WO2023276892A1 - 樹脂シート成型用離型フィルム - Google Patents

樹脂シート成型用離型フィルム Download PDF

Info

Publication number
WO2023276892A1
WO2023276892A1 PCT/JP2022/025370 JP2022025370W WO2023276892A1 WO 2023276892 A1 WO2023276892 A1 WO 2023276892A1 JP 2022025370 W JP2022025370 W JP 2022025370W WO 2023276892 A1 WO2023276892 A1 WO 2023276892A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
layer
film
release film
release layer
Prior art date
Application number
PCT/JP2022/025370
Other languages
English (en)
French (fr)
Inventor
健斗 重野
悠介 柴田
憲一 森
敬太 山口
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020237037517A priority Critical patent/KR20230164151A/ko
Priority to JP2023531907A priority patent/JPWO2023276892A1/ja
Priority to CN202280045293.8A priority patent/CN117561165A/zh
Publication of WO2023276892A1 publication Critical patent/WO2023276892A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes

Definitions

  • the present invention relates to a release film for molding a resin sheet, and more particularly to a release film used when molding an ultra-thin resin sheet.
  • a release film which is made of a polyester film as a base material and laminated with a release layer, has been used as a process film for molding resin sheets such as adhesive sheets, cover films, polymer films, and optical lenses.
  • the release film is also used as a process film for molding ceramic green sheets that require high smoothness, such as laminated ceramic capacitors and ceramic substrates.
  • ceramic green sheets that require high smoothness, such as laminated ceramic capacitors and ceramic substrates.
  • a ceramic green sheet is molded by coating a release film with a slurry containing a ceramic component such as barium titanate and a binder resin and drying the slurry. After electrodes are printed on the molded ceramic green sheets and separated from the release film, the ceramic green sheets are laminated, pressed, fired, and external electrodes are applied to manufacture the laminated ceramic capacitor.
  • the releasability of the ceramic green sheet from the release film becomes important. If the peel force is large and non-uniform, the ceramic green sheet will be damaged in the peeling process, causing problems such as sheet defects, thickness unevenness, pinholes, sheet cracks, and the like. Therefore, it is also required to peel the ceramic green sheets with a lower and more uniform force.
  • Patent Literature 1 proposes a release film having a release layer containing a radical-curable resin as a main component.
  • the release film of Patent Document 1 uses a radical-curing resin, when the release layer is processed in the air, it is affected by oxygen inhibition, and the surface of the release layer is poorly cured. I had a problem. If the surface of the release layer is not sufficiently cured, the release layer will be eroded by organic solvents during processing of the ceramic green sheet and printing of the internal electrodes. There is a risk of damaging the seat.
  • Patent Document 2 proposes a release layer using a cationic curable resin as a main component. Since the cationic curable resin does not cause oxygen inhibition, even if the release layer is processed in the atmosphere, curing failure does not occur, and a release film having excellent releasability can be obtained.
  • the cationic curable resin used in the release film of Patent Document 2 has a slower reaction rate than the radical curable resin, the reaction is not completed only by irradiating the active energy ray, and the polymerization reaction occurs over time. tend to progress. Therefore, when producing a release film using a cationic curable resin, the release layer forming composition is applied to one surface of the base film, and after drying, the release layer forming composition is irradiated with active energy rays. is cured, the cationic polymerization reaction is completed in the state of being wound into a roll and stored, and a release layer having excellent releasability can be formed. Furthermore, the polymerization reaction may not be completed immediately after being wound into a roll and stored, which may affect the surface shape of the release layer. Therefore, it is desirable to be able to further reduce defects in the surface shape of the release layer.
  • cationic curable resins tend to cause poor curing due to the influence of water.
  • the release film is wound and stored in a roll, so that the release layer and the release surface of the base film are kept in contact with each other. Therefore, there is a problem that the reaction over time of the cationic curable resin is inhibited due to the influence of a small amount of water, which is thought to exist on the anti-release surface side of the base film, and the curing of the release layer becomes insufficient. there were.
  • the present invention was made against the background of such problems of the prior art. That is, it is an object of the present invention to provide a release film that suppresses the occurrence of poor curing of a release layer containing a cationic curable resin as a main component and has excellent release properties.
  • the release film has a hydrophobized layer on the surface of the base film opposite to the release layer,
  • the release layer is a layer formed from a cured product of a composition containing a cationic curable polydimethylsiloxane (a),
  • the water contact angle of the hydrophobized layer is 90° or more and 130° or less
  • the release layer in the release film obtained by unwinding has a normal peel strength (I) of 1500 mN/50 mm or less.
  • the release film roll obtained by winding the release film into a roll has a charge amount of less than ⁇ 1 kV when unwound at 100 m/min.
  • the hydrophobized layer is a layer made of a cured product of a composition containing cationic curable polydimethylsiloxane (a).
  • the hydrophobic layer has a thickness of 0.001 ⁇ m or more and 0.5 ⁇ m or less.
  • the release layer and the hydrophobized layer do not substantially contain particles having a particle size of 1.0 ⁇ m or more.
  • the base film is a polyester film having a surface layer A that does not substantially contain inorganic particles having a particle size of 1.0 ⁇ m or more and a surface layer B that contains particles, and on the surface layer A A release layer is laminated on the surface layer B, and a hydrophobized layer is laminated on the surface layer B.
  • the release film for molding a resin sheet contains an inorganic compound.
  • the resin sheet containing an inorganic compound is a ceramic green sheet.
  • the release film for resin sheet molding has a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • the release film for resin sheet molding of the present invention has a release layer on one surface of the base film, and the surface opposite to the release layer of the base film (anti-release surface) is hydrophobized.
  • the present invention has a base film, a release layer provided on one surface of the base film, and a hydrophobized layer on the surface of the base film opposite to the release layer (anti-release surface). It is a release film for resin sheet molding.
  • a hydrophobic layer on the anti-release surface of the base film, the release layer and the hydrophobic layer will come into contact when stored in a roll, so there is no risk of poor curing of the release layer. , a release film having excellent releasability can be obtained.
  • the smoothness of the release surface deteriorates due to the unevenness of the release surface that comes into contact with the release surface. can be reduced. Therefore, defects in the surface shape of the release layer that may occur from the production of the release film to the time of use can be further reduced.
  • the release layer is preferably a cured product of a composition containing cationic curable polydimethylsiloxane (a), which does not cause poor curing due to oxygen inhibition.
  • a cationic curable polydimethylsiloxane
  • the hydrophobic layer is preferably a cured product of a composition containing cationic curable polydimethylsiloxane (a).
  • the cationic curable polydimethylsiloxane (a) may have the same composition as the cationic curable polydimethylsiloxane (a) contained in the release layer, or may have a different composition. It preferably has the same composition as the cationic curable polydimethylsiloxane (a) contained in the release layer.
  • the curable polydimethylsiloxane (a) having the same composition is included, the molecular weight, blending amount, etc. may be appropriately adjusted when used in the hydrophobizing layer.
  • the electrification series with the release layer that comes into contact when stored in a roll state is brought closer and electrification is suppressed, so there is no peeling electrification and no defects with a low force.
  • the sheet can be peeled off.
  • the release surface is hydrophobized, it is possible to suppress the influence of moisture on the release surface when stored in a rolled state, and it is possible to prevent poor curing of the release layer.
  • polyester film The polyester constituting the polyester film used as the base film (hereinafter sometimes referred to as the base film) in the present invention is not particularly limited, and the polyester that is commonly used as a release film base is used for film molding. can be used.
  • Preferred are crystalline linear saturated polyesters comprising an aromatic dibasic acid component and a diol component, such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, or resins thereof. Copolymers based on constituents are more preferred.
  • a polyester film made from polyethylene terephthalate is particularly suitable.
  • the polyethylene terephthalate preferably contains 90 mol % or more, more preferably 95 mol % or more of repeating units of ethylene terephthalate, and may be copolymerized with other dicarboxylic acid components and diol components in small amounts.
  • dicarboxylic acid components and diol components for example, from the viewpoint of cost, one produced only from terephthalic acid and ethylene glycol is preferable.
  • known additives such as antioxidants, light stabilizers, ultraviolet absorbers, crystallization agents, etc. may be added within limits that do not impair the effects of the release film of the present invention.
  • the polyester film is preferably a biaxially oriented polyester film because of its high bidirectional elastic modulus.
  • the intrinsic viscosity of the polyester film is preferably 0.50 to 0.70 dl/g, more preferably 0.52 to 0.62 dl/g.
  • the intrinsic viscosity is 0.50 dl/g or more, it is preferable because many breakages do not occur in the stretching process.
  • the cutting performance is good when cutting into a predetermined product width, and dimensional defects do not occur, which is preferable.
  • the term "polyester film” simply means a (laminated) polyester film having a surface layer A and a surface layer B.
  • the method for producing the polyester film in the present invention is not particularly limited, and conventionally commonly used methods can be used.
  • the polyester can be melted by an extruder, extruded into a film, cooled by a rotating cooling drum to obtain an unstretched film, and biaxially stretched to obtain the unstretched film.
  • the biaxially stretched film can be obtained by a method of sequentially biaxially stretching a longitudinally or laterally uniaxially stretched film in the lateral direction or longitudinal direction, or by a method of simultaneously biaxially stretching an unstretched film in the longitudinal direction and the lateral direction. I can.
  • the stretching temperature during stretching of the polyester film is preferably at least the secondary transition point (Tg) of the polyester. It is preferable that the film is stretched 1 to 8 times, particularly 2 to 6 times, in each of the longitudinal and transverse directions.
  • the thickness of the polyester film is preferably 12 to 50 ⁇ m, more preferably 15 to 38 ⁇ m, and more preferably 19 to 33 ⁇ m. If the thickness of the film is 12 ⁇ m or more, it is preferable because there is no risk of deformation due to heat during film production, processing, and molding. On the other hand, if the thickness of the film is 50 ⁇ m or less, the amount of the film to be discarded after use is not excessively increased, which is preferable for reducing the environmental load.
  • the polyester film substrate may be a single layer or a multilayer of two or more layers.
  • the base film may be a polyester film having a surface layer A substantially free of particles with a particle size of 1.0 ⁇ m or more and a surface layer B containing particles.
  • the surface layer A does not substantially contain inorganic particles having a particle size of 1.0 ⁇ m or more.
  • the surface layer A may contain particles having a particle size of 1 nm or more and less than 1.0 ⁇ m. Since the surface layer A does not substantially contain particles having a particle size of 1.0 ⁇ m or more, such as inorganic particles, it is possible to reduce the occurrence of problems due to transfer of the particle shape in the base material to the resin sheet.
  • the surface layer A does not contain particles with a particle size of less than 1.0 ⁇ m, so that it is possible to more effectively suppress the transfer of the particle shape in the base material to the resin sheet.
  • the polyester film substrate is preferably a laminated film having a surface layer A substantially free of inorganic particles on at least one side. As a result, it is possible to more effectively suppress the transfer of the particle shapes in the base material to the resin sheet and the occurrence of problems.
  • the surface layer A that substantially does not contain particles with a particle size of less than 1.0 ⁇ m substantially does not contain particles with a particle size of 1.0 ⁇ m or more.
  • substantially free of particles means, for example, in the case of inorganic particles of less than 1.0 ⁇ m, when the inorganic elements are quantified by fluorescence X-ray analysis, it is 50 ppm or less, preferably 10 ppm. Hereinafter, most preferably, it means a content below the detection limit. Even if particles are not actively added to the film, contaminants derived from foreign substances and dirt adhering to the raw material resin or the lines and equipment in the film manufacturing process peel off and enter the film. This is because Moreover, "substantially free of particles with a particle size of 1.0 ⁇ m or more" means that particles with a particle size of 1.0 ⁇ m or more are intentionally not included.
  • a surface layer B capable of containing inorganic particles and the like on the opposite side of the surface layer A which does not substantially contain inorganic particles.
  • the layer on the side where the release layer is applied is layer A
  • the layer on the opposite side is layer B
  • the core layer other than these is layer C.
  • the layer configuration in the thickness direction is release layer / A / B, or a laminated structure such as release layer/A/C/B.
  • the C layer may have a multi-layer structure.
  • the surface layer B may not contain inorganic particles. In that case, it is preferable to provide a coating layer containing at least inorganic particles and a binder on the surface layer B in order to impart lubricity for winding the film into a roll.
  • the surface layer B which forms the surface opposite to the surface to which the release layer is applied, preferably contains inorganic particles from the viewpoint of film slipperiness and ease of air release.
  • inorganic particles from the viewpoint of film slipperiness and ease of air release.
  • silica particles and/or calcium carbonate particles are preferably used.
  • the content of the inorganic particles contained in the surface layer B is preferably 5000 to 15000 ppm in total of the inorganic particles.
  • the area average surface roughness (Sa) of the film of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm.
  • the total amount of silica particles and/or calcium carbonate particles is 5000 ppm or more and Sa is 1 nm or more, when the film is wound into a roll, air can be released uniformly, resulting in a good roll shape and good flatness. , suitable for the production of ultra-thin ceramic green sheets.
  • the total amount of silica particles and/or calcium carbonate particles is 15000 ppm or less and Sa is 40 nm or less, aggregation of the lubricant is difficult to occur and coarse protrusions cannot be formed, so that the quality is stable when manufacturing an ultra-thin ceramic green sheet. and preferred.
  • inactive inorganic particles and/or heat-resistant organic particles can be used in addition to silica and/or calcium carbonate. More preferably, calcium carbonate particles are used. Inorganic particles that can also be used include alumina-silica composite oxide particles, hydroxyapatite particles, and the like. Examples of heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles. When silica particles are used, porous colloidal silica is preferable, and when calcium carbonate particles are used, light calcium carbonate surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. .
  • the average particle size of the inorganic particles added to the surface layer B is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 1.0 ⁇ m or less. If the average particle size of the inorganic particles is 0.1 ⁇ m or more, the slipperiness of the release film is good, which is preferable. Further, when the average particle size is 2.0 ⁇ m or less, there is no fear of adversely affecting the smoothness of the surface of the release layer, and thus there is no fear of generating pinholes in the ceramic green sheet, which is preferable.
  • the surface layer A which is the layer on which the release layer is provided, in order to prevent contamination of inorganic particles such as lubricants.
  • the thickness ratio of the surface layer A which is the layer on which the release layer is provided, is preferably 20% or more and 50% or less of the total layer thickness of the base film. If it is 20% or more, the inside of the film is less likely to be affected by the particles contained in the surface layer B, etc., and it is easy for the region surface average roughness Sa to satisfy the above range, which is preferable.
  • the total thickness of the base film is 50% or less of the total thickness of the base film, the ratio of the recycled raw material used in the surface layer B can be increased, and the environmental load is small, which is preferable.
  • a film before stretching or after uniaxial stretching is applied to the surface of the surface layer A and / or surface layer B in the film forming process.
  • a coat layer may be provided on the surface, and corona treatment or the like may be applied.
  • the release layer is formed on one side of the base film.
  • a base film having a surface layer A containing substantially no inorganic particles it is preferable to form a release layer on the surface layer A.
  • the release layer is a cured product of a composition containing cationic curable polydimethylsiloxane (a).
  • a cationic curable polydimethylsiloxane
  • the present invention having such effects can improve the solvent resistance of the release layer surface, for example.
  • By improving the solvent resistance of the release layer surface it is possible to suppress the release layer from being eroded by the organic solvent used when molding the ceramic green sheet and when printing the internal electrodes, and it is possible to have high peelability. can.
  • cationic curable polydimethylsiloxane is cured by active energy rays, high heat of 130° C. or higher is not required for the curing reaction. Therefore, it is possible to suppress deterioration of the flatness of the release film due to heat during processing. As a result, it is possible to suppress foreign matter from entering the release film for resin sheet molding and the occurrence of scratches on the release layer. can be suppressed.
  • the degree of cure of the release layer can be evaluated by setting the ratio between the normal peel strength (I) and the peel strength after heating (II) of the release layer according to the present invention under a predetermined condition.
  • the release film may be heated when a resin sheet typified by a ceramic green sheet is molded on the release film or when the release film is peeled off.
  • the peel strength under normal conditions (I) and the peel strength after heating (II) in the present invention are within a predetermined range, stable holding and peelability of the ceramic green sheet can be exhibited before and after heating.
  • the ratio of normal peel strength (I) to peel strength after heating (II), (II)/(I), is 1.00 or more and 1.50 or less, more preferably 1.00 or more and 1.45 or less. .
  • it may be 1.00 or more and 1.40 or less.
  • it may be 1.05 or more, or 1.10 or more.
  • the ratio (II)/(I) of the normal peel strength (I) and the peel strength after heating (II) is 1.50 or less, it means that the curing of the release layer progresses sufficiently and there is little unreacted material. It is preferable because it has excellent releasability from a resin sheet such as a ceramic green sheet. Since the post-heating peel strength is generally higher than the normal peel strength, it is preferably 1.00 or more. A detailed evaluation method will be described later.
  • the release film for resin sheet molding is wound once in a roll, and then the release film obtained by unwinding is measured. ), it is possible to indirectly evaluate the degree of progress of the polymerization reaction of the release layer that progresses over time.
  • the release layer can be stored in a roll so that the reaction of the release layer can be further promoted, the release force is stable, and the release layer can be obtained while maintaining an excellent surface shape. It is possible to obtain a release film having excellent peeling force after heating.
  • the ratio (II)/(I) of the normal peel strength (I) and the peel strength after heating (II) is 1.50 or less and 1.00 or more
  • the conventional Influence on the surface shape of the release layer can be reduced and high smoothness can be maintained even better than the release film.
  • curing of the release layer has progressed sufficiently, blocking is unlikely to occur in the roll state, and the unwinding electrification amount can be suppressed.
  • the release layer does not substantially contain particles with a particle size of 1.0 ⁇ m or more.
  • particles having a particle size of less than 1.0 ⁇ m and 1 nm or more may be present in the release layer. Since the release layer does not substantially contain inorganic particles having a particle size of 1.0 ⁇ m or more, it is possible to suppress the occurrence of pinholes in an ultra-thin resin sheet that requires high smoothness, such as a ceramic green sheet. A resin sheet having a uniform film thickness can be formed.
  • the release layer preferably has high smoothness, the surface layer A substantially free of inorganic particles, specifically particles having a particle size of less than 1.0 ⁇ m, It is preferable to provide the release layer according to the present invention on the substrate film having the surface layer A, which preferably contains substantially no particles.
  • the release layer does not substantially contain particles with a particle size of less than 1.0 ⁇ m and does not substantially contain particles with a particle size of 1.0 ⁇ m or more.
  • the release layer has a regional surface roughness Sa of 7 nm or less and a maximum projection height of 50 nm or less.
  • the release layer has such characteristics, it is possible to suppress the occurrence of pinholes in an ultra-thin resin sheet that requires high smoothness, such as a ceramic green sheet, and to form a resin sheet with a uniform thickness. .
  • the release layer has a region surface average roughness (Sa) of 7 nm or less and a maximum protrusion height (Sp) of 50 nm or less.
  • the film surface on which the release layer is formed has the above average surface roughness and maximum protrusion height in order not to cause defects in the ceramic green sheet coated and molded thereon. If the surface roughness of the region is 7 nm or less and the maximum protrusion height is 50 nm or less, defects such as pinholes do not occur when the ceramic green sheets are formed, and the yield is good, which is preferable.
  • the release film of the present invention has a release layer according to the present invention and a hydrophobic layer, so that it has excellent peelability from the resin sheet, and furthermore, when the resin sheet is wound and stored In addition, the occurrence of pinholes, wrinkles and misalignment can be suppressed. In addition, the present invention can suppress the unwinding charge from increasing. As described above, the release film of the present invention can not only produce a resin sheet satisfactorily due to its high smoothness and excellent releasability, but also can improve the handling property during film winding and transportation. Contamination of foreign matter can be reduced by suppressing emergence charging.
  • the release layer has an average regional surface roughness (Sa) of 5 nm or less and a maximum protrusion height (Sp) of 30 nm or less.
  • the lower the maximum protrusion height the better.
  • the region surface average roughness (Sa) may be 3 nm or less, and may be, for example, less than 2 nm.
  • the maximum projection height (Sp) is preferably as small as possible, and may be 1 nm or more, or 3 nm or more.
  • the maximum protrusion height (Sp) may be 25 nm or less, or may be 20 nm or less.
  • the release layer is preferably a cured product of a composition containing at least cationic curable polydimethylsiloxane (a).
  • cation-curable polydimethylsiloxane (a) refers to polydimethylsiloxane having a cation-curable functional group.
  • the cationic curable functional group is a reactive functional group exhibiting cationic curability, and specific examples thereof include a vinyl ether group, an oxetanyl group, an epoxy group, and an alicyclic epoxy group.
  • the release layer has excellent solvent resistance and excellent releasability.
  • the viscosity of the cationic curable polydimethylsiloxane (a) is preferably 100 mPa s or more and 10000 mPa s or less, more preferably 100 mPa s or more and 5000 mPa s or less, and 100 mPa s or more and 1000 mPa s or less. It is even more preferable to have When it is 100 mPa ⁇ s or more, the amount of unreacted components after storage in a roll state is small, and a sufficiently cured release layer can be obtained, which is preferable. When it is 10000 mPa ⁇ s or less, it is preferable because it exhibits solubility in the organic solvent contained in the release layer-forming composition and can be applied uniformly.
  • the viscosity in the present invention is a value measured in an atmosphere of 25°C.
  • the cationic curable polydimethylsiloxane (a) may have one or more cationic curable functional groups.
  • having two or more cationic curing functional groups facilitates the progress of the cationic curing reaction, resulting in a release layer with a high crosslink density, which is preferable.
  • the introduction position of the cationic curable functional group is not particularly limited, and it is common to have it at the side chain or end of polydimethylsiloxane.
  • the structure of polydimethylsiloxane may be either a linear structure or a branched structure, and even if it has a functional group other than the cationic curable functional group, it can be used without any problem.
  • cationic curable polydimethylsiloxane examples include silicone lease (registered trademark) UV POLY200, UV POLY201, UV POLY215, UV RCA200, UV RCA251 manufactured by Arakawa Chemical Industries, Ltd., X-62-7622, X-62-7629, X-62-7622 manufactured by Shin-Etsu Chemical Co., Ltd. 62-7660, KF-101, KF-105, X-22-343, X-22-169AS, X-22-169B, X-22-163, X-22-173BX, X-22-173DX, X- 22-9002, and UV9440E and UV9430 manufactured by Momentive Performance Materials.
  • the release layer-forming composition of the present invention may contain other resins in addition to the cationic curable polydimethylsiloxane (a).
  • a release layer is provided on the surface layer A of the substrate film that does not substantially contain inorganic particles, a cured release layer containing cationic curable polydimethylsiloxane (a) as a main component is preferred.
  • the release layer can have extremely high smoothness, which is preferable.
  • the film thickness of the release layer is thin, the curing reaction proceeds easily, processing can be performed at a higher speed, and the release layer can be obtained economically.
  • the thickness of the release layer is preferably 0.001 ⁇ m or more and less than 0.050 ⁇ m.
  • the thickness is 0.001 ⁇ m or more, the releasability is excellent, which is preferable.
  • the thickness is less than 0.050 ⁇ m, aggregation of the release layer-forming composition can be prevented, and a smooth release layer can be obtained, which is preferable.
  • the composition when the cationic curable polydimethylsiloxane (a) is the main component, the composition contains the cationically curable polydimethylsiloxane (a) with respect to 100 parts by mass of the resin solid content of the release layer. It contains at least 50 parts by weight, such as more than 50 parts by weight, preferably 70 parts by weight or more, such as 80 parts by weight or more, and in one embodiment, 90 parts by weight or more. In addition, substantially all of the solid resin content of the release layer may contain the cationic curable polydimethylsiloxane (a).
  • the release layer-forming composition of the present invention may contain a cationic curable resin (b) having no silicone skeleton in addition to the cationically curable polydimethylsiloxane (a). At this time, (b) is a different resin from (a), and resin (b) does not have a polydimethylsiloxane structure.
  • the release layer-forming composition further contains a cationic curable resin (b) having no silicone skeleton in addition to the cationically curable polydimethylsiloxane (a).
  • a cationic curable resin (b) having no silicone skeleton include polymers and monomers having two or more cationic curable functional groups in the molecule and having no silicone skeleton. Among them, resins having two or more epoxy groups or alicyclic epoxy groups are preferred, and those having two or more alicyclic epoxy groups are more preferred. For example, the number of alicyclic epoxy groups may be 6 or less.
  • a cross-linking reaction proceeds by a cationic curing reaction, resulting in a release layer having excellent solvent resistance.
  • a cross-linking reaction also proceeds with the polydimethylsiloxane (a) contained in the release layer, which is preferable because it is excellent in releasability and suppresses migration of the polydimethylsiloxane (a) to the ceramic green sheet.
  • the release layer-forming composition contains both the cationic curable resin (b) having no silicone skeleton and the polydimethylsiloxane (a), so that a release layer having high smoothness can be realized. .
  • the release layer containing the resin (b) it is possible to fill fine unevenness, extremely small foreign matter, and projections derived from oligomers existing in the base film, resulting in an ultra-smooth release layer.
  • the release layer has high smoothness.
  • the polydimethylsiloxane (a) contained at the same time segregates on the surface of the release layer in the drying process, so that a release layer having excellent releasability can be obtained.
  • the cationically curable resin (b) that does not have a silicone skeleton is preferably a low molecular weight monomer.
  • the number average molecular weight is preferably 200 or more and less than 5,000, more preferably 200 or more and less than 2,500, and even more preferably 200 or more and less than 1,000.
  • the number average molecular weight is 200 or more, the boiling point is not lowered, and the cationic curable resin (b) is not likely to volatilize during the process of drying the release layer forming composition, which is preferable.
  • it is less than 5,000 the cross-linking density of the release layer is increased and the solvent resistance is excellent, which is preferable.
  • it since it can exist in a liquid state with fluidity during the drying process, it is excellent in leveling properties and forms an ultra-smooth release layer, which is preferable.
  • cationic curable resin (b) that does not have a silicone skeleton.
  • examples of compounds having an alicyclic epoxy group include Celoxide 2021P, Celloxide 2081, Epolead GT401 and EHPE3150 manufactured by Daicel Corporation, HiREM-1 manufactured by Shikoku Kasei Co., Ltd., THI-DE, DE-102 and DE manufactured by ENEOS. -103 and so on.
  • resins having epoxy groups include DIC's EPICLON® 830, 840, 850, 1051-75M, N-665, N-670, N-690, N-673-80M, N-690- 75M, Denacol (registered trademark) EX-611, EX-313, EX-321 manufactured by Nagase Chemtech Co., Ltd., and the like.
  • the release layer contains the cationic curable resin (b) that does not have a silicone skeleton
  • the cationic curable polydimethylsiloxane (a) and the cationic curable resin (b) in the release layer of 100 parts by mass in total
  • the content of the cationic curable resin (b) having no silicone skeleton may exceed 50 parts by mass, preferably 80% by mass or more, more preferably 85% by mass or more, and 90% by mass. % or more is more preferable.
  • the content of the cationic curable resin (b) is more than 50 parts by mass, for example, 80% by mass or more, and by making it the main component in the release layer, the release layer has a high crosslink density and excellent peelability. preferable.
  • the content of the cationic curable polydimethylsiloxane (a) contained in the release layer can be reduced, and the aggregation of the polydimethylsiloxane (a)-derived composition on the surface of the release layer during the drying process can be suppressed. It is preferable because there is no risk of deteriorating flatness.
  • the higher the content of the cationic curable resin (b), the more excellent the smoothness of the release layer. b) is preferably 99.9% by mass or less.
  • a compound (cured product) derived from the cationic curable resin (b) having no silicone skeleton is present in the release layer obtained by curing the release layer-forming composition.
  • the compound derived from (b) present in the release layer may also be simply referred to as the cationic curable resin (b) having no silicone skeleton.
  • the release layer-forming composition contains the cation-curable polydimethylsiloxane (a) and the cation-curable resin (b), the release layer has a high cross-linking density, excellent solvent resistance, and excellent release force. It is preferable because it becomes a mold layer.
  • the thickness of the release layer is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less, It is more preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less. A thickness of 0.01 ⁇ m or more is preferable because a smooth release layer can be obtained. When the thickness is 1.0 ⁇ m or less, a release film having excellent flatness without curling can be obtained, which is preferable.
  • the release layer-forming composition preferably contains an acid generator (c).
  • a compound derived from the acid generator (c) may be present in the release layer.
  • the compound derived from the acid generator (c) present in the release layer may also be simply referred to as the acid generator (c).
  • the acid generator There are no particular restrictions on the acid generator, and a common one can be used, but by using a photoacid generator that generates acid under ultraviolet irradiation, it is possible to reduce the amount of heat during processing and achieve excellent flatness. It is preferable because it becomes a release layer.
  • a salt composed of an onium ion and a non-nucleophilic anion as the photoacid generator.
  • an organometallic complex typified by an iron arene complex or a carbocation salt typified by tropylium may be used, and an anthracene derivative or a phenol substituted with an electron-withdrawing group such as pentafluorophenol may also be used.
  • onium ions that can be used include iodonium, sulfonium, and ammonium.
  • organic group of the onium ion triaryl, diaryl (monoalkyl), monoaryl (dialkyl), trialkyl may be used, and benzophenone or 9-fluorene may be introduced, or other organic groups may be used. good.
  • hexafluorophosphate hexafluoroantimonate, hexafluoroborate, and tetra(pentafluorophenyl)borate are preferably used.
  • tetra(pentafluorophenyl)gallium ions anions in which some fluorine anions are replaced with perfluoroalkyl groups or organic groups, or other anion components may be used.
  • the amount of the photoacid generator added is 0.1 to 10% by mass with respect to a total of 100 parts by mass of the cationic curable polydimethylsiloxane (a) and the cationic curable resin (b) in the release layer, and more preferably. is 0.5 to 8% by mass. More preferably, it is 1 to 5% by mass. A content of 0.1% by mass or more is preferable because there is no risk of insufficient curing due to an insufficient amount of generated acid. In addition, when the amount is 10% by mass or less, the amount of generated acid becomes appropriate, and the amount of acid transferred to the ceramic green sheet to be molded can be suppressed, which is preferable.
  • the total 100 parts by mass of the cationic curable polydimethylsiloxane (a) and the cationic curable resin (b) in the release layer means the solid content of the cationic curable polydimethylsiloxane (a), the cationic curable It means the total solid content of resin (b).
  • the weight of the cation-curable polydimethylsiloxane (a) corresponds to 100 parts by mass of the resin solid content in the release layer.
  • the release layer may contain an adhesion improver, an additive such as an antistatic agent, etc., as long as the effects of the present invention are not impaired, but it is preferable not to contain particles. . Since the release layer does not contain particles, deterioration of smoothness of the surface of the release layer and contamination of the resin sheet with particles due to falling off of the particles can be suppressed.
  • the surface of the polyester film may be subjected to pretreatment such as anchor coating, corona treatment, plasma treatment, atmospheric pressure plasma treatment, etc. before the release coating layer is provided.
  • the hydrophobic layer is formed on the surface of the substrate film opposite to the surface provided with the release layer.
  • a hydrophobic layer is formed on the surface layer B on the other side of the base film. It is formed.
  • the hydrophobic layer does not substantially contain particles with a particle size of 1.0 ⁇ m or more. In this embodiment, particles having a particle size of less than 1.0 ⁇ m and greater than or equal to 1 nm may be present in the hydrophobized layer.
  • the release layer does not substantially contain inorganic particles with a particle size of 1.0 ⁇ m or more, when the release film is wound into a roll, the number of particles present on the release surface (hydrophobized layer) is reduced. It is preferable because there is no fear of deforming (defecting) the resin sheet.
  • the hydrophobized layer preferably does not substantially contain particles with a particle size of less than 1.0 ⁇ m, and preferably contains no particles. By substantially not containing particles with a particle size of less than 1.0 ⁇ m, when the resin sheet is stored in a roll after being molded on a release film, the shape of the particles in the hydrophobic layer is transferred to the resin sheet. is preferable because there is no fear of deformation.
  • the particles in the hydrophobized layer will fall off and be mixed into the resin sheet.
  • the above effect can be exhibited more favorably.
  • the surface layer A that substantially does not contain particles with a particle size of less than 1.0 ⁇ m substantially does not contain particles with a particle size of 1.0 ⁇ m or more.
  • such an aspect is the same as an aspect having substantially no particles.
  • the hydrophobized layer is preferably a cured product of a composition containing cationic curable polydimethylsiloxane (a). Because the hydrophobic layer has such characteristics, when the release film is rolled up and stored, the release layer and the hydrophobic layer are in contact with each other, so the release layer is hardened by moisture. This is preferable because the reaction proceeds without being affected by inhibition. In addition, since the release layer also contains the cationically curable polydimethylsiloxane (a), the electrification series with the release layer that comes into contact with the release layer when stored in a roll state is brought closer, and charging is suppressed, which is preferable.
  • a resin sheet such as a ceramic green sheet can be peeled off with a low force without causing peeling electrification and without defects.
  • the release film of the present invention can suppress electrification and prevent contamination of the release layer even in the process of unwinding the roll before molding the resin sheet.
  • unwinding electrification can be suppressed, so that various effects described in this specification can be achieved.
  • the water contact angle of the hydrophobized layer of the present invention is 90° or more and 130° or less. By setting the water contact angle within this range, it is possible to reduce the amount of water that is thought to be adsorbed on the release surface of the base film, and this is preferable because there is no risk of inhibiting the curing of the release layer that comes into contact in the roll state.
  • the hydrophobized layer may have a water contact angle of 95° or more and 130° or less, such as 98° or more and 130° or less.
  • the water contact angle of the hydrophobized layer is within the above range, and the hydrophobized layer contains the cationic curable polydimethylsiloxane (a) contained in the release layer.
  • the hydrophobized layer in the present invention may be a cured product of a composition containing cationic curable resin (b) having no silicone skeleton in addition to cationically curable polydimethylsiloxane (a).
  • the elastic modulus of the hydrophobized layer can be improved by using the cationic curable resin (b).
  • a hydrophobized layer having a high elastic modulus is preferable because it not only improves the handleability of the release film but also suppresses unwinding electrification.
  • the elastic modulus of the hydrophobized layer is increased, the lubricity between the release layer and the hydrophobized layer, which are in contact with each other during roll storage, is improved (easily slippery).
  • the cationic curable polydimethylsiloxane (a) and cationic curable resin (b) that form the hydrophobic layer the same examples as those usable in the release layer described above can be used.
  • the composition of the release layer and the hydrophobic layer need not be exactly the same, and the effect of the present invention can be obtained as long as both the release layer and the hydrophobic layer contain the cationic curable polydimethylsiloxane (a). It is possible to obtain a release film having.
  • the film thickness of the hydrophobized layer is preferably 0.001 ⁇ m or more and 0.050 ⁇ m or less.
  • the thickness is 0.001 ⁇ m or more, the effect of suppressing inhibition of hardening of the release layer in contact with the hydrophobized layer is sufficient, which is preferable.
  • the thickness is 0.050 ⁇ m or less, the elastic modulus of the hydrophobized layer is lowered, and it is possible to prevent an increase in unwinding electrification and the occurrence of blocking in a roll state, which is preferable.
  • the hydrophobized layer is made of a cured product of a composition containing cationic curable polydimethylsiloxane (a) and cationic curable resin (b) having no silicone skeleton, a total of 100 parts by mass has a silicone skeleton.
  • the content of the cationically curable resin (b) that does not contain the free radical is preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 90% by mass or more.
  • the film thickness of the hydrophobic layer at this time is preferably 0.001 ⁇ m to 0.5 ⁇ m, more preferably 0.001 ⁇ m to 0.3 ⁇ m. If the film thickness of the hydrophobized layer is 0.001 ⁇ m, the effect of suppressing inhibition of hardening of the release layer and the effect of suppressing electrification are sufficient, which is preferable. If the thickness is 0.5 ⁇ m or less, the unevenness on the side of the anti-separation mold is not completely filled, the transportability is excellent, and blocking does not occur when the film is wound up, which is preferable.
  • the surface of the hydrophobic layer is preferably rougher than the surface of the release layer.
  • the surface of the hydrophobic layer is rougher than that of the release layer, the transportability and winding property of the roll are improved, and it is possible to prevent scratches, contamination with foreign substances, and increase in unwinding electrification, which is preferable.
  • the desired effect can be obtained if the surface roughness Sa of the hydrophobic layer is larger than the surface roughness of the release layer.
  • Sa is preferably in the range of 1 to 40 nm, more preferably in the range of 2 to 30 nm. and more preferably in the range of 3 to 20 nm.
  • the thickness is 40 nm or less, the surface shape of the hydrophobized layer is transferred to the resin sheet, which is preferable because there is no possibility of causing problems.
  • the hydrophobized layer-forming composition preferably contains an acid generator (c).
  • the amount and type of acid generator to be used are the same as those for the release layer described above.
  • the hydrophobized layer can contain an acid generator (c) as long as the water contact angle does not deviate from the scope of the present invention. Even if the composition for forming the release layer and the composition for forming the hydrophobized layer contain the same type of resin, the amount of solvent contained in each composition may be different. Therefore, it is not easy to identify the structure of the obtained polymer and to specify the claim based on it, and there are impractical circumstances.
  • the release layer-forming composition for forming the release layer is preferably applied by an in-line method during the production process of the polyester film or an off-line method after the production of the polyester film.
  • an in-line method a coating solution in which a release resin is dissolved or dispersed is applied to a film stretched in the film flow direction (longitudinal direction) and uniaxially oriented, and then in the horizontal direction (the film flow direction is A method of stretching in the perpendicular direction) to biaxially orient the film and forming a release layer at the same time is preferred.
  • a coating solution in which a release resin is dissolved or dispersed is applied to one surface of the biaxially oriented polyester film, and after removing the solvent etc. by drying, heat drying, heat curing or A UV curing method is used.
  • a water-based coating liquid as the coating liquid for the in-line coating.
  • a water-soluble organic solvent such as alcohol.
  • the coating liquid used in off-line coating but it is preferable to use an organic solvent, and it is preferable to add a solvent having a boiling point of 90° C. or higher.
  • the method of forming the hydrophobic layer is not particularly limited, but it can be processed by a method of processing both sides at the same time as the release layer, or a method of processing one side and then processing the opposite side. In the latter case, it is preferable to process the hydrophobic layer after processing the release layer. This is because the release layer is required to be smoother than the hydrophobic layer because the resin sheet is directly laminated thereon. Therefore, it is preferable to process the hydrophobic layer first, because the slipperiness of the back surface is good, wrinkles are less likely to occur during processing of the release layer, and more uniform coating can be achieved.
  • the hydrophobized layer it is preferable to process the hydrophobized layer not by the in-line method of coating during polyester film formation, but by the off-line method of processing after polyester film formation.
  • the off-line method is superior in handling during processing because the tension during coating and winding can be controlled at a high level.
  • any known coating method can be applied.
  • a conventionally known method such as a coating method, a die coating method, a spray coating method, an air knife coating method can be used.
  • the base film is conveyed roll-to-roll during processing of the release layer and processing of the hydrophobic layer. Therefore, after processing the release layer and the hydrophobic layer, the release film is wound into a roll and stored. Further, molding of the resin sheet and peeling of the resin sheet are also performed by roll-to-roll.
  • the tension when winding the release film into a roll is preferably 10 N/m to 300 N/m.
  • a winding tension of 10 N/m or more is preferable because there is no winding deviation.
  • a winding tension of 300 N/m or less is preferable because there is no risk of deformation of the release film due to tight winding or blocking.
  • the touch pressure of the touch roll is preferably 100 to 3000 N/m. If it is 100 N/m or more, it is possible to reduce accompanying air that is mixed in during winding, and it is preferable because it is possible to suppress the occurrence of winding misalignment. If it is 3000 N/m or less, deformation of the release film due to the touch roll pressure is suppressed, and a release film having excellent flatness is obtained, which is preferable.
  • the unwinding charge amount when the release film stored in a roll state is unwound can be kept low. It is preferable that the charge amount when the release film wound into a roll is unwound at 100 m/min is less than ⁇ 1.0 kV. When it is less than ⁇ 1.0, there is no possibility that very small foreign matters during the process will adhere to the release film, which is preferable. In addition, it is preferable because the peeling electrification when peeling the resin sheet can be kept low, and the peeling can be performed with a lower and uniform force.
  • the storage environment in the roll state it can be stored without any particular restrictions as long as it is indoors in a cool place that avoids direct sunlight and high temperatures. It may be stored in a humidity-controlled environment or a temperature-controlled storage place, and the effects of the present invention can be obtained as long as the humidity is in the range of 20RH% to 90RH% and the temperature is in the range of -5°C to 50°C.
  • the release force in the present invention is measured by storing a release film provided with a release layer and a hydrophobic layer in a roll state in an environment of 40 to 50 RH% and 20 to 25 ° C. for 3 days, and then winding the release film roll. It is a value measured using a release film taken out and sampled. After providing the hydrophobized layer, the film is stored in a roll to complete the reaction of the release layer and to obtain a release film having excellent release force.
  • the peel strength in the present invention is a value measured by laminating an adhesive tape (“31B” manufactured by Nitto Denko Corporation) on the surface of the release film and performing T-type peeling at a pulling speed of 300 m/min. A detailed evaluation method will be described later.
  • the normal peel strength (I) of the release layer is preferably 100 mN/50 mm or more and 1500 mN/50 mm or less, more preferably 100 mN/50 mm or more and 1300 mN/50 mm or less, and 100 mN/50 mm or more and 1000 mN/ It is more preferably 50 mm or less. If it is 100 N/50 mm or more, there is no possibility that the resin sheet will partially float or come off during transportation, and the retention is excellent, which is preferable. If it is 1500 mN/50 mm or less, the resin sheet can be peeled without damage, which is preferable.
  • the post-heating peel strength (II) of the release layer is preferably 150 mN/50 mm or more and 2250 mN/50 mm or less, more preferably 150 mN/50 mm or more and 1950 mN/50 mm or less, and 150 mN/50 mm or more and 1500 mN. /50 mm or less is more preferable. Since heat is applied to the release film when the resin sheet is molded on the release film or when the resin sheet is peeled off, the peelability of the release film can be evaluated in more detail based on the peel force after heating. It is preferable that it is 150 mN/50 mm or more because the retention of the ceramic green sheet is excellent.
  • the release layer contains the cationic curable polydimethylsiloxane (a), and the hydrophobized layer has a water contact angle of 90 ° or more and 130 °
  • the post-heating peel strength (II) can be brought within the above range. It can be held, and the obtained resin sheet can be easily peeled off. Therefore, in the present invention, retention of the resin sheet-forming composition and peeling after heating can be maintained in a well-balanced manner. For example, even in a mode in which the ceramic green sheet has an extremely thin thickness of 1.0 ⁇ m or less, these effects can be obtained.
  • the ratio of normal peel strength (I) to peel strength after heating (II): (II)/(I) is preferably 1.00 or more and 1.50 or less.
  • the fact that the ratio of normal peel strength (I) to peel strength after heating (II): (II)/(I) is large suggests that unreacted substances remain in the release layer. means that the curing of has not progressed completely. If (II)/(I) is 1.50 or less, the release layer is in contact with the hydrophobized layer during storage in a rolled state. Preferable because it progresses perfectly. Since the post-heating peel strength (II) generally exhibits a larger value than the normal peel strength (I), (I)/(II) is preferably 1.0 or more.
  • the release film of the present invention is not particularly limited as long as it is a resin sheet, and may be applied to the production of adhesives and optical films.
  • the present invention is a release film for molding a resin sheet containing an inorganic compound.
  • inorganic compounds include metal particles, metal oxides, and minerals, such as calcium carbonate, silica particles, aluminum particles, and barium titanate particles.
  • resins include polyvinyl acetal resins and poly(meth)acrylic acid ester resins.
  • the present invention has a release layer with high smoothness and a back layer with excellent smoothness, handling properties, and antistatic properties, even if the resin sheet contains these inorganic compounds, Defects to be obtained, such as breakage of the resin sheet and difficulty in peeling the resin sheet from the release layer, can be suppressed.
  • the resin component forming the resin sheet can be appropriately selected depending on the application.
  • the resin sheet containing the inorganic compound is a ceramic green sheet.
  • the ceramic green sheets can contain barium titanate as the inorganic compound.
  • the resin sheet has a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less.
  • a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are alternately provided along the thickness direction. The first internal electrode is exposed on the first end face of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to the first external electrode at the first end surface. The second internal electrode is exposed on the second end face of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to the second external electrode at the second end surface.
  • the release film of the present invention is a release film for producing ceramic green sheets, and is used for producing such a laminated ceramic capacitor.
  • a ceramic green sheet manufacturing method for molding a ceramic green sheet using the release film for manufacturing a ceramic green sheet of the present invention can mold a ceramic green sheet having a thickness of 0.2 ⁇ m to 1.0 ⁇ m.
  • a ceramic green sheet is manufactured as follows. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. As for the thickness of the ceramic green sheet, an ultra-thin product with a thickness of 0.2 to 1.0 ⁇ m is required.
  • a conductive layer for forming the first or second internal electrode is printed on the coated and dried ceramic green sheet.
  • Ceramic green sheets, ceramic green sheets printed with conductive layers for forming first internal electrodes, and ceramic green sheets printed with conductive layers for forming second internal electrodes are appropriately laminated and pressed.
  • a mother laminate is obtained.
  • the mother laminate is divided into a plurality of pieces to produce raw ceramic bodies.
  • a ceramic body is obtained by firing a raw ceramic body. After that, the multilayer ceramic capacitor can be completed by forming the first and second external electrodes.
  • the cut release film was embedded in a resin and cut into ultrathin slices using an ultramicrotome. After that, cross-sectional observation was performed using a JEOL JEM2100 transmission electron microscope, and the film thickness of the release layer was measured from the observed TEM image. When the thickness was too thin to be evaluated accurately by cross-sectional observation, it was measured using a reflection spectroscopic film thickness meter (manufactured by Otsuka Electronics Co., Ltd., FE-3000).
  • the release film for resin sheet production obtained in each example and each comparative example was rolled up into a roll having a width of 400 mm and a length of 6000 m to obtain a release film roll. At this time, the winding tension was 150 N/mm, and the touch roll pressure was 700 N/m.
  • the obtained film roll was stored in an environment of 20 to 25° C. and humidity of 40 to 50 RH% for 3 days and then unwound to obtain a release film for measurement.
  • An adhesive tape (“31B” manufactured by Nitto Denko Corporation) was attached to the surface of the release layer of the release film for measurement, and the release film with the adhesive tape was cut into strips having a width of 25 mm and a length of 150 mm.
  • the cut release film with adhesive tape was pressed with a pressure roller of 5 kg, and then left under conditions of a temperature of 22° C. and a humidity of 60% for 20 hours. After that, one end of the adhesive tape was fixed, one end of the release film was held, and the release film side was pulled at a speed of 300 mm/min, and measured by T-type peeling. For the measurement, a tensile tester ("AUTOGRAPHAG-X" manufactured by Shimadzu Corporation) was used.
  • a release film for evaluation was collected in the same manner as for the normal peel strength (I), and an adhesive tape (manufactured by Nitto Denko Co., Ltd., trade name “31B”) was attached to the surface of the release layer.
  • the release film with adhesive tape was cut into strips of 150 mm.
  • the cut release film with adhesive tape was pressed with a pressure roller of 5 kg, and then heated in an oven at a temperature of 70° C. for 20 hours. After that, one end of the adhesive tape was fixed, one end of the release film was gripped, and the release film side was pulled at a speed of 300 mm/min to be peeled off, and measurement was performed by T-type peeling.
  • a tensile tester (“AUTOGRAPHAG-X” manufactured by Shimadzu Corporation) was used.
  • PET polyethylene terephthalate pellets
  • a continuous esterification reactor comprising a three-stage complete mixing tank having a stirrer, a partial condenser, a raw material inlet and a product outlet was used.
  • TPA terephthalic acid
  • EG ethylene glycol
  • antimony trioxide was adjusted to give an amount of Sb atoms of 160 ppm relative to the produced PET. It was continuously supplied to the first esterification reactor of the reaction apparatus and reacted at 255° C. for an average residence time of 4 hours under normal pressure.
  • the reaction product in the first esterification reaction can is continuously taken out of the system and supplied to the second esterification reaction can, and distilled from the first esterification reaction can into the second esterification reaction can.
  • 8 mass % of EG is supplied to the produced PET, and further, an EG solution containing magnesium acetate tetrahydrate in an amount such that the Mg atom is 65 ppm relative to the produced PET, and an EG solution containing 40 ppm of P atom relative to the produced PET.
  • An EG solution containing TMPA (trimethyl phosphate) in an amount corresponding to the above was added and reacted at 260° C. under normal pressure for an average residence time of 1 hour.
  • the reaction product in the second esterification reactor was continuously taken out of the system, supplied to the third esterification reactor, and subjected to 39 MPa (400 kg/cm 2 ) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.).
  • a high-pressure disperser manufactured by Nippon Seiki Co., Ltd.
  • 0.2% by mass of porous colloidal silica having an average particle size of 0.9 ⁇ m which has been subjected to dispersion treatment for an average of 5 passes at a pressure of , and 1% by mass of ammonium salt of polyacrylic acid per calcium carbonate.
  • 0.4% by mass of synthetic calcium carbonate with a diameter of 0.6 ⁇ m as a 10% EG slurry the mixture was reacted at normal pressure at 260° C.
  • the esterification reaction product produced in the third esterification reaction vessel was continuously supplied to a three-stage continuous polycondensation reactor for polycondensation to sinter stainless steel fibers having a 95% cut diameter of 20 ⁇ m. After filtration with a filter, ultrafiltration was performed, the product was extruded into water, and after cooling, it was cut into chips to obtain PET chips having an intrinsic viscosity of 0.60 dl/g (hereinafter abbreviated as PET (I)). .
  • PET (I) intrinsic viscosity of 0.60 dl/g
  • the lubricant content in the PET chip was 0.6% by mass.
  • PET (II) Preparation of polyethylene terephthalate pellets (PET (II))
  • PET(II) a PET chip with an intrinsic viscosity of 0.62 dl/g containing no particles such as calcium carbonate and silica was obtained (hereinafter abbreviated as PET(II)).
  • PET (Production of laminated film X1) After drying these PET chips, they were melted at 285° C. and melted at 290° C. by a separate melt extruder extruder to filter sintered stainless steel fibers with a 95% cut diameter of 15 ⁇ m and Two-stage filtration of sintered stainless steel particles of 15 ⁇ m is performed, and they are combined in the feed block to form PET (I) on the surface layer B (anti-releasing surface side layer) and PET (II) on the surface. Laminated so as to form layer A (releasing surface side layer), extruded (cast) into a sheet at a speed of 45 m / min, electrostatically adhered on a casting drum at 30 ° C.
  • a 2.3% relaxation treatment was applied in the transverse direction at 170° C. to obtain a biaxially stretched polyethylene terephthalate film X1 having a thickness of 31 ⁇ m.
  • the Sa of the surface layer A of the obtained film X1 was 1 nm, and the Sa of the surface layer B was 28 nm.
  • E5101 Toyobo Ester (registered trademark) film, manufactured by Toyobo Co., Ltd.) having a thickness of 25 ⁇ m was used.
  • E5101 has a structure in which surface layer A and surface layer B contain particles.
  • the Sa of the surface layer A of the laminated film X2 was 24 nm, and the Sa of the surface layer B was 24 nm.
  • the release layer-forming compositions Y1 to Y4 were coated on the surface layer A of the laminated film X1 or one side of the laminated film X2 by a reverse gravure coater so that the film thickness after drying would be a predetermined thickness. Then, after drying with hot air at 90° C. for 20 seconds, it was immediately irradiated with ultraviolet rays (100 mJ/cm 2 ) using an electrodeless lamp (H bulb manufactured by Heraeus) to form a release layer.
  • the release layer was formed by roll-to-roll. That is, a release film roll provided with a release layer was obtained by unwinding a roll-shaped laminated film, successively performing coating, drying, and ultraviolet irradiation, and winding it into a roll.
  • the hydrophobized layer-forming compositions Z1 to Z3 were applied to the surface of the base film on which the release layer was not provided by a reverse gravure coater so that the film thickness after drying would be a predetermined thickness. Then, after drying with hot air at 90° C. for 20 seconds, it was immediately irradiated with ultraviolet rays (100 mJ/cm 2 ) using an electrodeless lamp (H bulb manufactured by Heraeus) to form a hydrophobic layer. Formation of the hydrophobized layer was performed by roll-to-roll.
  • a release film roll provided with a release layer is unwound, coating, drying, and ultraviolet irradiation are successively performed in order, and a release layer and a hydrophobic layer are provided by winding into a roll.
  • a film roll was obtained.
  • Example 1 The release layer-forming composition Y1 is applied onto the surface layer A of the laminate film X1 to form a release layer, and then the hydrophobized layer-forming composition Z1 is applied onto the surface layer B to form a hydrophobized layer.
  • a release film roll for resin sheet molding was obtained.
  • the release layer and the hydrophobized layer were formed so as to have thicknesses shown in Table 1.
  • a release film sample was unwound and collected from the obtained release film roll, and each evaluation was performed.
  • the film structure and various physical property values are shown in Table 1A.
  • Example 2 to 11 A release film roll for resin sheet molding was obtained in the same manner as in Example 1 so that the base film, release layer, and hydrophobic layer shown in Table 1 were combined. A release film sample was unwound and collected from the obtained release film roll, and each evaluation was performed. The film structure and various physical property values are shown in Table 1A or Table 1B.
  • the hydrophobic layer is provided on the side opposite to the release layer of the base film, the release layer and the hydrophobic layer come into contact when the release film is stored in a rolled state. Therefore, there is no risk of poor curing of the release layer due to moisture, and excellent releasability is obtained.
  • cationic curable polydimethylsiloxane is contained on both the release layer and the hydrophobic layer, it is possible to suppress charging when the film is unwound from a roll. Therefore, according to the present invention, for example, minute environmental foreign matter during the process, film waste generated at the time of slitting, and the like can be suppressed from adhering due to static electricity, and contamination of the resin sheet can be suppressed. Further, for example, a resin sheet having a thickness of 0.2 ⁇ m or more and 1.0 ⁇ m or less can be peeled with a low peeling force because the peel electrification is suppressed.
  • Comparative Examples 1 to 5 A release film for resin sheet molding was obtained in the same manner as in Example 1 so that the combination of the substrate film, release layer, and hydrophobized layer shown in Table 1 was obtained. Comparative Examples 1 to 4 were evaluated using a release film roll provided with a release layer without providing a hydrophobic layer. The film structure and various physical property values are shown in Table 1B.
  • Comparative Example 1 since the release layer did not contain the cationic curable polydimethylsiloxane (a) and was a release layer using a radical curable resin, poor curing due to oxygen inhibition occurred, and peeling occurred after heating. The ratio (II)/(I) between the force (II) and the normal peel force (I) was large, indicating deterioration in peelability. In addition, the unwinding charge was also high. Comparative Examples 2 to 4 do not have a hydrophobized layer (a hydrophobized layer with a water contact angle of 90° or more and 130° or less), so when the release film is stored in a roll state, it may be affected by moisture.
  • a hydrophobized layer a hydrophobized layer with a water contact angle of 90° or more and 130° or less
  • the release film by having a release layer on one surface of the base film and providing a hydrophobic layer on the release surface of the base film, the release film has excellent releasability and low unwinding electrification. It is possible to produce an ultra-thin resin sheet having a thickness of 1 ⁇ m or less without causing defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

離型フィルムの剥離性を高め、巻出帯電の低い離型フィルムとすることで、樹脂シート製造時に不良が生じるおそれのない樹脂シート成型用離型フィルムを提供する。 基材フィルムと、基材フィルムの一方の面に設けられた離型層を有する樹脂シート成型用離型フィルムであって、離型フィルムは、前記基材フィルムの前記離型層とは反対側の面に疎水化層を有し、前記離型層がカチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物から形成された層であり、疎水化層の水接触角が90°以上130°以下であり、前記離型フィルムをロール状に一度巻取った後、離型フィルムを巻出して得た離型フィルムにおいて測定した離型層の常態剥離力(I)と加熱後剥離力(II)が、(II)/(I)=1.00以上1.50以下である。

Description

樹脂シート成型用離型フィルム
 本発明は、樹脂シート成型用離型フィルムに関するものであり、更に詳しくは、超薄層の樹脂シートを成型する際に用いる離型フィルムに関するものである。
 従来、ポリエステルフィルムを基材とし、その上に離型層を積層した離型フィルムは、粘着シート、カバーフィルム、高分子膜、光学レンズなどの樹脂シートを成型するための工程フィルムとして使用されている。
前記離型フィルムは、積層セラミックコンデンサ、セラミック基板等の高い平滑性が求められるセラミックグリーンシート成型用の工程フィルムとしても使用されている。近年、積層セラミックコンデンサの小型化・大容量化に伴い、セラミックグリーンシートの厚みも薄膜化する傾向にある。セラミックグリーンシートは、離型フィルム上に、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを塗工し乾燥することで成型される。成型したセラミックグリーンシートに電極を印刷し離型フィルムから剥離したのち、セラミックグリーンシートを積層、プレスし、焼成、外部電極を塗布することで積層セラミックコンデンサが製造される。
ポリエステルフィルム基材の離型層表面にセラミックグリーンシートを成型する場合、離型フィルムからセラミックグリーンシートを剥離する時の剥離性が重要になってくる。剥離力が大きく、不均一であると剥離工程においてセラミックグリーンシートにダメージが加わり、シート欠陥、厚みムラなどが発生し、ピンホールの発生、シート割れなどの不具合が発生する問題がある。そのため、セラミックグリーンシートをより低く均一な力で剥離することも求められている。
近年は、セラミックグリーンシートの薄膜化が進み、1.0μm以下、より詳しくは0.2μm~1.0μmの厚みのセラミックグリーンシートが要求されるようになってきている。そのため離型フィルムに求められる剥離性に関する要求は更に高まっている。
剥離性に優れた離型フィルムとしては、以下に記載の特許文献のものが挙げられる。例えば特許文献1では、ラジカル硬化型の樹脂を主成分に用いた離型層を有する離型フィルムが提案されている。
しかしながら特許文献1の離型フィルムは、ラジカル硬化型の樹脂を用いているため、大気中下で離型層を加工する場合、酸素阻害の影響を受けてしまい、離型層表面が硬化不良となる問題があった。離型層表面の硬化不良が発生すると、セラミックグリーンシート加工や内部電極印刷時の有機溶剤によって離型層が浸食され、剥離力の増大や剥離の均一性が損なわれるために、剥離時にセラミックグリーンシートにダメージを与えるおそれがあった。
上記課題を解決するために、特許文献2ではカチオン硬化型樹脂を主成分に用いた離型層が提案されている。カチオン硬化型樹脂は、酸素阻害が発生しないため、大気中下で離型層を加工しても硬化不良が生じず、剥離性に優れた離型フィルムを得ることができる。
国際公開第2013/145864 国際公開第2018/079337
しかしながら、特許文献2の離型フィルムで用いるカチオン硬化型樹脂は、ラジカル硬化型樹脂と比較して反応速度が遅いため、活性エネルギー線を照射するだけでは反応は完結せず、経時で重合反応が進行する傾向がある。
そのため、カチオン硬化型樹脂を用いた離型フィルムを製造する場合、基材フィルムの一方の面に離型層形成組成物を塗布し、乾燥後に活性エネルギー線を照射して離型層形成組成物を硬化させた後、ロール状に巻取り保管した状態でカチオン重合反応が完結し、優れた剥離性が得られる離型層が形成され得る。
更に、ロール状に巻取り保管した直後は、重合反応が完結していないことがあり、離型層の表面形状に影響を及ぼす可能性がある。このため、さらに離型層の表面形状の欠点をより低減できることが望ましい。
また、カチオン硬化型樹脂は水の影響によって硬化不良が生じる傾向がある。離型フィルムを加工する時には、ロール状に離型フィルムを巻取り保管するため、離型層と基材フィルムの反離型面が接触した状態で保管される。そのため、基材フィルムの反離型面側に微量に存在していると考えられる水分の影響で、カチオン硬化型樹脂の経時反応が阻害され、離型層の硬化が不十分となるという問題があった。
このような、離型フィルムの反離型面側の影響による離型層の硬化不良の影響は、セラミックグリーンシートの薄膜化が進むにつれてより顕著となっており、より優れた剥離性を有する離型フィルムが求められている。
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、カチオン硬化型樹脂を主成分とした離型層の硬化不良の発生を抑制し、優れた剥離性を有する離型フィルムを提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討した結果、下記構成を有する離型フィルムにより前記目的を達成できることを見出し、本発明を完成させた。
 即ち、本発明は以下の構成よりなる。
[1]基材フィルムと、基材フィルムの一方の面に設けられた離型層を有する樹脂シート成型用離型フィルムであって、
 離型フィルムは、前記基材フィルムの前記離型層とは反対側の面に疎水化層を有し、
前記離型層がカチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物から形成された層であり、
前記疎水化層の水接触角が90°以上130°以下であり、
前記樹脂シート成型用離型フィルムをロール状に一度巻取った後、巻出して得た離型フィルムにおいて測定した離型層の常態剥離力(I)と加熱後剥離力(II)が、
(II)/(I)=1.00以上1.50以下である離型フィルム。
[2]一態様において、前記巻出して得た離型フィルムにおける離型層の常態剥離力(I)が1500mN/50mm以下である。
[3]一態様において、 前記離型フィルムをロール状に巻取り得られた離型フィルムロールを、100m/分で繰り出した際の帯電量が±1kV未満である。
[4]一態様において、 前記疎水化層がカチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物からなる層である。
[5]一態様において、 前記疎水化層の厚みが0.001μm以上0.5μm以下である。
[6]一態様において、 前記離型層および前記疎水化層が、粒径1.0μm以上の粒子を実質的に含まない。
[7]一態様において、 前記基材フィルムが粒径1.0μm以上の無機粒子を実質的に含まない表面層Aと粒子を含む表面層Bとを有するポリエステルフィルムであり、前記表面層A上に離型層が積層され、前記表面層B上に疎水化層が積層される。
[8]一態様において、無機化合物を含む樹脂シート成型用離型フィルムである。
[9]一態様において、 無機化合物を含む樹脂シートは、セラミックグリーンシートである。
[10]一態様において、 厚さが、0.2μm以上1.0μm以下の樹脂シート成型用離型フィルムである。
[11]一態様において、 上記セラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みを有する、セラミックグリーンシートの製造方法が提供される。
 本発明の樹脂シート成型用離型フィルムは、基材フィルムの一方の面に離型層を有し、基材フィルムの前記離型層とは反対側の面(反離型面)に疎水化層を設けることで、離型層の硬化阻害の発生を抑制でき、薄膜の樹脂シート、特にセラミックグリーンシートを欠陥なく剥離可能な離型フィルムを提供することができる。
 以下、本発明について詳細に説明する。
 本発明は、基材フィルムと、基材フィルムの一方の面に設けた離型層と、基材フィルムの前記離型層とは反対側の面(反離型面)に疎水化層を有する樹脂シート成型用離型フィルムである。基材フィルムの反離型面に疎水化層を設けることで、ロール状で保管した時に離型層と疎水化層が接触することになるため、離型層の硬化不良が発生する恐れがなく、優れた剥離性を有する離型フィルムを得ることができる。
更に、離型層の硬化不良が発生することを抑制できるため、例えば、ロール状に保管する際に、離型面と接触する反離型面の凹凸の影響で離型面の平滑性が悪化することを低減できる。このため、離型フィルムの製造から使用するまでに生じ得る離型層の表面形状の欠点を、より低減できる。
 離型層は酸素阻害による硬化不良が生じる恐れのない、カチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物であることが好ましい。カチオン硬化型ポリジメチルシロキサン(a)を用いることで、大気中下で離型フィルムを製造した時に、硬化阻害なく安定的に硬化を進行させることができ、優れた剥離性を有する離型フィルムを得ることができる。
 疎水化層はカチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物であることが好ましい。一態様において、カチオン硬化型ポリジメチルシロキサン(a)は、離型層に含まれるカチオン硬化型ポリジメチルシロキサン(a)と同じ組成であってもよく、異なる組成であってもよい。好ましくは、離型層に含まれるカチオン硬化型ポリジメチルシロキサン(a)と同じ組成である。なお、本明細書において、同じ組成の硬化型ポリジメチルシロキサン(a)を含む場合、疎水化層に用いるにあたり、適宜分子量、配合量等の調整を行ってもよい。
 カチオン硬化型ポリジメチルシロキサン(a)を用いることで、ロール状態で保管した時に接触する離型層との帯電列が近づき、帯電が抑制されるため、剥離帯電がなく低い力で欠陥なくセラミックグリーンシートを剥離することができる。また、反離型面が疎水化されるため、ロール状態で保管した時に、反離型面の水分の影響を抑えることができ、離型層の硬化不良を防ぐこともできる。
 硬化型ポリジメチルシロキサン(a)の詳細は、後述する。
(ポリエステルフィルム)
 本発明における基材フィルム(以下、基材と記載することがある)として用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム用基材として通常一般に使用されているポリエステルをフィルム成形したものを使用することが出来る。好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであり、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適である。とりわけ、ポリエチレンテレフタレートから形成されたポリエステルフィルムが特に好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよい。例えば、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明の離型フィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由から二軸配向ポリエステルフィルムであることが好ましい。
 上記ポリエステルフィルムの固有粘度は0.50~0.70dl/gが好ましく、0.52~0.62dl/gがより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が多く発生することがなく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料ペレットは十分に真空乾燥することが好ましい。
 なお、本明細書において、単に「ポリエステルフィルム」と記載する場合、表面層Aと表面層Bを有する(積層した)ポリエステルフィルムを意味する。
 本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを二軸延伸することにより得ることが出来る。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。
 本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横おのおのの方向に1~8倍、特に2~6倍の延伸をすることが好ましい。
 上記ポリエステルフィルムは、厚みが12~50μmであることが好ましく、さらに好ましくは15~38μmであり、より好ましくは、19~33μmである。フィルムの厚みが12μm以上であれば、フィルム生産時や加工工程、成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましい。
 上記ポリエステルフィルム基材は、単層であっても2層以上の多層であっても構わない。例えば、基材フィルムは、粒径1.0μm以上の粒子を実質的に含まない表面層Aと、粒子を含む表面層Bとを有するポリエステルフィルムであってもよい。好ましくは、表面層Aは、粒径1.0μm以上の無機粒子を実質的に含まない。
 この態様において、表面層Aに、粒径1.0μm未満1nm以上の粒子は存在してもよい。表面層Aが、粒径1.0μm以上の粒子、例えば無機粒子を実質的に含まないことにより、樹脂シートに基材中の粒子形状が転写して不具合が生じることを低減できる。
 一態様において、表面層Aは、粒径1.0μm未満の粒子についても含有しないことで、樹脂シートに基材中の粒子形状が転写して不具合が生じることを、より効果的に抑制できる。
一態様において、上記ポリエステルフィルム基材は、少なくとも片面には実質的に無機粒子を含まない表面層Aを有する積層フィルムであることが好ましい。これにより、更に効果的に、樹脂シートに基材中の粒子形状が転写して不具合が生じることを抑制できる。
例えば、粒径1.0μm未満の粒子を実質的に含有しない表面層Aは、粒径1.0μm以上の粒子についても実質的に含まない態様が好ましい。
 ここで、本発明において、「粒子を実質的に含有しない」とは、例えば、1.0μm未満の無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。また、「粒径1.0μm以上の粒子を実質的に含まない」とは、積極的に粒径1.0μm以上の粒子を含まないことを意味する。
 2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に無機粒子を含有しない表面層Aの反対面には、無機粒子などを含有することができる表面層Bを有することが好ましい。
 積層構成としては、離型層を塗布する側の層をA層、その反対面の層をB層、これら以外の芯層をC層とすると、厚み方向の層構成は離型層/A/B、あるいは離型層/A/C/B等の積層構造が挙げられる。当然ながらC層は複数の層構成であっても構わない。また、表面層Bには無機粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性付与するため、表面層B上には少なくとも無機粒子とバインダーを含んだコート層を設けることが好ましい。
 本発明におけるポリエステルフィルム基材において、離型層を塗布する面の反対面を形成する表面層Bは、フィルムの滑り性や空気の抜けやすさの観点から、無機粒子を含有することが好ましく、特にシリカ粒子及び/又は炭酸カルシウム粒子を用いることが好ましい。含有される無機粒子含有量は、表面層B中に無機粒子の合計で5000~15000ppm含有することが好ましい。
 このとき、表面層Bのフィルムの領域表面平均粗さ(Sa)は、1~40nmの範囲であることが好ましい。より好ましくは、5~35nmの範囲である。シリカ粒子及び/又は炭酸カルシウム粒子の合計が5000ppm以上、Saが1nm以上の場合には、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性良好により、超薄層セラミックグリーンシートの製造に好適なものとなる。また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤の凝集が生じにくく、粗大突起ができないため、超薄層のセラミックグリーンシート製造時に品質が安定し好ましい。
 上記B層に含有する粒子としては、シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子なども用いることができるが、透明性やコストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましい。また、他に使用できる無機粒子としては、アルミナ-シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましく、炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、滑剤の脱落防止の観点から好ましい。
 上記表面層Bに添加する無機粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。無機粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、離型層表面の平滑性に悪影響を与える恐れがないため、セラミックグリーンシートにピンホールが発生するおそれがなく好ましい。
 上記離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、滑剤などの無機粒子の混入を防ぐため、再生原料などを使用しないことが好ましい。
 上記離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することが容易であり好ましい。基材フィルムの全層の厚みの50%以下であると、表面層Bにおける再生原料の使用比率を増やすことができ、環境負荷が小さく好ましい。
 また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の中間層C)には、50~90質量%のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、B層に含まれる滑剤の種類や量、粒径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。
 また、後に塗布する離型層などの密着性を向上させたり、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、コロナ処理などを施すこともできる。
(離型層)
 本発明において、離型層は基材フィルムの一方の面に形成される。実質的に無機粒子を含有しない表面層Aを有する基材フィルムを用いる場合には、表面層A上に離型層を形成することが好ましい。実質的に無機粒子を含有しない表面層A上に離型層を設けることで、平滑性に優れた離型層表面を実現でき、離型層上に設ける樹脂シートの変形、欠陥を抑制できるため好ましい。
 離型層はカチオン硬化型ポリジメチルシロキサン(a)を含む組成物の硬化物である離型層である。離型層がこのような特徴を有することで、酸素阻害による硬化不良を抑制でき、離型層の高い架橋を奏することができる。このような効果を奏する本発明は、例えば、離型層表面の耐溶剤性を向上させることができる。離型層表面の耐溶剤性が向上することで、セラミックグリーンシートの成型時、内部電極の印刷時に使用する有機溶媒によって離型層が侵食されることを抑制でき、高い剥離性を有することができる。
 また、カチオン硬化型ポリジメチルシロキサンは活性エネルギー線で硬化が進行するため、硬化反応に130℃以上の高い熱を必要としない。そのため、加工時の熱によって離型フィルムの平面性が損なわれることを抑制できる。その結果、樹脂シート成型用離型フィルムへの異物の混入や離型層のキズの発生を抑制でき、セラミックグリーンシート等の被離型体に対して、異物、キズの転写によるシートダメージの発生を抑制できる。
本発明の離型フィルムにおける離型層の常態剥離力(I)と加熱後剥離力(II)は、
(II)/(I)=1.00以上1.50以下である離型フィルムである。
本発明に係る離型層の常態剥離力(I)と加熱後剥離力(II)の比が所定の条件を有することで、例えば、離型層の硬化度を評価することができる。
離型フィルムは、セラミックグリーンシートに代表される樹脂シートを離型フィルム上に成型する時や、剥離する時には熱がかけられることがある。
本発明における常態剥離力(I)と加熱後剥離力(II)が所定の範囲内であることで、加熱前後で安定したセラミックグリーンシートの保持と剥離性を示すことができる。
例えば、特定の理論に限定して解釈すべきではないが、常態剥離力(I)と加熱後剥離力(II)の差がない、あるいは、本発明の範囲内であれば、安定的な剥離性を示すことができる。常態剥離力(I)と加熱後剥離力(II)の比、(II)/(I)が1.00以上1.50以下であり、1.00以上1.45以下であることがより好ましい。例えば、1.00以上1.40以下であってもよい。例えば、1.05以上であってもよく、1.10以上であってもよい。
常態剥離力(I)と加熱後剥離力(II)の比(II)/(I)が1.50以下であれば、離型層の硬化が十分進行し、未反応物が少ないことを意味し、セラミックグリーンシート等の樹脂シートに対する優れた剥離性を有するため好ましい。一般的に、常態剥離力よりも加熱後剥離力が高く出るため、1.00以上であることが好ましい。詳細な評価方法については後述する。
本発明においては、樹脂シート成型用離型フィルムをロール状に一度巻取った後、巻出して得た離型フィルムにおいて測定した離型層の常態剥離力(I)と加熱後剥離力(II)を測定することで、経時で進行する離型層の重合反応の進行度を間接的に評価することができる。また、ロール状態で保管したことで生じる離型層の平面性の影響も考慮した剥離力を評価できる。
疎水化層を設けた後、ロール状で保管することで離型層の反応をより進行させることができ、剥離力が安定し、優れた表面形状を保持した状態の離型層を得ることができ、加熱後の剥離力にも優れた離型フィルムが得られる。
また、常態剥離力(I)と加熱後剥離力(II)の比(II)/(I)が1.50以下1.00以上であることで、ロール状に巻取り保管した場合において、従来の離型フィルムよりも更に良好に、離型層の表面形状への影響を少なくでき、高い平滑性を保持できる。また、離型層の硬化が十分に進行していることを意味するため、ロール状態でブロッキングが発生しづらく、巻き出し帯電量を抑制することもできる。
 例えば、離型層は、粒径1.0μm以上の粒子を実質的に含まない。この態様において、離型層に、粒径1.0μm未満1nm以上の粒子は存在してもよい。離型層が、粒径1.0μm以上の無機粒子を実質的に含まないことにより、高い平滑性が要求される超薄膜の樹脂シート、例えば、セラミックグリーンシートに対するピンホールの発生を抑制でき、均一な膜厚の樹脂シートを形成できる。
一態様において、離型層は、高い平滑性を有することが好ましいため、実質的に無機粒子を含まない、具体的には粒径1.0μm未満の粒子を実質的に含有しない表面層A、好ましくは粒子を実質的に含有しない表面層Aを有する基材フィルムの上に、本発明に係る離型層を設けることが好ましい。
例えば、粒径1.0μm未満の粒子を実質的に含有しない離型層は、粒径1.0μm以上の粒子についても実質的に含まない態様が好ましい。
無機粒子を実質的に含まない表面層Aに離型層を設ける場合、離型層の領域表面粗さSaは、7nm以下であり、かつ、最大突起高さは50nm以下である。
 離型層がこのような特徴を有することで、高い平滑性が要求される超薄膜の樹脂シート、例えば、セラミックグリーンシートに対するピンホールの発生を抑制でき、均一な膜厚の樹脂シートを形成できる。
 離型層の領域表面平均粗さ(Sa)は、7nm以下であり、かつ、最大突起高さ(Sp)が50nm以下であることが好ましい。離型層を形成させたフィルム表面は、その上で塗布・成型するセラミックグリーンシートに欠陥を発生させないために、上記領域表面平均粗さと最大突起高さを有する。領域表面粗さが7nm以下、且つ、最大突起高さが50nm以下であれば、セラミックグリーンシート形成時に、ピンホールなどの欠点を発生がなく、歩留まりが良好で好ましい。
 更に、本発明の離型フィルムは、本発明に係る離型層と、疎水化層とを有することで、樹脂シートに対する優れた剥離性を有し、その上、樹脂シートを巻取り保管する際に、ピンホール、シワ及びズレの発生を抑制できる。加えて、本発明は、巻き出し帯電が高くなることを抑制できる。このように、本発明の離型フィルムは、高い平滑性と優れた剥離性により樹脂シートを良好に製造できるだけでなく、フィルムの巻取時及び搬送時のハンドリング性を向上させることができ、巻き出し帯電を抑制することにより異物混入を低減できる。
 一態様において、離型層の領域表面平均粗さ(Sa)は、5nm以下であり、かつ、最大突起高さ(Sp)が30nm以下である。最大突起高さが低いほど好ましい。領域表面平均粗さ(Sa)は小さいほど好ましく、0.1nm以上であってもよく、0.3nm以上であってもよい。また、領域表面平均粗さ(Sa)は3nm以下であってもよく、例えば、2nm未満であってもよい。
 最大突起高さ(Sp)も小さいほど好ましく、1nm以上であってもよく、3nm以上であってもよい。また、最大突起高さ(Sp)は25nm以下であってもよく、20nm以下であってもよい。
離型層は少なくともカチオン硬化型ポリジメチルシロキサン(a)を含む組成物の硬化物であることが好ましい。本願発明において、カチオン硬化型ポリジメチルシロキサン(a)とは、カチオン硬化性官能基を有するポリジメチルシロキサンを指す。カチオン硬化性官能基とは、カチオン硬化性を示す反応性官能基であり、具体的には、ビニルエーテル基、オキセタニル基、エポキシ基、脂環式エポキシ基が例として挙げられる。なかでも、オキセタニル基、エポキシ基、脂環式エポキシ基から選ばれる少なくとも1種の官能基を有していることが反応性の観点から好ましく、脂環式エポキシ基であることが最も好ましい。このような官能基を有することで、カチオン硬化反応によって架橋構造が形成され、耐溶剤性に優れ、優れた剥離性を有する離型層となるため好ましい。
 カチオン硬化型ポリジメチルシロキサン(a)の粘度は100mPa・s以上10000mPa・s以下であることが好ましく、100mPa・s以上5000mPa・s以下であることがより好ましく、100mPa・s以上1000mPa・s以下であることが更に好ましい。100mPa・s以上であるとロール状態で保管後の未反応成分量が少なくなり、十分に硬化した離型層が得られるため好ましい。10000mPa・s以下であると、離型層形成組成物中に含まれる有機溶媒に溶解性を示し、均一に塗布することができるため好ましい。なお、本発明における粘度は25℃雰囲気下で測定した値である。
カチオン硬化型ポリジメチルシロキサン(a)が有するカチオン硬化性官能基の数は、1つ以上であればよい。例えば、カチオン硬化性官能基を2つ以上で有することで、カチオン硬化反応がより進行しやすくなり、架橋密度の高い離型層となるため好ましい。カチオン硬化性官能基の導入位置は特に制限されず、ポリジメチルシロキサンの側鎖や末端に有しているものが一般的である。ポリジメチルシロキサンの構造は、直鎖構造でも分岐構造でも良く、カチオン硬化性官能基以外の官能基を有していても問題なく使用することができる。
 カチオン硬化型ポリジメチルシロキサン(a)は、市販のものを好適に使用することができる。例としては、荒川化学工業社製のシリコリース(登録商標)UV POLY200、UV POLY201、UV POLY215、UV RCA200、UV RCA251、信越化学工業社製のX-62-7622、X-62-7629、X-62-7660、KF-101、KF-105、X-22-343、X-22-169AS、X-22-169B、X-22-163、X-22-173BX、X-22-173DX、X-22-9002、モメンティブ・パーフォーマンス・マテリアルズ社製のUV9440E、UV9430などが挙げられる。
本発明の離型層形成組成物には、カチオン硬化型ポリジメチルシロキサン(a)に加えて、他の樹脂を含有させることもできる。無機粒子を実質的に含有していない基材フィルムの表面層A上に離型層を設ける場合には、カチオン硬化型ポリジメチルシロキサン(a)を主成分として硬化させた離型層が好ましい。この場合、離型層の膜厚が薄くても、極めて高い平滑を有する離型層とすることができるため好ましい。また、離型層の膜厚が薄いため、硬化反応が進行しやすく、より高速で加工することができ、経済的に離型層を得ることができる。
 カチオン硬化型ポリジメチルシロキサン(a)を主成分とする組成物を硬化させた離型層の場合、離型層の膜厚は0.001μm以上、0.050μm未満であることが好ましい。0.001μm以上であると、離型性に優れるため好ましい。0.050μm未満であると、離型層形成組成物の凝集を防ぐことができ、平滑な離型層となり好ましい。
 なお、本発明において、カチオン硬化型ポリジメチルシロキサン(a)を主成分とする場合、離型層の樹脂固形分100質量部に対して、組成物は、カチオン硬化型ポリジメチルシロキサン(a)を少なくとも50質量部、例えば、50質量部超、好ましくは70質量部以上、例えば、80質量部以上含み、一態様においては、90質量部以上含む。また、実質的に、離型層の樹脂固形分の全体に、カチオン硬化型ポリジメチルシロキサン(a)が含まれる態様であってもよい。
本発明の離型層形成組成物には、カチオン硬化型ポリジメチルシロキサン(a)に加えて、シリコーン骨格を有さないカチオン硬化型樹脂(b)を含有することもできる。この時(b)は(a)とは異なる樹脂であり、樹脂(b)は、ポリジメチルシロキサン構造を有さないものである。
 一態様において、離型層形成組成物は、カチオン硬化型ポリジメチルシロキサン(a)に加えて、更に、シリコーン骨格を有さないカチオン硬化型樹脂(b)を含有する。シリコーン骨格を有さないカチオン硬化型樹脂(b)の例としては、カチオン硬化性官能基を分子内に2個以上有し、シリコーン骨格を有さないポリマー、モノマーが挙げられる。なかでも2個以上のエポキシ基、または脂環式エポキシ基を有する樹脂が好ましく、2個以上の脂環式エポキシ基を有することがより好ましい。例えば、脂環式エポキシ基の数は、6個以下であってもよい。
 脂環式エポキシ基を2個以上有することで、カチオン硬化反応によって架橋反応が進行し、耐溶剤性に優れる離型層となる。また、同時に離型層に含まれるポリジメチルシロキサン(a)とも架橋反応が進行するため、剥離性に優れ、かつポリジメチルシロキサン(a)のセラミックグリーンシートへの移行も抑えられるため好ましい。
一態様において、離型層形成組成物は、シリコーン骨格を有さないカチオン硬化性樹脂(b)と、ポリジメチルシロキサン(a)とを共に含むので、高い平滑性を有する離型層を実現できる。樹脂(b)を含有する離型層とすることで、基材フィルムに存在する微細な凹凸や極微小な異物、オリゴマー由来の突起などを埋めることができ、超平滑な離型層となる。また、活性エネルギー線によって硬化反応が進行するため、高い平滑性を有する離型層となる。特定の理論に限定して解釈すべきではないが、離型層加工時の離型層形成組成物中の乾燥工程において、均一に(b)および(a)がレベリングし、平面性が高まったあとに硬化が進行すると推測でき、高い平滑性を有する離型層を得ることができる。また、同時に含まれるポリジメチルシロキサン(a)は、本発明においては、乾燥工程において離型層表面に偏析するため、剥離性にも優れる離型層を得ることができる。
 シリコーン骨格を有さないカチオン硬化型樹脂(b)は低分子量のモノマーであることが好ましい。具体的には、数平均分子量が200以上、5000未満であることが好ましく、200以上、2500未満であることがより好ましく、200以上、1000未満であることが更に好ましい。数平均分子量が200以上であると、沸点が低くならず、離型層加工時の離型層形成組成物の乾燥工程で、カチオン硬化型樹脂(b)が揮発する恐れがなく好ましい。5000未満であると、離型層の架橋密度が高まり、耐溶剤性に優れるため好ましい。また、乾燥工程中に流動性のある液状の状態で存在できるため、レベリング性に優れ、超平滑な離型層となるため好ましい。
 シリコーン骨格を有さないカチオン硬化型樹脂(b)は市販のものを好適に使用することができる。脂環式エポキシ基を有する化合物の例としては、ダイセル社製のセロキサイド2021P、セロキサイド2081、エポリードGT401、EHPE3150、四国化成社製のHiREM-1、ENEOS社製のTHI-DE、DE-102、DE-103などが挙げられる。エポキシ基を有する樹脂の例としては、DIC社のEPICLON(登録商標)830、 840、850、1051-75M、N-665、N-670、N-690、N-673-80M、N-690-75M、ナガセケムテック社製のデナコール(登録商標)EX-611、EX-313、EX-321などが挙げられる。
シリコーン骨格を有さないカチオン硬化型樹脂(b)を離型層に含む態様において、離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型樹脂(b)の合計100質量部に対し、シリコーン骨格を有さないカチオン硬化型樹脂(b)の含有量が、50質量部を超えてよく、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
カチオン硬化型樹脂(b)の含有量を50質量部超、例えば、80質量%以上とし、離型層中の主成分とすることで、架橋密度が高く剥離性に優れる離型層となるため好ましい。また、離型層中に含まれるカチオン硬化型ポリジメチルシロキサン(a)の含有量を少なくでき、乾燥工程で離型層表面にポリジメチルシロキサン(a)由来の組成が凝集することを抑制でき、平面性が悪化する恐れがなく好ましい。カチオン硬化型樹脂(b)の含有量が多いほど平滑性に優れる離型層となるが、カチオン硬化型ポリジメチルシロキサン(a)を含有し剥離性を確保するためには、カチオン硬化型樹脂(b)は、99.9質量%以下であることが好ましい。
 本発明において、離型層形成組成物が硬化した離型層においては、シリコーン骨格を有さないカチオン硬化型樹脂(b)由来の化合物(硬化物)が存在している。本明細書では、離型層中に存在する(b)由来の化合物についても、単に、シリコーン骨格を有さないカチオン硬化型樹脂(b)と記載する場合がある。
離型層形成組成物がカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型樹脂(b)を含む場合、離型層の架橋密度が高く、耐溶剤性に優れ、優れた剥離力を有する離型層となるため好ましい。また、カチオン硬化型樹脂(b)を含有していると、カチオン硬化型ポリジメチルシロキサン(a)の含有量を所定の範囲としながら、離型層の膜厚を厚くすることができるため好ましい。離型層の膜厚を厚くすることで、基材フィルムに存在する傷、極微小な凹凸を埋めることができ、前述のとおり平滑な離型層が得られるため好ましい。
離型層形成組成物がカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型樹脂(b)を含む場合、離型層の膜厚は0.01μm以上、1.0μm以下であることが好ましく、0.05μm以上、0.5μm以下であることがより好ましい。0.01μm以上であると、平滑な離型層となるため好ましい。1.0μm以下であると、カールが発生せずに平面性に優れた離型フィルムが得られるため好ましい。
 本発明において、離型層を形成するためにカチオン硬化反応を進行させる必要がある。そのため、離型層形成組成物は、酸発生剤(c)を含むことが好ましい。また、離型層には、酸発生剤(c)由来の化合物が存在し得る。ここで、離型層中に存在する酸発生剤(c)由来の化合物についても、単に、酸発生剤(c)と記載する場合がある。
 酸発生剤としては、特に限定されず一般的なものが使われるが、紫外線照射下で酸が発生する光酸発生剤を用いることで、加工時の熱量を抑えることができ、平面性に優れた離型層となるため好ましい。
 光酸発生剤としては、オニウムイオンと非求核性アニオンから成る塩を使用することが反応性の観点から好適である。また、鉄アレーン錯体に代表される有機金属錯体や、トロピリウムに代表されるカルボカチオン塩を用いてもよく、アントラセン誘導体や電子吸引基で置換されたフェノール類、例えばペンタフルオロフェノールを用いてもよい。
 前記オニウムイオンと非求核性アニオンから成る塩を光酸発生剤として用いる場合には、オニウムイオンとしては、例えば、ヨードニウム、スルフォニウム、アンモニウムが使用できる。オニウムイオンの有機基としては、トリアリール、ジアリール(モノアルキル)、モノアリール(ジアルキル)、トリアルキルを用いてよく、ベンゾフェノンや9-フルオレンを導入しても、それ以外の有機基を用いてもよい。非求核性アニオンとしては、ヘキサフルオロホスフォレート、ヘキサフルオロアンチモネート、ヘキサフルオロボレート、テトラ(ペンタフルオロフェニル)ボレートを用いることが好適である。また、テトラ(ペンタフルオロフェニル)ガリウムイオンや、フッ素アニオンのいくつかをパーフルオロアルキル基や有機基に置き換えたアニオンを用いてもよく、それ以外のアニオン成分を用いてもよい。
 光酸発生剤の添加量は、離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型樹脂(b)の合計100質量部に対して0.1~10質量%であり、より好ましくは、0.5~8質量%である。さらに好ましくは1~5質量%である。0.1質量%以上とすることで、発生する酸の量が不十分となり硬化不足となるおそれがなく好ましい。また、10質量%以下とすることで、発生する酸の量が適量となり、成型するセラミックグリーンシートへの酸の移行量を抑えることができるために好ましい。
 本明細書において、離型層におけるカチオン硬化型ポリジメチルシロキサン(a)とカチオン硬化型樹脂(b)の合計100質量部とは、カチオン硬化型ポリジメチルシロキサン(a)の固形分、カチオン硬化型樹脂(b)の固形分の合計値を意味する。なお、離型層がカチオン硬化型樹脂(b)を含まない態様においては、カチオン硬化型ポリジメチルシロキサン(a)の重量が離型層における樹脂固形分100質量部に相当する。
 本発明において、離型層には、本発明の効果を阻害しない範囲であれば、密着向上剤や、帯電防止剤などの添加剤などを添加してもよいが、粒子は含有しないことが好ましい。離型層が粒子を含有しないことで、離型層表面の平滑性の悪化や、粒子の脱落による樹脂シートへの粒子の混入を抑えることができる。基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることもできる。
(疎水化層)
 疎水化層は、基材フィルムの離型層を設けた面とは反対側の面に形成される。実質的に無機粒子を含有しない、あるいはごく少量の粒子を有し得る表面層A上に、離型層を設けた場合、基材フィルムのもう一方の面の表面層B上に疎水化層が形成される。
例えば、疎水化層は、粒径1.0μm以上の粒子を実質的に含まない。この態様において、疎水化層に、粒径1.0μm未満1nm以上の粒子は存在してもよい。離型層が、粒径1.0μm以上の無機粒子を実質的に含まないことにより、離型フィルムをロール状に巻き取ったときに、反離型面(疎水化層)に存在する粒子の影響で、樹脂シートに変形(欠陥)を与える恐れがなく好ましい。
 疎水化層は、粒径1.0μm未満の粒子を実質的に含まないことが好ましく、粒子を含有しないことが好ましい。粒径1.0μm未満の粒子を実質的に含有しないことで、樹脂シートを離型フィルム上に成型した後、ロール状で保管した際に、疎水化層中の粒子形状が転写することで樹脂シートが変形する恐れがなく好ましい。また、疎水化層中の粒子が脱落し、樹脂シートに混入する恐れもなくなるため好ましい。特に、粒子を実質的に含まないことで、上記効果をより良好に奏することができる。
例えば、粒径1.0μm未満の粒子を実質的に含有しない表面層Aは、粒径1.0μm以上の粒子についても実質的に含まない態様が好ましい。なお、このような態様は、実質的に粒子を有さない態様と同一である。
 疎水化層はカチオン硬化型ポリジメチルシロキサン(a)を含む組成物の硬化物であることが好ましい。疎水化層がこのような特徴を有することで、離型フィルムをロール状に巻き取って保管する際に、離型層と疎水化層が接触した状態となるため、離型層が水分による硬化阻害の影響を受けずに反応が進行するため好ましい。また、離型層にもカチオン硬化型ポリジメチルシロキサン(a)が含まれているため、ロール状態で保管した時に接触する離型層との帯電列が近づき、帯電が抑制されるため好ましい。帯電が抑制されることで、剥離帯電がなく低い力で欠陥なくセラミックグリーンシート等の樹脂シートを剥離することができる。加えて、工程中の極微小な環境異物、スリット時に生じるフィルム屑等が、静電気により付着することを抑制できる。その結果、異物が樹脂シートに混入し汚染することを防ぐことができる。例えば、本発明の離型フィルムは、樹脂シートの成型前に施されるロールの巻き出し工程においても、帯電を抑制でき、離型層の汚染を防止できる。更に、離型層に、樹脂シートを形成した状態においても、巻き出し帯電を抑制できるので、本明細書に記載される種々の効果を奏することができる。
 本発明の疎水化層の水接触角は90°以上130°以下である。水接触角をこの範囲とすることで、基材フィルムの反離型面に吸着すると考えられる水分を少なくすることができ、ロール状態で接触する離型層の硬化阻害を引き起こす恐れがなく好ましい。
一態様において、疎水化層の水接触角は95°以上130°以下、例えば、98°以上130°以下であってもよい。
 本発明においては、特に、疎水化層の水接触角が上記範囲内にあり、疎水化層は、離型層に含まれるカチオン硬化型ポリジメチルシロキサン(a)を含むことで、基材フィルムの反離型面に吸着すると考えられる水分を少なくすることができ、ロール状態で接触する離型層の硬化阻害を引き起こすという課題をより顕著に解決できる。また、ロール状のフィルムを巻きだす際、離型層への異物の付着を抑制でき、離型層の高い平滑性を保つことができる。さらに、ロール状態で保管時や運送時に水分を吸着しづらくなり、吸湿シワや巻きズレなどのロール外観品位が悪化することも防ぐことができるため好ましい。
 本発明における疎水化層は、カチオン硬化型ポリジメチルシロキサン(a)に加えて、シリコーン骨格を有さないカチオン硬化型樹脂(b)を含む組成物の硬化物であってもよい。カチオン硬化型樹脂(b)を用いることで疎水化層の弾性率を向上させることができる。高弾性率な疎水化層とすることで、離型フィルムのハンドリング性が向上するだけでなく、巻出し帯電が抑えられるため好ましい。疎水化層の弾性率を高めると、ロール保管時に接触する離型層と疎水化層との滑り性が向上する(すべりやすくなる)。特定の理論に限定して解釈すべきではないが、疎水化層が滑りやすくなると、離型フィルム面に対して垂直方向に加わる応力が水平方向に逃げやすくなるため、ロール状で保管した際の離型層と樹脂シート又は疎水化層の密着力を低減することができ、帯電を抑制できるため好ましい。
 疎水化層を形成するカチオン硬化型ポリジメチルシロキサン(a)およびカチオン硬化型樹脂(b)の例としては、前述した離型層で使用できる例と同一のものを使用することができる。離型層と疎水化層の構成は全く同一のものである必要はなく、離型層、疎水化層の両方にカチオン硬化型ポリジメチルシロキサン(a)が含まれていれば本発明の効果を有する離型フィルムを得ることができる。
 カチオン硬化型ポリジメチルシロキサン(a)を主成分とする組成物を硬化させた疎水化層の場合、疎水化層の膜厚は0.001μm以上、0.050μm以下であることが好ましい。0.001μm以上であると、疎水化層と接触する離型層の硬化阻害抑制効果が十分となるため好ましい。0.050μm以下であると、疎水化層の弾性率が低下し、巻き出し帯電の増加や、ロール状態でのブロッキングの発生を防ぐことができるため好ましい。
カチオン硬化型ポリジメチルシロキサン(a)とシリコーン骨格を有さないカチオン硬化型樹脂(b)を含む組成物の硬化物から疎水化層がなる場合、合計100質量部に対し、シリコーン骨格を有さないカチオン硬化型樹脂(b)の含有量が80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。カチオン硬化型樹脂(b)の含有量を80質量%以上とし、離型層中の主成分とすることで、架橋密度が高く弾性率が高い疎水化層となるため好ましい。この時の疎水化層の膜厚は、0.001μm~0.5μmであることが好ましく、0.001μm~0.3μmであることがより好ましい。疎水化層の膜厚が0.001μmであれば、離型層の硬化阻害抑制効果や、帯電抑制効果が十分となり好ましい。0.5μm以下であれば、反離型面側の凹凸を完全に埋めることなく、搬送性に優れ、巻き取ったときにブロッキングが発生することもないため好ましい。
 疎水化層の表面は離型層の表面よりも荒れていることが好ましい。疎水化層表面が離型層よりも荒れていることで、ロールの搬送性や巻取性が良くなり、キズや異物混入、巻き出し帯電の増加を防ぐことができるため好ましい。
 疎水化層の表面粗さSaは離型層の表面粗さよりも大きければ所望の効果を得ることができるが、好ましくはSaが1~40nmの範囲であり、より好ましくは、2~30nmの範囲であり、3~20nmの範囲であることが更に好ましい。Saが1nm以上であることで、ロールの搬送性や巻き取り性の悪化を防ぐことができ好ましい。40nm以下であることで、樹脂シートに疎水化層の表面形状が転写し、不具合を生じさせる恐れがなく好ましい。
 本発明において、疎水化層を形成するためにカチオン硬化反応を進行させる必要がある。そのため、疎水化層形成組成物は、酸発生剤(c)を含むことが好ましい。用いる酸発生剤の量や、種類については前述した離型層と同様である。
 ここで、疎水化層においては、水接触角が本発明の範囲を逸脱しない範囲で、酸発生剤(c)を含むことができる。
 なお、離型層を形成する組成物と、疎水化層を形成する組成物は、同種の樹脂を含む態様であっても、各組成物中に含まれる溶剤の量が相違し得る。このため、得られる高分子の構造の同定やそれに基づくクレームの特定は容易ではなく、非実際的な事情が存在する。
(離型フィルムの製造方法)
 本発明において、離型層を形成する離型層形成組成物の塗布は、ポリエステルフィルムの製造過程で実施するインライン方式またはポリエステルフィルムの製造後に実施するオフライン方式であることが好ましい。
 インライン方式で塗布する場合には、フィルム流れ方向(縦方向)に延伸し一軸配向させたフィルムに離型性樹脂を溶解もしくは分散させた塗液を塗布し、その後横方向(フィルム流れ方向とは直交する方向)に延伸し、2軸配向させると同時に離型層を形成する方法が好ましい。
 オフライン方式で塗布する場合には、2軸配向ポリエステルフィルムの一方の面に、離型性樹脂を溶解もしくは分散させた塗液を塗布し、溶媒等を乾燥により除去後、加熱乾燥、熱硬化または紫外線硬化させる方法が用いられる。
 インライン方式で塗布する時の塗液は、水性塗液を用いることが好ましい。水性塗液の種類は特に限定されないが、水溶性の有機溶媒、例えばアルコール類などを添加することが好ましい。
 オフライン方式で塗布する時の塗液は、特に限定されないが、有機溶剤を用いたものが好ましく、沸点が90℃以上の溶剤を添加することが好ましい。沸点が90℃以上の溶剤を添加することで、乾燥時の突沸を防ぎ、塗膜をレベリングさせることができ、乾燥後の塗膜表面の平滑性を向上させることができる。
 疎水化層の形成方法については、特に限定されないが、離型層と同時に両面加工する方法、または片面を加工後に反対面を加工する方法で加工することができる。後者の場合は、離型層を加工した後に疎水化層を加工するほうが好ましい。離型層は、樹脂シートが直接積層されるため、疎水化層よりも平滑なものが必要になるためである。そのため、疎水化層を先に加工した方が、背面の滑り性が良く、離型層加工時にシワなどが入りにくく、より均一に塗工することができるため好ましい。
 疎水化層の加工は、ポリエステルフィルム製膜時に塗工するインライン方式ではなく、ポリエステルフィルム製膜後に加工するオフライン方式で加工することが好ましい。オフライン方式で行なう方が塗工時の張力や巻取時の張力などを高度に制御できるため、加工時のハンドリングに優れる。
 前記離型層形成組成物および疎水化層形成組成物の塗布法としては、公知の任意の塗布法を適用でき、例えばグラビアコート法、及びリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法等の従来から知られている方法を利用できる。
 本発明の離型フィルムは、離型層の加工および疎水化層の加工時にロールtoロールで基材フィルムが搬送される。そのため、離型層および疎水化層の加工後、離型フィルムはロール状に巻き取られて保管される。また、樹脂シートの成型や樹脂シートの剥離もロールtoロールで行われる。
離型フィルムをロール状に巻取る時の張力は10N/m~300N/mであることが好ましい。巻き取り張力が10N/m以上であれば、巻きズレがなく好ましい。また、ロール状で保管時の巻き戻りの発生がなく、離型層へのキズの混入や巻き出し帯電量が増加する恐れがなく好ましい。巻き取り張力が300N/m以下であれば、巻き締まりによる離型フィルムの変形や、ブロッキングが発生する恐れがなく好ましい。
離型フィルムをロール状に巻き取るときは、タッチロールを用いて巻き取ることが好ましい。タッチロールのタッチ圧は100~3000N/mであることが好ましい。100N/m以上であれば、巻取るときに混入する随伴エアを少なくすることができ、巻きズレの発生を抑制することができ好ましい。3000N/m以下であれば、タッチロール圧による離型フィルムの変形を抑え、平面性に優れた離型フィルムが得られるため好ましい。
(その他の特性)
本発明において、ロール状態で保管した離型フィルムを巻出した時の巻出し帯電量を低く抑えることができる。ロール状に巻き取られた離型フィルムを100m/minで巻出た時の帯電量が±1.0kV未満であることが好ましい。±1.0未満であると、工程中の極微小な異物が離型フィルムに付着する恐れがなく好ましい。また、樹脂シートを剥離するときの剥離帯電も低く抑えられ、より低く均一な力で剥離することができるため好ましい。
 ロール状態での保管環境については、直射日光や高温を避けた屋内の冷安所であれば特に制限することなく保管することができる。調湿環境下や温度管理のされた保管場所であっても良く、湿度は20RH%~90RH%、温度は-5℃~50℃の範囲であれば、本発明の効果を有する。
 本発明における剥離力は、離型層と疎水化層を設けた離型フィルムをロール状態で、40~50RH%、20~25℃の環境下、3日間保管した後に、離型フィルムロールを巻き出して採取した離型フィルムを用いて測定した値である。疎水化層を設けた後、ロール状で保管することで離型層の反応が完了し、優れた剥離力を有する離型フィルムが得られる。本発明における剥離力は、離型フィルム表面に粘着テープ(日東電工(株)社製の「31B」)を貼り合わせ、引っ張り速度300m/minでT型剥離にて測定した値である。詳細な評価方法は後述する。
 離型層の常態剥離力(I)は、100mN/50mm以上、1500mN/50mm以下であることが好ましく、100mN/50mm以上、1300mN/50mm以下であることがより好ましく、100mN/50mm以上、1000mN/50mm以下であることが更に好ましい。100N/50mm以上であれば、搬送中の樹脂シートの部分的な浮きや、剥がれが発生する恐れがなく、保持性に優れるため好ましい。1500mN/50mm以下であれば、樹脂シートにダメージなく剥離することができ好ましい。
 離型層の加熱後剥離力(II)は、150mN/50mm以上、2250mN/50mm以下であることが好ましく、150mN/50mm以上、1950mN/50mm以下であることがより好ましく、150mN/50mm以上、1500mN/50mm以下であることが更に好ましい。樹脂シートを離型フィルム上に成型する際や、剥離する際には離型フィルムに熱がかかるため、加熱後剥離力によってより詳細に離型フィルムの剥離性を評価することができる。150mN/50mm以上であると、セラミックグリーンシートの保持性に優れるため好ましい。2250mN/50mm以下であれば、離型層に含まれる未反応物が少なく、樹脂シートの剥離に優れるため好ましい。
特定の理論に限定して解釈すべきではないが、本発明においては、離型層がカチオン硬化型ポリジメチルシロキサン(a)を含み、更に、疎水化層の水接触角が90°以上130°以下であることにより、基材フィルムの反離型面側に微量に存在していると考えられる水分の影響による、カチオン硬化型樹脂の経時反応が阻害されることを抑制でき、離型層の硬化が不十分となるという問題を解決できる。その結果、加熱後剥離力(II)を上記範囲に導くことができ、例えば、樹脂シートを成型する工程において、30℃以上120℃以下の条件で加工する際、樹脂シート形成組成物を良好に保持でき、また、得られた樹脂シートの剥離を容易行うことができる。
したがって、本発明においては、樹脂シート形成組成物の保持と、加熱後の剥離をバランスよく有することができる。例えば、セラミックグリーンシートが1.0μm以下の極めて薄い厚みを有する態様においても、これらの効果を奏することができる。
 常態剥離力(I)と加熱後剥離力(II)の比:(II)/(I)は1.00以上1.50以下であることが好ましい。常態剥離力(I)と加熱後剥離力(II)の比:(II)/(I)が大きいことは、離型層に未反応物が残っていることを示唆しており、離型層の硬化が完全に進行していないことを意味する。(II)/(I)が1.50以下であれば、ロール状態で保管時に離型層が疎水化層と接触するため、水分による硬化不良が発生することがなく、離型層の硬化が完全に進行するため好ましい。常態剥離力(I)よりも加熱後剥離力(II)の方が一般的に大きい値を示すため(I)/(II)は1.0以上であることが好ましい。
(樹脂シート)
 一態様において、本発明の離型フィルムは、樹脂シートであれば、特に限定されず、粘着剤、光学フィルムの製造に適用してもよい。一態様において、無機化合物を含む樹脂シート成型用離型フィルムである。無機化合物としては、金属粒子、金属酸化物、鉱物などを例示でき、例えば、炭酸カルシウム、シリカ粒子、アルミ粒子、チタン酸バリウム粒子等を例示できる。
 樹脂としては、例えばポリビニルアセタール樹脂、ポリ(メタ)アクリル酸エステル樹脂等を挙げることができる。
本発明は、平滑性の高い離型層と、平滑性、ハンドリング性及び帯電防止性に優れた背面層を有するため、これら無機化合物を樹脂シートに含む態様であっても、無機化合物に起因し得る欠点、例えば、樹脂シートの破損、離型層から樹脂シートの剥離が困難になる問題を抑制できる。
 樹脂シートを形成する樹脂成分は、用途に応じて適宜選択できる。
 一態様において、無機化合物を含む樹脂シートは、セラミックグリーンシートである。例えば、セラミックグリーンシートは、無機化合物として、チタン酸バリウムを含むことができる。一態様において、樹脂シートは厚さが、0.2μm以上1.0μm以下である。
(セラミックグリーンシートとセラミックコンデンサ)
 一般に、積層セラミックコンデンサは、直方体状のセラミック素体を有する。セラミック素体の内部には、第1の内部電極と第2の内部電極とが厚み方向に沿って交互に設けられている。第1の内部電極は、セラミック素体の第1の端面に露出している。第1の端面の上には第1の外部電極が設けられている。第1の内部電極は、第1の端面において第1の外部電極と電気的に接続されている。第2の内部電極は、セラミック素体の第2の端面に露出している。第2の端面の上には第2の外部電極が設けられている。第2の内部電極は、第2の端面において第2の外部電極と電気的に接続されている。
 一態様において、本発明の離型フィルムは、セラミックグリーンシート製造用離型フィルムであり、このような積層セラミックコンデンサを製造するために用いられる。
 例えば、本発明のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法は、0.2μm~1.0μmの厚みを有するセラミックグリーンシートを成型できる
 より詳細には、例えば、以下のようにしてセラミックグリーンシートは製造される。まず、本発明の離型フィルムをキャリアフィルムとして用い、セラミック素体を構成するためのセラミックスラリーを塗布、乾燥させる。セラミックグリーンシートの厚みは、0.2~1.0μmの極薄品が求められてきている。塗布、乾燥したセラミックグリーンシートの上に、第1又は第2の内部電極を構成するための導電層を印刷する。セラミックグリーンシート、第1の内部電極を構成するための導電層が印刷されたセラミックグリーンシート及び第2の内部電極を構成するための導電層が印刷されたセラミックグリーンシートを適宜積層し、プレスすることにより、マザー積層体を得る。マザー積層体を複数に分断し、生のセラミック素体を作製する。生のセラミック素体を焼成することによりセラミック素体を得る。その後、第1及び第2の外部電極を形成することにより積層セラミックコンデンサを完成させることができる。
 以下に、実施例を用いて本発明についてさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した
(厚み測定)
切り出した離型フィルムを樹脂包埋し、ウルトラミクロトームを用いて超薄切片化した。その後、日本電子製JEM2100透過電子顕微鏡を用いて、断面観察を行い、観察したTEM画像から離型層の膜厚を測定した。厚みが薄すぎて断面観察で正確に評価できない場合は、反射分光膜厚計(大塚電子社製、FE-3000)を用いて測定した。
(領域表面粗さSa、最大突起高さSp)
 非接触表面形状計測システム(VertScan R550H-M100)を用いて、下記の条件で測定した。領域表面平均粗さ(Sa)は、5回測定の平均値を採用し、最大突起高さ(Sp)は7回測定し最大値と最小値を除いた5回の測定結果における、最大の値のものを採用した。
 (測定条件)
  ・測定モード:WAVEモード
  ・対物レンズ:50倍
  ・0.5×Tubeレンズ
  ・測定面積 187μm×139μm
 (解析条件)
  ・面補正:  4次補正
  ・補間処理: 完全補間
(常態剥離力(I))
各実施例および各比較例で得られた樹脂シート製造用離型フィルムを巾400mm、長さ6000mのロール状に巻き上げ、離型フィルムロールを得た。この時の巻取張力は150N/mm、タッチロール圧は700N/mで巻き上げた。得られたフィルムロールを20~25℃、湿度40~50RH%の環境下、3日間保管した後に巻き出して、測定用の離型フィルムを採取した。測定用離型フィルムの離型層表面に粘着テープ(日東電工(株)社製の「31B」)を貼り合わせ、幅25mm、長さ150mmの短冊状に粘着テープ付き離型フィルムを裁断した。裁断した粘着テープ付き離型フィルムを5kgの圧着ローラで圧着後、温度22℃、湿度60%の条件下で20時間放置した。その後、粘着テープの一端を固定し、離型フィルムの一端を担持し、離型フィルム側を300mm/minの速度で引っ張り、T型剥離にて測定した。測定には、引っ張り試験機((株)島津製作所製の「AUTOGRAPHAG-X」)を用いた。
(加熱後剥離力(II))
 前記常態剥離力(I)と同様に評価用の離型フィルムを採取し、離型層表面に粘着テープ(日東電工(株)製、商品名「31B」)を貼り合わせ、幅25mm、長さ150mmの短冊状に粘着テープ付き離型フィルムを裁断した。裁断した粘着テープ付き離型フィルムを5kgの圧着ローラで圧着後、温度70℃のオーブンで20時間加熱した。その後、粘着テープの一端を固定し、離型フィルムの一端を把持し、離型フィルム側を300mm/minの速度で引っ張って剥離し、T型剥離にて測定した。測定には、引っ張り試験機((株)島津製作所製の「AUTOGRAPHAG-X」)を用いた。
(巻出し帯電量)
 各実施例および各比較例で得られた樹脂シート製造用剥離フィルムを、幅400mm、長さ6000mのロール状に巻き上げ、離型フィルムロールを得た。この時の巻取張力は150mN/mm、タッチロール圧は700N/mで巻き上げた。この離型フィルムロールを20~25℃、湿度40~50RH%以下の環境下に30日間保管した後、100m/minで巻き出す際の帯電量を春日電機社製「KSD-0103」を用いて測定した。帯電量は、巻出し直後100mmの箇所について、巻出し長さ500M毎に測定し、その平均値を算出した。
 〇:±1.0kV未満
 ×:±1.0kV以上
(水接触角)
自動接触角計(協和界面科学社製:DM-701)を用いて、22℃、60%RHの条件下で、離型面に接する水の接触角を測定した。水の滴下量は1.8μLであり、滴下後60秒経過後の接触角の値を採用した。
(ポリエチレンテレフタレートペレット(PET (I))の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm)の圧力で平均処理回数5パスの分散処理をした平均粒径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(I)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(ポリエチレンテレフタレートペレット(PET(II))の調製)
 一方、上記PET(I)チップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(II)と略す。)。
(積層フィルムX1の製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流して、PET(I)を表面層B(反離型面側層)、PET(II)を表面層A(離型面側層)となるように積層し、シート状に45m/分のスピードで押出(キャスティング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(I)/(II)=60質量%/40質量%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX1を得た。得られたフィルムX1の表面層AのSaは1nm、表面層BのSaは28nmであった。
(積層フィルムX2の製造)
 積層フィルムX2としては、厚み25μmのE5101(東洋紡エステル(登録商標)フィルム、東洋紡社製)を使用した。E5101は、表面層A及び表面層Bに粒子を含有した構成になっている。積層フィルムX2の表面層AのSaは24nm、表面層BのSaは24nmであった。
(離型層形成組成物Y1)
 メチルエチルケトン                     49.833質量部
 トルエン                          49.833質量部
 カチオン硬化型ポリジメチルシロキサン(a):
 脂環式エポキシ基含有ポリジメチルシロキサン          0.316質量部
 (製品名:シリコリース UV POLY215、荒川化学工業社製、固形分濃度100%)
 酸発生剤(c)                        0.018質量部
 (製品名:UV CATA211、荒川化学工業社製、固形分濃度18%)
(離型層形成組成物Y2)
 メチルエチルケトン                     47.361質量部
 トルエン                          47.361質量部
 カチオン硬化型ポリジメチルシロキサン(a)          0.250質量部
 (製品名:シリコリース UV POLY215、荒川化学工業社製、固形分濃度100%)
 シリコーン骨格を有さないカチオン硬化型樹脂(b):
2官能脂環式エポキシモノマー                 4.750質量部
(製品名:セロキサイド2021P、ダイセル社製、固形分濃度100%)
酸発生剤(c)                         0.278質量部
 (製品名:UV CATA211、荒川化学工業社製、固形分濃度18%)
(離型層形成組成物Y3)
 メチルエチルケトン                     44.900質量部
 トルエン                          44.900質量部
 ジペンタエリスリトールヘキサアクリレート           9.500質量部
 (製品名:A-DPH、新中村化学社製、固形分濃度100%)
 アクリロイル基含有ポリジメチルシロキサン           0.500質量部
 (製品名:BYK UV3500、ビックケミージャパン社製、固形分濃度100%)
開始剤                            0.200質量部
 (製品名:Omnirad907、IGM Resins社製、固形分濃度100%)
(離型層形成組成物Y4)
メチルエチルケトン                     47.361質量部
 トルエン                          47.361質量部
 カチオン硬化型ポリジメチルシロキサン(a):
側鎖エポキシ基変性ポリジメチルシロキサン           0.250質量部
 (製品名:KF-101、信越化学工業社製、固形分濃度100%)
 シリコーン骨格を有さないカチオン硬化型樹脂(b):
3官能エポキシ樹脂                      4.750質量部
(製品名:デナコールEX-421、ナガセケムテック社製、固形分濃度100%)
酸発生剤(c)                        0.278質量部
 (製品名:UV CATA211、荒川化学工業社製、固形分濃度18%)
(疎水化層形成組成物Z1)
 メチルエチルケトン                     69.766質量部
 トルエン                          29.900質量部
 カチオン硬化型ポリジメチルシロキサン(a):
 脂環式エポキシ基含有ポリジメチルシロキサン          0.316質量部
 (製品名:シリコリース UV POLY200、荒川化学工業社製、固形分濃度100%)
 酸発生剤(c)                        0.018質量部
 (製品名:UV CATA211、荒川化学工業社製、固形分濃度18%)
(疎水化層形成組成物Z2)
 メチルエチルケトン                     71.041質量部
 トルエン                          23.681質量部
 カチオン硬化型ポリジメチルシロキサン(a)          0.250質量部
 (製品名:シリコリース UV POLY200、荒川化学工業社製、固形分濃度100%)
 シリコーン骨格を有さないカチオン硬化型樹脂(b):
2官能脂環式エポキシモノマー                 4.750質量部
(製品名:セロキサイド2021P、ダイセル社製、固形分濃度100%)
酸発生剤(c)                         0.278質量部
 (製品名:UV CATA211、荒川化学工業社製、固形分濃度18%)
(疎水化層形成組成物Z3)
メチルエチルケトン                     47.361質量部
 トルエン                          47.361質量部
 シリコーン骨格を有さないカチオン硬化型樹脂(b):
2官能脂環式エポキシモノマー                 5.000質量部
(製品名:セロキサイド2021P、ダイセル社製、固形分濃度100%)
酸発生剤(c)                         0.278質量部
(離型層の形成方法)
 離型層形成組成物Y1~Y4を積層フィルムX1の表面層A上または積層フィルムX2の一方の面に、乾燥後の膜厚が所定の厚みになるようにリバースグラビアコーターにて塗布した。次いで、90℃の熱風で20秒間乾燥した後、直ちに無電極ランプ(へレウス社製Hバルブ)にて紫外線照射(100mJ/cm2)を行い、離型層を形成した。離型層の形成は、ロールtoロールで行った。すなわち、ロール状の積層フィルムを巻出し、塗布、乾燥、紫外線照射を順に連続的に行い、ロール状に巻取ることで離型層が設けられた離型フィルムロールを得た。
(疎水化層の形成方法)
 疎水化層形成組成物Z1~Z3を、基材フィルムの離型層が設けられていない面に、乾燥後の膜厚が所定の厚みになるようにリバースグラビアコーターにて塗布した。ついで、90℃の熱風で20秒間乾燥した後、直ちに無電極ランプ(へレウス社製Hバルブ)にて紫外線照射(100mJ/cm2)を行い、疎水化層を形成した。疎水化層の形成は、ロールtoロールで行った。すなわち、離型層が設けられた離型フィルムロールを巻出し、塗布、乾燥、紫外線照射を順に連続的に行い、ロール状に巻取ることで離型層と疎水化層が設けられた離型フィルムロールを得た。
(実施例1)
積層フィルムX1の表面層A上に離型層形成組成物Y1を塗布し、離型層を形成した後に、表面層B上に疎水化層形成組成物Z1を塗布し、疎水化層を形成することで樹脂シート成型用離型フィルムロールを得た。離型層、疎水化層の厚みは表1に示す値になるように形成した。得られた離型フィルムロールから、離型フィルムサンプルを巻き出して採取し、各評価を実施した。フィルム構成、各種物性値を、表1Aに示す。
(実施例2~11)
 表1に示す基材フィルム、離型層、疎水化層の組み合わせになるように実施例1と同様の方法で樹脂シート成型用離型フィルムロールを得た。得られた離型フィルムロールから、離型フィルムサンプルを巻き出して採取し、各評価を実施した。フィルム構成、各種物性値を、表1Aまたは表1Bに示す。
 本願発明は、基材フィルムの離型層とは反対側の面に疎水化層を設けているため、ロール状態で離型フィルムを保管しているときに離型層と疎水化層が接触するため、水分による離型層の硬化不良の恐れがなく、優れた剥離性を有する。また、離型層と疎水化層の両面にカチオン硬化型のポリジメチルシロキサンを含有しているため、ロール状態から巻き出した時の帯電を抑えることができる。そのため、本発明は、例えば、工程中の極微小な環境異物、スリット時に生じるフィルム屑等が、静電気により付着することを抑制でき、樹脂シートの汚染を抑制できる。また、例えば、厚さが、0.2μm以上1.0μm以下の樹脂シートに対し、剥離帯電が抑制されて、低い剥離力で剥離することができる。
(比較例1~比較例5)
 表1に示す基材フィルム、離型層、疎水化層の組み合わせになるように、実施例1と同様の方法で樹脂シート成型用離型フィルムを得た。比較例1~4は疎水化層を設けずに離型層が設けられた離型フィルムロールを用いて、各評価を実施した。フィルム構成、各種物性値を、表1Bに示す。
比較例1では、離型層にカチオン硬化型ポリジメチルシロキサン(a)を含有せず、ラジカル硬化型の樹脂を用いた離型層であったため、酸素阻害による硬化不良が発生し、加熱後剥離力(II)と常態剥離力(I)の比、(II)/(I)が大きく、剥離性の悪化が見られた。また、巻出帯電も高かった。比較例2~4は疎水化層(水接触角が90°以上130°以下である疎水化層)を有さないために、ロール状態で離型フィルムを保管しているときに水分の影響で離型層の経時反応が阻害されて硬化不良となり、剥離性の悪化が見られた。また、巻出帯電も高かった。比較例5では疎水化層の水接触角が90℃以下であったため、離型フィルムをロール状態で保管しているときの離型層の硬化阻害抑制効果が不十分であり、剥離性と巻出帯電の悪化が見られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、基材フィルムの一方の面に離型層を有し、基材フィルムの反離型面に疎水層を設けることで、剥離性に優れ、巻出帯電が低い離型フィルムを提供し、厚みが1μm以下の超薄層樹脂シートを不良が生じる恐れがなく製造することができる。
 
 

Claims (11)

  1.  基材フィルムと、基材フィルムの一方の面に設けられた離型層を有する樹脂シート成型用離型フィルムであって、
     前記樹脂シート成型用離型フィルムは、前記基材フィルムの前記離型層とは反対側の面に疎水化層を有し、
    前記離型層がカチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物から形成された層であり、
    前記疎水化層の水接触角が90°以上130°以下であり、
    前記樹脂シート成型用離型フィルムをロール状に一度巻取った後、巻出して得た離型フィルムにおいて測定した離型層の常態剥離力(I)と加熱後剥離力(II)が、
    (II)/(I)=1.00以上1.50以下である、樹脂シート成型用離型フィルム。
  2.  前記巻出して得た離型フィルムにおいて測定した離型層の常態剥離力(I)が1500mN/50mm以下である請求項1に記載の樹脂シート成型用離型フィルム。
  3.  前記樹脂シート成型用離型フィルムをロール状に巻取り得られた離型フィルムロールを、100m/分で繰り出した際の帯電量が±1kV未満である、請求項1または2に記載の樹脂シート成型用離型フィルム。
  4.  前記疎水化層がカチオン硬化型ポリジメチルシロキサン(a)を有する組成物の硬化物からなる請求項1~3のいずれかに記載の樹脂シート成型用離型フィルム。
  5.  前記疎水化層の厚みが0.001μm以上0.5μm以下である、請求項1~4のいずれかに記載の樹脂シート成型用離型フィルム。
  6.  前記離型層および前記疎水化層が、粒径1.0μm以上の粒子を実質的に含まない、請求項1~5のいずれかに記載の樹脂シート成型用離型フィルム。
  7.  前記基材フィルムが、粒径1.0μm以上の粒子を実質的に含まない表面層Aと、粒子を含む表面層Bとを有するポリエステルフィルムであり、
    前記表面層A上に離型層が積層され、前記表面層B上に疎水化層が積層される、請求項1~6のいずれかに記載の樹脂シート成型用離型フィルム。
  8.  樹脂シートが無機化合物を含むシートである、請求項1~7のいずれかに記載の樹脂シート成型用離型フィルム。
  9.  無機化合物を含む樹脂シートは、セラミックグリーンシートである、請求項8に記載の樹脂シート成型用離型フィルム。
  10.  厚さが、0.2μm以上1.0μm以下の樹脂シート成型用離型フィルムである、請求項1~9のいずれかに記載の樹脂シート成型用離型フィルム。
  11.  請求項9に記載の樹脂シート成型用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みを有する、セラミックグリーンシートの製造方法。
     
     
PCT/JP2022/025370 2021-06-30 2022-06-24 樹脂シート成型用離型フィルム WO2023276892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237037517A KR20230164151A (ko) 2021-06-30 2022-06-24 수지 시트 성형용 이형 필름
JP2023531907A JPWO2023276892A1 (ja) 2021-06-30 2022-06-24
CN202280045293.8A CN117561165A (zh) 2021-06-30 2022-06-24 树脂片成型用脱模薄膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108802 2021-06-30
JP2021-108802 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276892A1 true WO2023276892A1 (ja) 2023-01-05

Family

ID=84691426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025370 WO2023276892A1 (ja) 2021-06-30 2022-06-24 樹脂シート成型用離型フィルム

Country Status (5)

Country Link
JP (1) JPWO2023276892A1 (ja)
KR (1) KR20230164151A (ja)
CN (1) CN117561165A (ja)
TW (1) TWI827104B (ja)
WO (1) WO2023276892A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073700A (ja) * 2011-09-27 2013-04-22 Mitsubishi Plastics Inc 燃料電池用両面離型フィルム
JP2017002254A (ja) * 2015-06-16 2017-01-05 三菱樹脂株式会社 積層ポリエステルフィルム
JP2019072848A (ja) * 2017-10-12 2019-05-16 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
WO2019131449A1 (ja) * 2017-12-27 2019-07-04 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
JP2020128055A (ja) * 2019-02-12 2020-08-27 三菱ケミカル株式会社 離型フィルム
JP2021070711A (ja) * 2019-10-29 2021-05-06 東洋紡株式会社 レーザー加工支持体用ポリエステルフィルム及び配線基板製造用離型フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997310B1 (ko) 2012-03-28 2019-07-05 린텍 가부시키가이샤 세라믹 그린 시트 제조 공정용 박리 필름
KR20190062423A (ko) 2016-10-27 2019-06-05 린텍 가부시키가이샤 박리 시트

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073700A (ja) * 2011-09-27 2013-04-22 Mitsubishi Plastics Inc 燃料電池用両面離型フィルム
JP2017002254A (ja) * 2015-06-16 2017-01-05 三菱樹脂株式会社 積層ポリエステルフィルム
JP2019072848A (ja) * 2017-10-12 2019-05-16 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
WO2019131449A1 (ja) * 2017-12-27 2019-07-04 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
JP2020128055A (ja) * 2019-02-12 2020-08-27 三菱ケミカル株式会社 離型フィルム
JP2021070711A (ja) * 2019-10-29 2021-05-06 東洋紡株式会社 レーザー加工支持体用ポリエステルフィルム及び配線基板製造用離型フィルム

Also Published As

Publication number Publication date
JPWO2023276892A1 (ja) 2023-01-05
TW202304715A (zh) 2023-02-01
CN117561165A (zh) 2024-02-13
KR20230164151A (ko) 2023-12-01
TWI827104B (zh) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6414424B2 (ja) セラミックシート製造用離型フィルム
JP6841355B2 (ja) セラミックグリーンシート製造用離型フィルム
WO2022138484A1 (ja) 樹脂シート成型用離型フィルム
JPWO2019203175A1 (ja) ドライフィルムレジスト用ポリエステルフィルム
JP6950761B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7144715B2 (ja) セラミックグリーンシート製造用離型フィルムロール
WO2023276892A1 (ja) 樹脂シート成型用離型フィルム
JP7106912B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7035441B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7327554B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7306515B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7306514B2 (ja) セラミックグリーンシート製造用離型フィルム
JP7306516B2 (ja) セラミックグリーンシート製造用離型フィルム
KR101259954B1 (ko) 적층 세라믹 커패시터 제조용 이형필름 및 그 제조방법
WO2022138485A1 (ja) 樹脂シート成型用離型フィルムの製造方法
WO2022085531A1 (ja) 樹脂シート成型用離型フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023531907

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237037517

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280045293.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE