WO2021187060A1 - 剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法 - Google Patents

剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法 Download PDF

Info

Publication number
WO2021187060A1
WO2021187060A1 PCT/JP2021/007446 JP2021007446W WO2021187060A1 WO 2021187060 A1 WO2021187060 A1 WO 2021187060A1 JP 2021007446 W JP2021007446 W JP 2021007446W WO 2021187060 A1 WO2021187060 A1 WO 2021187060A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
release
ceramic
roll
film roll
Prior art date
Application number
PCT/JP2021/007446
Other languages
English (en)
French (fr)
Inventor
飯島 忠良
泰彦 江守
修治 飯田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN202180021509.2A priority Critical patent/CN115298783A/zh
Priority to JP2022508174A priority patent/JP7447988B2/ja
Priority to KR1020227033416A priority patent/KR20220143133A/ko
Publication of WO2021187060A1 publication Critical patent/WO2021187060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/04Kinds or types
    • B65H75/08Kinds or types of circular or polygonal cross-section
    • B65H75/10Kinds or types of circular or polygonal cross-section without flanges, e.g. cop tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/172Composite material
    • B65H2701/1726Composite material including detachable components

Definitions

  • the present disclosure relates to a release film roll, a ceramic part sheet and a method for manufacturing the same, and a ceramic part and a method for manufacturing the same.
  • Ceramic parts which are a type of electronic parts, are also becoming smaller year by year.
  • a multilayer ceramic capacitor which is a kind of ceramic component, the thickness of the dielectric layer and the internal electrode is reduced to increase the capacity.
  • a general multilayer ceramic capacitor is manufactured by forming a release film as a carrier film, forming a dielectric layer and an internal electrode on the carrier film to form a green sheet, and peeling and laminating the green sheet.
  • the withstand voltage performance that shows the resistance to the voltage strength that causes problems such as short circuit tends to decrease.
  • the thin portion causes a decrease in withstand voltage performance.
  • a monolithic ceramic capacitor having a dielectric layer having such a thin portion has a poor withstand voltage, and the yield of the monolithic ceramic capacitor is lowered.
  • the withstand voltage performance is improved and the yield of the multilayer ceramic capacitor is improved.
  • a ceramic green sheet is formed on the release film drawn from the release film roll.
  • it is considered effective to increase the winding length of the release film wound on the release film roll to reduce the frequency of replacement of the release film roll. ..
  • Such a release film roll is fixed or supported by a winding core during storage and transportation. If the winding length is long, there is a concern that the release film wound in a roll shape may slide like a bamboo shoot due to vibration during transportation or the like. In addition, there is a concern that the vibration causes unwinding, which causes scratches on the peeling layer. When the peeling layer is scratched, it can cause pinholes in the dielectric layer. As a measure to avoid the occurrence of such winding misalignment and sliding phenomenon, it is considered effective to increase the winding strength of the release film.
  • the uneven shape of the base film is easily transferred to the release layer.
  • the pressure applied to the inner release film is increased, so that the uneven shape is particularly easily transferred. As a measure to avoid such an event, it is considered effective to reduce the winding strength of the release film.
  • the present disclosure provides a release film roll capable of sufficiently reducing damage to the release layer of the release film even if the winding length of the release film is increased.
  • the present disclosure also provides a method for producing a ceramic component sheet and a method for producing a ceramic component having excellent reliability by using such a release film roll.
  • the present disclosure also provides ceramic component sheets and ceramic components with excellent reliability.
  • the release film roll according to one aspect of the present disclosure is a release film roll having a release film having a base film and a release layer, and a winding core around which the release film is wound, and is a release film roll having a winding core on the side surface.
  • the repulsive hardness K (r) [HL] satisfies the following formula (1). -2r + 670 ⁇ K (r) ⁇ -1.25r + 862.5 ... (1)
  • the repulsive hardness K (r) changes according to the amount of air present in the gap between the wound release films.
  • the repulsive hardness K (r) decreases as the amount of air present between the release films increases, and the repulsive hardness increases as the amount of air decreases.
  • the repulsive hardness K (r) becomes too high, the adjacent release films are in close contact with each other too much, and the uneven shape of the base film is easily transferred to the release layer. Since the repulsive hardness tends to be higher on the inner side of the release film roll, the uneven shape is likely to be transferred to the inner release film.
  • the repulsive hardness K (r) is set to a predetermined upper limit value (-1.25r + 862.5) or less in the inner portion where the distance r is 10 to 130 mm. This prevents the uneven shape from being transferred to the release film.
  • the repulsive hardness K (r) becomes too low, the amount of air existing between the adjacent release films increases, and the inner portion of the release film roll tends to slide like a bamboo shoot, and the film is wound by vibration. There is a tendency for deviation to occur easily. Further, in the release film roll, the force when the outer release film is wound acts on the release film wound inside the release film roll, and the release film roll is displaced in the winding direction, which may cause wrinkles. Therefore, in the release film roll, the repulsive hardness K (r) is set to a predetermined lower limit value (-2r + 670) or more in the portion where the distance r is 10 to 130 mm. This prevents the release film from sliding like a bamboo shoot, causing unwinding due to vibration, and preventing winding tightening.
  • the release film roll can sufficiently reduce damage such as unevenness and scratches that occur in the release layer of the release film even if the winding length of the release film is increased.
  • the repulsive hardness K (r) in the range where the distance r is less than 10 mm may be 650 HL or more.
  • the release film roll can be effectively utilized in the replacement work without forming the ceramic green sheet.
  • it can be used as a deceleration range for decelerating the feeding speed, or as a portion to be retained in the drying furnace.
  • the distance r 0 along the radial direction from the outer peripheral surface of the winding core to the outer peripheral surface of the roll-shaped release film is 160 mm or more, and the repulsive hardness K (r) is 350 to 350 when the distance r is 160 mm or more. It may be 662.5 HL. As a result, it is possible to sufficiently suppress the occurrence of wrinkles on the release film on the outer peripheral portion of the release film roll while sufficiently adhering the adjacent release films to each other in the entire release film roll.
  • the release film may be wound so that the repulsive hardness K (r) [HL] decreases as the distance r increases within the range of the distance r of 10 to 130 mm. As a result, it is possible to sufficiently suppress the occurrence of unwinding in both the vicinity of the inner circumference and the vicinity of the outer circumference of the release film roll.
  • the method for manufacturing a ceramic component sheet according to one aspect of the present disclosure is a step of forming a ceramic green sheet on the surface of a release layer of a release film drawn from any of the above-mentioned release film rolls by using a paste containing ceramic powder. Has.
  • the above manufacturing method uses a release film drawn from any of the above release film rolls.
  • the release layer of the release film is sufficiently suppressed from being scratched due to unwinding, sliding phenomenon, etc., and unevenness. Therefore, it is possible to form a ceramic green sheet in which thickness variation and pinholes are sufficiently reduced over a wide region between the front end and the rear end of the release film wound on the release film roll. Therefore, it is possible to manufacture a ceramic component sheet having excellent reliability.
  • the "rear end" of the release film means one end on the side in contact with the winding core
  • the "tip" of the release film means one end on the side appearing on the outer peripheral surface of the release film roll.
  • the method for manufacturing ceramic parts includes a step of obtaining a laminate containing a ceramic green sheet using the ceramic parts sheet obtained by the above-mentioned manufacturing method, and a step of firing the laminate to obtain a sintered body. It has a step of obtaining.
  • ceramic parts are manufactured using a release film in which scratches due to unwinding and sliding phenomena and irregularities are sufficiently suppressed. As a result, it is possible to form a ceramic green sheet in which thickness variation and pinholes are sufficiently reduced. Therefore, it is possible to manufacture a ceramic part having excellent reliability.
  • the ceramic component sheet according to one aspect of the present disclosure is obtained by forming a green sheet containing a ceramic green sheet on the surface of the release layer of the release film drawn from any of the above-mentioned release film rolls.
  • the above-mentioned ceramic component sheet is obtained by using a release film drawn from any of the above-mentioned release film rolls.
  • the release layer of the release film is sufficiently suppressed from being scratched due to unwinding, sliding phenomenon, etc., and unevenness. Therefore, the thickness variation and pinhole of the ceramic green sheet can be sufficiently reduced.
  • the ceramic component sheet obtained by forming the green sheet including such a ceramic green sheet has excellent reliability.
  • the ceramic component according to one aspect of the present disclosure includes a sintered body obtained by forming a laminate including a ceramic green sheet of the ceramic component sheet and firing the laminate.
  • the thickness variation and pinholes of the ceramic green sheet are sufficiently reduced.
  • the ceramic parts are excellent in reliability because they include a sintered body obtained by firing a laminate containing such a ceramic green sheet.
  • a release film roll capable of sufficiently reducing damage to the release layer of the release film even if the winding length of the release film is increased. Further, by using such a release film roll, it is possible to provide a method for manufacturing a ceramic component sheet and a method for manufacturing a ceramic component having excellent reliability. Further, it is possible to provide a ceramic part sheet and a ceramic part having excellent reliability.
  • FIG. 1 is a perspective view of a release film roll according to an embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a release film.
  • FIG. 3 is a side view of the release film roll according to the embodiment.
  • FIG. 4 is a diagram for explaining a method for measuring the repulsive hardness K (r).
  • FIG. 5 is a diagram showing an example of a release film roll manufacturing apparatus according to an embodiment.
  • FIG. 6 is a cross-sectional view of the ceramic component sheet according to the embodiment.
  • FIG. 7 is a cross-sectional view showing a ceramic component according to an embodiment.
  • FIG. 8 is a graph showing the relationship between the distance r of the release film rolls of Examples 1, 2 and 3 and the repulsion hardness K (r).
  • FIG. 9 is a graph showing the relationship between the distance r of the release film rolls of Comparative Examples 1 and 2 and the repulsion hardness K (r).
  • FIG. 10 is a graph showing the relationship between the distance r of the release film rolls of Comparative Example 3 and Comparative Example 4 and the repulsion hardness K (r).
  • FIG. 1 is a perspective view of a release film roll according to an embodiment.
  • the release film roll 100 of FIG. 1 includes a release film 20 having a base film and a release layer, and a winding core 10 around which the release film 20 is wound.
  • the release film 20 is used as a carrier film in, for example, in the manufacturing process of ceramic parts represented by a multilayer ceramic capacitor. In this manufacturing process, for example, a ceramic green sheet to be a dielectric sheet and an electrode green sheet to be an internal electrode are formed on a release film by coating or printing, and then these are peeled off and laminated. Ceramic parts are manufactured by firing the laminate.
  • the release film 20 is drawn out from the release film roll 100 and used.
  • Examples of the material of the winding core 10 include paper, plastic, and metal. In the production of ceramic parts, particles cause pinholes, so those containing lightweight plastic that does not generate paper dust are preferable. Such examples include ABS resin, bakelite and fiber reinforced plastics. Fiber reinforced plastics can be preferably used because they have flexibility in addition to high mechanical strength. Examples of the fiber reinforced plastic include those in which the fibers are reinforced with a thermosetting resin. Examples of the resin include epoxy resin and unsaturated polyester resin. Examples of the fiber include glass fiber and aramid fiber. The resin may be an unsaturated polyester resin in consideration of cost and the like. From the same point of view, the fiber may be glass fiber.
  • the repulsive hardness K (r) in the range where r is less than 10 mm may be 950 HL or less.
  • the repulsive hardness K (r) in the range where r is less than 10 mm may exceed 950 HL.
  • the outer diameter of the winding core 10 may be 150 mm or less, and may be 100 mm or less. As a result, the size of the release film roll 100 can be reduced, and the installation space and transportation cost can be reduced.
  • the winding length of the release film 20 wound around the winding core 10 may be 4000 m or more, 5000 m or more, or 6000 m or more.
  • the thickness of the release film 20 may be 10 to 110 ⁇ m and may be 20 to 60 ⁇ m.
  • the width of the release film 20 may be, for example, 100 to 1000 mm.
  • the direction in which the release film is conveyed when the release film is pulled out and wound is referred to as the longitudinal direction
  • the direction orthogonal to the longitudinal direction of the release film is referred to as the width direction of the release film.
  • FIG. 2 is a cross-sectional view showing an example of a release film.
  • the release film 20 has a base film 22 and a release layer 24 on one surface thereof.
  • the base film 22 may be a synthetic resin film.
  • the synthetic resin include polyolefin resins such as polyester resin, polypropylene resin and polyethylene resin, acrylic resins such as polylactic acid resin, polycarbonate resin and polymethylmethacrylate resin, polyamide resins such as polystyrene resin and nylon, polyvinyl chloride resin and polyretan. Examples thereof include resins, fluororesins, and polyphenylene sulfide resins. Of these, polyester resin is preferable. Of the polyester resins, polyethylene terephthalate (PET) is more preferable from the viewpoint of mechanical properties, transparency, cost and the like.
  • PET polyethylene terephthalate
  • the thickness of the base film 22 is preferably 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m. If the thickness is less than 10 ⁇ m, the physical characteristics such as the dimensional stability of the release film 20 tend to be impaired. If the thickness exceeds 100 ⁇ m, the manufacturing cost per unit area of the release film 20 tends to increase.
  • the base film 22 may contain a filler (filler) to the extent that the transparency is not impaired from the viewpoint of sufficiently increasing the mechanical strength of the release film 20.
  • the release film roll 100 of the present embodiment can sufficiently suppress the transfer of the shape of the filler to the release layer 24 of the adjacent release film 20 even if the base film 22 contains the filler.
  • the filler is not particularly limited, and examples thereof include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium oxide, fumed silica, alumina, and organic particles.
  • the base film 22 When a polyester film is used as the base film 22, it can be manufactured by the following procedure. First, the molten polyester is cast into a rotary cooling drum with an extruder. The molten polyester is extruded from a slitted mouthpiece. Then, it is cooled and peeled off from the rotary cooling drum to obtain an unstretched polyester film. By adjusting the slit gap of the extruder, the thickness of the polyester film and the fluctuation width thereof can be adjusted.
  • the unstretched polyester film is stretched to adjust it to a desired thickness and impart mechanical strength.
  • the polyester film is preferably stretched by biaxial stretching. In this case, longitudinal stretching is followed by transverse stretching.
  • the stretching temperature at the time of stretching is preferably equal to or higher than the glass transition temperature of the polyester film and lower than the melting temperature. In the longitudinal stretching and the transverse stretching, each may be stretched several times. Even after stretching, the thickness variation of the unstretched film is inherited. Therefore, by controlling the thickness variation of the unstretched film, the thickness variation width of the base film 22 and the release film 20 can be adjusted.
  • the release layer 24 is formed by applying a solution containing a release agent on one surface of the base film 22 and drying and curing the solution.
  • the coating method is not particularly limited, and a reverse coating method, a gravure coating method, a rod coating method, a bar coating method, a Meyer bar coating method, a die coating method, a spray coating method, or the like may be used.
  • Hot air drying, infrared drying, natural drying and the like can be used for drying. It is preferable to heat it in order to suppress moisture dew condensation during drying, and it may be about 60 to 120 ° C.
  • Examples of the release agent used for forming the release layer 24 include silicone-based release agents, long-chain alkyl-based release agents, fluorine-based release agents, and aminoalkyd resin-based release agents.
  • Silicone-based release agents include addition reaction-type silicone release agents, condensation-type silicone release agents, ultraviolet-curable release agents, and the like, depending on the difference in curing reaction.
  • the curing conditions may be appropriately selected according to the curing system of the release agent.
  • the release agent is an addition reaction type silicone, it can be cured by performing a heat treatment at 80 to 130 ° C. for several tens of seconds.
  • it is an ultraviolet curing system, it can be cured by irradiating ultraviolet rays using a mercury lamp, a metal halide lamp, or the like as a light source.
  • radical polymerization is carried out by irradiating with ultraviolet rays, it is preferable to perform curing in a nitrogen atmosphere in order to prevent oxygen inhibition. It is preferable that the thickness variation width of the release layer 24 is small.
  • the addition reaction type silicone release agent is cured by reacting hydrogensiloxane with a polydimethylsiloxane having a vinyl group introduced at the end and / or side chain.
  • a platinum catalyst can be used for curing. For example, it can be cured in several tens of seconds to several minutes at a curing temperature of about 100 ° C.
  • the thickness of the release layer 24 may be about 50 to 300 nm.
  • K847, KS847T, KS-776L, KS-776A, KS-841, KS-774, KS-3703T, KS-3601, etc. (all trade names) manufactured by Shin-Etsu Chemical Co., Ltd. are used. Can be mentioned.
  • the release layer 24 may be composed of, for example, a (meth) acrylate component and a cured product of (meth) acrylate-modified silicone. Since such a cured product can be cured by ultraviolet rays, the thickness of the release layer 24 can be increased. Therefore, for example, when the base film 22 contains a filler, the surface (peeling surface) of the release layer 24 can be smoothed by covering the protrusions caused by the filler. In this case, the thickness of the release layer 24 may be 300 to 3000 nm.
  • (Meta) acrylate monomer and (meth) acrylate-modified silicone oil that are incompatible with each other may be used. These are mixed in a solvent together with a reaction initiator, applied to the base film 22, and then the solvent is dried. In this way, the silicone-modified silicone oil may be cured by ultraviolet rays in a state where it is localized in the vicinity of the surface to form the release layer 24.
  • Known (meth) acrylate-modified silicone oils can be used.
  • X-22-164A, X-22-164B, X-22-174DX, X-22-2445 all trade names manufactured by Shin-Etsu Chemical Co., Ltd. can be mentioned.
  • the surface of the release layer 24 in the release film 20 is preferably smooth.
  • the surface roughness (Rp) of the release layer 24 is preferably 100 nm or less, and more preferably 50 nm or less.
  • the surface roughness (Rp) of the release layer 24 in this embodiment is the maximum mountain height defined by JIS B 0601-2001, and is measured using a contact-type surface roughness meter or a scanning white interference microscope. Can be done.
  • the thickness variation width of the release film 20 in the width direction is preferably 0.5 ⁇ m or less, more preferably 0.4 ⁇ m or less, and further preferably 0.3 ⁇ m or less. Particularly preferably, it is 0.2 ⁇ m or less.
  • the thickness variation width becomes large, the wound release films 20 come into strong contact with each other in the thick portion, so that the repulsive hardness becomes higher than in the other portions.
  • the thickness fluctuation width By reducing the thickness fluctuation width, the deformation of the release film 20 can be suppressed. Further, when the ceramic green sheet is formed on the release film 20, the thickness variation width of the ceramic green sheet can be reduced.
  • the thickness variation width in the width direction of the release film in the present disclosure is the difference between the maximum value and the minimum value of the thickness of the release film between both ends in the width direction of the release film 20. This is obtained as follows.
  • a reference point is provided on the release film 20, and a position for measuring the thickness of a plurality of release films is set along the width direction.
  • the interval between the measurement positions may be set as appropriate. For example, since the thickness of the release film is unlikely to change rapidly, the interval may be about 1 mm to 10 mm. Further, the reference point can be, for example, the side edge of the release film.
  • the thickness of the release film is measured at each measurement position, and the film is appropriately moved in the longitudinal direction, and the thickness of the release film is measured in the same manner in a timely manner.
  • the average value is calculated using a plurality of longitudinal thickness measurement values measured at the same position in the width direction, and the maximum value and the minimum value of the average value of the thickness of the release film calculated for each measurement position in the width direction. The difference between the values is the thickness fluctuation range.
  • a thickness measuring method As a thickness measuring method, a contact type thickness measuring device, an optical thickness measuring device, a capacitance type thickness measuring device, a radiation type thickness measuring device using beta rays, fluorescent X-rays, or the like is used. Examples thereof include a method and a method of measuring the cross section of the release film 20 by microscopic observation. If a contact-type thickness measuring device is used, the thickness variation of the release film 20 can be directly measured. Further, the thickness fluctuation widths of the base film 22 and the release layer 24 may be measured by the same method or different methods, and the thicknesses of the respective thicknesses may be totaled to obtain the thickness of the release film 20.
  • the thickness of the base film 22 is measured by a radiation type film thickness meter
  • the thickness of the release layer 24 is measured by an optical measurement obtained from spectrophotometric intensity
  • the thickness fluctuation widths of each are totaled to change the thickness of the release film 20. It may be the width.
  • the measurement spot diameter may be appropriately set, and may be about 0.2 m to 2 mm.
  • a thickness measuring device may be installed in a line such as a coating device or a cutting device to measure the thickness sequentially.
  • a line such as a coating device or a cutting device to measure the thickness sequentially.
  • the thickness can be measured over the entire length of the release film 20 by installing a thickness measuring device in the coating line or the cutting line and performing the measurement while traversing the thickness measuring device in the width direction when the release film 20 is conveyed. ..
  • FIG. 3 is a side view of the release film roll 100.
  • the side end portion of the release film 20 wound around the winding core 10 is exposed.
  • FIG. 3 for the sake of explanation, only the outermost release film 20 is shown.
  • the following Equation (1) is satisfied. (-2r + 670) ⁇ K (r) ⁇ (-1.25r + 862.5) ... (1)
  • K (r) indicates the repulsive hardness [HL].
  • the repulsive hardness K (r) is obtained from the rebound of the ball colliding with the surface of the release film 20 on the outer peripheral surface 26 of the release film roll 100.
  • the repulsive hardness K (r) can be measured with a commercially available measuring instrument under the name of a leave-type hardness tester, a rebound-type hardness tester, or the like. Examples of the manufacturing company of the measuring instrument include SMART SENSOR.
  • the repulsive hardness in the present disclosure may be referred to as leave hardness.
  • the upper limit value and the lower limit value of the repulsive hardness K (r) when the distance r is 10 to 130 mm are specified.
  • the lower limit of the distance r 0 along the radial direction R from the outer peripheral surface 10a of the winding core 10 to the outer peripheral surface 26 of the roll-shaped release film 20 may be 160 mm or 200 mm.
  • the repulsive hardness K (r) may be 350 to 662.5 HL when the distance r is 160 mm or more.
  • the upper limit of the distance r 0 may be 500 mm.
  • FIG. 4 is a diagram for explaining a method for measuring the repulsive hardness K (r).
  • the release film roll 100 of FIG. 3 when the distance r 0 exceeds 130 mm, in order to measure the repulsive hardness K (r) in the range of 10 to 130 mm, the release film roll is made until the distance r becomes 130 mm. Pull out the release film 20 wound around 100. Then, when the distance r from the outer peripheral surface 10a of the winding core 10 along the radial direction of the release film roll 100 to the outer peripheral surface 26A of the roll 23 on the side surface 12A of the roll 23 reaches 130 mm, the roll is as shown in FIG.
  • the sensor of the measuring instrument is pressed against the surface 27 of the release film 20 exposed on the outer peripheral surface 26A of the 23 (release film roll), and the repulsive hardness K (r) is measured. At this time, the sensor is pressed against the central portion of the release film 20 in the width direction. Further, as shown by the arrow P, it is pressed toward the center C of the winding core. As a result, the repulsive hardness K (r) when the distance r is 130 mm is measured. Then, while pulling out the release film 20, the repulsive hardness K (r) in the range of 10 to 130 mm in distance r may be measured.
  • the repulsive hardness K (r) does not change suddenly in the release film roll, so it is advisable to measure the repulsive hardness K (r) every time the distance r is about 5 mm. Further, when the distance r 0 exceeds 130 mm, the peeling is wound around the release film roll 100 until the distance r becomes 130 mm in order to measure the repulsive hardness K (r) in the range of 10 to 130 mm. In the process of pulling out the film 20, the repulsive hardness K (r) from 130 mm to the distance r 0 may be measured by appropriately setting the interval of the distance r in the same manner as described above.
  • the adjacent release films 20 are in close contact with each other too much, and the uneven shape of the base film 22 is easily transferred to the release layer 24.
  • the thickness variation width of the ceramic green sheet tends to increase.
  • the repulsive hardness K (r) becomes low, the amount of air existing between the adjacent release films 20 increases, and the release film 20 tends to slide easily like a bamboo shoot in the inner portion of the release film roll 100. , There is a tendency for unwinding to occur easily due to vibration.
  • the release layer 24 is scratched, and pinholes are likely to occur in the ceramic green sheet formed on the release film. Since the release film roll 100 of the present embodiment satisfies the above formula (1), damage (unevenness and scratches) generated on the release layer 24 of the release film 20 can be sufficiently reduced.
  • the release film 20 may be wound so that the repulsive hardness K (r) decreases as the distance r increases within the range of 10 to 130 mm. As a result, the occurrence of unwinding can be sufficiently suppressed in both the inner peripheral portion and the outer peripheral portion of the release film roll 100. Even when the distance r is 130 mm or more, the release film 20 may be wound so that the repulsive hardness K (r) decreases as the distance r increases. In the range where the distance r is less than 10 mm, the repulsive hardness K (r) may be 650 HL or more.
  • FIG. 5 is a diagram showing an example of a manufacturing apparatus for the release film roll 100.
  • a release film roll 200 is used.
  • a release film 20A having a width wider than that of the release film 20 (for example, 1 to 2 m) is wound around the winding core 11.
  • the release film roll 200 is manufactured by winding the release film 20A around the winding core 11 by a known method.
  • the release film 20A may be wound around the winding core 11 with the base film side on the inside, or may be wound with the release layer side on the inside.
  • the winding core 11 of the release film roll 200 is inserted into the rotating shaft 202 on the upstream side, and the rotating shaft 202 rotatably supports the release film roll 200. Further, the manufacturing apparatus 300 is inserted into and wound into a nip roll 50 having a pair of rolls for sandwiching the release film 20A drawn from the release film roll 200 in the vertical direction, a cutting portion 60, and a winding core 10 of the release film roll 100.
  • a take-up shaft 102 that rotatably supports the core 10 is provided.
  • the upper roll 50a may be a roll whose surface is made of rubber.
  • the lower roll 50b may be a roll whose surface is made of metal.
  • the nip roll 50 has a function of making the tension of the release film 20A different between the upstream side and the downstream side thereof. As a result, the tension when winding the release film 20 around the winding core 10 can be controlled with a high degree of freedom.
  • the cutting portion 60 has an upper blade roller 60a and a lower blade roller 60b.
  • the upper blade roller 60a may have a plurality of upper blades mounted at predetermined intervals along the direction of its rotation axis.
  • the upper blade of the upper blade roller 60a may be adapted to mesh with the lower blade roller 60b.
  • the release film 20A that has passed through the nip roll 50 is cut along the longitudinal direction between the upper blade roller 60a and the lower blade roller 60b. As a result, it is divided into a release film 20 having a width of, for example, 100 to 500 mm.
  • the plurality of release film rolls 100 can be manufactured at one time. ..
  • a known slitter such as a gang blade can be used for the cutting portion 60.
  • the cutting portion 60 may not be provided.
  • one release film roll 100 can be obtained from one release film roll 200.
  • the release film 20 obtained by being cut by the cutting portion 60 is wound around the winding core 10 attached to the winding shaft 102.
  • the take-up shaft 102 rotates with a predetermined torque
  • the contact roll 70 which rotates while being in contact with the release layer 24 of the release film 20, presses the release film 20 to be wound toward the winding core 10. That is, the release film 20 is wound while being pressed by the contact roll 70.
  • the contact roll 70 may be rotationally driven.
  • the repulsive hardness K (r) on the surface of the release layer 24 of the release film 20 wound around the release film roll 100 is adjusted by controlling the pressing force and the driving force by the contact roll 70 and controlling the torque of the take-up shaft 102. be able to.
  • the take-up tension is adjusted to a desired tension by controlling the torque of the take-up shaft 102 according to the roll diameter at the time of take-up.
  • the repulsive hardness can be increased by increasing the torque of the take-up shaft 102.
  • the repulsive hardness K (r) exceeds the upper limit without sufficiently reducing the tension even if the roll diameter is increased, the torque of the take-up shaft 102 can be reduced to lower the repulsive hardness.
  • the method for producing the release film roll 100 is not limited to the above method.
  • it can be manufactured only by driving the contact roll and adjusting the torque of the contact roll.
  • FIG. 6 is a cross-sectional view of the ceramic parts sheet according to the embodiment of the present disclosure.
  • the ceramic green sheet 32 and the electrode green sheet are used on the surface 24a of the release layer 24 of the release film 20 drawn from the release film roll 100 by using a paste containing ceramic powder and an electrode paste. It has a step of forming a green sheet 30 including 34.
  • the ceramic green sheet 32 can be formed by applying a ceramic paste containing ceramic powder and drying it.
  • the electrode green sheet 34 can be formed by applying an electrode paste on a ceramic green sheet 32 and drying it.
  • the ceramic paste can be prepared by kneading a dielectric raw material (ceramic powder) and an organic vehicle.
  • the dielectric raw material include various compounds that become composite oxides or oxides by firing. For example, it can be appropriately selected and used from carbonates, nitrates, hydroxides, organometallic compounds and the like.
  • the dielectric material may be a powder having an average particle size of 4 ⁇ m or less, preferably 0.1 to 3.0 ⁇ m.
  • the electrode paste is selected from the group consisting of, for example, conductive materials such as various conductive metals and alloys, and materials that become conductive materials after firing with various oxides, organic metal compounds, and resists.
  • conductive materials such as various conductive metals and alloys, and materials that become conductive materials after firing with various oxides, organic metal compounds, and resists.
  • One and an organic vehicle can be kneaded and prepared.
  • the conductor material used in producing the electrode paste it is preferable to use a Ni metal, a Ni alloy, or a mixture thereof.
  • the electrode paste may contain a plasticizer to improve the adhesiveness. Examples of the plasticizer include phthalates such as benzyl butyl phthalate (BBP), adipic acid, phosphoric acid esters, glycols and the like.
  • BBP benzyl butyl phthalate
  • adipic acid such as benzyl butyl phthalate (BBP), adipic acid, phosphoric acid esters, glycol
  • the organic vehicle contained in the ceramic paste and the electrode paste is prepared by dissolving the binder resin in an organic solvent.
  • the binder resin used in the organic vehicle include ethyl cellulose, acrylic resin, butyral resin, polyvinyl acetal, polyvinyl alcohol, polyolefin, polyurethane, polystyrene, and copolymers thereof.
  • a butyral-based resin specifically, a polyvinyl butyral-based resin.
  • the mechanical strength of the ceramic green sheet can be increased.
  • One or both of the ceramic paste and the electrode paste contains, if necessary, at least one additive selected from the group consisting of various dispersants, plasticizers, charge removers, dielectrics, glass frits, insulators and the like. May be good.
  • the above-mentioned ceramic paste is applied to the surface 24a of the release layer 24 of the release film 20 by using, for example, a doctor blade device or the like. Then, the applied ceramic paste is dried in a drying device at a temperature of, for example, 50 to 100 ° C. for 1 to 20 minutes to form a ceramic green sheet 32.
  • the ceramic green sheet 32 shrinks to 5-25% as compared to before drying.
  • the above-mentioned electrode paste is printed on the surface 32a of the ceramic green sheet 32 using, for example, a screen printing device so as to have a predetermined pattern.
  • the printed electrode paste is dried in a drying device at a temperature of, for example, 50 to 100 ° C. for 1 to 20 minutes to form an electrode green sheet 34. In this way, it is possible to obtain the ceramic component sheet 40 in which the ceramic green sheet 32 and the electrode green sheet 34 are sequentially laminated on the release layer 24 of the release film 20.
  • the thickness variation width of the ceramic green sheet 32 becomes large.
  • the release film 20 drawn out from the release film roll 100 scratches and irregularities due to unwinding, sliding phenomenon, and the like are sufficiently reduced in the release layer 24. Therefore, it is possible to form the ceramic green sheet 32 in which the thickness variation is sufficiently suppressed over a wide region between the front end and the rear end of the release film 20 wound around the release film roll 100.
  • the ceramic component manufactured by using the ceramic component sheet 40 provided with such a ceramic green sheet is excellent in reliability.
  • the thickness of the ceramic green sheet 32 and the electrode green sheet 34 may be 1.0 ⁇ m or less, respectively. Since the thickness fluctuation is suppressed even if the thickness is small as described above, a ceramic part having high reliability can be obtained.
  • the ceramic component sheet of the present disclosure is not limited to that of FIG. 6, and may be composed of only the ceramic green sheet 32 without having the electrode green sheet, for example.
  • the method for manufacturing a ceramic component includes a laminating step of preparing a plurality of ceramic component sheets and laminating a plurality of green sheets of the ceramic component sheet to obtain a laminate, and firing the laminate to bake. It has a firing step of obtaining a body and an electrode forming step of forming a terminal electrode on the sintered body to obtain a monolithic ceramic capacitor.
  • FIG. 7 is a cross-sectional view showing an example of a multilayer ceramic capacitor manufactured by the above-mentioned manufacturing method.
  • the multilayer ceramic capacitor 90 includes an inner layer portion 92 and a pair of outer layer portions 93 that sandwich the inner layer portion 92 in the stacking direction.
  • the monolithic ceramic capacitor 90 has a terminal electrode 95 on the side surface.
  • the inner layer portion 92 has a plurality of (13 layers in this example) ceramic layers 96 (dielectric layers) and a plurality of (12 layers in this example) internal electrode layers 94.
  • the ceramic layer 96 and the internal electrode layer 94 are alternately laminated.
  • the internal electrode layer 94 is electrically connected to the terminal electrode 95.
  • the outer layer portion 93 is formed of a ceramic layer. This ceramic layer may be formed in the same manner as the ceramic green sheet 32, for example.
  • the release film 20 of the ceramic component sheet 40 shown in FIG. 6 is peeled off to obtain a green sheet 30.
  • One side 30b of the green sheet 30 is laminated on the outer layer green sheet.
  • Another release film 20 is peeled from another ceramic component sheet 40 to obtain another green sheet 30, and the electrode green sheet 34 of the first peeled green sheet and 30b of another green sheet 30 are laminated so as to face each other. ..
  • a laminated body can be obtained. That is, in this laminating step, the release film 20 is peeled off to obtain a green sheet 30, and the green sheet 30 is sequentially laminated. By repeating this procedure a plurality of times, a laminated body is formed. Finally, a green sheet for the outer layer is also laminated.
  • the number of green sheets laminated in the laminated body is not particularly limited, and may be, for example, tens to hundreds of layers.
  • a thick outer layer green sheet on which no electrode layer is formed may be provided on both end faces orthogonal to the stacking direction of the laminated body. After forming the laminate, the laminate may be cut to obtain green chips.
  • the laminated body (green chips) obtained in the laminating step is fired to obtain a sintered body.
  • the firing conditions are 1100 to 1300 ° C., and it is preferable to carry out the firing in an atmosphere such as a mixed gas of humidified nitrogen and hydrogen.
  • the partial pressure of oxygen in the atmosphere at the time of firing is preferably 10-2 Pa or less, more preferably 10-2 to 10-8 Pa.
  • a binder removal treatment can be performed under normal conditions. For example, when a base metal such as Ni or a Ni alloy is used as the conductor material of the internal electrode layer, it is preferably performed at 200 to 600 ° C.
  • heat treatment may be performed to reoxidize the ceramic layer constituting the sintered body.
  • the holding temperature or the maximum temperature in the heat treatment is preferably 1000 to 1100 ° C.
  • Oxygen partial pressure during the heat treatment is preferably higher oxygen partial pressure than the reducing atmosphere at firing, and more preferably 10 -2 Pa ⁇ 1Pa. It is preferable that the sintered body thus obtained is subjected to end face polishing by, for example, barrel polishing, sandblasting, or the like.
  • the multilayer ceramic capacitor 90 shown in FIG. 7 can be obtained by baking the terminal electrode paste on the side surface of the sintered body to form the terminal electrode 95.
  • a release film roll 100 having a release layer in which scratches due to unevenness and unwinding of the release film 20 are sufficiently reduced is used. Therefore, variations in thickness and pinholes in the ceramic layer 96 and the internal electrode layer 94 can be sufficiently reduced. Therefore, the decrease in withstand voltage is suppressed and the reliability is excellent.
  • the present disclosure is not limited to the above embodiments.
  • the ceramic component of the present disclosure is not limited to the multilayer ceramic capacitor, and may be, for example, another ceramic component.
  • the ceramic component may be, for example, a varistor or a multilayer inductor.
  • a release agent solution was prepared by the following procedure. 0.25 parts by mass of acrylate-modified silicone oil (trade name: X-22-2445, manufactured by Shin-Etsu Chemical Co., Ltd.), 100 parts by mass of methyl ethyl ketone, and 100 parts by mass of toluene with respect to 100 parts by mass of nonanediol diacrylate. Prepared. These were placed in a metal container and stirred and mixed to obtain a colorless and transparent solution.
  • acrylate-modified silicone oil trade name: X-22-2445, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a coating solution was prepared by adding 2.5 parts by mass of a reaction initiator (trade name: Omnirad 127, manufactured by IGM Rasin's BV) to the above solution.
  • a coating liquid is extruded from a slit of an coating device to be applied to one surface of a biaxially stretched polyethylene terephthalate film (PET film, thickness: 30 ⁇ m) having a width of 1100 mm, and hot air at a temperature of 80 ° C. is applied for 30 seconds to apply methyl ethyl ketone and toluene. Evaporated. In this way, a coating layer was formed on the PET film.
  • a reaction initiator trade name: Omnirad 127, manufactured by IGM Rasin's BV
  • the coating layer was cured by irradiating ultraviolet rays in a nitrogen atmosphere with an oxygen concentration of 100 ppm to form a peeling layer having a peeling function.
  • a release film (before cutting) having a release layer on one side of the PET film was obtained.
  • the surface roughness (Rp) of the release layer of the release film was measured using a scanning white interference microscope (device name: VS1540, manufactured by Hitachi High-Tech Science Corporation). As a result, the surface roughness (Rp) of the peeled layer was 30 nm.
  • Such a release film was wound around a winding core to obtain a release film roll (before cutting).
  • the thickness of the release layer was 1 ⁇ m, and the thickness variation width, which is the difference between the maximum value and the minimum value of the thickness in the width direction of the release film, was 0.5 ⁇ m.
  • the total length of the produced release film was 7,000 m.
  • the release film roll (before cutting) was attached to the rotating shaft 202 using a manufacturing apparatus as shown in FIG.
  • the release film pulled out from the release film roll (before cutting) was cut into five along the longitudinal method to obtain a size of 200 mm in width.
  • each of the five release films (after cutting) was wound around the winding core 10 so that the release layer 24 was on the outside.
  • the contact roll 70 was pressed against the release film roll 100, and the winding shaft 102 and the contact roll 70 were rotationally driven while being wound around the winding core 10. In this way, five release film rolls were obtained.
  • the five release film rolls were wound under the same conditions.
  • the winding length of each of the five release film rolls was 6000 m. Further, in each of the five release film rolls, the distance r 0 from the outer peripheral surface of the winding core to the outer peripheral surface of the release film wound in a roll shape was about 205 mm.
  • the repulsive hardness K (r) is measured by pointing the sensor of the digital hardness tester toward the center C of the winding core on the surface (central part in the width direction) of the release layer of the release film wound on the outermost side of the release film roll. I pushed it.
  • the repulsive hardness K (r) of the release film roll was measured when the distance r along the radial direction reached a predetermined value while unwinding the release film roll. Specifically, in the range of r from 195 mm to 135 mm, measurements were taken at 10 mm intervals. That is, the repulsive hardness K (r) was measured when the distance r was 195 mm, 185 mm, ... 135 mm, respectively.
  • FIG. 8 plots the relationship between the distance r and the repulsive hardness K (r) of Example 1. As shown in FIG. 8, when the distance r was 10 to 130 m, the repulsive hardness K (r) satisfied the above formula (1).
  • a dielectric green sheet was formed as a ceramic component sheet by using the third release film roll out of the five release film rolls by the following procedure.
  • BaTiO 3 based powder as a ceramic powder, polyvinyl butyral as an organic binder (PVB), and methanol were respectively prepared as a solvent.
  • 10 parts by mass of an organic binder and 165 parts by mass of a solvent were mixed with 100 parts by mass of the ceramic powder and kneaded with a ball mill to obtain a dielectric slurry.
  • the release film roll was set in the coating machine, and the dielectric slurry was applied to the release layer side of the release film drawn from the release film roll to form a dielectric green sheet on the release film.
  • the set thickness of the dielectric green sheet was 0.9 ⁇ m.
  • the presence or absence of pinholes in the dielectric green sheet formed on the release film and the thickness variation width of the dielectric green sheet were investigated.
  • the presence or absence of pinholes was investigated by an image processing inspection device.
  • the thickness fluctuation width was continuously measured using a transmission type X-ray film thickness meter (trade name: AccureX, manufactured by Hutec Co., Ltd.) installed in-line.
  • the thickness fluctuation width was obtained from the average value, the maximum value, and the minimum value of the thickness. That is, the larger of the maximum value-the absolute value of the average value and the minimum value-the absolute value of the average value was defined as the thickness fluctuation width.
  • the average value of the thickness of the dielectric green sheet was 0.9 ⁇ m, and the thickness fluctuation range was 0.04 ⁇ m. This fluctuation range was within ⁇ 5% (0.045 ⁇ m or less) of the set thickness (0.9 ⁇ m), and was a good product. No pinholes were detected.
  • Example 2 Except that the torque of the take-up shaft 102 when winding the release film (after cutting) using the take-up device was adjusted so that the tension applied to the take-up film was about 0.8 times that of Example 1.
  • the repulsive hardness K (r) was measured, and the dielectric green sheet was formed and evaluated.
  • FIG. 8 plots the relationship between the distance r and the repulsive hardness K (r) of Example 2. As shown in FIG. 8, when the distance r was 10 to 130 m, the repulsive hardness K (r) satisfied the above formula (1).
  • the release film was pulled out from the release film roll, and the surface condition of the release layer of the release film was visually checked. As a result, there was no particular abnormality.
  • the average thickness of the dielectric green sheet was 0.9 ⁇ m.
  • the fluctuation range of the thickness of the dielectric green sheet was 0.03 ⁇ m, which was a good product. No pinholes were detected.
  • Example 3 Except that the torque of the take-up shaft 102 when winding the release film (after cutting) using the take-up device was adjusted so that the tension applied to the release film to be wound was about 0.6 times that of Example 1.
  • the repulsive hardness K (r) was measured, and the dielectric green sheet was formed and evaluated.
  • FIG. 8 plots the relationship between the distance r and the repulsive hardness K (r) of Example 3. As shown in FIG. 8, when the distance r was 10 to 130 m, the repulsive hardness K (r) satisfied the above formula (1).
  • the release film was pulled out from the release film roll, and the surface condition of the release layer of the release film was visually checked. As a result, there was no particular abnormality.
  • the average thickness of the dielectric green sheet was 0.9 ⁇ m.
  • the fluctuation range of the thickness of the dielectric green sheet was 0.03 ⁇ m, which was a good product. No pinholes were detected.
  • Example 1 Except for adjusting the torque of the take-up shaft 102 when winding the release film (after cutting) using the take-up device to increase the tension applied to the take-up film to about 1.3 times that of Example 1.
  • the repulsive hardness K (r) was measured, and the dielectric green sheet was formed and evaluated.
  • FIG. 9 plots the relationship between the distance r and the repulsive hardness K (r) of Comparative Example 1. As shown in FIG. 9, when the distance r was 10 to about 45 mm, the repulsive hardness K (r) exceeded the upper limit of the above formula (1).
  • the release film was pulled out from the release film roll, and the surface condition of the release layer of the release film was visually checked. As a result, there was no particular abnormality.
  • the thickness variation width of the dielectric green sheet increased as it approached the winding core.
  • the thickness variation of the dielectric green sheet on the release film between the rear end of the release film and 40 mm exceeded 0.06 ⁇ m, and could not satisfy within ⁇ 5% of the set thickness (0.9 ⁇ m). ..
  • Example 2 Same as in Example 1 except that the torque of the take-up shaft 102 when winding the release film (after cutting) using the take-up device is adjusted to make the tension about 0.3 times that of Example 1.
  • the repulsive hardness K (r) was measured in the same manner as in Example 1.
  • FIG. 9 plots the relationship between the distance r and the repulsive hardness K (r) of Comparative Example 2. As shown in FIG. 9, when the distance r was about 30 to about 115 mm, the repulsive hardness K (r) was below the lower limit of the above formula (1).
  • the release film was pulled out from the release film roll, and the surface condition of the release layer of the release film was visually checked. As a result, it was confirmed that in the portion on the winding core side where the distance r is 70 mm or less, a plurality of wrinkles extending in the longitudinal direction of the release film are generated so as to be lined up in the width direction, and the release film is deformed. rice field. Such deformation due to wrinkles is considered to be the effect of tightening. At this point, it was determined that the release film roll of Comparative Example 3 was unsuitable, and the evaluation was completed.
  • the side ends (cut portions) of the release film on the outer peripheral portion of the obtained release film roll were uneven.
  • the release film was pulled out from the release film roll, and the surface condition of the release layer of the release film was visually checked. As a result, deformation was observed as if the release film was broken in a region within about 3 cm inside from the side end. It is probable that as a result of the side ends becoming uneven, pressure was applied to the vicinity of the side ends, and as a result, the release film was deformed. At this point, it was determined that the release film roll of Comparative Example 4 was unsuitable, and the evaluation was completed.
  • a release film roll capable of sufficiently reducing damage to the release layer of the release film even if the winding length of the release film is increased. .. Further, by using such a release film roll, it is possible to provide a method for manufacturing a ceramic component sheet and a method for manufacturing a ceramic component having excellent reliability. Further, it is possible to provide a ceramic part sheet and a ceramic part having excellent reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

剥離フィルムロールは、基材フィルム及び剥離層を有する剥離フィルムと、当該剥離フィルムが巻かれている巻き芯と、を有する。剥離フィルムロールの側面における巻き芯の外周面から径方向に沿う距離r[mm]が10~130mmのときに、ロールの外周面に露出する剥離フィルムの表面において巻き芯の中心に向かって測定される反発硬度K(r)[HL]が下記式(1)を満たす。 -2r+670≦K(r)≦-1.25r+862.5 …(1)

Description

剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法
 本開示は、剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法に関する。
 近年、電子機器の小型化の要求に伴い、電子部品も小型化されつつある。電子部品の一種であるセラミック部品も年々小型化されている。例えば、セラミック部品の一種である積層セラミックコンデンサは、誘電体層及び内部電極の厚みを薄くして大容量化が図られている。一般的な積層セラミックコンデンサは、剥離フィルムをキャリアフィルムとし、誘電体層及び内部電極をキャリアフィルム上に形成してグリーンシートとし、グリーンシートを剥離して積層することよって製造される。
 積層セラミックコンデンサの誘電体層の厚みが薄くなると、ショート等の不具合を発生する電圧強度における耐性を示す耐圧性能が低下する傾向にある。特に、誘電体層の厚みが不均一である場合、薄い部分が耐圧性能の低下の要因となる。そのような薄い部分を有する誘電体層を備える積層セラミックコンデンサは耐圧不良となり、積層セラミックコンデンサの歩留まりが低下する。一方、誘電体層の厚みが均一であると耐圧性能が良好となり、積層セラミックコンデンサの歩留まりが向上する。
 誘電体層のキャリアフィルムとして用いられる剥離フィルムに存在する傷等は、誘電体層の厚み変動の要因となる。また、剥離フィルムの表面の平滑性が誘電体層の厚みの均一性に影響を及ぼす。このような事情から、例えば、特許文献1では、剥離フィルムを平滑にして誘電体層の厚みのばらつきを低減することが可能な剥離フィルムロールが検討されている。
特開2011-206995号公報
 セラミック部品の製造工程では、剥離フィルムロールから引き出された剥離フィルム上にセラミックグリーンシートを形成する。ここで、セラミック部品の生産性を向上するための方策として、剥離フィルムロールに巻かれる剥離フィルムの巻き長さを長くして、剥離フィルムロールの取替頻度を減らすことが有効であると考えられる。
 このような剥離フィルムロールは、保管及び輸送の際、巻き芯で固定又は支持される。巻き長さが長くなると、輸送時の振動等によって、ロール状に巻かれた剥離フィルムが竹の子状にスライドする現象が生じることが懸念される。また、振動によって巻きずれが発生し、これによって剥離層に傷が発生することも懸念される。剥離層に傷が発生すると、誘電体層にピンホールが生じる要因になり得る。このような巻きずれ及びスライド現象の発生を回避する方策としては、剥離フィルムの巻き強さを大きくすることが有効であると考えられる。
 ところが、剥離フィルムの巻き強さを大きくすると、基材フィルムの凹凸形状が剥離層に転写されやすくなる。巻き長さが長くなると、内側の剥離フィルムが受ける圧力が大きくなるため、特に凹凸形状が転写されやすくなる。このような事象を回避する方策としては、剥離フィルムの巻き強さを小さくすることが有効であると考えられる。
 このように、巻き芯近傍における凹凸形状の転写を抑制するために巻き強さを小さくしたいという事情がある一方で、輸送時等の巻きずれ及びスライド現象を抑制するために巻き強さを大きくしたいという事情もある。剥離フィルムの巻き長さを長くするためには、このように相反する要請を両立することが必要となる。
 そこで、本開示は、剥離フィルムの巻き長さを長くしても、剥離フィルムの剥離層に生じるダメージを十分に低減することが可能な剥離フィルムロールを提供する。また、本開示は、そのような剥離フィルムロールを用いることによって、優れた信頼性を有するセラミック部品シートの製造方法及びセラミック部品の製造方法を提供する。また、本開示は、優れた信頼性を有するセラミック部品シート及びセラミック部品を提供する。
 本開示の一側面に係る剥離フィルムロールは、基材フィルム及び剥離層を有する剥離フィルムと、当該剥離フィルムが巻かれている巻き芯と、を有する剥離フィルムロールであって、側面における巻き芯の外周面から径方向に沿う距離r[mm]が10~130mmのときに、ロールの外周面に露出する剥離フィルムの表面において巻き芯の中心に向かって測定される、距離rにおける剥離フィルムロールの反発硬度K(r)[HL]が下記式(1)を満たす。
  -2r+670≦K(r)≦-1.25r+862.5 …(1)
 反発硬度K(r)は、巻き付けられた剥離フィルムの間の隙間に存在する空気の量に応じて変化する。剥離フィルムの間に存在する空気が多くなると反発硬度K(r)は低下し、空気が少なくなると反発硬度は上昇する。ここで、反発硬度K(r)が高くなり過ぎると、隣り合う剥離フィルム同士が密着し過ぎて、基材フィルムの凹凸形状が剥離層に転写されやすくなる。反発硬度は剥離フィルムロールの内側の方が高くなる傾向にあるため、内側の剥離フィルムに凹凸形状が転写されやすい。そこで、上記剥離フィルムロールは、内側部分である距離rが10~130mmの部分において、反発硬度K(r)を、所定の上限値(-1.25r+862.5)以下にしている。これによって、剥離フィルムに凹凸形状が転写されることを抑制している。
 一方、反発硬度K(r)が低くなり過ぎると、隣り合う剥離フィルムの間に存在する空気が多くなり、剥離フィルムロールの内側部分において、竹の子状にスライドし易くなる傾向、及び、振動によって巻きずれが発生し易くなる傾向にある。また、剥離フィルムロールは、外側の剥離フィルムが巻かれるときの力がその内側に巻かれていた剥離フィルムに作用して巻かれる方向にずれる巻き締りが発生し、皺を形成する場合がある。そこで、上記剥離フィルムロールでは、距離rが10~130mmの部分において、反発硬度K(r)を、所定の下限値(-2r+670)以上としている。これによって、剥離フィルムが竹の子状にスライドすること、振動によって巻きずれが発生すること、及び巻き締りが発生することを抑制している。
 したがって、上記剥離フィルムロールは、剥離フィルムの巻き長さを長くしても、剥離フィルムの剥離層に生じる凹凸及び傷等のダメージを十分に低減することができる。
 上記距離rが10mm未満の範囲における反発硬度K(r)は650HL以上であってよい。これによって、巻き芯近傍で剥離フィルムに巻きずれが生じたり、剥離フィルムロールから巻き芯が抜けたりすることを十分に抑制できる。なお、距離rが10mm未満の部分については、セラミックグリーンシートを形成せずに、剥離フィルムロールを交換作業の際に有効活用することができる。例えば、繰り出し速度を減速するための減速域として用いたり、及び、乾燥炉内に滞留させる部分として用いたりすることができる。
 上記剥離フィルムロールは、巻き芯の外周面からロール状の剥離フィルムの外周面までの径方向に沿う距離rが160mm以上であり、距離rが160mm以上における反発硬度K(r)が350~662.5HLであってよい。これによって、剥離フィルムロール全体において、隣接する剥離フィルム同士を十分に密着させつつ、剥離フィルムロールの外周部の剥離フィルムに皺が生じることを十分に抑制することができる。
 上記距離rが10~130mmの範囲内で、距離rが増加するにつれて反発硬度K(r)[HL]が減少するように剥離フィルムが巻かれていてよい。これによって、剥離フィルムロールの内周付近と外周付近の両方において巻きずれの発生を十分に抑制することができる。
 本開示の一側面に係るセラミック部品シートの製造方法は、上述のいずれかの剥離フィルムロールから引き出された剥離フィルムの剥離層の表面にセラミック粉末を含むペーストを用いてセラミックグリーンシートを形成する工程を有する。
 上記製造方法は、上述のいずれかの剥離フィルムロールから引き出された剥離フィルムを用いている。上記剥離フィルムの剥離層は、巻きずれ及びスライド現象等による傷の発生、及び凹凸が十分に抑制されている。このため、剥離フィルムロールに巻かれた剥離フィルムの先端から後端の間の広い領域に亘って、厚み変動及びピンホールが十分に低減されたセラミックグリーンシートを形成することができる。したがって、信頼性に優れるセラミック部品シート製造することができる。本開示において剥離フィルムの「後端」とは、巻き芯に接する側の一端をいい、剥離フィルムの「先端」とは剥離フィルムロールの外周面に現れている側の一端をいう。
 本開示の一側面に係るセラミック部品の製造方法は、上述の製造方法で得られたセラミック部品シートを用いてセラミックグリーンシートを含む積層体を得る工程と、積層体を焼成して焼結体を得る工程と、を有する。
 上記製造方法では、巻きずれ及びスライド現象等による傷の発生、及び凹凸が十分に抑制された剥離フィルムを使用してセラミック部品を製造する。これによって、厚み変動及びピンホールが十分に低減されたセラミックグリーンシートを形成することができる。したがって、信頼性に優れるセラミック部品を製造することができる。
 本開示の一側面に係るセラミック部品シートは、上述のいずれかの剥離フィルムロールから引き出された剥離フィルムの剥離層の表面にセラミックグリーンシートを含むグリーンシートを形成して得られる。
 上述のセラミック部品シートは、上述のいずれかの剥離フィルムロールから引き出された剥離フィルムを用いて得られる。上記剥離フィルムの剥離層は、巻きずれ及びスライド現象等による傷の発生、及び凹凸が十分に抑制されている。このため、セラミックグリーンシートの厚み変動及びピンホールを十分に低減することができる。このようなセラミックグリーンシートを含むグリーンシートを形成して得られるセラミック部品シートは、優れた信頼性を有する。
 本開示の一側面に係るセラミック部品は、上記セラミック部品シートのセラミックグリーンシートを含む積層体を形成し、当該積層体を焼成して得られる焼結体を備える。上記セラミックグリーンシートは厚み変動及びピンホールが十分に低減されている。上記セラミック部品は、このようなセラミックグリーンシートを含む積層体を焼成して得られる焼結体を備えることから信頼性に優れる。
 本開示によれば、剥離フィルムの巻き長さを長くしても、剥離フィルムの剥離層に生じるダメージを十分に低減することが可能な剥離フィルムロールを提供することができる。また、そのような剥離フィルムロールを用いることによって、優れた信頼性を有するセラミック部品シートの製造方法及びセラミック部品の製造方法を提供することができる。また、優れた信頼性を有するセラミック部品シート及びセラミック部品を提供することができる。
図1は、一実施形態に係る剥離フィルムロールの斜視図である。 図2は、剥離フィルムの一例を示す断面図である。 図3は、一実施形態に係る剥離フィルムロールの側面図である。 図4は、反発硬度K(r)の測定方法を説明するための図である。 図5は、一実施形態に係る剥離フィルムロールの製造装置の一例を示す図である。 図6は、一実施形態に係るセラミック部品シートの断面図である。 図7は、一実施形態に係るセラミック部品を示す断面図である。 図8は、実施例1,2,3の剥離フィルムロールの距離rと反発硬度K(r)との関係を示すグラフである。 図9は、比較例1,2の剥離フィルムロールの距離rと反発硬度K(r)との関係を示すグラフである。 図10は、比較例3及び比較例4の剥離フィルムロールの距離rと反発硬度K(r)との関係を示すグラフである。
 以下、場合により図面を参照して、本開示の実施形態を説明する。各図面において、同一又は同等の要素には同一の符号を付与し、重複する説明を場合により省略する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 図1は、一実施形態に係る剥離フィルムロールの斜視図である。図1の剥離フィルムロール100は、基材フィルム及び剥離層を有する剥離フィルム20と、剥離フィルム20が巻かれている巻き芯10と、を備える。剥離フィルム20は、例えば、積層セラミックコンデンサに代表されるセラミック部品の製造工程において、キャリアフィルムとして用いられる。この製造工程では、例えば、剥離フィルムの上に、塗布又は印刷によって、誘電体シートとなるセラミックグリーンシート、及び内部電極となる電極グリーンシートが形成される、その後、これらを剥離して積層し、積層体を焼成してセラミック部品が製造される。剥離フィルム20は、剥離フィルムロール100から引き出されて使用される。
 巻き芯10の材質としては、紙、プラスチック、金属等が挙げられる。セラミック部品の製造ではパーティクルがピンホール発生原因となるため、紙粉の生じない軽量なプラスチックを含むものが好ましい。そのようなものとして、ABS樹脂、ベークライト及び繊維強化プラスチック等が挙げられる。繊維強化プラスチックは、高い機械的強度に加えて柔軟性を有するため好ましく用いることができる。繊維強化プラスチックとしては、繊維を熱硬化性樹脂で補強したものが挙げられる。樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂等が挙げられる。繊維としては、ガラス繊維、アラミド繊維等が挙げられる。コスト面等を考慮して、樹脂は不飽和ポリエステル樹脂であってよい。同様の観点から、繊維はガラス繊維であってよい。
 巻き芯10が繊維強化プラスチックで構成される場合、rが10mm未満の範囲における反発硬度K(r)は、950HL以下であってよい。これによって巻き芯10の割れの発生を抑制することができる。一方、巻き芯10が金属で構成される場合、rが10mm未満の範囲における反発硬度K(r)は950HLを超えてよい。巻き芯10の外径は150mm以下であってよく、100mm以下であってもよい。これによって、剥離フィルムロール100のサイズを小さくして、設置スペース及び輸送コストを低減することができる。
 巻き芯10に巻かれている剥離フィルム20の巻き長さは4000m以上であってよく、5000m以上であってよく、6000m以上であってもよい。これによって、セラミックグリーンシート及びセラミック部品等の製造工程において、剥離フィルムロール100の取替頻度を低減し、各種製品の生産効率をさらに向上することができる。剥離フィルム20の厚みは、10~110μmであってよく、20~60μmであってよい。剥離フィルム20の幅は、例えば100~1000mmであってよい。なお、本開示において、剥離フィルムの引き出し及び巻き取りの際に、剥離フィルムが搬送される方向を長手方向といい、剥離フィルムの長手方向と直交する方向を剥離フィルムの幅方向という。
 図2は、剥離フィルムの一例を示す断面図である。剥離フィルム20は、基材フィルム22とその一方面上に剥離層24とを有する。基材フィルム22は合成樹脂のフィルムであってよい。合成樹脂としては、ポリエステル樹脂、ポリプロピレン樹脂及びポリエチレン樹脂等のポリオレフィン樹脂、ポリ乳酸樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂等のアクリル系樹脂、ポリスチレン樹脂、ナイロン等のポリアミド樹脂、ポリ塩化ビニル樹脂、ポリレタン樹脂、フッ素系樹脂、並びにポリフェニレンスルフィド樹脂等が挙げられる。これらのうち、ポリエステル樹脂が好ましい。ポリエステル樹脂のうち、力学的性質、透明性、コスト等の観点から、ポリエチレンテレフタレート(PET)がより好ましい。
 基材フィルム22の厚みは、好ましくは10~100μm、より好ましくは20~50μmである。厚みが10μm未満の場合、剥離フィルム20の寸法安定性等の物理特性が損なわれる傾向がある。厚みが100μmを超える場合、剥離フィルム20の単位面積当たりの製造コストが上昇してしまう傾向がある。
 基材フィルム22は、剥離フィルム20の機械的強度を十分に高くする観点から、透明性が損なわれない程度にフィラー(充填剤)を含有してもよい。本実施形態の剥離フィルムロール100は、基材フィルム22がフィラーを含有しても、隣接する剥離フィルム20の剥離層24にフィラーの形状が転写されるのを十分に抑制することができる。フィラーは、特に限定されるものではなく、例えば、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、酸化チタン、フュームドシリカ、アルミナ、及び有機粒子等が挙げられる。
 基材フィルム22としてポリエステルフィルムを用いる場合、以下の手順で製造することができる。まず、溶融されたポリエステルを押出機にて回転冷却ドラムにキャストする。溶融されたポリエステルは、スリットが形成された口金から押出される。その後、冷却し、回転冷却ドラムから剥がすことで未延伸のポリエステルフィルムを得る。押し出し機のスリットのギャップを調整すれば、ポリエステルフィルムの厚み及びその変動幅を調整することができる。
 次いで、未延伸のポリエステルフィルムを延伸し、所望の厚みに調整するとともに、機械的強度を付与する。ポリエステルフィルムの延伸は、二軸延伸で行うことが好ましい。この場合、縦延伸後、横延伸を行う。延伸時の延伸温度は、ポリエステルフィルムのガラス転移温度以上、且つ溶融温度以下で行うことが好ましい。縦延伸及び横延伸では、それぞれ数倍程度延伸してよい。延伸後でも未延伸フィルムの厚み変動が受け継がれる。このため、未延伸フィルムの厚み変動を制御することで、基材フィルム22及び剥離フィルム20の厚み変動幅を調節することができる。
 剥離層24は、基材フィルム22の一方面上に剥離剤を含む溶液を塗布し、乾燥及び硬化させて形成される。塗布方法は特に限定されず、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、マイヤーバーコート法、ダイコート法、スプレーコート法等を用いればよい。乾燥は熱風乾燥、赤外線乾燥、自然乾燥等を用いることができる。乾燥時の水分結露を抑制するために加熱することが好ましく、60~120℃程度であってよい。
 剥離層24の形成に用いられる剥離剤としては、例えば、シリコーン系剥離剤、長鎖アルキル系剥離剤、フッ素系剥離剤、及びアミノアルキド樹脂系のものが挙げられる。シリコーン系剥離剤は、硬化反応の違いから、付加反応系シリコーン剥離剤、縮合系シリコーン剥離剤、紫外線硬化系剥離剤等がある。
 硬化条件は、剥離剤の硬化系統に合わせて適宜選択すればよい。例えば、剥離剤が付加反応系のシリコーンであれば、80~130℃で数十秒間の加熱処理を行うことで硬化させることができる。紫外線硬化系であれば、水銀ランプ、メタルハライドランプ等を光源として紫外線を照射して硬化させることができる。紫外線を照射してラジカル重合させる場合、酸素阻害を防止するために、硬化を窒素雰囲気下で行うことが好ましい。剥離層24の厚み変動幅は小さいことが好ましい。
 付加反応系シリコーン剥離剤は、ポリジメチルシロキサンの末端及び/又は側鎖にビニル基が導入されたものと、ハイドロジェンシロキサンとを反応させて硬化させる。硬化には白金触媒を用いることができる。例えば、100℃前後の硬化温度で数十秒間から数分間で硬化させることができる。剥離層24の厚みは50~300nm程度であってよい。付加反応系の剥離剤としては信越化学工業株式会社製のK847、KS847T,KS-776L、KS-776A、KS-841、KS-774、KS-3703T、KS-3601等(いずれも商品名)を挙げることができる。
 剥離層24は、例えば(メタ)アクリレート成分と(メタ)アクリレート変性シリコーンの硬化物で構成されてもよい。このような硬化物は紫外線で硬化できるので、剥離層24の厚みを大きくすることができる。このため、例えば、基材フィルム22がフィラーを含む場合に、フィラーに起因する突起を覆って剥離層24の表面(剥離面)を平滑にすることができる。この場合、剥離層24の厚みは、300~3000nmであってよい。
 互いに相溶しない(メタ)アクリレートモノマーと(メタ)アクリレート変性シリコーンオイルを用いてもよい。これらを反応開始剤とともに溶剤中に混合し、基材フィルム22に塗布後、溶剤を乾燥させる。このようにして、シリコーン変性シリコーンオイルを表面近傍に局在化させた状態で、紫外線により硬化させて、剥離層24を形成してもよい。(メタ)アクリレート変性シリコーンオイルとしては公知のものが使用できる。例えば、信越化学工業株式会社製のX-22-164A、X-22-164B、X-22-174DX、X-22-2445(いずれも商品名)等を挙げることができる。
 剥離フィルム20における剥離層24の表面は平滑であることが好ましい。具体的には剥離層24の表面粗さ(Rp)は100nm以下であることが好ましく、50nm以下であることがより好ましい。本実施形態における剥離層24の表面粗さ(Rp)は、JIS B 0601-2001で規定される最大山高さであり、接触式の表面粗さ計又は走査型白色干渉顕微鏡を用いて測定することができる。
 剥離フィルム20の幅方向における厚み変動幅は、好ましくは0.5μm以下であり、より好ましくは0.4μm以下であり、さらに好ましくは0.3μm以下である。特に好ましくは0.2μm以下である。この厚み変動幅が大きくなると、厚い部分では巻かれた剥離フィルム20同士が強く接触するため、他の部分よりも反発硬度が高くなる。この厚み変動幅を小さくすることによって、剥離フィルム20の変形を抑制できる。また、剥離フィルム20上にセラミックグリーンシートを形成したときに、セラミックグリーンシートの厚み変動幅を小さくすることができる。
 本開示における剥離フィルムの幅方向における厚み変動幅は、剥離フィルム20の幅方向における両端間の剥離フィルムの厚みの最大値と最小値の差である。これは以下のようにして求められる。
 剥離フィルム20に基準点を設けて、幅方向に沿って複数の剥離フィルムの厚みを測定する位置を設定する。測定する位置の間隔は適宜設定すればよい。例えば、剥離フィルムの厚みは実質的には急激に変化し難いことから1mmから10mm程度の間隔とすればよい。また、基準点は、例えば、剥離フィルムの側端とすることができる。それぞれの測定位置にて剥離フィルムの厚みを測定するとともに長手方向にフィルムを適宜移動させて、同じように剥離フィルムの厚みを適時測定する。幅方向において同じ位置で測定された複数の長手方向の厚み測定値を用いて平均値を算出し、幅方向の測定位置それぞれについて算出された剥離フィルムの厚みの平均値のうちの最大値と最小値の差が厚み変動幅となる。
 厚みの測定方法としては、接触式の厚み測定器、光学式の厚み測定器、静電容量式の厚み測定器、及びベータ線又は蛍光X線等を用いた放射線式の厚み測定器等を用いる方法、並びに、剥離フィルム20の断面を顕微鏡観察による測定する方法等が挙げられる。接触式の厚み測定器を用いれば、剥離フィルム20の厚み変動を直接測定することができる。また、基材フィルム22と、剥離層24の厚み変動幅を同じ方法又は異なる方法でそれぞれ測定し、それぞれの厚みを合計して剥離フィルム20の厚みとしてよい。例えば、基材フィルム22の厚みを放射線式膜厚計で測定し、剥離層24の厚みを分光光度より求める光学式測定で測定し、それぞれの厚み変動幅を合計して剥離フィルム20の厚み変動幅としてもよい。なお、光学式の厚み測定器では測定スポット径は適宜設定すればよく、0.2m~2mm程度としてもよい。
 また塗布装置や切断装置等のライン内に厚み測定器を設置し、逐次厚みを測定してもよい。ライン内に測定器を設置する厚み測定を、光学式又は放射線式で行うことで、測定器と剥離フィルム20との接触を防止することができる。これによって、傷等を抑制し、剥離フィルムロールの品位を十分に維持することができる。塗布ライン又は切断ライン内に厚み測定器を設置し、剥離フィルム20の搬送時に厚み測定器を幅方向にトラバースしながら測定を行うことで剥離フィルム20の全長に亘って厚みを計測することができる。
 図3は、剥離フィルムロール100の側面図である。剥離フィルムロール100の側面12には、巻き芯10に巻き付けられた剥離フィルム20の側端部が露出している。ただし、図3では、説明のため、最外周の剥離フィルム20のみを示している。図3のように側面視において、剥離フィルムロール100の巻き芯10の外周面10aから、剥離フィルムロール100の径方向Rに沿って測定される距離r[mm]が10~130mmのとき、下記式(1)を満たす。
  (-2r+670)≦K(r)≦(-1.25r+862.5) …(1)
 式(1)中、K(r)は、反発硬度[HL]を示す。この反発硬度K(r)は、球を剥離フィルムロール100の外周面26における剥離フィルム20の表面に衝突させた跳ね返りから求められる。反発硬度K(r)は、リーブ式硬度計又はリバウンド式硬さ計等の名称で市販されている測定器で測定することができる。測定器の製造会社としてはSMART SENSOR社等が挙げられる。なお、本開示における反発硬度は、リーブ硬度と称されることもある。なお、上記式(1)では距離rが10~130mmのときの反発硬度K(r)の上限値と下限値が特定されている。
 巻き芯10の外周面10aから、ロール状の剥離フィルム20の外周面26までの径方向Rに沿う距離rの下限は、160mmであってよく、200mmであってもよい。この場合、距離rが160mm以上のときに反発硬度K(r)は、350~662.5HLであってよい。これによって、剥離フィルムロール100全体において、隣接する剥離フィルム20同士を十分に密着させつつ、剥離フィルムロール100の外周部の剥離フィルムに皺が生じることを十分に抑制することができる。距離rの上限は、500mmであってよい。
 図4は、反発硬度K(r)の測定方法を説明するための図である。図3の剥離フィルムロール100において、距離rが130mmを超える場合に、距離rが10~130mmの範囲の反発硬度K(r)を測定するには、距離rが130mmになるまで剥離フィルムロール100に巻き付けられている剥離フィルム20を引き出す。そして、ロール23の側面12Aにおける、剥離フィルムロール100の径方向に沿う巻き芯10の外周面10aからロール23の外周面26Aまでの距離rが130mmに到達したら、図4に示すように、ロール23(剥離フィルムロール)の外周面26Aに露出している剥離フィルム20の表面27に測定器のセンサーを押し当てて、反発硬度K(r)を測定する。このとき、センサーは、剥離フィルム20の幅方向における中央部に押し当てる。また、矢印Pで示すように、巻き芯の中心Cに向かって押し当てる。これによって、距離rが130mmのときの反発硬度K(r)が測定される。その後、剥離フィルム20を引き出しながら、距離rが10~130mmの範囲の反発硬度K(r)を測定すればよい。一般的には剥離フィルムロールにおいて急激に反発硬度が変化することはないといえるので、距離rが5mm程度毎に反発硬度K(r)を測定するとよい。また、距離rが130mmを超える場合に、距離rが10~130mmの範囲の反発硬度K(r)を測定するために、距離rが130mmになるまで剥離フィルムロール100に巻き付けられている剥離フィルム20を引き出す過程で、上記と同様にして130mmから距離rまでの反発硬度K(r)を、適宜距離rの間隔を設定して測定することも差し支えない。
 距離rが10~130mmにおいて、反発硬度K(r)が高くなると、隣り合う剥離フィルム20同士が密着し過ぎて、基材フィルム22の凹凸形状が剥離層24に転写されやすくなる。このような剥離フィルム20上にセラミックグリーンシートを形成すると、セラミックグリーンシートの厚み変動幅が大きくなる傾向にある。一方、反発硬度K(r)が低くなると、隣り合う剥離フィルム20の間に存在する空気が多くなり、剥離フィルムロール100の内側部分において、剥離フィルム20が竹の子状にスライドし易くなる傾向、及び、振動によって巻きずれが発生し易くなる傾向にある。このような現象が生じると剥離層24に傷が生じ、剥離フィルム上に形成されたセラミックグリーンシートにピンホールが発生し易くなる。本実施形態の剥離フィルムロール100は、上記式(1)を満足するため、剥離フィルム20の剥離層24に生じるダメージ(凹凸及び傷)を十分に低減することができる。
 距離rが10~130mmの範囲内で、距離rが増加するにつれて反発硬度K(r)は減少するように剥離フィルム20が巻かれていてよい。これによって、剥離フィルムロール100の内周部と外周部の両方において巻きずれの発生を十分に抑制することができる。距離rが130mm以上においても、距離rが増加するにつれて反発硬度K(r)は減少するように剥離フィルム20が巻かれていてよい。距離rが10mm未満の範囲では、反発硬度K(r)は650HL以上であってよい。これによって、巻き芯10近傍で剥離フィルムに巻きずれが生じたり、剥離フィルムロール100から巻き芯10が抜けたりすることを十分に抑制できる。なお、距離rが10mm未満の部分については、セラミックグリーンシートを形成せずに、剥離フィルムロールの交換作業の際に有効活用することができる。
 図5は、剥離フィルムロール100の製造装置の一例を示す図である。図5の製造装置300では、剥離フィルムロール200を用いる。剥離フィルムロール200は、剥離フィルム20よりも広い幅(例えば、1~2m)を有する剥離フィルム20Aが巻き芯11に巻き付けられている。剥離フィルムロール200は、公知の方法で、剥離フィルム20Aを巻き芯11に巻き付けることによって製造される。このとき、剥離フィルム20Aの基材フィルム側を内側にして巻き芯11に巻き付けてもよいし、剥離層側を内側にして巻き付けてもよい。
 製造装置300は、上流側において、剥離フィルムロール200の巻き芯11が回転軸202に挿入され、回転軸202は剥離フィルムロール200を回転可能に支持する。また、製造装置300は、剥離フィルムロール200から引き出された剥離フィルム20Aを上下方向に挟む一対のロールを備えるニップロール50と、切断部60と、剥離フィルムロール100の巻き芯10に挿入され、巻き芯10を回転可能に支持する巻き取り軸102とを備える。
 ニップロール50のうち、上ロール50aは表面がゴム製のロールであってよい。下ロール50bは表面が金属製のロールであってよい。ニップロール50は、その上流側と下流側とで剥離フィルム20Aの張力を異ならせる機能を有する。これによって、巻き芯10に剥離フィルム20を巻き取る際の張力の制御を高い自由度で行うことができる。
 切断部60は、上刃ローラ60aと下刃ローラ60bとを有する。上刃ローラ60aは、その回転軸方向に沿って複数枚の上刃が所定間隔で装着されていてよい。上刃ローラ60aの上刃は、下刃ローラ60bと噛み合うようになっていてよい。ニップロール50を通過した剥離フィルム20Aは、上刃ローラ60aと下刃ローラ60bの間で、長手方向に沿って切断される。これによって、例えば100~500mmの幅を有する剥離フィルム20に分割される。巻き取り軸102に複数の巻き芯10を取り付けて、切断された剥離フィルム20をコンタクトロール70で押圧しながら巻き芯10に巻き取れば、複数の剥離フィルムロール100を一度に製造することができる。切断部60には、ギャング刃等の公知のスリッターを用いることができる。なお、切断部60は有していなくてもよい。この場合、一つの剥離フィルムロール200から一つの剥離フィルムロール100が得られる。
 切断部60で切断されて得られた剥離フィルム20は、巻き取り軸102に取り付けられた巻き芯10に巻き取られる。このとき、巻き取り軸102は所定のトルクで回転するとともに、剥離フィルム20の剥離層24に接しながら回転するコンタクトロール70が、巻き取られる剥離フィルム20を巻き芯10側に押圧する。すなわち、剥離フィルム20は、コンタクトロール70で押圧されながら巻き取られる。コンタクトロール70は、回転駆動してもよい。このようにコンタクトロール70を用いることによって、張力を大きくしなくても剥離フィルム20間の空気を十分に低減することができる。これによって、巻きずれ、スライド現象及び巻き締りの発生が抑制され、剥離層24に皺及び傷が発生することを抑制できる。
 コンタクトロール70による押圧力及び駆動力の制御、及び巻き取り軸102のトルク制御によって、剥離フィルムロール100に巻き取られた剥離フィルム20の剥離層24の表面における反発硬度K(r)を調整することができる。例えば、剥離フィルム20を切断して巻き取ると剥離フィルムロール100の直径(ロール径)は徐々に大きくなる。巻き取り時のロール径に応じて巻き取り軸102のトルクを制御することで巻き取り張力を所望の張力に調整する。ロール径が大きくなることに伴って張力が必要以上に低下し、反発硬度K(r)が下限を切る場合には、巻き取り軸102のトルクを上げれば反発硬度を高くすることができる。また、ロール径が大きくなっても張力が十分に低下せずに反発硬度K(r)が上限を超える場合には、巻き取り軸102のトルクを下げて反発硬度を低くすることができる。
 剥離フィルムロール100の製造方法は、上述の方法に限定されない。例えば、コンタクトロールを駆動させて、コンタクトロールのトルクを調整することのみによっても製造することもできる。
 図6は、本開示の一実施形態に係るセラミック部品シートの断面図である。図6のセラミック部品シート40の製造方法は、剥離フィルムロール100から引き出された剥離フィルム20の剥離層24の表面24aにセラミック粉末を含むペーストと電極ペーストを用いてセラミックグリーンシート32及び電極グリーンシート34を含むグリーンシート30を形成する工程を有する。
 セラミックグリーンシート32は、セラミック粉末を含有するセラミックペーストを塗布して乾燥させて形成することができる。電極グリーンシート34はセラミックグリーンシート32の上に電極ペーストを塗布して乾燥させて形成することができる。
 セラミックペーストは、例えば、積層セラミックコンデンサであれば誘電体原料(セラミック粉末)と有機ビヒクルとを混練して調製できる。誘電体原料としては、焼成によって複合酸化物や酸化物となる各種化合物が挙げられる。例えば、炭酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択して用いることができる。誘電体原料は、平均粒子径が4μm以下、好ましくは0.1~3.0μmの粉末であってよい。
 電極ペーストは、例えば、各種導電性金属及び合金等の導電体材料、並びに、各種酸化物、有機金属化合物、及びレジネート等との焼成後に導電体材料となる材料等からなる群より選択される少なくとも一つと、有機ビヒクルとを混練して調製することができる。電極ペーストを製造する際に用いる導電体材料としては、Ni金属、Ni合金、またはこれらの混合物を用いることが好ましい。接着性向上のために、電極ペーストは、可塑剤を含んでいてもよい。可塑剤としては、フタル酸ベンジルブチル(BBP)等のフタル酸エステル、アジピン酸、燐酸エステル、グリコール類などが挙げられる。
 セラミックペースト及び電極ペーストに含まれる有機ビヒクルは、バインダ樹脂を有機溶剤中に溶解して調製される。有機ビヒクルに用いられるバインダ樹脂としては、例えばエチルセルロース、アクリル系樹脂、ブチラール系樹脂、ポリビニルアセタール、ポリビニルアルコール、ポリオレフィン、ポリウレタン、ポリスチレン、及びこれらの共重合体などが挙げられる。これらのうち、ブチラール系樹脂、具体的にはポリビニルブチラール系樹脂を用いることが好ましい。ブチラール系樹脂を用いることによって、セラミックグリーンシートの機械的強度を高くすることができる。セラミックペースト及び電極ペーストの一方又は双方は、必要に応じて各種分散剤、可塑剤、帯電除剤、誘電体、ガラスフリット、絶縁体等からなる群より選ばれる少なくとも一種の添加物を含有してもよい。
 上述のセラミックペーストを、例えばドクターブレード装置等を用いて、剥離フィルム20の剥離層24の表面24aに塗布する。そして、塗布したセラミックペーストを、乾燥装置内で、例えば50~100℃の温度で1~20分間乾燥させて、セラミックグリーンシート32を形成する。セラミックグリーンシート32は、乾燥前に比較して5~25%に収縮する。
 その後、セラミックグリーンシート32の表面32a上に、例えばスクリーン印刷装置を用いて、所定のパターンとなるように上述の電極ペーストを印刷する。印刷した電極ペーストを、乾燥装置内で、例えば50~100℃の温度で1~20分間乾燥させて、電極グリーンシート34を形成する。このようにして、剥離フィルム20の剥離層24の上にセラミックグリーンシート32と電極グリーンシート34が順次積層されたセラミック部品シート40を得ることができる。
 剥離フィルムロール100における剥離フィルム20の凹凸が大きくなるとセラミックグリーンシート32の厚み変動幅が大きくなる。剥離フィルムロール100より引き出される剥離フィルム20は、剥離層24において、巻きずれ及びスライド現象等による傷の発生、及び、凹凸が十分に低減されている。このため、剥離フィルムロール100に巻かれた剥離フィルム20の先端から後端の間の広い領域に亘って、厚み変動が十分に抑制されたセラミックグリーンシート32を形成することができる。このようなセラミックグリーンシートを備えるセラミック部品シート40を用いて作製されるセラミック部品は信頼性に優れる。
 セラミックグリーンシート32及び電極グリーンシート34の厚みは、それぞれ1.0μm以下であってよい。このように厚みが小さくても厚み変動が抑制されることから、高い信頼性を有するセラミック部品を得ることができる。本開示のセラミック部品シートは、図6のものに限定されず、例えば、電極グリーンシートを有さず、セラミックグリーンシート32のみで構成されていてもよい。
 本開示の一実施形態に係るセラミック部品の製造方法は、複数のセラミック部品シートを準備し、セラミック部品シートのグリーンシートを複数積層して積層体を得る積層工程と、積層体を焼成して焼結体を得る焼成工程と、該焼結体に端子電極を形成して積層セラミックコンデンサを得る電極形成工程とを有する。
 図7は、上述の製造方法で製造される積層セラミックコンデンサの一例を示す断面図である。積層セラミックコンデンサ90は、内層部92と、この内層部92を積層方向に挟む一対の外層部93とを備えている。積層セラミックコンデンサ90は、側面に端子電極95を有している。
 内層部92は、複数(本例では13層)のセラミック層96(誘電体層)と、複数(本例では12層)の内部電極層94とを有している。セラミック層96と内部電極層94とは、交互に積層されている。内部電極層94は、端子電極95と電気的に接続されている。外層部93は、セラミック層により形成されている。このセラミック層は、例えば、セラミックグリーンシート32と同様にして形成してよい。
 積層工程では、図6に示すセラミック部品シート40の剥離フィルム20を剥離してグリーンシート30を得る。このグリーンシート30の一方面30bを外層用グリーンシートに積層する。別のセラミック部品シート40から別の剥離フィルム20を剥離し別のグリーンシート30を得て、最初に剥離したグリーンシートの電極グリーンシート34と別のグリーンシート30の30bが向き合うようにして積層する。その後、このような手順を繰り返し行って、グリーンシート30を積層することによって、積層体を得ることができる。すなわち、この積層工程では、剥離フィルム20を剥離してグリーンシート30を得て順次グリーンシート30を積層する。この手順を複数回繰り返すことによって、積層体を形成している。最後に外層用グリーンシートを積層することも行われる。
 積層体におけるグリーンシートの積層枚数に特に制限はなく、例えば、数十層から数百層であってもよい。積層体の積層方向に直交する両端面に、電極層が形成されない厚めの外層用グリーンシートを設けてもよい。積層体を形成した後、積層体を切断してグリーンチップとしてもよい。
 焼成工程では、積層工程で得られた積層体(グリーンチップ)を焼成して焼結体を得る。焼成条件は、1100~1300℃で、加湿した窒素と水素との混合ガス等の雰囲気下で行うとよい。ただし、焼成時の雰囲気中の酸素分圧は、好ましくは10-2Pa以下、より好ましくは10-2~10-8Paとする。なお、焼成前には、積層体の脱バインダ処理を施すことが好ましい。脱バインダ処理は、通常の条件で行うことができる。例えば、内部電極層の導電体材料として、Ni又はNi合金等の卑金属を用いる場合、200~600℃で行うことが好ましい。
 焼成後、焼結体を構成するセラミック層を再酸化させるために、熱処理を行ってもよい。熱処理における保持温度又は最高温度は、1000~1100℃であることが好ましい。熱処理の際の酸素分圧は、焼成時の還元雰囲気よりも高い酸素分圧であることが好ましく、10-2Pa~1Paであることがより好ましい。このようにして得られた焼結体に、例えばバレル研磨、サンドブラスト等にて端面研磨を施すことが好ましい。
 電極形成工程では、焼結体の側面上に、端子電極用ペーストを焼きつけて端子電極95を形成することにより、図7に示す積層セラミックコンデンサ90を得ることができる。この積層セラミックコンデンサ90の製造方法では、剥離フィルム20の凹凸及び巻きずれ等による傷が十分に低減された剥離層を有する剥離フィルムロール100を用いている。このため、セラミック層96及び内部電極層94における厚みのばらつき、及びピンホールを十分に低減することができる。したがって、耐圧の低下が抑制されており信頼性に優れる。
 以上、幾つかの実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、セラミック部品として積層セラミックコンデンサを形成する例を説明したが、本開示のセラミック部品は積層セラミックコンデンサに限定されず、例えば、他のセラミック部品であってよい。セラミック部品は、例えば、バリスタ、又は積層インダクタであってもよい。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
<剥離フィルムロールの作製>
 剥離フィルムを作製するため、以下の手順で剥離剤溶液を調製した。ノナンジオールジアクリレート100質量部に対して、アクリレート変性シリコーンオイル(商品名:X-22-2445,信越化学工業株式会社製)を0.25質量部、メチルエチルケトンを100質量部、及びトルエン100質量部を準備した。これらを金属製容器に入れて攪拌混合し、無色透明の溶液を得た。
 上記溶液に、反応開始剤(商品名:Omnirad127、IGM Rasins B.V.製)を2.5質量部加えて塗布液を調製した。幅1100mmの2軸延伸ポリエチレンテレフタレートフィルム(PETフィルム、厚み:30μm)の一方面に、塗布装置のスリットから塗布液を押し出して塗布し、温度80℃の熱風を30秒間当てて、メチルエチルケトン及びトルエンを蒸発させた。このようにしてPETフィルム上に塗布層を形成した。
 次いで、酸素濃度100ppmの窒素雰囲気下にて紫外線を照射して塗布層を硬化し、剥離機能のある剥離層を形成した。このようにしてPETフィルムの一方面に剥離層を有する剥離フィルム(切断前)を得た。走査型白色干渉顕微鏡(装置名:VS1540、株式会社日立ハイテクサイエンス製)を用いて、剥離フィルムの剥離層の表面粗さ(Rp)を測定した。その結果、剥離層の表面粗さ(Rp)は30nmであった。このような剥離フィルムを、巻き芯に巻き取って剥離フィルムロール(切断前)を得た。なお、剥離層の厚みは1μmであり、剥離フィルムの幅方向における厚みの最大値と最小値の差である厚み変動幅は0.5μmであった。また、作製した剥離フィルムの全長は7000mであった。
 図5に示すような製造装置を用い、上記剥離フィルムロール(切断前)を、回転軸202に取り付けた。切断部60で、剥離フィルムロール(切断前)から引き出された剥離フィルムを長手方法に沿って5つに切断し、幅200mmのサイズにした。5本の剥離フィルム(切断後)のそれぞれを、図5に示すように、剥離層24が外側になるようにして巻き芯10に巻き取った。巻き取りに際しては、コンタクトロール70を剥離フィルムロール100に対して押圧するとともに、巻き取り軸102とコンタクトロール70とを回転駆動させながら、巻き芯10に巻き取った。このようにして5本の剥離フィルムロールを得た。5本の剥離フィルムロールは、同一の条件で巻き取った。5本の剥離フィルムロールの巻き取り長さは、いずれも6000mであった。また、5本の剥離フィルムロールにおける、巻き芯の外周面からロール状に巻かれた剥離フィルムの外周面までの距離rは、いずれも約205mmであった。
<反発硬度K(r)の測定>
 このようにして得られた5本の剥離フィルムロールのうち、1本目の剥離フィルムロールの剥離層における反発硬度K(r)を測定した。反発硬度K(r)の測定には、SMART SENSOR社のデジタル硬度計(商品名:AR936、測定範囲:170~960HLD)を用いた。
 反発硬度K(r)の測定は、剥離フィルムロールにおいて最も外側に巻かれている剥離フィルムの剥離層の表面(幅方向における中央部)において、デジタル硬度計のセンサーを巻き芯の中心Cに向けて押し当てて行った。測定は、剥離フィルムロールを巻きほどきながら、径方向に沿う距離rが所定値に到達したときの剥離フィルムロールの反発硬度K(r)を測定した。具体的には、rが195mmから135mmの範囲においては、10mm間隔で測定した。すなわち、距離rが195mm、185mm、・・・135mmのときの反発硬度K(r)をそれぞれ測定した。また、距離rが135mmから5mmの範囲においては、5mm間隔で測定した。すなわち、距離rが135mm、130mm、・・・5mのときの反発硬度K(r)をそれぞれ測定した。図8に、実施例1の距離rと反発硬度K(r)の関係をプロットした。図8に示すとおり、距離rが10~130mのときに、反発硬度K(r)は、上述の式(1)を満たしていた。
<誘電体グリーンシートの形成と評価>
 5本の剥離フィルムロールのうち、2本目の剥離フィルムロールから剥離フィルムを引き出して、剥離フィルムの剥離層の表面状態を目視でチェックした。その結果、特に異常はなかった。5本の剥離フィルムロールのうち、3本目の剥離フィルムロールを用い、以下の手順でセラミック部品シートとして誘電体グリーンシートを形成した。セラミック粉末としてBaTiO系の粉末、有機バインダとしてポリビニルブチラール(PVB)、及び溶媒としてメタノールをそれぞれ準備した。次に、セラミック粉末100質量部に対して、10質量部の有機バインダ、及び165質量部の溶媒を配合し、ボールミルで混練して誘電体スラリーを得た。
 剥離フィルムロールを塗布機にセットして、剥離フィルムロールから引き出された剥離フィルムの剥離層側に誘電体スラリーを塗布し、剥離フィルム上に誘電体グリーンシートを形成した。誘電体グリーンシートの設定厚みは0.9μmとした。剥離フィルム上に形成した誘電体グリーンシートのピンホールの有無と、誘電体グリーンシートの厚み変動幅を調査した。ピンホールの有無は、画像処理検査装置によって調査した。厚み変動幅は、インラインに設置した透過型X線膜厚計(商品名:AccureX、(株)ヒューテック製)を用いて、連続的に測定した。厚み変動幅は、厚みの平均値、最大値及び最小値から求めた。すなわち、最大値-平均値の絶対値と、最小値-平均値の絶対値のうち、大きい方の値を厚み変動幅とした。
 その結果、誘電体グリーンシートの厚みの平均値は0.9μmであり、厚み変動幅は0.04μmであった。この変動幅は、設定厚み(0.9μm)の±5%以内(0.045μm以下)であり、良品であった。また、ピンホールは検出されなかった。
(実施例2)
 巻き取り装置を用いて剥離フィルム(切断後)を巻き取る際の巻き取り軸102のトルクを調整して、巻き取られる剥離フィルムにかかる張力を実施例1の約0.8倍としたこと以外は、実施例1と同様にして剥離フィルムロールを作製した。そして、実施例1と同様にして、反発硬度K(r)の測定、誘電体グリーンシートの形成及び評価を行った。図8に、実施例2の距離rと反発硬度K(r)の関係をプロットした。図8に示すとおり、距離rが10~130mのときに、反発硬度K(r)は、上述の式(1)を満たしていた。剥離フィルムロールから剥離フィルムを引き出して、剥離フィルムの剥離層の表面状態を目視でチェックした。その結果、特に異常はなかった。誘電体グリーンシートの厚みの平均値は0.9μmであった。また、誘電体グリーンシートの厚みの変動幅は0.03μmであり、良品であった。また、ピンホールは検出されなかった。
(実施例3)
 巻き取り装置を用いて剥離フィルム(切断後)を巻き取る際の巻き取り軸102のトルクを調整して、巻き取られる剥離フィルムにかかる張力を実施例1の約0.6倍としたこと以外は、実施例1と同様にして剥離フィルムロールを作製した。そして、実施例1と同様にして、反発硬度K(r)の測定、誘電体グリーンシートの形成及び評価を行った。図8に、実施例3の距離rと反発硬度K(r)の関係をプロットした。図8に示すとおり、距離rが10~130mのときに、反発硬度K(r)は、上述の式(1)を満たしていた。また、剥離フィルムロールから剥離フィルムを引き出して、剥離フィルムの剥離層の表面状態を目視でチェックした。その結果、特に異常はなかった。誘電体グリーンシートの厚みの平均値は0.9μmであった。また、誘電体グリーンシートの厚みの変動幅は0.03μmであり、良品であった。また、ピンホールは検出されなかった。
(比較例1)
 巻き取り装置を用いて剥離フィルム(切断後)を巻き取る際の巻き取り軸102のトルクを調整して、巻き取られる剥離フィルムにかかる張力を実施例1の約1.3倍としたこと以外は、実施例1と同様にして剥離フィルムロールを作製した。そして、実施例1と同様にして、反発硬度K(r)の測定、誘電体グリーンシートの形成及び評価を行った。図9に、比較例1の距離rと反発硬度K(r)の関係をプロットした。図9に示すとおり、距離rが10~約45mmのときに、反発硬度K(r)は、上述の式(1)の上限を超えていた。剥離フィルムロールから剥離フィルムを引き出して、剥離フィルムの剥離層の表面状態を目視でチェックした。その結果、特に異常はなかった。一方、誘電体グリーンシートの厚み変動幅は、巻き芯に近づくにつれて大きくなっていた。剥離フィルムの後端から40mmの間の剥離フィルム上の誘電体グリーンシートの厚み変動は0.06μmを超えており、設定厚み(0.9μm)の±5%以内を満足することができなかった。
(比較例2)
 巻き取り装置を用いて剥離フィルム(切断後)を巻き取る際の巻き取り軸102のトルクを調整して、張力を実施例1の約0.3倍としたこと以外は、実施例1と同様にして剥離フィルムロールを作製した。そして、実施例1と同様にして、反発硬度K(r)の測定を行った。図9に、比較例2の距離rと反発硬度K(r)の関係をプロットした。図9に示すとおり、距離rが約30~約115mmのときに、反発硬度K(r)は、上述の式(1)の下限を下回っていた。誘電体グリーンシートを形成する際に運搬しようとしたところ、剥離フィルムロールの巻き芯近傍の剥離フィルムが竹の子状に飛び出し、ロール形状が不均一となってしまった。この時点で、比較例2の剥離フィルムロールは不適であると判断し、評価を終了した。
(比較例3)
 巻き取りの際に、巻き取られる剥離フィルムにかかる張力がほぼ一定となるように巻き取り軸102のトルクを調製するとともに、剥離フィルムロールに対するコンタクトロールの圧力を実施例1の約1.5倍とした。これらのこと以外は、実施例1と同様にして剥離フィルムロールを作製した。そして、実施例1と同様にして、反発硬度K(r)の測定を行った。図10に、比較例3の距離rと反発硬度K(r)の関係をプロットした。図10に示すとおり、距離rが約110~130mmのときに、反発硬度K(r)は、上述の式(1)の上限を超えていた。
 剥離フィルムロールから剥離フィルムを引き出して、剥離フィルムの剥離層の表面状態を目視でチェックした。その結果、距離rが70mm以下の巻き芯側の部分では、剥離フィルムの長手方向に伸びる皺が、幅方向に並ぶようにして複数発生しており、剥離フィルムが変形していることが確認された。このような皺による変形は、巻き締りによる影響と考えられる。この時点で、比較例3の剥離フィルムロールは不適であると判断し、評価を終了した。
(比較例4)
 巻き始めから巻き終わりにかけて巻き取りトルクをあまり変化させなかった。また、剥離フィルムロールに対するコンタクトロールの圧力を実施例1の約0.7倍とした。このこと以外は、実施例1と同様にして剥離フィルムロールを作製した。そして、実施例1と同様にして、反発硬度K(r)の測定を行った。図10に、比較例4の距離rと反発硬度K(r)の関係をプロットした。図10に示すとおり、距離rが約35~130mmのときに、反発硬度K(r)は、上述の式(1)の下限を下回っていた。
 得られた剥離フィルムロールの外周部の剥離フィルムの側端部(切断部)が不揃いになっていた。剥離フィルムロールから剥離フィルムを引き出して、剥離フィルムの剥離層の表面状態を目視でチェックした。その結果、側端部から内側約3cm以内の領域で剥離フィルムが折れたような変形がみられた。側端部が不揃いになった結果、側端部近傍にいびつに圧力が作用し、その結果、剥離フィルムに変形が生じたものと考えられる。この時点で、比較例4の剥離フィルムロールは不適であると判断し、評価を終了した。
 本開示によれば、本開示によれば、剥離フィルムの巻き長さを長くしても、剥離フィルムの剥離層に生じるダメージを十分に低減することが可能な剥離フィルムロールを提供することができる。また、そのような剥離フィルムロールを用いることによって、優れた信頼性を有するセラミック部品シートの製造方法及びセラミック部品の製造方法を提供することができる。また、優れた信頼性を有するセラミック部品シート及びセラミック部品を提供することができる。
 10,11…巻き芯、10a…外周面、12…側面、20…剥離フィルム、20A…剥離フィルム、22…基材フィルム、23…ロール、24…剥離層、24a…表面、26,26A…外周面、27…表面、30…グリーンシート、30b…一方面、32…セラミックグリーンシート、32a…表面、34…電極グリーンシート、40…セラミック部品シート、50…ニップロール、50a…上ロール、50b…下ロール、60…切断部、60a…上刃ローラ、60b…下刃ローラ、70…コンタクトロール、90…積層セラミックコンデンサ、92…内層部、93…外層部、94…内部電極層、95…端子電極、96…セラミック層、100,200…剥離フィルムロール、102…巻き取り軸,202…回転軸、300…製造装置。

Claims (8)

  1.  基材フィルム及び剥離層を有する剥離フィルムと、当該剥離フィルムが巻かれている巻き芯と、を有する剥離フィルムロールであって、
     側面における前記巻き芯の外周面から径方向に沿う距離r[mm]が10~130mmのときに、ロールの外周面に露出する前記剥離フィルムの表面において前記巻き芯の中心に向かって測定される、距離rにおける剥離フィルムロールの反発硬度K(r)[HL]が下記式(1)を満たす、剥離フィルムロール。
      -2r+670≦K(r)≦-1.25r+862.5 …(1)
  2.  前記距離rが10mm未満のときに前記反発硬度K(r)が650HL以上である、請求項1に記載の剥離フィルムロール。
  3.  前記巻き芯の外周面からロール状の剥離フィルムの外周面までの前記径方向に沿う距離rが160mm以上であり、前記距離rが160mm以上のときに前記反発硬度K(r)が350~662.5HLである、請求項1又は2に記載の剥離フィルムロール。
  4.  前記距離rが10~130mmの範囲内で、前記距離rが増加するにつれて前記反発硬度K(r)[HL]が減少する、請求項1~3のいずれか一項に記載の剥離フィルムロール。
  5.  請求項1~4のいずれか一項に記載の剥離フィルムロールから引き出された前記剥離フィルムの前記剥離層の表面にセラミック粉末を含むペーストを用いてセラミックグリーンシートを形成する工程を有し、前記セラミックグリーンシートの厚みが1.0μm以下である、セラミック部品シートの製造方法。
  6.  請求項5に記載の製造方法で得られた前記セラミック部品シートを用いて前記セラミックグリーンシートを含む積層体を得る工程と、
     前記積層体を焼成して焼結体を得る工程と、を有する、前記焼結体を備えるセラミック部品の製造方法。
  7.  請求項1~4のいずれか一項に記載の剥離フィルムロールから引き出された前記剥離フィルムの前記剥離層の表面にセラミックグリーンシートを含むグリーンシートを形成して得られる、セラミック部品シート。
  8.  請求項7に記載のセラミック部品シートのセラミックグリーンシートを含む積層体を形成し、当該積層体を焼成して得られる焼結体を備えるセラミック部品。
PCT/JP2021/007446 2020-03-18 2021-02-26 剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法 WO2021187060A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180021509.2A CN115298783A (zh) 2020-03-18 2021-02-26 剥离膜卷、陶瓷部件片材及其制造方法、以及陶瓷部件及其制造方法
JP2022508174A JP7447988B2 (ja) 2020-03-18 2021-02-26 剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法
KR1020227033416A KR20220143133A (ko) 2020-03-18 2021-02-26 박리 필름 롤, 세라믹 부품 시트 및 그 제조 방법과 세라믹 부품 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-048258 2020-03-18
JP2020048258 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187060A1 true WO2021187060A1 (ja) 2021-09-23

Family

ID=77771521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007446 WO2021187060A1 (ja) 2020-03-18 2021-02-26 剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法

Country Status (5)

Country Link
JP (1) JP7447988B2 (ja)
KR (1) KR20220143133A (ja)
CN (1) CN115298783A (ja)
TW (1) TWI778531B (ja)
WO (1) WO2021187060A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196873A (ja) * 2002-12-16 2004-07-15 Toyobo Co Ltd ポリエステルフィルムロール
JP2006062826A (ja) * 2004-08-27 2006-03-09 Fuji Photo Film Co Ltd 巻取り装置および巻取り方法
WO2014061410A1 (ja) * 2012-10-19 2014-04-24 東レ株式会社 離型用二軸配向ポリエステルフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160731B2 (ja) * 2001-02-15 2008-10-08 Tdk株式会社 薄膜製造用剥離フィルムの製造方法および薄膜製造用剥離フィルム
CN100379553C (zh) * 2002-05-27 2008-04-09 帝人杜邦菲林日本株式会社 剥离膜
JP5423975B2 (ja) 2010-03-29 2014-02-19 Tdk株式会社 剥離フィルム、剥離フィルムロール及びセラミック部品シート、並びにセラミック部品の製造方法
JP2012094603A (ja) * 2010-10-25 2012-05-17 Daikin Ind Ltd フィルムコンデンサの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196873A (ja) * 2002-12-16 2004-07-15 Toyobo Co Ltd ポリエステルフィルムロール
JP2006062826A (ja) * 2004-08-27 2006-03-09 Fuji Photo Film Co Ltd 巻取り装置および巻取り方法
WO2014061410A1 (ja) * 2012-10-19 2014-04-24 東レ株式会社 離型用二軸配向ポリエステルフィルム

Also Published As

Publication number Publication date
TWI778531B (zh) 2022-09-21
KR20220143133A (ko) 2022-10-24
JPWO2021187060A1 (ja) 2021-09-23
TW202138196A (zh) 2021-10-16
JP7447988B2 (ja) 2024-03-12
CN115298783A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP6171937B2 (ja) 離型用二軸配向ポリエステルフィルム
JP5338519B2 (ja) 剥離フィルム及びセラミック部品シート
JP6380104B2 (ja) 離型用二軸配向積層ポリエステルフィルム
JP6822549B2 (ja) セラミックグリーンシート製造用離型フィルム
JP6273717B2 (ja) セラミックシート成形用離型フィルム
KR20120099546A (ko) 그린시트 성형용 폴리에스테르 이형필름
JP6962217B2 (ja) セラミックグリーンシート製造用離型フィルム
JP2003203822A (ja) 積層セラミック電子部品の製造方法
JP5035023B2 (ja) 支持シートおよび積層セラミック電子部品の製造方法
JP5423975B2 (ja) 剥離フィルム、剥離フィルムロール及びセラミック部品シート、並びにセラミック部品の製造方法
WO2021187060A1 (ja) 剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法
JP4160731B2 (ja) 薄膜製造用剥離フィルムの製造方法および薄膜製造用剥離フィルム
JP5915542B2 (ja) 積層ポリエステルフィルムおよびその製造方法
WO2021177179A1 (ja) 剥離フィルムロール、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法
WO2021187058A1 (ja) 剥離フィルムロール及びその製造方法、セラミック部品シート及びその製造方法、並びに、セラミック部品及びその製造方法
WO2019176692A1 (ja) 離型用二軸配向ポリエステルフィルムロール
JP2019161156A (ja) セラミックグリーンシート製造用離型フィルムロール
JP7129018B2 (ja) 離型用ポリエステルフィルム
JP4391858B2 (ja) グリーンシート成形用離型フィルム
JP3918547B2 (ja) セラミックシート製造用離型フィルムの製造方法及びフィルム積層体の製造方法
WO2005087493A1 (ja) グリーンシート成形用離型フィルム
JP2022052717A (ja) 二軸配向積層ポリエステルフィルム、離型フィルム、および二軸配向積層ポリエステルフィルムの製造方法
WO2023276892A1 (ja) 樹脂シート成型用離型フィルム
JP2001057316A (ja) コンデンサ用二軸配向ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508174

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033416

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770641

Country of ref document: EP

Kind code of ref document: A1