WO2021117765A1 - 回転電機の電機子巻線および回転電機 - Google Patents

回転電機の電機子巻線および回転電機 Download PDF

Info

Publication number
WO2021117765A1
WO2021117765A1 PCT/JP2020/045855 JP2020045855W WO2021117765A1 WO 2021117765 A1 WO2021117765 A1 WO 2021117765A1 JP 2020045855 W JP2020045855 W JP 2020045855W WO 2021117765 A1 WO2021117765 A1 WO 2021117765A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
phase
armature winding
winding
rotor
Prior art date
Application number
PCT/JP2020/045855
Other languages
English (en)
French (fr)
Inventor
上田 隆司
真史 藤田
将史 大久保
博明 石塚
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2021563998A priority Critical patent/JP7214895B2/ja
Priority to CN202080052478.2A priority patent/CN114128092B/zh
Publication of WO2021117765A1 publication Critical patent/WO2021117765A1/ja
Priority to US17/581,599 priority patent/US12040670B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the embodiment of the present invention relates to an armature winding of a rotary electric machine and a rotary electric machine.
  • a three-phase alternating current rotary electric machine (hereinafter referred to as "rotary electric machine") is composed of an armature portion 1, a field portion 2, a shaft 3, and the like as shown in FIG.
  • One of the armature portion 1 and the field portion 2 rotates as a rotor, and the other is fixed as a stator.
  • a case where the armature portion 1 is a stator and the field portion 2 is a rotor will be described as an example.
  • the armature portion 1 of FIG. 7 is composed of an armature core 5 and an armature winding 6, and the armature core 5 is formed by laminating laminated iron plates in a slot 7 provided around the armature core 5.
  • the armature winding 6 is arranged in two layers, an upper coil piece 8 on the side close to the slot opening and a lower coil piece 9 on the bottom side of the slot, and the outer peripheral portion thereof is covered with a main insulating layer.
  • FIG. 8 shows a schematic development diagram of a general wave-wound armature winding in a rotating electric machine with a 3-phase 12-pole 72-slot 4-parallel circuit.
  • the armature winding is composed of a U-phase winding, a V-phase winding, and a W-phase winding, and each parallel circuit of each phase passes through each magnetic pole in sequence to pass through the armature. It is wound so as to go around.
  • FIG. 9 is a diagram showing a schematic development diagram of the armature winding shown in FIG. 8 for only one phase and dividing the four parallel circuits in one phase.
  • the armature winding configurations of the illustrated phases are shifted by 120 degrees and 240 degrees, respectively, in terms of electrical angle.
  • the armature winding of each parallel circuit has an upper coil piece 8 housed on the opening side in the slot and a lower coil piece 9 housed on the bottom side in the slot.
  • connection side coil end 10 which is connected so that the ends of the upper coil piece 8 and the lower coil piece 9 rotate around each other, and the non-connection side coil end 11 which is not connected to the outlet portions 15 and 16 on the opposite side in the axial direction.
  • the 12 phase bands 13 form a phase band group 14.
  • phase band 13 means that the upper coil piece 8 and the lower coil piece 9 are housed in two layers in a plurality of slots 7 provided in the armature core 5 assigned by dividing each of the three phases into a plurality of phases. Refers to the winding part that connects these to form the same phase.
  • FIG. 10 shows an image of the coil arrangement of the parallel circuit for one phase of the armature winding shown in FIG. 9, and FIG. 11 shows a shaft cross section of the rotary electric machine having the parallel circuit.
  • the winding method of the conventional armature winding will be described by taking the second circuit as an example among the four parallel circuits (first to fourth circuits) shown in FIGS. 9 to 11.
  • the winding of the second circuit passes from the winding opening portion 15 through the lower coil piece of the 67th slot, the upper coil piece of the second slot, and the lower coil of the 7th slot.
  • the winding opening portion 16 passes through one piece, through the upper coil piece of the 14th slot, through the lower coil piece of the 19th slot, through the upper coil piece of the 26th slot, through the jumper wire 12, and through the lower coil piece of the 30th slot. It passes through the upper coil piece of the 37th slot, the lower coil piece of the 42nd slot, the upper coil piece of the 49th slot, the lower coil piece of the 54th slot, and the upper coil piece of the 61st slot. It is guided to the winding opening portion 16.
  • the windings of the first, third, and fourth circuits have the same form as the windings of the second circuit, but are arranged at different positions in the circumferential direction in each circuit.
  • the rotor In a rotary electric machine, the rotor is usually rotated around the center point (center point of the stator) 21 of the rotary electric machine shown in FIG. 11, and the gap 4 between the stator and the rotor is on the circumference. However, as shown in FIG. 11, the central axis 22 of the rotor deviates from the center point 21 of the stator, and the gap 4 between the stator and the rotor becomes non-uniform on the circumference. Eccentricity may occur. When the gap eccentricity occurs, the magnetic energy that couples the armature and the rotor becomes non-uniform over the entire circumference, and a magnetic attraction force acts.
  • each circuit of the two-parallel circuit is divided into an upper half and a lower half when viewed from the axial cross section of the rotating machine, and the winding is configured for the rotating armature of the three-phase, six-pole 108-slot, two-parallel circuit.
  • the magnetic attraction force acting between the armature and the rotor at the time of eccentricity of the gap is reduced.
  • the magnetic attraction is applied to the gap eccentricity in the left-right direction. It is considered that the force reduction effect is significantly reduced.
  • the problem to be solved by the present invention is to change the winding method of the armature winding while utilizing the existing configuration, so that the gap eccentricity with respect to the gap eccentricity in the entire circumferential direction as seen from the shaft cross section of the rotary electric machine. It is an object of the present invention to provide an armature winding of a rotary electric machine and a rotary electric machine capable of pushing the rotor at the time of generation back to the original position.
  • the armature winding of the rotary electric machine of the embodiment is a three-phase, six-pole or more even-pole two-layer winding armor winding, and each phase is provided with a three-parallel or more parallel circuit, and each circuit is individually configured.
  • the coils are connected by a wave winding, and each circuit is arranged so that the phase band group overlaps with the "pole number / 2" of the phase bands in the circuits on both sides adjacent to each other. They are placed in different positions in the direction.
  • the rotation when the gap eccentricity occurs with respect to the gap eccentricity in the entire circumferential direction as seen from the shaft cross section of the rotary electric machine You can push the child back to its original position.
  • FIG. 1 is a development schematic diagram of one phase of an armature winding of a rotary electric machine according to an embodiment.
  • FIG. 2 is an image diagram of a coil arrangement of a parallel circuit for one phase of the armature winding in the same embodiment.
  • FIG. 3 is a diagram showing a shaft cross section of a rotary electric machine having a parallel circuit in the same embodiment.
  • FIG. 4 is a diagram showing the coil installation of each parallel circuit for one phase of each armature winding and the installation range thereof in the same embodiment as the conventional winding method.
  • FIG. 5 is a diagram illustrating a principle in which a force for returning the rotor to its original position acts when the rotor is eccentric.
  • FIG. 1 is a development schematic diagram of one phase of an armature winding of a rotary electric machine according to an embodiment.
  • FIG. 2 is an image diagram of a coil arrangement of a parallel circuit for one phase of the armature winding in the same embodiment.
  • FIG. 3 is a diagram
  • FIG. 6 is a diagram showing an example of comparison results obtained by numerical analysis of the magnetic attraction force acting on the rotor when a gap eccentricity occurs between the winding method of the conventional example and the winding method of the present embodiment.
  • FIG. 7 is a diagram showing a shaft cross section of a general rotary electric machine.
  • FIG. 8 is a development schematic diagram of a general wave-wound armature winding in a rotating electric machine of a three-phase 12-pole 72-slot 4-parallel circuit.
  • FIG. 9 is a diagram showing a schematic development diagram of the armature winding shown in FIG. 8 for only one phase and dividing the four parallel circuits in one phase.
  • FIG. 10 is an image diagram of a coil arrangement of a conventional parallel circuit for one armature winding.
  • FIG. 11 is a diagram showing a shaft cross section of a rotary electric machine having a parallel circuit arranged by a conventional method.
  • FIG. 1 is a development schematic diagram of one phase of the armature winding of the rotary electric machine according to the embodiment.
  • the same elements as those described above are designated by the same reference numerals.
  • a rotary electric machine having a 12-pole 72-slot 4-parallel circuit will be taken as an example.
  • FIG. 1 only one phase of the armature winding is shown, but for the other two phases not shown in FIG. 1, the configurations of the armature windings of the illustrated phases are shown at 120 degrees and 240 in electrical angles, respectively. It will be shifted by degree.
  • slot numbers are shown in FIG. 1, only odd numbers are shown and even numbers are omitted in order to avoid complexity.
  • the armature winding of each phase has an upper coil piece 8 housed on the opening side in the slot and a lower coil piece 9 housed on the bottom side in the slot, and these upper coil piece 8 and lower coil piece 8 are housed.
  • connection side coil end 10 in which the ends of 9 are connected to the winding opening portions 15 and 16, and the non-connecting side coil end 11 which is not connected to the winding opening portion on the opposite side in the axial direction of the winding electric machine. It is configured to be sequentially connected in series to the range of six phase bands 13 in the circumferential direction, then folded back via the jumper wire 12 and further connected in sequence to the range of six phase bands 13 in the circumferential direction.
  • each phase band group 14 of each parallel circuit is wound so as to overlap the three phase band groups 14. That is, each parallel circuit is arranged so that the phase band group 14 overlaps the phase band 13 for the number of pole pairs (number of poles / 2) in the circuits on both sides adjacent to each other, and the phase band group 14 is arranged in the circumferential direction in each circuit. Are placed in different positions.
  • FIG. 2 shows an image of the coil arrangement of the parallel circuit for one phase of the armature winding shown in FIG. 1
  • FIG. 3 shows a shaft cross section of the rotary electric machine having the parallel circuit.
  • Each parallel circuit is wound by six phase band groups 14 (corresponding to a mechanical angle of 180 degrees) shown in FIG. 1, and each phase band group 14 of each parallel circuit is each three phase band groups 14 (mechanical).
  • the coils are arranged so as to overlap (corresponding to an angle of 90 degrees).
  • the winding method of the armature winding according to the present embodiment will be described by taking the second circuit as an example among the four parallel circuits (first to fourth circuits) shown in FIGS. 1 to 3.
  • the winding of the second circuit passes from the winding opening portion 15 through the lower coil piece of the 18th slot, the upper coil piece of the 25th slot, and the lower coil of the 30th slot. Passing through one piece, through the upper coil piece in slot 37, through the lower coil piece in slot 42, through the upper coil piece in slot 49, through the jumper wire 12, through the upper coil piece in slot 44, It passes through the lower coil piece of the 37th slot, the upper coil piece of the 32nd slot, the lower coil piece of the 25th slot, the upper coil piece of the 20th slot, and the lower coil piece of the 13th slot. It is guided to the winding opening portion 16.
  • the windings of the first, third, and fourth circuits have the same form as the windings of the second circuit, but are arranged at different positions in the circumferential direction in each circuit.
  • the case of a three-phase, six-pole, two-layer armature winding is illustrated, but the present invention is not limited to this. For example, it may be an even number of 6 poles or more, and is not limited to the case of only 6 poles.
  • the case where there are four parallel circuits is illustrated, but the present invention is not limited to this.
  • each phase has a parallel circuit of 3 parallels or more, and is not limited to the case of 4 parallels. In that case, make sure that the number of poles / the number of parallel circuits is an integer. It is desirable that the phase band group 14 of each circuit is arranged so as to be displaced by "the number of phase bands / the number of parallel circuits" in the circumferential direction.
  • each circuit forms a phase band group 14 with "4P / n" phase bands 13. It is desirable that the phase band group 14 is arranged by shifting the phase bands by "2 P / n" in the circumferential direction in each circuit.
  • FIG. 4A is a diagram showing the coil installation of each parallel circuit for one phase of the armature winding by the conventional winding method and the installation range thereof.
  • FIG. 4B is a diagram showing the coil installation of each parallel circuit for one phase of the armature winding and the installation range thereof according to the present embodiment.
  • each parallel circuit in order to make it easy to understand the coil installation of each parallel circuit, it is housed in the slot 7 provided in the armature core 5 of the stator (armature part) 1.
  • the size of the armature winding 6 (upper coil piece 8, lower coil piece 9) of each parallel circuit is described to be larger, and the shape of the rotor (field portion) 2 is simplified and made circular. It is said.
  • each of the four parallel circuits orbits the stator 1. It is arranged so as to do (one lap).
  • four parallel circuits are provided. Each is arranged within a range of a mechanical angle of 180 degrees in the circumferential direction and is arranged so as to be offset by a mechanical angle of 90 degrees in the circumferential direction.
  • FIG. 5 shows an outline of the principle in which a force for returning the rotor 2 to its original position acts when a gap eccentricity due to the rotor 2 occurs.
  • FIG. 5 illustrates an example in which the armature portion 1 and the field portion 2 have a simple configuration in order to avoid complication of the description. Further, here, the distinction between the upper coil piece and the lower coil piece and the illustration thereof are also omitted.
  • the repulsive force and the suction force described above can be generated in both the conventional winding method and the winding method of the present embodiment, but in the case of the conventional winding method, as shown in FIG. 4A, 4 Since the two parallel circuits (first circuit, second circuit, third circuit, and fourth circuit) are arranged in series so as to orbit the armature portion 1 (one orbit), respectively. The harmful effects described below occur.
  • the armature winding 6 of the second circuit exists in the vicinity where the rotor 2 is close to the stator 1, and the armature winding 6 is present.
  • the armature winding 6 of the second circuit also exists in the vicinity where the rotor 2 is separated from the stator 1.
  • the induced current tries to flow in the direction of generating the repulsive force, while the rotor 2 is fixed.
  • the induced current tends to flow in the direction of generating the attractive force.
  • both armature windings 6 are connected in series, a repulsive force is generated in the armature winding 6 of the second circuit existing in the vicinity where the rotor 2 is close to the stator 1.
  • the induced current that tends to flow in the direction will flow in the direction in which the armature winding 6 of the second circuit (that is, the induced current generates an attractive force) existing near the rotor 2 away from the stator 1. It also tries to flow to the armature winding 6), and both induced currents cancel each other out.
  • the rotor 2 is the stator for the induced current that tends to flow in the direction of generating the attractive force in the armature winding 6 of the second circuit existing near the rotor 2 away from the stator 1.
  • the armature winding 6 of the second circuit existing in the vicinity of 1 (that is, the armature winding 6 in which the induced current is about to flow in the direction of generating the repulsive force) also tries to flow, and both of them try to flow. Induced currents cancel each other out.
  • Such cancellation of induced currents is not limited to the case where the rotor 2 approaches the vicinity of the armature winding 6 of the second circuit, and the rotor 2 is the first, third, and fourth circuits. The same occurs when approaching any of the armature windings 6 of the above. As a result, when an unbalanced electromagnetic force is generated due to the eccentricity of the rotor 2, the force for returning the rotor 2 to its original position does not work effectively.
  • the armature winding 6 of the second circuit is located near the rotor 2 approaching the stator 1.
  • the armature winding 6 of the second circuit does not exist near the rotor 2 away from the stator 1, and the armature winding 6 of the first circuit or the fourth circuit exists.
  • the armature winding 6 of the second circuit existing near the rotor 2 approaching the stator 1, the induced current tries to flow in the direction of generating the repulsive force, but the rotor 2 is the stator.
  • the armature winding 6 of the second circuit does not exist in the vicinity of the distance from 1, the cancellation of the induced currents as described above does not occur, and the armature winding 6 of the second circuit repels. An induced current flows in the direction in which the force is generated. Further, in the armature winding 6 of the first circuit or the fourth circuit existing near the rotor 2 away from the stator 1, the induced current tends to flow in the direction of generating the attractive force.
  • Such an action is not limited to the case where the rotor 2 approaches the vicinity of the armature winding 6 of the second circuit, and the rotor 2 is the armature winding of the first, third, and fourth circuits. The same occurs when approaching any vicinity of the line 6. Further, since the winding arrangement is such that the installation range of each circuit partially overlaps the installation range of the adjacent circuit, the unbalanced electromagnetic force is reduced regardless of the eccentricity of the rotor 2 in any direction. The effect of As a result, when an unbalanced electromagnetic force is generated due to the eccentricity of the rotor 2, a force (repulsive force, attractive force) for returning the rotor 2 to its original position works effectively.
  • a circulating current mainly flows in the first circuit and the second circuit, and the first circuit is magnetic.
  • a gap eccentricity occurs in the left-right direction when viewed from the shaft cross section of the rotating electric machine, a force that pushes the rotor whose central axis is displaced back to its original position acts mainly in the third circuit and the fourth circuit.
  • Circulating current flows like this.
  • the rotor can be pushed back to the original position when the gap eccentricity occurs with respect to the gap eccentricity in the entire circumferential direction seen from the shaft cross section of the rotary electric machine.
  • FIG. 6 shows an example of comparison results obtained by numerical analysis of the magnetic attraction force acting on the rotor when the gap eccentricity occurs between the winding method of the conventional example of FIG. 11 and the winding method of the present embodiment.
  • the horizontal axis has 1 PU as the magnetic attraction force acting on the rotor in the conventional winding method.
  • the gap eccentricity in the entire circumferential direction as seen from the shaft cross section of the rotary electric machine can be dealt with. It is possible to push the rotor back to its original position when the gap eccentricity occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

実施形態の回転電機の電機子巻線は、3相6極以上の偶数極の2層巻き電機子巻線であって、各相に3並列以上の並列回路を備え、各回路を構成する個々のコイルは波巻により結線され、各回路は相帯群(14)が隣接する両側の回路における「極数/2」個分の相帯(13)と重なるように配置され、該相帯群(14)は各回路で周方向に異なる位置に配置されている。

Description

回転電機の電機子巻線および回転電機
 本発明の実施形態は、回転電機の電機子巻線および回転電機に関する。
 一般に、3相交流の回転電機(以下、「回転電機」と称す。)は、図7に示すように電機子部1、界磁部2、シャフト3等から構成される。電機子部1と界磁部2とは、どちらか一方が回転子として回転し、もう一方は固定子として固定される。ここでは、電機子部1が固定子、界磁部2が回転子である場合を例に挙げて説明する。
 図7の電機子部1は電機子鉄心5と電機子巻線6からなり、電機子鉄心5は積層鉄板を積層して構成され、この電機子鉄心5の周囲部に設けられたスロット7には電機子巻線6が収められている。この電機子巻線6は、スロット開口部に近い側の上コイル片8と、スロット底側の下コイル片9の2層に配置され、その外周部が主絶縁層で覆われている。
 回転電機の電機子巻線6の巻線方式には、重ね巻と波巻とがある(例えば特許文献1および非特許文献1)。2つのコイル片により亀甲形状のコイルを形成するものを重ね巻、コイル片が各磁極を順次通過して一方向に巻き進むものを波巻という。波巻は重ね巻きに比べ極間渡り線を省略でき製造が容易となり、極間渡り線で発生する交流損が低減でき回転電機の性能向上に効果があることから水車発電機等の大容量の回転電機で採用されている。以下、波巻に関して説明する。
 図8に、3相12極72スロット4並列回路の回転電機における一般的な波巻の電機子巻線の展開模式図を示す。図8に示されるように、電機子巻線は、U相巻線、V相巻線、およびW相巻線から構成され、各相の各並列回路は各磁極を順次通過して電機子を周回するように巻回される。
 図9は、図8に示される電機子巻線の展開模式図を1相分のみとし、1相内の4並列回路を分けて示した図である。図9に示していない他の2相については、図示された相の電機子巻線の構成をそれぞれ電気角で120度及び240度ずつずらしたものとなる。
 なお、図8、図9においては、スロットの番号が記載されているが、煩雑さを避けるために奇数番号のみを記載し、偶数番号の記載を省略している。
 図9に示されるように、各並列回路の電機子巻線は、スロット内の開口部側に納められる上コイル片8と、スロット内の底側に納められる下コイル片9とを有し、これら上コイル片8、下コイル片9の端部同士が周回するに接続される接続側コイルエンド10と、その軸方向反対側で口出し部15,16に接続されない反接続側コイルエンド11とにおいて、それぞれ回転電機の周方向に一方向に順次直列に接続され、12個の相帯13により相帯群14を形成している。
 ここで、相帯13とは、3相各相を複数に分割して割り当てられた電機子鉄心5に設けられた複数のスロット7にそれぞれ上コイル片8及び下コイル片9を2層に収めてこれらを接続して同一相を形成する巻線部分を言う。
 また、多並列回路を有する回転電機において、各並列回路間で誘起される電圧が不平衡となると、並列回路間に循環電流が発生し、電機子巻線温度が上昇するため、最悪の場合には加熱や焼損事故の原因となる。そこで、各並列回路で誘起される電圧が平衡するようスロット7に配置する上下コイルの配列をジャンパ線12により入れ替えて巻回される。図9では各並列回路で誘起される電圧が平衡となるように6相帯毎にコイル配置を1スロット分入れ替えている。
 図9に示される電機子巻線1相分の並列回路のコイル配置イメージを図10に、当該並列回路を有する回転電機の軸断面を図11に示す。
 ここで、図9乃至図11に示される4並列回路(第1乃至第4の回路)のうち、第2の回路を例に、従来の電機子巻線の巻線方式を説明する。
 図9に示されるように、第2の回路の巻線は、巻線口出し部15から、第67スロットの下コイル片を通り、第2スロットの上コイル片を通り、第7スロットの下コイル片を通り、第14スロットの上コイル片を通り、第19スロットの下コイル片を通り、第26スロットの上コイル片を通り、ジャンパ線12を通り、第30スロットの下コイル片を通り、第37スロットの上コイル片を通り、第42スロットの下コイル片を通り、第49スロットの上コイル片を通り、第54スロットの下コイル片を通り、第61スロットの上コイル片を通り、巻線口出し部16へと導かれる。
 第1、第3、第4の回路の巻線も、第2の回路の巻線と同様な形態をとるが、それぞれ各回路で周方向に異なる位置に配置される。
日本国特開昭56-44360号公報
Mattias Wallin, Martin Ranlof, and Urban Lundin, "Reduction of Unbalanced Magnetic Pull in Synchronous Machines due to Parallel Circuits" IEEE TRANSACTIONS ON MAGNETICS, VOL.47,NO.12,DECEMBER2011, pp.4827-4833
 回転電機は、通常、図11に示される回転電機の中心点(固定子の中心点)21を中心に回転子が回転しており、固定子と回転子との間のギャップ4は円周上で均一であるが、図11に示されるように固定子の中心点21から回転子の中心軸22がずれ、固定子と回転子との間のギャップ4が円周上で不均一となるギャップ偏心が生じることがある。ギャップ偏心が生じた場合、電機子と回転子とを結合する磁気エネルギーが全周上で不均一となり、磁気吸引力が働く。
 回転電機を大容量化する場合、ギャップ偏心が生じた際の磁気吸引力が大きくなり、軸受やフレームに掛かる力が大きくなる。また、一般的な波巻の電機子巻線は、各相の各並列回路が図10のように電機子を周回する(1周する)ように巻回されていることから、ギャップ偏心が生じた際に、ギャップが狭くなる付近で磁極を形成する電流と、ギャップが広くなる付近で磁極を形成する電流とが打ち消しあって誘導電流が流れにくくなる部分が生じやすく、ギャップ偏心に対して回転子を元の位置に戻す力を十分に発揮できない。特に既存の回転電機の構造を変えずに大容量化すると、ギャップ偏心に対して回転子を元の位置に戻すことができなくなる。その場合、軸受やフレームが耐えられなくなり変形や破損、回転子と固定子との接触が起こる可能性がある。一方、このようなことを防止するために回転電機全体の再設計を行うとなると、多大な時間とコストを要する。こうした問題は、回転子が電機子部1、固定子が界磁部2を構成する場合においても同様に起こる。
 例えば非特許文献1においては、3相6極108スロット2並列回路の回転電機を対象に2並列回路の各回路を回転機の軸断面から見て上半と下半に分けて巻線を構成することにより、ギャップ偏心時の電機子と回転子の間に働く磁気吸引力の低減を図っている。この非特許文献1の構成においては、回転電機の軸断面から見て上下方向のギャップ偏心が生じた場合には磁気吸引力の低減効果があるものの、左右方向のギャップ偏心に対しては磁気吸引力の低減効果が大幅に低下すると考えられる。
 本発明が解決しようとする課題は、既存の構成を活かしつつ、電機子巻線の巻線方式を変更することで、回転電機の軸断面から見た全周方向のギャップ偏心に対し、ギャップ偏心発生時の回転子を元の位置に押し戻すことができる、回転電機の電機子巻線および回転電機を提供することにある。
 実施形態の回転電機の電機子巻線は、3相6極以上の偶数極の2層巻き電機子巻線であって、各相に3並列以上の並列回路を備え、各回路を構成する個々のコイルは波巻により結線され、各回路は相帯群が隣接する両側の回路における「極数/2」個分の相帯とそれぞれ重なるように配置され、該相帯群は各回路で周方向に異なる位置に配置されている。
 本発明によれば、既存の構成を活かしつつ、電機子巻線の巻線方式を変更することで、回転電機の軸断面から見た全周方向のギャップ偏心に対し、ギャップ偏心発生時の回転子を元の位置に押し戻すことができる。
図1は、実施形態による回転電機の電機子巻線の1相分の展開模式図である。 図2は、同実施形態における電機子巻線1相分の並列回路のコイル配置イメージ図である。 図3は、同実施形態における並列回路を有する回転電機の軸断面を示す図である。 図4は、従来の巻線方式と同実施形態のそれぞれの電機子巻線1相分の各並列回路のコイル設置とその設置範囲を示す図である。 図5は、回転子の偏心が生じた場合に回転子を元の位置に戻そうとする力が働く原理を説明する図。 図6は、従来例の巻線方法と本実施形態の巻線方法とで、ギャップ偏心発生時の回転子に働く磁気吸引力を数値解析によりそれぞれ求めた比較結果の一例を示す図である。 図7は、一般的な回転電機の軸断面を示す図である。 図8は、3相12極72スロット4並列回路の回転電機における一般的な波巻の電機子巻線の展開模式図である。 図9は、図8に示される電機子巻線の展開模式図を1相分のみとし、1相内の4並列回路を分けて示した図である。 図10は、従来の電機子巻線1相分の並列回路のコイル配置イメージ図である。 図11は、従来方法で配置された並列回路を有する回転電機の軸断面を示す図である。
実施形態
 以下、図面を参照して、実施の形態について説明する。
 図1は、実施形態による回転電機の電機子巻線の1相分の展開模式図である。なお、図1では、前述した要素と同一の要素には同一の符号を付している。
 この実施形態では、12極72スロット4並列回路の回転電機を例として挙げる。図1では電機子巻線の1相分のみ示しているが、図1に示していない他の2相については、図示された相の電機子巻線の構成をそれぞれ電気角で120度及び240度ずつずらしたものとなる。なお、図1においては、スロットの番号が記載されているが、煩雑さを避けるために奇数番号のみを記載し、偶数番号の記載を省略している。
 図1に示される回転電機の電機子は、積層鉄心から成る電機子鉄心5に72個のスロットが設けられ、これらのスロットに12極3相4並列回路の電機子巻線が2層に収められている。
 各相の電機子巻線は、スロット内の開口部側に納められる上コイル片8と、スロット内の底側に納められる下コイル片9とを有し、これら上コイル片8、下コイル片9の端部同士を巻線口出し部15,16に接続される接続側コイルエンド10と、その軸方向反対側で巻線口出し部に接続されない反接続側コイルエンド11とにおいて、それぞれ回転電機の周方向に6個の相帯13の範囲に順次直列接続し、その後、ジャンパ線12を介して折り返して、更に周方向に6個の相帯13の範囲に順次接続される構成としている。更に、各並列回路の各相帯群14はそれぞれ3個の相帯群14をオーバラップさせるように巻回している。すなわち、各並列回路は相帯群14が隣接する両側の回路における極対数(極数/2)個分の相帯13とそれぞれ重なるように配置され、該相帯群14は各回路で周方向に異なる位置に配置されている。
 図1に示される電機子巻線1相分の並列回路のコイル配置イメージを図2に、当該並列回路を有する回転電機の軸断面を図3に示す。
 各並列回路は、図1に示される6個の相帯群14(機械角180度に相当)で巻回され、各並列回路の各相帯群14はそれぞれ3個の相帯群14(機械角90度に相当)をオーバラップさせるようにコイルを配置している。
 ここで、図1乃至図3に示される4並列回路(第1乃至第4の回路)のうち、第2の回路を例に、本実施形態による電機子巻線の巻線方式を説明する。
 図1に示されるように、第2の回路の巻線は、巻線口出し部15から、第18スロットの下コイル片を通り、第25スロットの上コイル片を通り、第30スロットの下コイル片を通り、第37スロットの上コイル片を通り、第42スロットの下コイル片を通り、第49スロットの上コイル片を通り、ジャンパ線12を通り、第44スロットの上コイル片を通り、第37スロットの下コイル片を通り、第32スロットの上コイル片を通り、第25スロットの下コイル片を通り、第20スロットの上コイル片を通り、第13スロットの下コイル片を通り、巻線口出し部16へと導かれる。
 第1、第3、第4の回路の巻線も、第2の回路の巻線と同様な形態をとるが、それぞれ各回路で周方向に異なる位置に配置される。
 なお、本実施形態では、3相6極の2層巻き電機子巻線の場合を例示しているが、これに限定されるものではない。例えば6極以上の偶数極であればよく、6極だけの場合に限られない。また、本実施形態では並列回路が4つの場合を例示しているが、これに限定されるものではない。例えば各相に3並列以上の並列回路があればよく、4並列の場合に限られない。その場合、極数/並列回路数が整数となるようにする。各回路の相帯群14は、位置を周方向に「相帯数/並列回路数」だけずらして配置することが望ましい。
 極数を2P極、並列回路数をn並列回路(P,nは任意の自然数)とすれば、各回路は「4P/n」個の相帯13により相帯群14を形成しており、該相帯群14は各回路で周方向に「2P/n」個の相帯分ずらして配置されていることが望ましい。
 上記の構成を採用すれば、ギャップ偏心が生じた場合、並列回路内でインダクタンスに差が生じて、各回路間の電圧に差が生じ、電圧が高くなる回路(ギャップ4が狭くなる位置に該当する回路)では磁気吸引力と逆方向の力を引き起こす循環電流が流れ、電圧が低くなる回路(ギャップ4が広くなる位置に該当する回路)では磁気吸引力と同方向の力を引き起こす循環電流が流れ、中心軸のずれた回転子を元の位置に押し戻す力が働く。
 以下では、上記した作用について、図4及び図5を参照しながらより詳細に説明する。
 図4(a)は、従来の巻線方式による電機子巻線1相分の各並列回路のコイル設置とその設置範囲を示す図である。一方、図4(b)は、本実施形態による電機子巻線1相分の各並列回路のコイル設置とその設置範囲を示す図である。
 なお、図4(a)及び(b)では、各並列回路のコイル設置を理解しやすくするため、固定子(電機子部)1の電機子鉄心5に設けられたスロット7に収納されている各並列回路の電機子巻線6(上コイル片8、下コイル片9)のサイズを大きめに記載しており、また、回転子(界磁部)2の形状を簡略化して円形にした記載としている。
 従来の巻線方式では、図4(a)に示されるように、4つの並列回路(第1の回路、第2の回路、第3の回路、第4の回路)はそれぞれ固定子1を周回する(1周する)ように配置されている。これに対し、本実施形態の巻線方式では、図4(b)に示されるように、4つの並列回路(第1の回路、第2の回路、第3の回路、第4の回路)がそれぞれ、周方向に機械角180度の範囲内に配置され且つ周方向に機械角90度ずつずらして配置されている。
 このように従来の巻線方式と本実施形態の巻線方式とでは、巻線の配置が異なるため、作用・効果が後述するように異なる。
 従来の巻線方式と本実施形態の巻線方式のそれぞれについて、図4(a)及び(b)のように、固定子1の中心点21から回転子2の中心軸がずれ、固定子1と回転子2との間のギャップ4が円周上で不均一となるギャップ偏心が生じた場合を考える。
 図5に、回転子2によるギャップ偏心が生じた場合に回転子2を元の位置に戻そうとする力が働く原理の概要を示す。図5では、説明の複雑化を避けるため、電機子部1及び界磁部2が簡易な構成である場合の例を描写している。また、ここでは上コイル片と下コイル片の区別やその図示も省略している。
 図5(a)に示されるように、回転子2の偏心により、その一部が固定子1から離れ、他の一部が固定子1に近づくと、回転子2と固定子1との間に不平衡電磁力が発生する。
 このような不平衡電磁力が発生すると、回転子2と固定子1との間の電磁力を平衡状態に戻すべく回転子2を元の位置に戻そうとする力(反発力、吸引力)が働く。
 例えば、図5(b)に示されるように、回転子2のN極の部分が固定子1に近づくと、固定子1側の対向する位置にN極を生じさせる(あるいは、回転子2のS極の部分が固定子1に近づくと、固定子1側の対向する位置にS極を生じさせる)ことにより、回転子2を元の位置に押し戻す反発力を発生させようと、誘導電流31c、32cが、固定子1側の電機子巻線(例えばスロット31の位置から矢印に示す方向(固定子軸方向)へ向かい、その後、逆方向に転換してスロット32の位置に戻ってくるように配置された電機子巻線)に流れる。また、このとき回転子2のS極の部分が固定子から離れると、固定子1側の対向する位置にN極を生じさせる(あるいは、回転子2のN極の部分が固定子1から離れると、固定子1側の対向する位置にS極を生じさせる)ことにより、回転子2を元の位置に引き戻す吸引力を発生させようと、誘導電流41c、42cが、固定子1側の電機子巻線(例えばスロット41の位置から矢印に示す方向(固定子軸方向)へ向かい、その後、逆方向に転換してスロット42の位置に戻ってくるように配置された電機子巻線)に流れる。
 上述した反発力、吸引力は、従来の巻線方式と本実施形態の巻線方式のいずれにも生じ得るが、従来の巻線方式の場合は、図4(a)に示されるように4つの並列回路(第1の回路、第2の回路、第3の回路、第4の回路)がそれぞれ電機子部1を周回する(1周する)ように直列接続で配置されていることから、以下に説明するような弊害が生じる。
 従来の巻線方式の場合は、図4(a)に示されるように、回転子2が固定子1に接近している付近に例えば第2の回路の電機子巻線6が存在すると共に、回転子2が固定子1から離れている付近にも第2の回路の電機子巻線6が存在する。回転子2が固定子1に接近している付近に存在する第2の回路の電機子巻線6では、誘導電流が反発力を発生させる方向に流れようとする一方で、回転子2が固定子1から離れている付近に存在する第2の回路の電機子巻線6では、誘導電流が吸引力を発生させる方向に流れようとする。
 しかし、双方の電機子巻線6は直列接続されていることから、回転子2が固定子1に接近している付近に存在する第2の回路の電機子巻線6において反発力を発生させる方向に流れようとする誘導電流は、回転子2が固定子1から離れている付近に存在する第2の回路の電機子巻線6(即ち、誘導電流が吸引力を発生させる方向に流れようとしている電機子巻線6)にも流れようとし、双方の誘導電流が互いに打ち消し合う。同様に、回転子2が固定子1から離れている付近に存在する第2の回路の電機子巻線6において吸引力を発生させる方向に流れようとする誘導電流は、回転子2が固定子1に接近している付近に存在する第2の回路の電機子巻線6(即ち、誘導電流が反発力を発生させる方向に流れようとしている電機子巻線6)にも流れようとし、双方の誘導電流が互いに打ち消し合う。
 このような誘導電流の打ち消し合いは、回転子2が第2の回路の電機子巻線6が存在する付近に接近する場合に限らず、回転子2が第1、第3、第4の回路の電機子巻線6のいずれかの付近に接近する場合においても同様に起こる。その結果、回転子2の偏心による不平衡電磁力の発生時に、回転子2を元の位置に戻そうとする力が有効に働かない。
 一方、本実施形態の巻線方式の場合は、図4(b)に示されるように、回転子2が固定子1に接近している付近に例えば第2の回路の電機子巻線6が存在するが、回転子2が固定子1から離れている付近には第2の回路の電機子巻線6は存在せず、第1の回路もしくは第4の回路の電機子巻線6が存在する。回転子2が固定子1に接近している付近に存在する第2の回路の電機子巻線6では、誘導電流が反発力を発生させる方向に流れようとするが、回転子2が固定子1から離れている付近には、第2の回路の電機子巻線6は存在しないため、上述したような誘導電流の打ち消し合いは起こらず、第2の回路の電機子巻線6には反発力を発生させる方向の誘導電流が流れる。また、回転子2が固定子1から離れている付近に存在する第1の回路もしくは第4の回路の電機子巻線6では、誘導電流が吸引力を発生させる方向に流れようとするが、回転子2が固定子1に接近している付近には、第1の回路もしくは第4の回路の電機子巻線6は存在しないため、上述したような誘導電流の打ち消し合いは起こらず、第1の回路もしくは第4の回路の電機子巻線6には吸引力を発生させる方向の誘導電流が流れる。
 このような作用は、回転子2が第2の回路の電機子巻線6が存在する付近に接近する場合に限らず、回転子2が第1、第3、第4の回路の電機子巻線6のいずれかの付近に接近する場合においても同様に起こる。また、各回路の設置範囲が隣接する回路の設置範囲と一部重複するような巻線配置になっていることから、回転子2の偏心がいずれの方向であっても不平衡電磁力を低減する効果が得られる。その結果、回転子2の偏心による不平衡電磁力の発生時には、回転子2を元の位置に戻そうとする力(反発力、吸引力)が有効に働く。
 本実施形態によれば、回転電機の軸断面から見て上下方向のギャップ偏心が生じた場合は、主に第1の回路と第2の回路に循環電流が流れ、第1の回路には磁気吸引力と同方向の力を引き起こす循環電流が流れ、第2の回路には磁気吸引力と逆方向の力を引き起こす循環電流が流れることにより、ギャップ偏心発生時の回転子を元の位置に押し戻すことが可能になる。また、回転電機の軸断面から見て左右方向のギャップ偏心が生じた場合は、主に第3の回路と第4の回路において、中心軸のずれた回転子を元の位置に押し戻す力が働くように循環電流が流れる。その結果、本実施形態では、回転電機の軸断面から見た全周方向のギャップ偏心に対し、ギャップ偏心発生時の回転子を元の位置に押し戻すことができる効果が得られる。
 図11の従来例の巻線方法と本実施形態の巻線方法とで、ギャップ偏心発生時の回転子に働く磁気吸引力を数値解析によりそれぞれ求めた比較結果の一例を図6に示す。図6中、横軸は従来例の巻線方式における回転子に働く磁気吸引力を1PUとしている。
 図6の数値解析の結果から、本実施形態の巻線方法を適用することで従来例の巻線方法に比べ、中心軸のずれた回転子を元の位置に押し戻す効果が得られることが確認できた。
 以上詳述したように、実施形態によれば、既存の構成を活かしつつ電機子巻線の巻線方式を変更することで、回転電機の軸断面から見た全周方向のギャップ偏心に対し、ギャップ偏心発生時の回転子を元の位置に押し戻すことが可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (5)

  1.  3相6極以上の偶数極の2層巻き電機子巻線であって、
     各相に3並列以上の並列回路を備え、各回路を構成する個々のコイルは波巻により結線され、各回路は相帯群が隣接する両側の回路における「極数/2」個分の相帯とそれぞれ重なるように配置され、該相帯群は各回路で周方向に異なる位置に配置されている、
     回転電機の電機子巻線。
  2.  前記相帯群は各回路で周方向に「相帯数/並列回路数」だけずらして配置されている、
     請求項1に記載の回転電機の電機子巻線。
  3.  極数は2P極、並列回路数はn並列回路(P,nは任意の自然数)であり、
     各回路は「4P/n」個の相帯により相帯群を形成しており、該相帯群は各回路で周方向に「2P/n」個の相帯分ずらして配置されている、
     請求項1に記載の回転電機の電機子巻線。
  4.  極数/並列回路数が整数となる構成である、
     請求項1に記載の回転電機の電機子巻線。
  5.  請求項1に記載の電機子巻線を備えた回転電機。
     
PCT/JP2020/045855 2019-12-09 2020-12-09 回転電機の電機子巻線および回転電機 WO2021117765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021563998A JP7214895B2 (ja) 2019-12-09 2020-12-09 回転電機の電機子巻線および回転電機
CN202080052478.2A CN114128092B (zh) 2019-12-09 2020-12-09 旋转电机的电枢绕组以及旋转电机
US17/581,599 US12040670B2 (en) 2019-12-09 2022-01-21 Armature winding of rotating electrical machine, and rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222219 2019-12-09
JP2019-222219 2019-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,599 Continuation US12040670B2 (en) 2019-12-09 2022-01-21 Armature winding of rotating electrical machine, and rotating electrical machine

Publications (1)

Publication Number Publication Date
WO2021117765A1 true WO2021117765A1 (ja) 2021-06-17

Family

ID=76329933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045855 WO2021117765A1 (ja) 2019-12-09 2020-12-09 回転電機の電機子巻線および回転電機

Country Status (4)

Country Link
US (1) US12040670B2 (ja)
JP (1) JP7214895B2 (ja)
CN (1) CN114128092B (ja)
WO (1) WO2021117765A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469164B2 (ja) * 2000-05-02 2003-11-25 三菱電機株式会社 回転電機
JP5488517B2 (ja) * 2011-03-31 2014-05-14 株式会社豊田自動織機 電動モータと電動モータを用いた電動圧縮機
JP2015084635A (ja) * 2013-09-18 2015-04-30 株式会社デンソー 回転電機の固定子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644360A (en) 1979-09-19 1981-04-23 Toshiba Corp Armature winding
JPS62239840A (ja) * 1986-04-11 1987-10-20 Nippon Fueroo Furuideikusu Kk モ−タ
JP4114570B2 (ja) * 2003-07-24 2008-07-09 株式会社デンソー 回転電機用電機子
JP5193557B2 (ja) * 2007-10-16 2013-05-08 株式会社東芝 電機子
JP5231950B2 (ja) * 2008-11-13 2013-07-10 株式会社東芝 回転電機の電機子巻線
EP2632028A3 (en) * 2012-02-23 2017-09-27 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US9444296B2 (en) * 2012-04-19 2016-09-13 Mitsubishi Electric Corporation Stator winding of electrical rotating machine
JP6139256B2 (ja) * 2013-05-10 2017-05-31 株式会社東芝 回転電機の電機子巻線
CN103715850B (zh) * 2013-11-23 2016-03-02 南昌康富科技股份有限公司 一种三相无刷同步发电机定子双电枢迭绕组
JP6316439B2 (ja) * 2014-08-26 2018-04-25 三菱電機株式会社 回転電機の回転子
DE112016000682T5 (de) * 2015-02-10 2017-11-02 Mitsubishi Electric Corporation Elektrische rotationsmaschine, fahrstuhl-hebevorrichtung und verfahren zum magnetisieren und entmagnetisieren eines permanentmagneten für eine elektrische rotationsmaschine
CN108352747B (zh) * 2015-11-20 2021-09-24 三菱电机株式会社 旋转电机
JP6615685B2 (ja) * 2016-04-26 2019-12-04 株式会社東芝 回転電機の電機子巻線
JP6465133B2 (ja) * 2017-03-17 2019-02-06 株式会社安川電機 回転電機、固定子巻線

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469164B2 (ja) * 2000-05-02 2003-11-25 三菱電機株式会社 回転電機
JP5488517B2 (ja) * 2011-03-31 2014-05-14 株式会社豊田自動織機 電動モータと電動モータを用いた電動圧縮機
JP2015084635A (ja) * 2013-09-18 2015-04-30 株式会社デンソー 回転電機の固定子

Also Published As

Publication number Publication date
JPWO2021117765A1 (ja) 2021-06-17
JP7214895B2 (ja) 2023-01-30
US12040670B2 (en) 2024-07-16
CN114128092A (zh) 2022-03-01
CN114128092B (zh) 2024-02-23
US20220149686A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP4158024B2 (ja) 誘導電動機
TWI524633B (zh) 旋轉電機及旋轉電機之製造方法
JP4660458B2 (ja) 外転形永久磁石励磁横磁束電動機
JP5777806B2 (ja) 回転電機の固定子巻線
JP5710329B2 (ja) 回転電機の電機子巻線
JPWO2014017361A1 (ja) 回転電機
JP5695748B2 (ja) 回転電機
JP6239090B2 (ja) 回転電機
JP2009159738A (ja) 永久磁石同期モータ
JP2019201485A (ja) 回転電機
WO2015056268A1 (en) Inverse transverse flux machine
US20240243631A1 (en) Axial flux induction motor or generator
KR20130021210A (ko) 스위치드 릴럭턴스 모터
JP4914169B2 (ja) 回転電機
JP7186927B2 (ja) 回転電機の固定子
JP5457869B2 (ja) 回転電機の固定子及び回転電機
WO2021117765A1 (ja) 回転電機の電機子巻線および回転電機
JP7001483B2 (ja) アキシャルギャップ型トランスバースフラックス式回転電機
KR101348636B1 (ko) 원주방향 다상 분포를 가지는 횡자속 전기기기의 고정자
JP4979605B2 (ja) 回転電機
US3719844A (en) Dynamo-electric machines
JP7038026B2 (ja) 回転電機
TWI548180B (zh) Variable frequency motor device
JP6582973B2 (ja) 回転電機およびその製造方法
WO2021193462A1 (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899326

Country of ref document: EP

Kind code of ref document: A1