燃剂在制备树脂中的应用
CN105047994A (zh) * 2015-09-22 2015-11-11 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN106532117A (zh) * 2016-11-17 2017-03-22 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162316A (zh) * 2018-11-08 2020-05-15 张家港市国泰华荣化工新材料有限公司 一种非水电解液及二次锂电池
CN112204795A (zh) * 2020-01-11 2021-01-08 山东理工大学 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法
CN112204795B (zh) * 2020-01-11 2022-05-17 山东理工大学 一种阻燃电解液的制备方法
CN112713306A (zh) * 2020-12-24 2021-04-27 清华大学深圳国际研究生院 一种遇空气或湿气可固化的电解液及制备方法和应用
CN114614094A (zh) * 2022-03-28 2022-06-10 杭州瀛拓科技有限公司 一种电解质及锂离子电池电解液

Also Published As

Publication number Publication date
EP3544109B1 (en) 2024-07-03
EP3544109A1 (en) 2019-09-25
EP4282869A3 (en) 2024-03-13
EP3544109A4 (en) 2020-10-14
CN106532117A (zh) 2017-03-22
EP4282869A2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2018090594A1 (zh) 一种锂离子电池电解液及锂离子电池
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
CN102782927B (zh) 非水电解液、使用其的电化学元件以及非水电解液中使用的1,2-二氧丙烷化合物
JP5223919B2 (ja) 非水系電解液
US8367254B2 (en) Electrolyte for a high voltage battery and lithium secondary battery comprising the same
KR20170039580A (ko) 리튬금속전지
JP2008300126A (ja) 電池用非水電解液及びそれを備えた非水電解液2次電池
JP5134770B2 (ja) 2次電池用非水電解液及びそれを備えた非水電解液2次電池
KR102613337B1 (ko) 비수전해액 및 비수전해액 이차전지
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
JP2016105370A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2016013480A1 (ja) 非水電解液二次電池、非水電解液及び化合物
JP6109746B2 (ja) 有機系電解質および有機系電解質蓄電池
JP7055481B2 (ja) リチウム二次電池用電解質
CN109411812A (zh) 一种阻燃电解液及其锂二次电池
JP5228045B2 (ja) 難燃剤含有非水系二次電池
EP4000113A1 (en) Electrolytes for high-voltage cathode materials and other applications
CN105514483A (zh) 锂离子电池及其电解液
JP6031450B2 (ja) 有機系電解質および有機系電解質蓄電池
CN105261787A (zh) 用于可再充电锂电池的电解质和包括其的可再充电锂电池
CN105552435B (zh) 用于可再充电锂电池的电解质和包括其的可再充电锂电池
WO2013094603A1 (ja) 有機系電解質および有機系電解質蓄電池
JP6103134B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
CN109037776A (zh) 电解液以及包括该电解液的电池
CN103403949A (zh) 非水电解液用添加剂、非水电解液和非水电解液二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872846

Country of ref document: EP

Effective date: 20190617