WO2021169418A1 - ITiO旋转靶材及其制备方法 - Google Patents

ITiO旋转靶材及其制备方法 Download PDF

Info

Publication number
WO2021169418A1
WO2021169418A1 PCT/CN2020/128668 CN2020128668W WO2021169418A1 WO 2021169418 A1 WO2021169418 A1 WO 2021169418A1 CN 2020128668 W CN2020128668 W CN 2020128668W WO 2021169418 A1 WO2021169418 A1 WO 2021169418A1
Authority
WO
WIPO (PCT)
Prior art keywords
itio
rotating target
powder
parts
preparing
Prior art date
Application number
PCT/CN2020/128668
Other languages
English (en)
French (fr)
Inventor
甘志俭
庄志杰
庄猛
诸斌
Original Assignee
基迈克材料科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基迈克材料科技(苏州)有限公司 filed Critical 基迈克材料科技(苏州)有限公司
Publication of WO2021169418A1 publication Critical patent/WO2021169418A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Definitions

  • the invention relates to the technical field of target materials, in particular to an ITiO rotating target material and a preparation method thereof.
  • the relative density of the ITiO rotating target prepared by the method for preparing the ITiO rotating target of the present invention is ⁇ 98%, and the resistivity of the ITiO rotating target is ⁇ 4.0 ⁇ 10 -4 ⁇ cm. Therefore, the above-mentioned ITiO
  • the preparation method of the rotating target can obtain a high-performance ITiO rotating target with high density and good conductivity.
  • the adhesive is selected from at least one of polyvinyl alcohol, acrylic emulsion, carboxymethyl cellulose and polyacrylate.
  • the In 2 O 3 nano powder, the TiO 2 nano powder, the dispersing agent, the adhesive agent is mixed with water to operations: the In 2 O 3 Nano powder and the TiO 2 nano powder are mixed to obtain a mixed powder, the dispersant, the adhesive and water are mixed to obtain a pre-mixed liquid, and then the mixed powder and the pre-mixed liquid well mixed.
  • the grinding operation is: grinding with a sanding equipment, the sanding time is 1h-8h, and the speed of the sanding is 500rpm-1500rpm.
  • the spray granulation temperature is 200°C to 300°C.
  • the pressure of the cold isostatic pressure is 200 to 280 mpa.
  • the ITiO rotating target is prepared by the above-mentioned preparation method of the ITiO rotating target.
  • FIG. 1 is a flowchart of a method for preparing an ITiO rotating target according to an embodiment of the present invention.
  • a method for preparing an ITiO rotating target according to an embodiment of the present invention includes the following steps:
  • the adhesive is selected from at least one of polyvinyl alcohol, acrylic emulsion, carboxymethyl cellulose, and polyacrylate.
  • the operation of uniformly mixing In 2 O 3 nano powder, TiO 2 nano powder, dispersant, adhesive, and water is: mixing In 2 O 3 nano powder and TiO 2 nano powder After mixing, the mixed powder is obtained, the dispersant, the adhesive and the water are mixed to obtain the premixed liquid, and then the mixed powder and the premixed liquid are uniformly mixed.
  • step S20 spray granulating the slurry obtained in step S10 to obtain ITiO powder.
  • the pressure of the cold isostatic pressing is 200 to 280 mpa.
  • the operation of cold isostatic pressing is: forming the target blank by cold isostatic pressing in a pressure range of 200 mpa to 280 mpa, and then releasing the pressure at a rate of 2 MPa/min to 8 MPa/min until normal pressure.
  • step S40 sintering the rotating target blank obtained in step S30, and obtaining an ITiO rotating target after annealing.
  • the oxygen-containing atmosphere refers to an atmosphere containing oxygen, but is not limited to an oxygen atmosphere, and may also be an air atmosphere or the like.
  • machining refers to the sintered ITiO blank target material after machining, grinding and cutting to obtain a regular target material.
  • Binding refers to the binding of the semi-finished product obtained by the machine with the support, for example, the coating target material applied to the solar cell and the optical communication electrode is obtained after being attached to the steel pipe.
  • Step 1 Ingredients: In 2 O 3 nano powder and TiO 2 nano powder are weighed at a weight ratio of 99:1, wherein the specific surface area of indium oxide nano powder is 10m 2 /g, and the specific surface area of titanium oxide is 20m 2 / g, to obtain a mixed powder.
  • Step 3 Sanding: Use a horizontal sand mill to sand the ITiO slurry.
  • the grinding medium is zirconia balls, the sanding time is 5h, and the sanding speed is 800rpm. After sanding, a uniformly distributed ITiO slurry is obtained. material.
  • Step 4 Spray drying: The ITiO slurry is dried by using a centrifugal spray granulator to prepare ITiO granulated powder, and the drying temperature is 280°C.
  • Step 5 Forming: Put the ITiO granulated powder into a flexible mold, vibrate and vacuum, and then use a cold isostatic press for one-time molding and pressing.
  • the molding pressure is 240mpa, and the pressure is released at a rate of 8mpa/min.
  • Step 7 Machining and binding: After ITiO sintering, the rough target material is machined, ground and cut to obtain a regular target material, and then bonded and attached to the steel pipe to obtain a coating target material for solar cells and optical communication electrodes .
  • Step 5 Forming: Put the ITiO granulated powder into a flexible mold, vibrate and vacuum, and then use a cold isostatic press for one-time molding and pressing.
  • the molding pressure is 260mpa, and the pressure is released at a rate of 5mpa/min.
  • Step 4 Spray drying: The ITiO slurry is dried by using a centrifugal spray granulator to prepare ITiO granulated powder, and the drying temperature is 270°C.
  • Step 5 Forming: Put the ITiO granulated powder into a flexible mold, vibrate and vacuum, and then use a cold isostatic press for one-time molding and pressing.
  • the molding pressure is 200mpa, and the pressure is released at a rate of 5mpa/min.
  • Step 7 Machining and binding: After ITiO sintering, the rough target material is machined, ground and cut to obtain a regular target material, and then bonded and attached to the steel pipe to obtain a coating target material for solar cells and optical communication electrodes .
  • Step 2 Pulping: Prepare a premixed solution according to the solid content of the slurry at 40%, in which 2% polyvinyl alcohol by weight of the indium-titanium oxide mixed powder is added; the mixed ITiO nanopowder is added and stirred to form an ITiO slurry.
  • Step 3 Sanding: Use a horizontal sand mill to sand the ITiO slurry.
  • the grinding medium is zirconia balls, the sanding time is 5h, and the sanding speed is 800rpm. After sanding, a uniformly distributed ITiO slurry is obtained. material.
  • Step 4 Spray drying: The ITiO slurry is dried by using a centrifugal spray granulator to prepare ITiO granulated powder, and the drying temperature is 280°C.
  • Step 5 Forming: Put the ITiO granulated powder into a flexible mold, vibrate and vacuum, and then use a cold isostatic press for one-time molding and pressing.
  • the molding pressure is 240mpa, and the pressure is released at a rate of 8mpa/min.
  • Step 6 The ITiO cylindrical raw embryo target is placed in the atmospheric sintering furnace, and the air atmosphere is heated to 700°C at a rate of 0.3°C/min and kept for 8 hours to complete debinding, and then heated to a rate of 1°C/min. Hold the temperature at 1550°C for 10 hours, then cool down to 1000°C at 1°C/min and then naturally cool down, and then obtain an ITiO rotating target with a relative density of 92% and a resistivity of 8.5 ⁇ 10 -3 ⁇ cm.
  • Step 7 Machining and binding: After ITiO sintering, the rough target material is machined, ground and cut to obtain a regular target material, and then bonded and attached to the steel pipe to obtain a coating target material for solar cells and optical communication electrodes .
  • Step 1 Ingredients: In 2 O 3 nano powder and TiO 2 nano powder are weighed at a weight ratio of 98:2, wherein the specific surface area of indium oxide nano powder is 15m 2 /g, and the specific surface area of titanium oxide is 30m 2 / g.
  • Step 4 Spray drying: The ITiO slurry is dried by using a centrifugal spray granulator to prepare ITiO granulated powder, and the drying temperature is 250°C.
  • Step 6 The ITiO cylindrical blank target is placed in the atmospheric sintering furnace, and the air atmosphere is heated to 700°C at a rate of 0.2°C/min for 8 hours to complete degreasing, and then heated at a rate of 1.5°C/min to Hold the temperature at 1500°C for 10 hours, then cool down to 1000°C at 1°C/min and then naturally cool down, and then obtain an ITiO rotating target with a relative density of 93% and a resistivity of 7.4 ⁇ 10 -3 ⁇ cm.
  • Step 7 Machining and binding: After ITiO sintering, the rough target material is machined, ground and cut to obtain a regular target material, and then bonded and attached to the steel pipe to obtain a coating target material for solar cells and optical communication electrodes .
  • Step 2 Pulping: Prepare a premixed solution according to the solid content of the slurry at 60%, in which polyvinyl alcohol with a content of 3% by weight of the indium titanium oxide mixed powder is added; the mixed ITiO nano-powder is added and stirred to form an ITiO slurry.
  • Step 4 Spray drying: The ITiO slurry is dried by using a centrifugal spray granulator to prepare ITiO granulated powder, and the drying temperature is 270°C.
  • Step 6 The ITiO cylindrical blank target is placed in the atmospheric sintering furnace, and the air atmosphere is heated to 700°C for 8 hours at a heating rate of 0.5°C/min to complete degreasing, and then heated to at a rate of 1°C/min. Hold the temperature at 1500°C for 10 hours, then cool down to 1000°C at 1°C/min and then naturally cool down to obtain an ITiO rotating target with a relative density of 90% and a resistivity of 9.1 ⁇ 10 -3 ⁇ cm.
  • Step 7 Machining and binding: After ITiO sintering, the rough target material is machined, ground and cut to obtain a regular target material, and then bonded and attached to the steel pipe to obtain a coating target material for solar cells and optical communication electrodes .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种ITiO旋转靶材及其制备方法。该制备方法包括如下步骤:按照质量份数,将90份~99.5份的In 2O 3纳米粉体、0.5份~10份的TiO 2纳米粉体、0.5份~5份的分散剂、0.5份~5份的粘接剂与水混合均匀,研磨后得到浆料;其中,In 2O 3纳米粉体的比表面积为5m 2/g~20m 2/g,TiO 2纳米粉体的比表面积为20m 2/g~50m 2/g;将浆料进行喷雾造粒,得到ITiO粉体;将ITiO粉体装入模具中,使用冷等静压成型,得到旋转靶材素坯;以及将旋转靶材素坯进行烧结,退火之后得到ITiO旋转靶材。该ITiO旋转靶材的相对密度≥98%,电阻率≤4.0×10 -4Ω·cm。

Description

ITiO旋转靶材及其制备方法
本申请要求2020年2月25日向中国国家知识产权局的申请号为202010116105.9的专利申请的优先权。
技术领域
本发明涉及靶材技术领域,特别是涉及一种ITiO旋转靶材及其制备方法。
背景技术
靶材是用作镀膜的材料。与ITO(氧化铟锡)薄膜相比,ITiO(氧化铟钛)薄膜具有更高的导电性和近红外区域的光透过性能,因此其在太阳能电池领域和光通信电极领域具有良好的应用性能。同时,ITiO薄膜相对于平板型溅射靶材的使用效率为20~30%,旋转靶材能够得到60%以上的的使用效率,有利于提高靶材使用率,并降低薄膜的制备成本;并且旋转靶材单位面积可输入较大的功率,因此能够得到较平面靶材更高的成膜速度,有利于快速制备薄膜制品。因此,ITiO高性能旋转靶材的开发对制备ITiO薄膜具有重要意义。
发明内容
基于此,有必要提供一种高性能的ITiO旋转靶材及其制备方法。
一种ITiO旋转靶材的制备方法,包括如下步骤:
按照质量份数,将90份~99.5份的In 2O 3纳米粉体、0.5份~10份的TiO 2纳米粉体、0.5份~5份的分散剂、0.5份~5份的粘接剂与水混合均匀,研磨后得到浆料;其中,所述In 2O 3纳米粉体的比表面积为5m 2/g~20m 2/g,所述TiO 2纳米粉体的比表面积为20m 2/g~50m 2/g;
将所述浆料进行喷雾造粒,得到ITiO粉体;
将所述ITiO粉体装入模具中,使用冷等静压成型,得到旋转靶材素坯;以及
将所述旋转靶材素坯进行烧结,退火之后得到ITiO旋转靶材。
经试验证明,本发明的上述ITiO旋转靶材的制备方法制备得到ITiO旋转靶材的相对密度≥98%,ITiO旋转靶材的电阻率≤4.0×10 -4Ω·cm,因此,通过上述 ITiO旋转靶材的制备方法能够得到致密度和导电性良好的高性能ITiO旋转靶材。
在其中一个实施例中,所述分散剂选自聚丙烯酰胺、聚羧酸铵盐、聚乙烯羧酸类和硬脂酸盐类中的至少一种。
在其中一个实施例中,所述粘接剂选自聚乙烯醇、丙烯酸乳液、羧甲基纤维素和聚丙烯酸酯中的至少一种。
在其中一个实施例中,将所述In 2O 3纳米粉体、所述TiO 2纳米粉体、所述分散剂、所述粘接剂与水混合均匀的操作为:将所述In 2O 3纳米粉体与所述TiO 2纳米粉体混合之后得到混合粉体,将所述分散剂、所述粘接剂与水混合之后得到预混液,之后将所述混合粉体与所述预混液混合均匀。
在其中一个实施例中,所述研磨的操作为:采用砂磨设备进行研磨,砂磨的时间为1h~8h,砂磨的转速为500rpm~1500rpm。
在其中一个实施例中,所述浆料的固含量为40%~60%。
在其中一个实施例中,所述喷雾造粒的温度为200℃~300℃。
在其中一个实施例中,所述冷等静压的压力为200mpa~280mpa。
在其中一个实施例中,所述烧结与退火的条件为:在含氧气氛、常压条件下,以不高于1℃/min的升温速率升温至600~700℃完成脱脂作业,之后以不高于5℃/min的升温速率升温至至1400~1600℃保温烧结8~10小时,之后按降温速率0.5~1℃/min降温至小于1000℃,之后自然降温。
一实施方式的ITiO旋转靶材,所述ITiO旋转靶材由上述的ITiO旋转靶材的制备方法制备得到。
经试验证明,上述ITiO旋转靶材的致密度和导电性良好。
附图说明
图1为本发明一实施方式的ITiO旋转靶材的制备方法的流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对 本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1,本发明一实施方式的ITiO旋转靶材的制备方法,包括如下步骤:
S10、按照质量份数,将90份~99.5份的In 2O 3纳米粉体、0.5份~10份的TiO 2纳米粉体、0.5份~5份的分散剂、0.5份~5份的粘接剂与水混合均匀,研磨后得到浆料;其中,In 2O 3纳米粉体的比表面积为5m 2/g~20m 2/g,TiO 2纳米粉体的比表面积为20m 2/g~50m 2/g。
在其中一实施例中,分散剂选自聚丙烯酰胺、聚羧酸铵盐、聚乙烯羧酸类和硬脂酸盐类中的至少一种。
在其中一实施例中,粘接剂选自聚乙烯醇、丙烯酸乳液、羧甲基纤维素和聚丙烯酸酯中的至少一种。
在其中一实施例中,将In 2O 3纳米粉体、TiO 2纳米粉体、分散剂、粘接剂与水混合均匀的操作为:将In 2O 3纳米粉体与TiO 2纳米粉体混合之后得到混合粉体,将分散剂、粘接剂与水混合之后得到预混液,之后将混合粉体与预混液混合均匀。
需要说明的是,In 2O 3纳米粉体、TiO 2纳米粉体、分散剂、粘接剂与水的添加顺序不限。还可以按照计量的质量份数将In 2O 3纳米粉体、TiO 2纳米粉体、分散剂、粘接剂与水一起混合,或者先将某几种原料混合,之后再添加剩余的原料。
在其中一实施例中,研磨的操作为:采用砂磨设备进行研磨,砂磨的时间为1h~8h,砂磨的转速为500rpm~1000rpm。砂磨的效率较高,且通过上述砂磨 之后,能够得到混合更均匀的浆料。
在其中一实施例中,浆料的固含量为40%~60%。
S20、将步骤S10得到的浆料进行喷雾造粒,得到ITiO粉体。
在其中一实施例中,喷雾造粒的温度为200℃~300℃。上述喷雾造粒的温度能够提高喷雾造粒的效率。
S30、将步骤S20得到的ITiO粉体装入模具中,使用冷等静压成型,得到旋转靶材素坯。
在其中一实施例中,冷等静压的压力为200mpa~280mpa。具体的,冷等静压成型的操作为:于200mpa~280mpa压力范围内经过冷等静压一步成型得到靶胚,之后以2MPa/min~8MPa/min的速率进行卸压,直至常压。
S40、将步骤S30得到的旋转靶材素坯进行烧结,退火之后得到ITiO旋转靶材。
在其中一实施例中,烧结与退火的条件为:在含氧气氛、常压条件下,以不高于1℃/min的升温速率升温至600~700℃完成脱脂作业,之后以不高于5℃/min的升温速率升温至至1400~1600℃保温烧结8~10小时,之后按降温速率0.5~1℃/min降温至小于1000℃,之后自然降温。
其中,含氧气氛指的是含有氧气的气氛,但不限于氧气氛围,还可以为空气氛围等。
本发明的ITiO旋转靶材的制备方法还可以包括机加和绑定的步骤。
其中,机加指的是把ITiO烧结后的毛胚靶材经机加工研磨切割后得到规整的靶材。绑定指的是将机加得到的半成品与支撑件绑定,例如,贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
经试验证明,本发明的上述ITiO旋转靶材的制备方法制备得到ITiO旋转靶材的相对密度≥98%,ITiO旋转靶材的电阻率≤4.0×10 -4Ω·cm,因此,通过上述ITiO旋转靶材的制备方法能够得到致密度和导电性良好的高性能ITiO旋转靶材。
一实施方式的ITiO旋转靶材,由上述的ITiO旋转靶材的制备方法制备得到。
经试验证明,上述ITiO旋转靶材的相对密度≥98%,上述ITiO旋转靶材的 电阻率≤4.0×10 -4Ω·cm。
其中,相对密度是指物质的密度与参考物质的密度在各自规定的条件下之比。靶材的相对密度是实际值除以理论值得到的数值。本发明的ITiO旋转靶材的相对密度≥98%,上述相对密度较高,表明上述ITiO旋转靶材的致密度较高。
其中,电阻率是用来表示各种物质电阻特性的物理量。某种物质所制成的原件(常温下20℃)的电阻与横截面积的乘积与长度的比值叫做这种物质的电阻率。本发明的ITiO旋转靶材的电阻率≤4.0×10 -4Ω·cm,表明ITiO旋转靶材的导电性良好。
下面结合具体实施例对本发明的ITiO旋转靶材及其制备方法进行进一步的说明(以下实施例如无特殊说明,则不含有除不可避免的杂质以外的其它未明确指出的组分)。
实施例1
步骤一、配料:In 2O 3纳米粉体与TiO 2纳米粉体按重量比99:1称量,其中氧化铟纳米粉体的比表面积为10m 2/g,氧化钛比表面积为20m 2/g,得到混合粉体。
步骤二、制浆:按浆料固含量为40%配置预混液,其中,添加氧化铟钛混合粉体重量1%含量的聚丙烯酰胺,以及2%的聚乙烯醇;投入混合的ITiO纳米粉末,搅拌成ITiO浆体。
步骤三、砂磨:使用卧式砂磨机对ITiO浆料进行砂磨处理,研磨介质为氧化锆球,砂磨时间为5h,砂磨转速为800rpm,砂磨处理后得到分布均一的ITiO浆料。
步骤四、喷雾干燥:ITiO浆料通过使用离心型喷雾造粒机干燥制备ITiO造粒粉体,干燥温度为280℃。
步骤五、成型:将ITiO造粒粉体装入柔性模具中经振动和抽真空处理后,使用冷等静压机进行一次成型压制,成型压力为240mpa,以8mpa/min的速率泄压后制得ITiO筒状旋转靶材素胚。
步骤六、烧结:ITiO筒状素胚靶材放置在常压烧结炉内,以0.3℃/min的升温速率,空气气氛升温至700℃保持8h完成脱脂,再以1℃/min的速率升温至 1550℃持温10h,之后按1℃/min降温至1000℃后自然降温,进而得到相对密度为98.5%,电阻率3.8×10 -4Ω·cm的ITiO旋转靶材。
步骤七、机加工绑定:ITiO烧结后毛胚靶材经机加工研磨切割后得到规整的靶材,再经绑定贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
实施例2
步骤一、配料:In 2O 3纳米粉体与TiO 2纳米粉体按重量比98:2称量,其中氧化铟纳米粉体的比表面积为15m 2/g,氧化钛比表面积为30m 2/g。
步骤二、制浆:按浆料固含量为50%配置预混液,其中,添加氧化铟钛混合粉体重量2%含量的聚丙烯酰胺,以及2%的聚乙烯醇;投入混合的ITiO纳米粉末,搅拌成ITiO浆体。
步骤三、砂磨:使用卧式砂磨机对ITiO浆料进行砂磨处理,研磨介质为氧化锆球,砂磨时间为6h,砂磨转速为900rpm,砂磨处理后得到分布均一的ITiO浆料。
步骤四、喷雾干燥:ITiO浆料通过使用离心型喷雾造粒机干燥制备ITiO造粒粉体,干燥温度为250℃。
步骤五、成型:将ITiO造粒粉体装入柔性模具中经振动和抽真空处理后,使用冷等静压机进行一次成型压制,成型压力为260mpa,以5mpa/min的速率泄压后制得ITiO筒状旋转靶材素胚。
步骤六、烧结:ITiO筒状素胚靶材放置在常压烧结炉内,以0.2℃/min的升温速率,空气气氛升温至700℃保持8h完成脱脂,再以1.5℃/min的速率升温至1500℃持温10h,之后按1℃/min降温至1000℃后自然降温,进而得到相对密度为99%,电阻率3.5×10 -4Ω·cm的ITiO旋转靶材。
步骤七、机加工绑定:ITiO烧结后毛胚靶材经机加工研磨切割后得到规整的靶材,再经绑定贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
实施例3
步骤一、配料:In 2O 3纳米粉体与TiO 2纳米粉体按重量比95:5称量,其中 氧化铟纳米粉体比表面积为20m 2/g,氧化钛比表面积为40m 2/g。
步骤二、制浆:按浆料固含量为60%配置预混液,其中,添加氧化铟钛混合粉体重量3%含量的聚丙烯酰胺,以及3%的聚乙烯醇;投入混合的ITiO纳米粉末,搅拌成ITiO浆体。
步骤三、砂磨:使用卧式砂磨机对ITiO浆料进行砂磨处理,研磨介质为氧化锆球,砂磨时间为7h,砂磨转速为600rpm,砂磨处理后得到分布均一的ITiO浆料。
步骤四、喷雾干燥:ITiO浆料通过使用离心型喷雾造粒机干燥制备ITiO造粒粉体,干燥温度为270℃。
步骤五、成型:将ITiO造粒粉体装入柔性模具中经振动和抽真空处理后,使用冷等静压机进行一次成型压制,成型压力为200mpa,以5mpa/min的速率泄压后制得ITiO筒状旋转靶材素胚。
步骤六、烧结:ITiO筒状素胚靶材放置在常压烧结炉内,以0.5℃/min的升温速率,空气气氛升温至700℃保持8h完成脱脂,再以1℃/min的速率升温至1500℃持温10h,之后按1℃/min降温至1000℃后自然降温,进而得到相对密度为98.2%,电阻率3.9×10 -4Ω·cm的ITiO旋转靶材。
步骤七、机加工绑定:ITiO烧结后毛胚靶材经机加工研磨切割后得到规整的靶材,再经绑定贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
对比例1
步骤一、配料:In 2O 3纳米粉体与TiO 2纳米粉体按重量比99:1称量,其中氧化铟纳米粉体的比表面积为10m 2/g,氧化钛比表面积为20m 2/g,得到混合粉体。
步骤二、制浆:按浆料固含量为40%配置预混液,其中,添加氧化铟钛混合粉体重量2%的聚乙烯醇;投入混合的ITiO纳米粉末,搅拌成ITiO浆体。
步骤三、砂磨:使用卧式砂磨机对ITiO浆料进行砂磨处理,研磨介质为氧化锆球,砂磨时间为5h,砂磨转速为800rpm,砂磨处理后得到分布均一的ITiO浆料。
步骤四、喷雾干燥:ITiO浆料通过使用离心型喷雾造粒机干燥制备ITiO造粒粉体,干燥温度为280℃。
步骤五、成型:将ITiO造粒粉体装入柔性模具中经振动和抽真空处理后,使用冷等静压机进行一次成型压制,成型压力为240mpa,以8mpa/min的速率泄压后制得ITiO筒状旋转靶材素胚。
步骤六、烧结:ITiO筒状素胚靶材放置在常压烧结炉内,以0.3℃/min的升温速率,空气气氛升温至700℃保持8h完成脱脂,再以1℃/min的速率升温至1550℃持温10h,之后按1℃/min降温至1000℃后自然降温,进而得到相对密度为92%,电阻率8.5×10 -3Ω·cm的ITiO旋转靶材。
步骤七、机加工绑定:ITiO烧结后毛胚靶材经机加工研磨切割后得到规整的靶材,再经绑定贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
对比例2
步骤一、配料:In 2O 3纳米粉体与TiO 2纳米粉体按重量比98:2称量,其中氧化铟纳米粉体的比表面积为15m 2/g,氧化钛比表面积为30m 2/g。
步骤二、制浆:按浆料固含量为50%配置预混液,其中,添加氧化铟钛混合粉体重量2%含量的聚乙烯醇;投入混合的ITiO纳米粉末,搅拌成ITiO浆体。
步骤三、砂磨:使用卧式砂磨机对ITiO浆料进行砂磨处理,研磨介质为氧化锆球,砂磨时间为6h,砂磨转速为900rpm,砂磨处理后得到分布均一的ITiO浆料。
步骤四、喷雾干燥:ITiO浆料通过使用离心型喷雾造粒机干燥制备ITiO造粒粉体,干燥温度为250℃。
步骤五、成型:将ITiO造粒粉体装入柔性模具中经振动和抽真空处理后,使用冷等静压机进行一次成型压制,成型压力为260mpa,以5mpa/min的速率泄压后制得ITiO筒状旋转靶材素胚。
步骤六、烧结:ITiO筒状素胚靶材放置在常压烧结炉内,以0.2℃/min的升温速率,空气气氛升温至700℃保持8h完成脱脂,再以1.5℃/min的速率升温至1500℃持温10h,之后按1℃/min降温至1000℃后自然降温,进而得到相对密度 为93%,电阻率7.4×10 -3Ω·cm的ITiO旋转靶材。
步骤七、机加工绑定:ITiO烧结后毛胚靶材经机加工研磨切割后得到规整的靶材,再经绑定贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
对比例3
步骤一、配料:In 2O 3纳米粉体与TiO 2纳米粉体按重量比95:5称量,其中氧化铟纳米粉体比表面积为20m 2/g,氧化钛比表面积为40m 2/g。
步骤二、制浆:按浆料固含量为60%配置预混液,其中,添加氧化铟钛混合粉体重量3%含量的聚乙烯醇;投入混合的ITiO纳米粉末,搅拌成ITiO浆体。
步骤三、砂磨:使用卧式砂磨机对ITiO浆料进行砂磨处理,研磨介质为氧化锆球,砂磨时间为7h,砂磨转速为600rpm,砂磨处理后得到分布均一的ITiO浆料。
步骤四、喷雾干燥:ITiO浆料通过使用离心型喷雾造粒机干燥制备ITiO造粒粉体,干燥温度为270℃。
步骤五、成型:将ITiO造粒粉体装入柔性模具中经振动和抽真空处理后,使用冷等静压机进行一次成型压制,成型压力为200mpa,以5mpa/min的速率泄压后制得ITiO筒状旋转靶材素胚。
步骤六、烧结:ITiO筒状素胚靶材放置在常压烧结炉内,以0.5℃/min的升温速率,空气气氛升温至700℃保持8h完成脱脂,再以1℃/min的速率升温至1500℃持温10h,之后按1℃/min降温至1000℃后自然降温,进而得到相对密度为90%,电阻率9.1×10 -3Ω·cm的ITiO旋转靶材。
步骤七、机加工绑定:ITiO烧结后毛胚靶材经机加工研磨切割后得到规整的靶材,再经绑定贴合在钢管上后得到应用于太阳能电池及光通信电极的镀膜靶材。
将实施例1~3与对比例1~3分别进行对比,可以看出,对比例1~3中不含有分散剂,得到的ITiO旋转靶材的相对密度≤98%,电阻率≥4.0×10 -4Ω·cm,这表明在ITiO旋转靶材的制备过程中,分散剂的存在能够起到提高ITiO旋转靶材 的致密度和导电性的作用。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种ITiO旋转靶材的制备方法,其特征在于,包括如下步骤:
    按照质量份数,将90份~99.5份的In 2O 3纳米粉体、0.5份~10份的TiO 2纳米粉体、0.5份~5份的分散剂、0.5份~5份的粘接剂与水混合均匀,研磨后得到浆料;其中,所述In 2O 3纳米粉体的比表面积为5m 2/g~20m 2/g,所述TiO 2纳米粉体的比表面积为20m 2/g~50m 2/g;
    将所述浆料进行喷雾造粒,得到ITiO粉体;
    将所述ITiO粉体装入模具中,使用冷等静压成型,得到旋转靶材素坯;以及
    将所述旋转靶材素坯进行烧结,退火之后得到ITiO旋转靶材。
  2. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述分散剂选自聚丙烯酰胺、聚羧酸铵盐、聚乙烯羧酸类和硬脂酸盐类中的至少一种。
  3. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述粘接剂选自聚乙烯醇、丙烯酸乳液、羧甲基纤维素和聚丙烯酸酯中的至少一种。
  4. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,将所述In 2O 3纳米粉体、所述TiO 2纳米粉体、所述分散剂、所述粘接剂与水混合均匀的操作为:将所述In 2O 3纳米粉体与所述TiO 2纳米粉体混合之后得到混合粉体,将所述分散剂、所述粘接剂与水混合之后得到预混液,之后将所述混合粉体与所述预混液混合均匀。
  5. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述研磨的操作为:采用砂磨设备进行研磨,砂磨的时间为1h~8h,砂磨的转速为500rpm~1500rpm。
  6. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述浆料的固含量为40%~60%。
  7. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述喷雾造粒的温度为200℃~300℃。
  8. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述冷等静压的压力为200mpa~280mpa。
  9. 根据权利要求1所述的ITiO旋转靶材的制备方法,其特征在于,所述烧结与退火的条件为:在含氧气氛、常压条件下,以不高于1℃/min的升温速率升温至600~700℃完成脱脂作业,之后以不高于5℃/min的升温速率升温至至1400~1600℃保温烧结8~10小时,之后按降温速率0.5~1℃/min降温至小于1000℃,之后自然降温。
  10. 一种ITiO旋转靶材,其特征在于,所述ITiO旋转靶材由权利要求1~9中任一项所述的ITiO旋转靶材的制备方法制备得到。
PCT/CN2020/128668 2020-02-25 2020-11-13 ITiO旋转靶材及其制备方法 WO2021169418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010116105.9A CN111233440A (zh) 2020-02-25 2020-02-25 ITiO旋转靶材及其制备方法
CN202010116105.9 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169418A1 true WO2021169418A1 (zh) 2021-09-02

Family

ID=70862170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128668 WO2021169418A1 (zh) 2020-02-25 2020-11-13 ITiO旋转靶材及其制备方法

Country Status (2)

Country Link
CN (1) CN111233440A (zh)
WO (1) WO2021169418A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959601A (zh) * 2022-06-09 2022-08-30 先导薄膜材料有限公司 一种平面靶材的绑定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233440A (zh) * 2020-02-25 2020-06-05 基迈克材料科技(苏州)有限公司 ITiO旋转靶材及其制备方法
CN113735568A (zh) * 2021-09-23 2021-12-03 南宁西桂微电子有限公司 一种ito陶瓷靶材的制备方法
CN114163216A (zh) * 2021-12-15 2022-03-11 先导薄膜材料(广东)有限公司 一种氧化铟钛镱粉体及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819177A (zh) * 2013-12-11 2014-05-28 广西晶联光电材料有限责任公司 一种ITiO靶材的制备方法
CN105712703A (zh) * 2014-12-05 2016-06-29 广东先导稀材股份有限公司 高纯高密度ito靶材的制备方法
JP2017193755A (ja) * 2016-04-21 2017-10-26 住友金属鉱山株式会社 透明導電膜の製造方法、及び透明導電膜
CN108911707A (zh) * 2018-07-30 2018-11-30 常州苏晶电子材料有限公司 高密度ito靶材的制备方法
CN111233440A (zh) * 2020-02-25 2020-06-05 基迈克材料科技(苏州)有限公司 ITiO旋转靶材及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393695B (zh) * 2009-10-02 2013-04-21 Chunghwa Picture Tubes Ltd 奈米粉末漿體的製造方法及其應用
JP5983903B2 (ja) * 2014-08-01 2016-09-06 住友金属鉱山株式会社 酸化インジウム系酸化物焼結体とその製造方法
CN105906338A (zh) * 2016-04-19 2016-08-31 北京冶科纳米科技有限公司 一种高密度igzo旋转靶材的制造方法
CN108559959A (zh) * 2018-01-12 2018-09-21 基迈克材料科技(苏州)有限公司 复合金属氧化物靶材材料、靶材及靶材材料、靶材的制备方法
CN110436915B (zh) * 2019-08-05 2020-06-30 北京航大微纳科技有限公司 一种fbar压电层用氧化锌掺杂靶材材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819177A (zh) * 2013-12-11 2014-05-28 广西晶联光电材料有限责任公司 一种ITiO靶材的制备方法
CN105712703A (zh) * 2014-12-05 2016-06-29 广东先导稀材股份有限公司 高纯高密度ito靶材的制备方法
JP2017193755A (ja) * 2016-04-21 2017-10-26 住友金属鉱山株式会社 透明導電膜の製造方法、及び透明導電膜
CN108911707A (zh) * 2018-07-30 2018-11-30 常州苏晶电子材料有限公司 高密度ito靶材的制备方法
CN111233440A (zh) * 2020-02-25 2020-06-05 基迈克材料科技(苏州)有限公司 ITiO旋转靶材及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959601A (zh) * 2022-06-09 2022-08-30 先导薄膜材料有限公司 一种平面靶材的绑定方法
CN114959601B (zh) * 2022-06-09 2023-09-29 先导薄膜材料(安徽)有限公司 一种平面靶材的绑定方法

Also Published As

Publication number Publication date
CN111233440A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021169418A1 (zh) ITiO旋转靶材及其制备方法
CN107419226B (zh) 陶瓷圆筒形溅射靶材及其制造方法
US8778234B2 (en) Process for the manufacture of a high density ITO sputtering target
CN109047781A (zh) 一种制备大尺寸钨制品的方法
CN108623298A (zh) 一种高密度氧化铟锡管状靶材的脱脂烧结一体化制备方法
JP2021011421A (ja) 低損失ガーネットフェライト材料の調製方法
JP2005281862A (ja) 円筒形スパッタリングターゲット並びにセラミックス焼結体及びその製造方法
US20130206590A1 (en) Manufacture of High Density Indium Tin Oxide (ITO) Sputtering Target
CN114873992A (zh) 一种高铟含量的ito靶材的制备方法
JP2012126937A (ja) Itoスパッタリングターゲットとその製造方法
JP2013507526A (ja) 酸化スズセラミックスパッタリングターゲットおよびその製造方法
CN111018515A (zh) 靶材的制造方法和靶材
CN106966700A (zh) 一种氧化铟锡烧结体的短流程制备工艺
CN107032781A (zh) 一种注浆成型高密度azo靶材的制备方法
JP2014040348A (ja) Igzo焼結体、その製造方法及びスパッタリングターゲット
WO2015125588A1 (ja) Itoスパッタリングターゲット材およびその製造方法
JP2011093729A (ja) Ito焼結体の製造方法及びitoスパッタリングターゲットの製造方法
JP5218032B2 (ja) 透明導電膜用焼結体の製造方法
JP4508079B2 (ja) スパッタリングターゲットの製造方法
JP2013129545A (ja) Igzo焼結体、その製造方法及びスパッタリングターゲット
JP5784849B2 (ja) セラミックス円筒形スパッタリングターゲット材およびその製造方法
JP2008214169A (ja) 真空蒸着用ITiO焼結体およびその製造方法
CN102924077A (zh) 用新型低毒凝胶浇注制备大尺寸氧化锌基靶材的方法
JP4196805B2 (ja) 酸化インジウム系ターゲットおよびその製造方法
JP2006206349A (ja) Ito造粒粉末及びito焼結体並びにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922445

Country of ref document: EP

Kind code of ref document: A1