WO2021106807A1 - スライドドア用駆動装置 - Google Patents

スライドドア用駆動装置 Download PDF

Info

Publication number
WO2021106807A1
WO2021106807A1 PCT/JP2020/043509 JP2020043509W WO2021106807A1 WO 2021106807 A1 WO2021106807 A1 WO 2021106807A1 JP 2020043509 W JP2020043509 W JP 2020043509W WO 2021106807 A1 WO2021106807 A1 WO 2021106807A1
Authority
WO
WIPO (PCT)
Prior art keywords
side transistor
motor
low
sliding door
node
Prior art date
Application number
PCT/JP2020/043509
Other languages
English (en)
French (fr)
Inventor
拓也 今井
Original Assignee
三井金属アクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属アクト株式会社 filed Critical 三井金属アクト株式会社
Priority to EP20893084.2A priority Critical patent/EP4067614A4/en
Priority to US17/764,006 priority patent/US20220341242A1/en
Priority to JP2021561389A priority patent/JP7463658B2/ja
Priority to CN202080068888.6A priority patent/CN114503405A/zh
Publication of WO2021106807A1 publication Critical patent/WO2021106807A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/047Doors arranged at the vehicle sides characterised by the opening or closing movement
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/632Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
    • E05F15/655Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings specially adapted for vehicle wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/632Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings
    • E05F15/655Power-operated mechanisms for wings using electrical actuators using rotary electromotors for horizontally-sliding wings specially adapted for vehicle wings
    • E05F15/659Control circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • E05Y2400/302Electronic control of motors during electric motor braking
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/30Electronic control of motors
    • E05Y2400/31Force or torque control
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/32Position control, detection or monitoring
    • E05Y2400/33Position control, detection or monitoring by using load sensors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/32Position control, detection or monitoring
    • E05Y2400/334Position control, detection or monitoring by using pulse generators
    • E05Y2400/336Position control, detection or monitoring by using pulse generators of the angular type
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/50Fault detection
    • E05Y2400/502Fault detection of components
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/50Fault detection
    • E05Y2400/508Fault detection of detection
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/52Safety arrangements associated with the wing motor
    • E05Y2400/53Wing impact prevention or reduction
    • E05Y2400/54Obstruction or resistance detection
    • E05Y2400/55Obstruction or resistance detection by using load sensors
    • E05Y2400/554Obstruction or resistance detection by using load sensors sensing motor load
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/61Power supply
    • E05Y2400/612Batteries
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/531Doors

Definitions

  • the present invention relates to a sliding door drive device for opening and closing a sliding door of a vehicle.
  • a vehicle door opening / closing device that automatically opens / closes a sliding door
  • a rail member provided along the side surface of the body, a cable that opens / closes the door by being driven along the rail member, and a cable
  • a drive device for a sliding door for winding is provided.
  • a drive device for a sliding door includes a motor as a power source, a deceleration mechanism for decelerating the rotation of the motor, and a rotary drum mechanism that is rotated by the deceleration mechanism to wind up and unwind a cable.
  • the slide door drive device is often provided with a switch for switching the opening and closing of the slide door between manual and automatic.
  • the motor is provided with three Hall ICs as position sensors for detecting the rotational position of the rotor, and the motor (rotor) receives signals from the three Hall ICs. It is described that the rotation angle is detected and the sliding door is opened and closed.
  • Patent Document 1 requires three Hall ICs to detect the rotation angle of the motor, and there is room for improvement in terms of manufacturing cost.
  • the present invention provides a drive device for a sliding door that can detect the rotation angle of a motor using a shunt resistor.
  • the present invention Power supply and A motor that outputs power to open and close the sliding door, A motor drive circuit that connects the power supply and the motor, A slide door drive device including a control device for controlling the motor drive circuit.
  • the motor drive circuit A power conversion device that converts DC power supplied from the power supply into AC power, and A shunt resistor arranged between the power supply and the power conversion device is provided.
  • the control device acquires the rotation angle of the motor based on the output of the shunt resistor.
  • the rotation angle of the motor by acquiring the rotation angle of the motor based on the output of the shunt resistance, it is possible to eliminate the need for a position sensor that outputs a signal corresponding to the rotation position of the rotor. Further, when the slide door drive device is equipped with a position sensor, the rotation angle of the motor can be acquired by either the position sensor or the shunt resistance, and the resistance to failure is high.
  • FIG. 1 It is a side view of the vehicle which mounted the drive device for a sliding door of one Embodiment of this invention. It is explanatory drawing of the drive device for a slide door of FIG. It is a block diagram of the motor control device of the drive device for a slide door of 1st Embodiment. It is a block diagram of the motor control device of the drive device for a slide door of 2nd Embodiment.
  • the slide door drive device 10 of the present embodiment is mounted on the vehicle 12 and automatically opens and closes the rear door (slide door) 14.
  • the door 14 is a sliding door, and is stably opened and closed while being supported at three points by the upper rail 16a, the center rail 16b, and the lower rail 16c. Of these, the center rail 16b is provided at a substantially intermediate height in the quarter panel 18.
  • Each end of the opening cable 20a and the closing cable 20b is fixed to a support frame provided on the door 14.
  • the support frame includes a traveling roller that rolls within the center rail 16b.
  • the opening cable 20a and the closing cable 20b are connected to the sliding door drive device 10.
  • the door 14 can be opened and closed by winding and unwinding the opening cable 20a and the closing cable 20b by the sliding door driving device 10.
  • the vehicle 12 is provided with a holding means (not shown) that holds the door 14 in a fully open position or a fully closed position.
  • the sliding door drive device 10 has a front-rear symmetrical structure, and includes an opening cable 20a, a closing cable 20b, a base plate 22, a motor 24, a sliding door control device 40, and a deceleration mechanism. 28, an opening drum mechanism 30a, a closing drum mechanism 30b, and a pair of front and rear path length adjusting mechanisms 32 are included in one unit.
  • the rotational power of the motor 24 rotates the opening drum mechanism 30a via the reduction mechanism 28 to wind up and close the opening cable 20a.
  • the door 14 is opened by rotating the drum mechanism 30b and feeding out the closing cable 20b.
  • the rotational power of the motor 24 rotates the closing drum mechanism 30b via the reduction mechanism 28 to wind up the closing cable 20b and rotate the opening drum mechanism 30a.
  • the door 14 is closed by pulling out the opening cable 20a.
  • the vehicle 12 is configured to be able to select, for example, a manual mode that prohibits the automatic opening and closing of the door 14 in the driver's seat.
  • a manual mode that prohibits the automatic opening and closing of the door 14 in the driver's seat.
  • the mode in which automatic opening / closing is allowed is referred to as an automatic opening / closing mode.
  • the door 14 is provided with a door open / close switch 17 for the operator to instruct the opening / closing operation of the door 14.
  • the door open / close switch 17 is composed of an open switch 17a which is a switch for instructing the opening of the door 14 and a closing switch 17b which is a switch for instructing the closing of the door 14.
  • the motor 24, which is the drive source of the slide door drive device 10, is a three-phase brushless motor provided with U-phase, V-phase, and W-phase coils 25, and is a delta-connected U-phase.
  • Rotors 26 on which permanent magnets are arranged are arranged to face each other with a predetermined gap on the inner peripheral side of the stator 27 around which the V-phase and W-phase coils 25 are wound.
  • FIG. 3 is a diagram showing a configuration of the slide door control device 40 of the present embodiment.
  • the slide door control device 40 includes a motor drive circuit 50 that connects the power supply 11 and the motor 24, and a motor control device 60 that controls the motor drive circuit 50.
  • the motor drive circuit 50 includes an inverter 51 that converts DC power from the power supply 11 into AC power, a relay switch 52 connected between the positive electrode side of the power supply 11 and the positive electrode side of the inverter 51, and a negative electrode of the power supply 11.
  • a shunt resistor 53 connected between the side and the negative electrode side of the inverter 51 is provided.
  • the power source 11 is, for example, a 12V battery that supplies electric power to auxiliary equipment of the vehicle 12.
  • the shunt resistor 53 may be connected between the positive electrode side of the power supply 11 and the positive electrode side of the inverter 51, but the shunt resistor 53 is connected between the negative electrode side of the power supply 11 and the negative electrode side of the inverter 51. By doing so, the influence of noise can be suppressed, and the rotation angle of the motor 24 can be acquired more appropriately.
  • the inverter 51 is a first tributary having a first high-side transistor TH1, a first low-side transistor TL1, and a first node P1 for connecting the first high-side transistor TH1 and the first low-side transistor TL1 in series.
  • a circuit 57, a fourth node P4 and a fifth node P5 for connecting a first tributary circuit 55, a second tributary circuit 56, and a third tributary circuit 57 in parallel are provided.
  • the first node P1, the second node P2, and the third node P3 are connected to the U-phase, V-phase, and W-phase coils 25, which are delta-connected, respectively.
  • the fourth node P4 is connected to the positive electrode terminal of the power supply 11 via the relay switch 52, and the fifth node P5 is connected to the negative electrode terminal of the power supply 11 via the shunt resistor 53.
  • the transistors TH1, TL1, TH2, TL2, TH3, and TL3 are composed of, for example, MOSFETs, and the opening and closing control is controlled by the motor drive unit 64 of the motor control device 60 adjusting the gate voltage.
  • a diode operating as a freewheeling diode is connected in parallel to each of the transistors TH1, TL1, TH2, TL2, TH3, and TL3.
  • the freewheeling diode prevents damage to the transistor by recirculating (regenerating) the current flowing back from the motor 24 side to the power supply 11 side when the transistors TH1, TL1, TH2, TL2, TH3, and TL3 are turned off. Provided.
  • the motor control device 60 is mainly composed of a processor described later, and contains a storage medium such as a RAM (Random Access Memory) required for the operation of the processor and a ROM (Read Only Memory) for storing various information. Including further. More specifically, a processor is an electric circuit in which circuit elements such as semiconductor elements are combined. The motor control device 60 is generated in the shunt resistor 53 by the switch control unit 61 that controls the relay switch 52 and the current flowing through the inverter 51 as a functional block realized by the processor executing the program stored in the ROM.
  • a processor is an electric circuit in which circuit elements such as semiconductor elements are combined.
  • An AD conversion unit 62 that detects a voltage and converts the detected voltage into a digital signal
  • a position detection unit 63 that detects the rotation angle of the motor 24 (rotor 26) by the output of the AD conversion unit 62
  • this position detection unit is provided.
  • a motor drive unit 64 that outputs a gate signal for switching the energization of the inverter 51 according to the rotation angle of the motor 24 detected by the 63 is provided.
  • the switch control unit 61 In the automatic open / close mode, the switch control unit 61 outputs a signal for turning on the relay switch 52 when the open switch 17a or the close switch 17b is pressed, and the electric power from the power supply 11 is transmitted to the motor 24 via the inverter 51. Control to be supplied. Further, in the manual mode, even when the moving speed of the door 14 exceeds a predetermined speed, a signal for turning on the relay switch 52 may be output as described later.
  • the position detection unit 63 monitors the output of the shunt resistor 53 and performs a predetermined filtering process, a Fourier transform, or other conversion process to acquire the rotation angle of the motor 24, and the moving direction and moving speed of the motor 24. That is, the moving direction and the moving speed of the door 14 are acquired. That is, the position detection unit 63 acquires the rotation angle of the motor 24 based on the output of the shunt resistor 53.
  • the motor drive unit 64 is based on a signal input from the door open / close switch 17, a signal regarding the rotation angle of the motor 24 input from the position detection unit 63, a moving direction and a moving speed of the door 14, and each transistor TH1 of the inverter 51. , TL1, TH2, TL2, TH3, TL3 are alternately generated and output as a drive signal.
  • the motor drive circuit 50 applies an energization pattern of the supply voltage for alternately energizing the U-phase, V-phase, and W-phase coils 25 to the U-phase, V-phase, and W-phase coils 25 to drive the motor 24.
  • the door 14 is controlled to move in the opening direction or the closing direction at a predetermined speed.
  • the motor drive control 1 and the motor drive control 2 by performing the sine wave control, the power efficiency can be improved as compared with the rectangular wave control, and the quiet performance (low vibration) can be improved. Further, by performing vector control in the motor drive control 2, the power efficiency can be further improved as compared with the sine wave control of the motor drive control 1.
  • the motor 24 is formed by accelerating (advancing) or decelerating (retarding) the application of power with respect to the rotation angle of the permanent magnet of the rotor 26. The torque-rotational speed characteristic generated in may be changed. As a result, the motor 24 can be operated at high torque and low rotation speed or at low torque and high rotation speed.
  • the door speed may be calculated by monitoring the output of the shunt resistor 53, and the duty applied to the motor 24 may be changed so as to reach the set speed.
  • Brake control is used when the motor 24 is not driven, for example, when the door 14 is held at an intermediate position between the open position and the closed position in the automatic opening / closing mode, or to give an operating load to the door 14 in the manual mode. Be done.
  • the door 14 may unintentionally open / close in a vehicle parked on a slope.
  • the manual mode if the operation speed of the door 14 is too fast, the vehicle body may be damaged or the opening / closing sound may become loud. In such a case, by applying an operation load to the door 14, the moving speed of the door 14 can be suppressed.
  • the speed of the door 14 is determined by the output of the shunt resistor 53.
  • (2nd brake control) When the output of the shunt resistor 53 becomes a second predetermined value larger than the first predetermined value when the motor 24 is not driven, the relay switch 52 is opened and the first high-side transistors TH1 and 2 are opened. The high-side transistor TH2 and the third high-side transistor TH3 are opened, and at least one of the first low-side transistor TL1, the second low-side transistor TL2, and the third low-side transistor TL3 is closed. To do. In the second brake control, a closed circuit is formed in the motor drive circuit 50, and a braking force is generated in the motor 24. As a result, a braking force can be applied by the dynamic brake to the movement of the door 14 when the motor 24 is not driven.
  • the first high-side transistor TH1, the second high-side transistor TH2, and the third high-side transistor TH3 are opened, and the first low-side transistor TL1, the second low-side transistor TL2, and the third Instead of closing at least one of the low-side transistors TL3, the first low-side transistor TL1, the second low-side transistor TL2, and the third low-side transistor TL3 are opened, and the first high-side transistor is closed. At least one of TH1, the second high-side transistor TH2, and the third high-side transistor TH3 may be closed.
  • the second brake control it is preferable to increase the number of transistors to be closed as the output of the shunt resistor 53 increases.
  • the number of closed circuits formed increases, and the braking force generated in the motor 24 also increases.
  • the duty ratio which is the ratio at which the transistor is closed, may be increased.
  • the second brake control as the output of the shunt resistor 53 is higher, the braking force can be appropriately applied according to the moving speed of the door 14 by increasing the duty ratio in the closed state.
  • the holding force of the door 14 in the second brake control is higher than the holding force of the door 14 in the first brake control
  • the holding force of the door 14 in the third brake control is the holding force of the door 14 in the front two brake control. It is preferable that it is higher than.
  • the motor 24 of the first embodiment further includes three hall ICs 54u, 54v, 54w as position sensors. Since the other configurations of the slide door control device 40 are the same as those in the first embodiment, the same reference numerals are given and the description thereof will be omitted.
  • three holes ICs 54u, 54v, 54w for detecting the rotation position of the rotor 26 are located at 120 degrees of each other on the rotor 26 or a rotating body that rotates integrally with the rotor 26. It is provided. These three hall ICs 54u, 54v, 54w each output a position sensor signal 120 degrees out of phase with each other to the position detection unit 63 when the motor 24 rotates.
  • the position detection unit 63 acquires the rotation speed of the motor 24, that is, the moving speed of the door 14 based on the generation interval of the position sensor signal, and the rotation direction of the motor 24, that is, the door 14 based on the order in which the position sensor signals appear. Get the moving direction of. Therefore, the position detection unit 63 can acquire the rotation angle of the motor 24 (rotor 26) by both the shunt resistor 53 and the hall ICs 54u, 54v, 54w. Further, the position detection unit 63 can acquire the position of the door 14 by integrating the switching of the position sensor signals starting from the time when the door 14 reaches the reference position (for example, the fully closed position).
  • the motor drive control 1 and the motor drive control 2 by performing the sine wave control, the power efficiency can be improved as compared with the rectangular wave control, and the quiet performance (low vibration) can be improved. Further, by performing the vector control in the motor drive control 2, the power efficiency can be further improved as compared with the sine wave control of the motor drive control 1.
  • the motor 24 is formed by accelerating (advancing) or decelerating (retarding) the application of power with respect to the rotation angle of the permanent magnet of the rotor 26.
  • the torque-rotational speed characteristic generated in may be changed.
  • the motor 24 can be operated at high torque and low rotation speed or at low torque and high rotation speed. Until the output of the shunt resistor 53 stabilizes, the rotation angle of the motor 24 can be acquired more appropriately by acquiring the rotation angle of the motor 24 based on the position sensor signals of the hall ICs 54u, 54v, 54w.
  • the door position and the door speed are calculated based on the output of the shunt resistance 53 or the position sensor signals of the hall ICs 54u, 54v, 54w, and the set speed is set according to the door position. Therefore, the duty applied to the motor 24 may be changed.
  • the position detection unit 63 can acquire the rotation angle of the motor 24 by any of the hall ICs 54u, 54v, 54w and the shunt resistor 53, so that the resistance to failure is high. ..
  • Power supply power supply 11 and A motor (motor 24) that outputs power to open and close the sliding door (door 14)
  • a motor drive circuit (motor drive circuit 50) that connects the power supply and the motor
  • a slide door drive device (slide door drive device 10) including a control device (motor control device 60) that controls the motor drive circuit.
  • the motor drive circuit A power conversion device (inverter 51) that converts DC power supplied from the power source into AC power, and A shunt resistor (shunt resistor 53) arranged between the power supply and the power conversion device is provided.
  • the control device position detection unit 63) is a drive device for a sliding door that acquires the rotation angle of the motor based on the output of the shunt resistor.
  • the rotation angle of the motor can be acquired by either the position sensor or the shunt resistance, and the resistance to failure is high.
  • the drive device for a sliding door according to (1).
  • the shunt resistor is a drive device for a sliding door, which is arranged between the negative electrode side of the power supply and the negative electrode side of the power conversion device.
  • the shunt resistor between the negative electrode side of the power supply and the negative electrode side of the power conversion device, the influence of noise can be suppressed and the rotation angle of the motor can be acquired more appropriately. ..
  • the drive device for a sliding door according to (1).
  • the control device is a slide door drive device that controls the power conversion device according to the rotation angle of the motor acquired based on the output of the shunt resistor.
  • the drive device for a sliding door according to (1).
  • the control device is a drive device for a sliding door that determines whether or not foreign matter is caught based on the output of the shunt resistor.
  • the function can be expanded with a small number of parts.
  • the drive device for a sliding door according to (4).
  • the motor further includes a position sensor that outputs a signal according to the rotation position of the rotor.
  • the control device is The position of the sliding door is acquired based on the output of the position sensor.
  • a drive device for a slide door that determines that foreign matter is caught when the output of the shunt resistor reaches a threshold value corresponding to the position of the slide door.
  • the rotation angle of the motor can be acquired more accurately. Further, when the output of the shunt resistor reaches a threshold value according to the position of the sliding door, it is possible to improve the accuracy of determining the pinching of foreign matter by determining the pinching of foreign matter.
  • the drive device for a sliding door according to any one of (1) to (5).
  • the motor drive circuit A switch (relay switch 52) that is arranged between the positive electrode side of the power supply and the positive electrode side of the power conversion device and opens and closes a power transmission path between the power supply and the power conversion device is provided.
  • the control device is for a sliding door that executes a first brake control for charging the power source with the switch closed when the output of the shunt resistor reaches a first predetermined value when the motor is not driven. Drive device.
  • a braking force can be applied by the regenerative brake to the movement of the sliding door when the motor is not driven.
  • the drive device for a sliding door according to any one of (1) to (5).
  • the motor drive circuit A switch (relay switch 52) that is arranged between the positive electrode side of the power supply and the positive electrode side of the power conversion device and opens and closes a power transmission path between the power supply and the power conversion device is provided.
  • the power converter The first high-side transistor (first high-side transistor TH1), the first low-side transistor (first low-side transistor TL1), the first high-side transistor, and the first low-side transistor are connected in series.
  • a first tributor circuit including a first node (first node P1) and The second high-side transistor (second high-side transistor TH2), the second low-side transistor (second low-side transistor TL2), the second high-side transistor, and the second low-side transistor are connected in series.
  • a second tributor circuit including a second node (second node P2) and The third high-side transistor (third high-side transistor TH3), the third low-side transistor (third low-side transistor TL3), the third high-side transistor, and the third low-side transistor are connected in series.
  • a third tributor circuit including a third node (third node P3) and A fourth node (fourth node P4) and a fifth node (fifth node P5) for connecting the first tributary circuit, the second tributary circuit, and the third tributary circuit in parallel are provided.
  • the motor is a three-phase AC motor in which a stator coil is delta-connected to the first node, the second node, and the third node.
  • the power supply is connected to the fourth node and the fifth node, and is connected to the fourth node.
  • the control device is When the output of the shunt resistor reaches the second predetermined value when the motor is not driven, the switch is opened and the switch is opened.
  • the first high-side transistor, the second high-side transistor, and the third high-side transistor are opened, and the first low-side transistor, the second low-side transistor, and the third low-side are opened.
  • -At least one of the transistors is closed or
  • the first low-side transistor, the second low-side transistor, and the third low-side transistor are opened, and the first high-side transistor, the second high-side transistor, and the third high-side are opened.
  • -A drive device for a sliding door that executes a second brake control that closes at least one of the transistors.
  • braking force can be applied by dynamic braking to the movement of the sliding door when the motor is not driven.
  • the drive device for a sliding door according to (7).
  • the control device is A drive device for a sliding door that increases the number of transistors to be closed as the output of the shunt resistor increases in the second brake control.
  • the braking force can be appropriately applied according to the moving speed of the sliding door by increasing the number of transistors to be closed. it can.
  • the drive device for a sliding door according to (7).
  • a drive device for a sliding door that increases the duty ratio in the closed state as the output of the shunt resistor increases in the second brake control.
  • the higher the output of the shunt resistance the more the duty ratio in the closed state is increased, so that the braking force can be appropriately applied according to the moving speed of the sliding door. ..
  • the drive device for a sliding door according to any one of (1) to (5).
  • the motor drive circuit A switch (relay switch 52) that is arranged between the positive electrode side of the power supply and the positive electrode side of the power conversion device and opens and closes a power transmission path between the power supply and the power conversion device is provided.
  • the control device is When the output of the shunt resistor reaches a third predetermined value when the motor is not driven, when the motor that drives the motor in the direction of restricting the movement of the slide door with the switch closed is not driven.
  • a drive device for a slide door that executes a third brake control for driving the motor in a direction that restricts the movement of the slide door with the switch closed when the output of the shunt resistor reaches a third predetermined value. ..
  • a braking force can be applied by driving the motor in a direction that regulates the movement of the sliding door with respect to the movement of the sliding door when the motor is not driven.
  • the drive device for a sliding door according to any one of (1) to (5).
  • the motor drive circuit It is provided between the positive electrode side of the power supply and the positive electrode side of the power conversion device, and includes a switch for opening and closing a power transmission path between the power supply and the power conversion device.
  • the power converter The first high-side transistor (first high-side transistor TH1), the first low-side transistor (first low-side transistor TL1), the first high-side transistor, and the first low-side transistor are connected in series.
  • a first tributor circuit including a first node (first node P1) and The second high-side transistor (second high-side transistor TH2), the second low-side transistor (second low-side transistor TL2), the second high-side transistor, and the second low-side transistor are connected in series.
  • a second tributor circuit including a second node (second node P2) and The third high-side transistor (third high-side transistor TH3), the third low-side transistor (third low-side transistor TL3), the third high-side transistor, and the third low-side transistor are connected in series.
  • a third tributor circuit including a third node (third node P3) and A fourth node (fourth node P4) and a fifth node (fifth node P5) for connecting the first tributary circuit, the second tributary circuit, and the third tributary circuit in parallel are provided.
  • the motor is a three-phase AC motor in which a stator coil is delta-connected to the first node, the second node, and the third node.
  • the power supply is connected to the fourth node and the fifth node, and is connected to the fourth node.
  • the control device is used when the motor is not driven.
  • the first brake control for charging the power supply with the switch closed can be executed.
  • the switch is opened and the switch is opened.
  • the first high-side transistor, the second high-side transistor, and the third high-side transistor are opened, and the first low-side transistor, the second low-side transistor, and the third low-side are opened.
  • -At least one of the transistors is closed or
  • the first low-side transistor, the second low-side transistor, and the third low-side transistor are opened, and the first high-side transistor, the second high-side transistor, and the third high-side are opened.
  • the -It is configured to be able to execute the second brake control that closes at least one of the transistors.
  • the third brake control for driving the motor in the direction of restricting the movement of the slide door with the switch closed can be executed.
  • the holding force of the sliding door in the second brake control is higher than the holding force of the sliding door in the first brake control.
  • the braking force can be appropriately applied according to the moving speed of the sliding door.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

スライドドア制御装置(40)は、電源(11)と、ドア(14)を開閉する動力を出力するモータ(24)と、電源(11)とモータ(24)とを接続するモータ駆動回路(50)と、モータ駆動回路(50)を制御するモータ制御装置(60)と、を備える。モータ制御装置(60)は、電源(11)から供給される直流電力を交流電力に変換するインバータ(51)と、電源(11)とインバータ(51)との間に配置されたシャント抵抗(53)と、を備える。モータ制御装置(60)の位置検出部(63)は、シャント抵抗(53)の出力に基づいてモータ(24)の回転角度を取得する。

Description

スライドドア用駆動装置
 本発明は、車両のスライドドアを開閉するためのスライドドア用駆動装置に関する。
 ワンボックスカー、ワゴン及びバンにおける後部ドアは引き戸式のスライドドアが設けられることが多く、近時はその開閉動作に自動化が図られてきている。スライドドアを自動開閉する車両用ドア開閉装置の一般的な構成としては、ボディ側面に沿って設けられたレール部材と、レール部材に沿って駆動されることによりドアを開閉するケーブルと、ケーブルを巻き取るためのスライドドア用駆動装置が設けられている。一般的にスライドドア用駆動装置は、動力源としてのモータと、該モータの回転を減速させる減速機構と、減速機構によって回転されてケーブルの巻き取りおよび繰り出しを行う回転ドラム機構と、を備える。また、スライドドア用駆動装置ではスライドドアの開閉を手動と自動に切り換えるためのスイッチが設けられていることが多い。
 例えば特許文献1に記載のスライドドア制御装置では、モータに、ロータの回転位置を検出する位置センサとして3つのホールICが設けられ、この3つのホールICからの信号を受けてモータ(ロータ)の回転角度を検出し、スライドドアを開閉することが記載されている。
日本国特開2014-181544号公報
 しかしながら、特許文献1に記載のスライドドア制御装置では、モータの回転角度を検出するために3つのホールICが必要であり、製造コストの点で改善の余地があった。
 一方で、スライドドア制御装置が3つのホールICを搭載する場合であっても、3つのホールICのうち1つのホールICでも故障してしまうとモータの回転角度を検出することができなくなってしまうという不都合があり、他の方法によるモータの回転角度の検出方法が模索されていた。
 本発明は、シャント抵抗を用いてモータの回転角度を検出可能なスライドドア用駆動装置を提供する。
 本発明は、
 電源と、
 スライドドアを開閉する動力を出力するモータと、
 前記電源と前記モータとを接続するモータ駆動回路と、
 前記モータ駆動回路を制御する制御装置と、を備えるスライドドア用駆動装置であって、
 前記モータ駆動回路は、
 前記電源から供給される直流電力を交流電力に変換する電力変換装置と、
 前記電源と前記電力変換装置との間に配置されたシャント抵抗と、を備え、
 前記制御装置は、前記シャント抵抗の出力に基づいて前記モータの回転角度を取得する。
 本発明によれば、シャント抵抗の出力に基づいてモータの回転角度を取得することにより、ロータの回転位置に応じた信号を出力する位置センサを不要にできる。また、スライドドア用駆動装置が位置センサを搭載する場合には、位置センサとシャント抵抗のいずれでもモータの回転角度を取得することができ、故障に対する耐性が高い。
本発明の一実施形態のスライドドア用駆動装置が搭載された車両の側面図である。 図1のスライドドア用駆動装置の説明図である。 第1実施形態のスライドドア用駆動装置のモータ制御装置のブロック図である。 第2実施形態のスライドドア用駆動装置のモータ制御装置のブロック図である。
 以下、本発明のスライドドア用駆動装置の各実施形態について図面を参照しながら説明する。
<第1実施形態>
 図1に示すように、本実施形態のスライドドア用駆動装置10は車両12に搭載されており、後側のドア(スライドドア)14を自動開閉させるものである。
 ドア14はスライドドアであり、アッパーレール16a、センターレール16b及びロワーレール16cによって三点を支持されながら安定して開閉される。このうちセンターレール16bはクオータパネル18における略中間高さに設けられている。
 開用ケーブル20aと閉用ケーブル20bの各端部はドア14に設けられたサポートフレームに固定されている。サポートフレームはセンターレール16b内で転動する走行ローラを備える。開用ケーブル20aおよび閉用ケーブル20bは、スライドドア用駆動装置10と接続されている。スライドドア用駆動装置10によって開用ケーブル20aおよび閉用ケーブル20bを巻き取りおよび繰り出すことによりドア14を開閉することができる。車両12にはドア14を全開位置や全閉位置で保持する不図示の保持手段が設けられている。
 図2に示すように、スライドドア用駆動装置10は前後対称構造であって、開用ケーブル20aおよび閉用ケーブル20bと、ベース板22と、モータ24と、スライドドア制御装置40と、減速機構28と、開用ドラム機構30aおよび閉用ドラム機構30bと、前後一対の経路長調整機構32とを有し、1つのユニットとなっている。
 このスライドドア用駆動装置10では、モータ24を順方向に回転させることで、モータ24の回転動力が減速機構28を介して開用ドラム機構30aを回転させて開用ケーブル20aを巻き取るとともに閉用ドラム機構30bを回転させて閉用ケーブル20bを繰り出すことでドア14を開く。一方、モータ24を逆方向に回転させることで、モータ24の回転動力が減速機構28を介して閉用ドラム機構30bを回転させて閉用ケーブル20bを巻き取るとともに開用ドラム機構30aを回転させて開用ケーブル20aを繰り出すことでドア14を閉じる。なお、スライドドア用駆動装置10の構造についての詳細は省略する。
 車両12には、例えば運転席に、ドア14の自動開閉を禁止する手動モードが選択可能に構成される。なお、以下の説明では、自動開閉が許容されるモードを自動開閉モードと称する。ドア14には、操作者がドア14の開閉動作を指示するためにドア開閉スイッチ17が設けられている。このドア開閉スイッチ17は、ドア14の開放を指示するためのスイッチである開スイッチ17aと、ドア14の閉鎖を指示するためのスイッチである閉スイッチ17bと、で構成されている。自動開閉モードにおいて、この開スイッチ17a又は閉スイッチ17bが押下されることにより、この押下したタイミングで、ドア14の開放又は閉鎖を指示するパルス信号が後述するモータ制御装置60のスイッチ制御部61及びモータ駆動部64に出力される。一方、手動モードにおいて、開スイッチ17a又は閉スイッチ17bが押下げられてもこれらの操作は無効となり、ユーザーは手動でドア14を開閉動作することができる。
 スライドドア用駆動装置10の駆動源であるモータ24は、図3に示すように、U相,V相,W相のコイル25を備えた三相ブラシレスモータであり、デルタ結線されたU相,V相,W相のコイル25が巻回されたステータ27の内周側に、永久磁石が配置されたロータ26が所定の隙間を介して対向配置されている。
 (スライドドア制御装置の構成)
 図3は、本実施形態のスライドドア制御装置40の構成を示す図である。
 スライドドア制御装置40は、電源11とモータ24とを接続するモータ駆動回路50と、モータ駆動回路50を制御するモータ制御装置60と、を備える。モータ駆動回路50には、電源11からの直流電力を交流電力に変換するインバータ51と、電源11の正極側とインバータ51の正極側との間に接続されたリレースイッチ52と、電源11の負極側とインバータ51の負極側との間に接続されたシャント抵抗53と、を備える。電源11は、例えば、車両12の補器類に電力を供給する12Vバッテリである。
 なお、シャント抵抗53は、電源11の正極側とインバータ51の正極側との間に接続されてもよいが、シャント抵抗53を、電源11の負極側とインバータ51の負極側との間に接続することで、ノイズによる影響を抑制でき、モータ24の回転角度をより適切に取得することができる。
 インバータ51は、第1ハイサイド・トランジスタTH1と、第1ローサイド・トランジスタTL1と、第1ハイサイド・トランジスタTH1と第1ローサイド・トランジスタTL1を直列接続する第1ノードP1とを備えた第1支流回路55と、第2ハイサイド・トランジスタTH2と、第2ローサイド・トランジスタTL2と、第2ハイサイド・トランジスタTH2と第2ローサイド・トランジスタTL2を直列接続する第2ノードP2とを備えた第2支流回路56と、第3ハイサイド・トランジスタTH3と、第3ローサイド・トランジスタTL3と、第3ハイサイド・トランジスタTH3と第3ローサイド・トランジスタTL3を直列接続する第3ノードP3とを備えた第3支流回路57と、第1支流回路55と第2支流回路56と第3支流回路57とを並列接続する第4ノードP4と第5ノードP5と、を備える。
 そして、第1ノードP1と第2ノードP2と第3ノードP3は、それぞれデルタ結線されたU相,V相,W相のコイル25に接続される。第4ノードP4は、リレースイッチ52を介して電源11の正極端子に接続され、第5ノードP5はシャント抵抗53を介して電源11の負極端子に接続される。なお、トランジスタTH1,TL1,TH2,TL2,TH3,TL3は、例えばMOSFETにより構成され、モータ制御装置60のモータ駆動部64がゲート電圧を調整することによって開閉制御される。
 各トランジスタTH1,TL1,TH2,TL2,TH3,TL3には、それぞれ還流ダイオードとして動作するダイオードが並列に接続されている。還流ダイオードは、トランジスタTH1,TL1,TH2,TL2,TH3,TL3をオフにしたとき、モータ24側から逆流する電流を電源11側に還流(回生)させることにより、トランジスタの破損を防止するために設けられる。
 モータ制御装置60は、具体的には後述のプロセッサを主体に構成されており、プロセッサの動作に必要なRAM(Random Access Memory)と各種情報を記憶するROM(Read Only Memory)等の記憶媒体をさらに含む。プロセッサとは、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。モータ制御装置60は、ROMに記憶されたプログラムをプロセッサが実行することにより実現される機能ブロックとして、リレースイッチ52を制御するスイッチ制御部61と、インバータ51に流れる電流によってシャント抵抗53に発生する電圧を検出し、検出した電圧をデジタル信号に変換するAD変換部62と、AD変換部62の出力により、モータ24(ロータ26)の回転角度を検出する位置検出部63と、この位置検出部63が検出したモータ24の回転角度に応じて、インバータ51に通電を切り替えるゲート信号を出力するモータ駆動部64と、を備える。
 スイッチ制御部61は、自動開閉モードにおいて、開スイッチ17a又は閉スイッチ17bが押下されると、リレースイッチ52をオンにする信号を出力し、電源11からの電力がインバータ51を介してモータ24に供給されるように制御する。また、手動モードにおいて、ドア14の移動速度が所定速度を超えた場合にも後述するようにリレースイッチ52をオンにする信号を出力する場合がある。
 位置検出部63は、シャント抵抗53の出力をモニタリングし、所定のフィルタリング処理、フーリエ変換等の変換処理を行うことで、モータ24の回転角度を取得するとともに、モータ24の移動方向及び移動速度、つまりドア14の移動方向及び移動速度を取得する。即ち、位置検出部63は、シャント抵抗53の出力に基づいてモータ24の回転角度を取得する。
 モータ駆動部64は、ドア開閉スイッチ17から入力される信号、位置検出部63から入力されるモータ24の回転角度、ドア14の移動方向及び移動速度に関する信号に基づいて、インバータ51の各トランジスタTH1,TL1,TH2,TL2,TH3,TL3を交互にスイッチングするための駆動信号を生成し出力する。これによって、モータ駆動回路50は、U相,V相,W相のコイル25を交互に通電する供給電圧の通電パターンをU相,V相,W相のコイル25に印加し、モータ24を駆動してドア14が開方向又は閉方向に所定速度で移動するように制御する。
 このように構成されたスライドドア用駆動装置10の具体的なドア14の各制御について以下に説明する。
(モータ始動制御)
 自動開閉モードにおいて開スイッチ17a又は閉スイッチ17bが押下されると、モータ24を始動する。位置センサが搭載されていないモータ24において、モータ駆動回路50はモータ24の回転角度(ロータ26の位置)を取得できない。そのため、モータ24の始動時には、モータ駆動回路50が、U相,V相,W相のコイル25を交互に通電する供給電圧の通電パターンをU相,V相,W相のコイル25に印加する。これにより、いずれかの通電パターンでモータ24が動き出す。このときの電流値は、通常の電流値よりも小さいことが好ましい。モータ24が動き出せば、所定速度となるようにプログラムにしたがってモータ24を矩形波制御する。
(モータ駆動制御1)
 矩形波制御により始動の回転力を得られたモータ24の定常運転では、シャント抵抗53の出力をモニタリングし、ロータ26の永久磁石の見做し回転角度を予測し、モータ24の回転角度に応じた駆動電力を最適な正弦波電力となるように制御する。
(モータ駆動制御2)
 矩形波制御により始動の回転力を得られたモータ24の定常運転では、シャント抵抗53の出力をモニタリングし、ロータ26の永久磁石の見做し回転角度を予測し、モータ24の回転角度に応じた駆動電力を最適な正弦波電力となるようにベクトル制御する。
 このモータ駆動制御1及びモータ駆動制御2において、正弦波制御を行うことで矩形波制御に比べて電力効率を向上できるとともに、静音性能(低振動)を向上できる。また、モータ駆動制御2においてベクトル制御を行うことで、モータ駆動制御1の正弦波制御よりも電力効率をさらに向上できる。なお、このモータ駆動制御1及びモータ駆動制御2において、ロータ26の永久磁石の見做し回転角度に対し電力印加を早めたり(進角)、遅くしたり(遅角)することにより、モータ24に発生するトルク-回転数特性を変化させてもよい。これにより、モータ24を高トルク低回転運転や低トルク高回転運転することができる。
 また、モータ駆動制御1及びモータ駆動制御2において、シャント抵抗53の出力をモニタリングすることによりドア速度を算出し、設定速度と成るようモータ24に印加するデューティを変化させてもよい。
(挟み込み検出)
 シャント抵抗53の出力をモニタリングし、ドア速度の急変に応じたシャント抵抗53の出力の変動を取得し、該変動が挟み込みしきい値となった場合に、異物の挟み込みと判断する。
 以下、ドア14に保持力を発生させるためのブレーキ制御について説明する。ブレーキ制御は、モータ24の非駆動時、例えば、自動開閉モードにおいてドア14を開位置と閉位置との間の中間位置で保持する場合や、手動モードにおいてドア14に操作負荷を与えるために用いられる。自動開閉モードにおいてドア14を開位置と閉位置との間の中間位置で保持するとき、傾斜地に停車した車両においてドア14が意図せずに開閉することが起こり得る。一方、手動モードにおいて、ドア14の操作速度が速すぎると、車体が損傷する虞や開閉音が大きくなる虞がある。このような場合に、ドア14に操作負荷を与えることで、ドア14の移動速度を抑えることができる。ドア14の速度は、シャント抵抗53の出力によって判定される。
 (第1ブレーキ制御)
 モータ24の非駆動時に、シャント抵抗53の出力が第1所定値となった場合に、リレースイッチ52を閉状態として電源11を充電する。モータ24の非駆動時にモータ24に与えた外力により発電されたエネルギーが所定量を超えた場合に、リレースイッチ52をオンにし、発電エネルギーが電源電圧を上回った場合に電源11に吸収させることでモータ24に操作負荷を発生させることができる。言い換えると、第1ブレーキ制御では、モータ24の非駆動時におけるドア14の移動に対し、回生ブレーキにより制動力を付与することができる。
 (第2ブレーキ制御)
 モータ24の非駆動時に、シャント抵抗53の出力が第1所定値よりも大きい第2所定値となった場合に、リレースイッチ52を開状態にするとともに、第1ハイサイド・トランジスタTH1、第2ハイサイド・トランジスタTH2、及び第3ハイサイド・トランジスタTH3を開状態とし、且つ、第1ローサイド・トランジスタTL1、第2ローサイド・トランジスタTL2、及び第3ローサイド・トランジスタTL3の少なくとも一つを閉状態とする。第2ブレーキ制御では、モータ駆動回路50に閉回路が形成されモータ24に制動力が発生する。これにより、モータ24の非駆動時におけるドア14の移動に対し、発電ブレーキにより制動力を付与することができる。
 なお、第1ハイサイド・トランジスタTH1、第2ハイサイド・トランジスタTH2、及び第3ハイサイド・トランジスタTH3を開状態とし、且つ、第1ローサイド・トランジスタTL1、第2ローサイド・トランジスタTL2、及び第3ローサイド・トランジスタTL3の少なくとも一つを閉状態とする代わりに、第1ローサイド・トランジスタTL1、第2ローサイド・トランジスタTL2、及び第3ローサイド・トランジスタTL3を開状態とし、且つ、第1ハイサイド・トランジスタTH1、第2ハイサイド・トランジスタTH2、及び第3ハイサイド・トランジスタTH3の少なくとも一つを閉状態としてもよい。
 第2ブレーキ制御において、シャント抵抗53の出力が高いほど、閉状態とするトランジスタの数を増やすことが好ましい。閉状態とするトランジスタの数を増やすことで、形成される閉回路が増え、モータ24に発生する制動力も大きくなる。これにより、ドア14の移動速度に応じて適切に制動力を付与することができる。また、モータ24に発生する制動力を大きくするためには、トランジスタが閉状態となる割合であるデューティ比を増やしてもよい。第2ブレーキ制御において、シャント抵抗53の出力が高いほど、閉状態となるデューティ比を増やすことで、ドア14の移動速度に応じて適切に制動力を付与することができる。
(第3ブレーキ制御)
 モータの非駆動時に、シャント抵抗53の出力が第2所定値よりも大きい第3所定値となった場合に、リレースイッチ52を閉状態としてドア14の移動を規制する方向にモータ24を駆動する。モータの非駆動時におけるドア14の移動に対し、ドア14の移動を規制する方向にモータ24を駆動することによりドア14により強い制動力を付与することができる。
 なお、第2ブレーキ制御におけるドア14の保持力は、第1ブレーキ制御におけるドア14の保持力よりも高く、第3ブレーキ制御におけるドア14の保持力は、前2ブレーキ制御におけるドア14の保持力よりも高いことが好ましい。このように第1ブレーキ制御、第2ブレーキ制御、第3ブレーキ制御における保持力を変えることで、ドア14の移動速度に応じて適切に制動力を付与することができる。また、自動開閉モードにおいてドア14を開位置と閉位置との間の中間位置で保持する場合、ドア14の移動速度に限らず、第1~第3ブレーキ制御のいずれを採用してもよい。
<第2実施形態>
 第1実施形態のスライドドア制御装置40では、シャント抵抗53の出力に基づいてモータ24の回転角度を取得する場合を例示したが、シャント抵抗53及び位置センサによってモータの回転角度を取得してもよい。以下、第2実施形態のスライドドア制御装置40では、第1実施形態のモータ24がさらに位置センサとして3つのホールIC54u、54v、54wを備える。なお、スライドドア制御装置40の他の構成については第1実施形態と同じため、同一符号を付して説明を省略する。
 モータ24には、図4に示すように、ロータ26又はロータ26と一体に回転する回転体に、ロータ26の回転位置を検出する3つのホールIC54u、54v、54wが、互いに120度の位置に設けられている。これらの3つのホールIC54u、54v、54wは、モータ24が回転するとそれぞれ互いに120度位相のずれた位置センサ信号を位置検出部63に対して出力する。
 位置検出部63は、位置センサ信号の発生間隔に基づいてモータ24の回転速度、つまりドア14の移動速度を取得し、位置センサ信号の出現する順番に基づいてモータ24の回転方向、つまりドア14の移動方向を取得する。したがって、位置検出部63は、シャント抵抗53及びホールIC54u、54v、54wの両方によってモータ24(ロータ26)の回転角度を取得できる。また、位置検出部63は、ドア14が基準位置(例えば全閉位置)となったときを起点として位置センサ信号の切り替わりを積算することによりドア14の位置を取得することができる。
 このように構成されたスライドドア用駆動装置10の具体的なドア14の各制御について具体的に説明するが、第1~第3ブレーキ制御については第1実施形態と同じであるため説明を省略する。
(モータ始動制御)
 自動開閉モードにおいて開スイッチ17a又は閉スイッチ17bが押下されると、モータ24を始動する。このとき、ホールIC54u、54v、54wによりモータ24の回転角度検出し、モータ24の回転角度に応じてU相,V相,W相のコイル25を交互に通電する供給電圧の通電パターンをU相,V相,W相のコイル25に印加し、モータ24を矩形波制御する。
(モータ駆動制御1)
 矩形波制御により始動の回転力を得られたモータ24の定常運転では、シャント抵抗53の出力又はホールIC54u、54v、54wの位置センサ信号に基づいて、ロータ26の永久磁石の見做し回転角度を予測し、モータ24の回転角度に応じた駆動電力を最適な正弦波電力となるように制御する。
(モータ駆動制御2)
 矩形波制御により始動の回転力を得られたモータ24の定常運転では、シャント抵抗53の出力又はホールIC54u、54v、54wの位置センサ信号に基づいて、ロータ26の永久磁石の見做し回転角度を予測し、モータ24の回転角度に応じた駆動電力を最適な正弦波電力となるようにベクトル制御する。
 このモータ駆動制御1及びモータ駆動制御2において、正弦波制御を行うことで矩形波制御に比べて電力効率を向上できるとともに、静音性能(低振動)を向上できる。また、モータ駆動制御2においてベクトル制御を行うことで、モータ駆動制御1の正弦波制御よりも電力効率をさらに向上できる。なお、このモータ駆動制御1及びモータ駆動制御2において、ロータ26の永久磁石の見做し回転角度に対し電力印加を早めたり(進角)、遅くしたり(遅角)することにより、モータ24に発生するトルク-回転数特性を変化させてもよい。これにより、モータ24を高トルク低回転運転や低トルク高回転運転することができる。シャント抵抗53の出力が安定するまでは、ホールIC54u、54v、54wの位置センサ信号に基づいてモータ24の回転角度を取得することで、より適切にモータ24の回転角度を取得することができる。
 また、モータ駆動制御1及びモータ駆動制御2においては、シャント抵抗53の出力又はホールIC54u、54v、54wの位置センサ信号に基づいてドア位置とドア速度を算出し、ドア位置に応じた設定速度と成る様、モータ24に印加するデューティを変化させてもよい。
(挟み込み検出1)
 シャント抵抗53の出力をモニタリングし、ホールIC54u、54v、54wの位置センサ信号から求められるドア位置に応じた挟み込みしきい値となった場合に、異物の挟み込みと判断する。ドア速度の急変に応じたシャント抵抗53の出力の変動を取得することで、適切に異物の挟み込みを判定することができる。
(挟み込み検出2)
 ホールIC54u、54v、54wの位置センサ信号からドア位置に応じた挟み込みしきい値となった場合に、異物の挟み込みと判断する。ドア速度の急変に応じたホールIC54u、54v、54wの位置センサ信号の変動を取得することで、適切に異物の挟み込みを判定することができる。
 本実施形態のスライドドア用駆動装置10によれば、位置検出部63がホールIC54u、54v、54wとシャント抵抗53のいずれでもモータ24の回転角度を取得することができるので、故障に対する耐性が高い。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、上記実施形態では、位置センサとしてホールICを例示したが、ロータリエンコーダ等の他の位置センサであってもよい。
 また、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 電源(電源11)と、
 スライドドア(ドア14)を開閉する動力を出力するモータ(モータ24)と、
 前記電源と前記モータとを接続するモータ駆動回路(モータ駆動回路50)と、
 前記モータ駆動回路を制御する制御装置(モータ制御装置60)と、を備えるスライドドア用駆動装置(スライドドア用駆動装置10)であって、
 前記モータ駆動回路は、
 前記電源から供給される直流電力を交流電力に変換する電力変換装置(インバータ51)と、
 前記電源と前記電力変換装置との間に配置されたシャント抵抗(シャント抵抗53)と、を備え、
 前記制御装置(位置検出部63)は、前記シャント抵抗の出力に基づいて前記モータの回転角度を取得する、スライドドア用駆動装置。
 (1)によれば、シャント抵抗の出力に基づいてモータの回転角度を取得することにより、モータの回転位置に応じた信号を出力する位置センサを不要にできる。また、スライドドア用駆動装置が位置センサを搭載する場合には、位置センサとシャント抵抗のいずれでもモータの回転角度を取得することができ、故障に対する耐性が高い。
 (2) (1)に記載のスライドドア用駆動装置であって、
 前記シャント抵抗は、前記電源の負極側と前記電力変換装置の負極側との間に配置されている、スライドドア用駆動装置。
 (2)によれば、シャント抵抗を電源の負極側と電力変換装置の負極側との間に配置することで、ノイズによる影響を抑制でき、モータの回転角度をより適切に取得することができる。
 (3) (1)に記載のスライドドア用駆動装置であって、
 前記制御装置は、前記シャント抵抗の出力に基づいて取得した前記モータの回転角度に応じて、前記電力変換装置を制御する、スライドドア用駆動装置。
 (3)によれば、シャント抵抗の出力に基づいて取得したモータの回転角度に応じて、電力変換装置を制御することにより、効率的にモータに電力を供給することができるとともに、振動を抑えることができる。
 (4) (1)に記載のスライドドア用駆動装置であって、
 前記制御装置は、前記シャント抵抗の出力に基づいて異物の挟み込みを判定する、スライドドア用駆動装置。
 (4)によれば、シャント抵抗をモータの回転角度の取得のためのみならず、異物の挟み込みのために用いることで、少ない部品点数で機能を拡充することができる。
 (5) (4)に記載のスライドドア用駆動装置であって、
 前記モータは、ロータの回転位置に応じた信号を出力する位置センサをさらに備え、
 前記制御装置は、
 前記位置センサの出力に基づいて前記スライドドアの位置を取得し、
 前記シャント抵抗の出力が、前記スライドドアの位置に応じた閾値となった場合に、前記異物の挟み込みを判定する、スライドドア用駆動装置。
 (5)によれば、シャント抵抗に加えて位置センサを備えることで、より精度よくモータの回転角度を取得することができる。また、シャント抵抗の出力が、スライドドアの位置に応じた閾値となった場合に、異物の挟み込みを判定することにより、異物の挟み込みの判定精度を向上できる。
 (6) (1)~(5)のいずれかに記載のスライドドア用駆動装置であって、
 前記モータ駆動回路は、
 前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチ(リレースイッチ52)を備え、
 前記制御装置は、前記モータの非駆動時に、前記シャント抵抗の出力が第1所定値となった場合に、前記スイッチを閉状態として前記電源を充電する第1ブレーキ制御を実行する、スライドドア用駆動装置。
 (6)によれば、モータの非駆動時におけるスライドドアの移動に対し、回生ブレーキにより制動力を付与することができる。
 (7) (1)~(5)のいずれかに記載のスライドドア用駆動装置であって、
 前記モータ駆動回路は、
 前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチ(リレースイッチ52)を備え、
 前記電力変換装置は、
 第1ハイサイド・トランジスタ(第1ハイサイド・トランジスタTH1)と、第1ローサイド・トランジスタ(第1ローサイド・トランジスタTL1)と、前記第1ハイサイド・トランジスタと前記第1ローサイド・トランジスタを直列接続する第1ノード(第1ノードP1)とを備えた第1支流回路(第1支流回路55)と、
 第2ハイサイド・トランジスタ(第2ハイサイド・トランジスタTH2)と、第2ローサイド・トランジスタ(第2ローサイド・トランジスタTL2)と、前記第2ハイサイド・トランジスタと前記第2ローサイド・トランジスタを直列接続する第2ノード(第2ノードP2)とを備えた第2支流回路(第2支流回路56)と、
 第3ハイサイド・トランジスタ(第3ハイサイド・トランジスタTH3)と、第3ローサイド・トランジスタ(第3ローサイド・トランジスタTL3)と、前記第3ハイサイド・トランジスタと前記第3ローサイド・トランジスタを直列接続する第3ノード(第3ノードP3)とを備えた第3支流回路(第3支流回路57)と、
 前記第1支流回路と前記第2支流回路と前記第3支流回路とを並列接続する第4ノード(第4ノードP4)と第5ノード(第5ノードP5)と、を備え、
 前記モータは、三相交流モータであって、ステータコイルが前記第1ノードと前記第2ノードと前記第3ノードとにデルタ結線され、
 前記電源は、前記第4ノードと前記第5ノードとに接続され、
 前記制御装置は、
 前記モータの非駆動時に、前記シャント抵抗の出力が第2所定値となった場合に、前記スイッチを開状態にするとともに、
 前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタを開状態とし、且つ、前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタの少なくとも一つを閉状態とする、又は、
 前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタを開状態とし、且つ、前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタの少なくとも一つを閉状態とする第2ブレーキ制御を実行する、スライドドア用駆動装置。
 (7)によれば、モータの非駆動時におけるスライドドアの移動に対し、発電ブレーキにより制動力を付与することができる。
 (8) (7)に記載のスライドドア用駆動装置であって、
 前記制御装置は、
 前記第2ブレーキ制御において、前記シャント抵抗の出力が高いほど、前記閉状態とするトランジスタの数を増やす、スライドドア用駆動装置。
 (8)によれば、第2ブレーキ制御において、シャント抵抗の出力が高いほど、閉状態とするトランジスタの数を増やすことで、スライドドアの移動速度に応じて適切に制動力を付与することができる。
 (9) (7)に記載のスライドドア用駆動装置であって、
 前記第2ブレーキ制御において、前記シャント抵抗の出力が高いほど、前記閉状態となるデューティ比を増やす、スライドドア用駆動装置。
 (9)によれば、第2ブレーキ制御において、シャント抵抗の出力が高いほど、閉状態となるデューティ比を増やすことで、スライドドアの移動速度に応じて適切に制動力を付与することができる。
 (10) (1)~(5)のいずれかに記載のスライドドア用駆動装置であって、
 前記モータ駆動回路は、
 前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチ(リレースイッチ52)を備え、
 前記制御装置は、
 前記モータの非駆動時に、前記シャント抵抗の出力が第3所定値となった場合に、前記スイッチを閉状態として前記スライドドアの移動を規制する方向に前記モータを駆動するモータの非駆動時に、前記シャント抵抗の出力が第3所定値となった場合に、前記スイッチを閉状態として前記スライドドアの移動を規制する方向に前記モータを駆動する第3ブレーキ制御を実行する、スライドドア用駆動装置。
 (10)によれば、モータの非駆動時におけるスライドドアの移動に対し、スライドドアの移動を規制する方向にモータを駆動することにより制動力を付与することができる。
 (11) (1)~(5)のいずれかに記載のスライドドア用駆動装置であって、
 前記モータ駆動回路は、
 前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチを備え、
 前記電力変換装置は、
 第1ハイサイド・トランジスタ(第1ハイサイド・トランジスタTH1)と、第1ローサイド・トランジスタ(第1ローサイド・トランジスタTL1)と、前記第1ハイサイド・トランジスタと前記第1ローサイド・トランジスタを直列接続する第1ノード(第1ノードP1)とを備えた第1支流回路(第1支流回路55)と、
 第2ハイサイド・トランジスタ(第2ハイサイド・トランジスタTH2)と、第2ローサイド・トランジスタ(第2ローサイド・トランジスタTL2)と、前記第2ハイサイド・トランジスタと前記第2ローサイド・トランジスタを直列接続する第2ノード(第2ノードP2)とを備えた第2支流回路(第2支流回路56)と、
 第3ハイサイド・トランジスタ(第3ハイサイド・トランジスタTH3)と、第3ローサイド・トランジスタ(第3ローサイド・トランジスタTL3)と、前記第3ハイサイド・トランジスタと前記第3ローサイド・トランジスタを直列接続する第3ノード(第3ノードP3)とを備えた第3支流回路(第3支流回路57)と、
 前記第1支流回路と前記第2支流回路と前記第3支流回路とを並列接続する第4ノード(第4ノードP4)と第5ノード(第5ノードP5)と、を備え、
 前記モータは、三相交流モータであって、ステータコイルが前記第1ノードと前記第2ノードと前記第3ノードとにデルタ結線され、
 前記電源は、前記第4ノードと前記第5ノードとに接続され、
 前記制御装置は、前記モータの非駆動時に、
 前記シャント抵抗の出力が第1所定値となった場合に、前記スイッチを閉状態として前記電源を充電する第1ブレーキ制御を実行可能に構成され、
 前記シャント抵抗の出力が第2所定値となった場合に、前記スイッチを開状態にするとともに、
 前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタを開状態とし、且つ、前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタの少なくとも一つを閉状態とする、又は、
 前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタを開状態とし、且つ、前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタの少なくとも一つを閉状態とする第2ブレーキ制御を実行する可能に構成され、
 前記シャント抵抗の出力が第3所定値となった場合に、前記スイッチを閉状態として前記スライドドアの移動を規制する方向に前記モータを駆動する第3ブレーキ制御を実行可能に構成され、
 前記第2ブレーキ制御における前記スライドドアの保持力は、前記第1ブレーキ制御における前記スライドドアの保持力よりも高く、
 前記第3ブレーキ制御における前記スライドドアの保持力は、前記第2ブレーキ制御における前記スライドドアの保持力よりも高い、スライドドア用駆動装置。
 (11)によれば、第1ブレーキ制御、第2ブレーキ制御、第3ブレーキ制御における保持力を変えることで、スライドドアの移動速度に応じて適切に制動力を付与することができる。
 なお、本出願は、2019年11月27日出願の日本特許出願(特願2019-214746)に基づくものであり、その内容は本出願の中に参照として援用される。
10 スライドドア用駆動装置
11 電源
14 ドア
24 モータ
50 モータ駆動回路
51 インバータ(電力変換装置)
52 リレースイッチ
53 シャント抵抗
54u,54v,54w ホールIC(位置センサ)
55 第1支流回路
56 第2支流回路
57 第3支流回路
60 モータ制御装置
63 位置検出部
TH1 第1ハイサイド・トランジスタ
TL1 第1ローサイド・トランジスタ
TH2  第2ハイサイド・トランジスタ
TL2 第2ローサイド・トランジスタ
TH3 第3ハイサイド・トランジスタ
TL3 第3ローサイド・トランジスタ
P1 第1ノード
P2 第2ノード
P3 第3ノード
P4 第4ノード
P5 第5ノード
 
 

Claims (11)

  1.  電源と、
     スライドドアを開閉する動力を出力するモータと、
     前記電源と前記モータとを接続するモータ駆動回路と、
     前記モータ駆動回路を制御する制御装置と、を備えるスライドドア用駆動装置であって、
     前記モータ駆動回路は、
     前記電源から供給される直流電力を交流電力に変換する電力変換装置と、
     前記電源と前記電力変換装置との間に配置されたシャント抵抗と、を備え、
     前記制御装置は、前記シャント抵抗の出力に基づいて前記モータの回転角度を取得する、スライドドア用駆動装置。
  2.  請求項1に記載のスライドドア用駆動装置であって、
     前記シャント抵抗は、前記電源の負極側と前記電力変換装置の負極側との間に配置されている、スライドドア用駆動装置。
  3.  請求項1に記載のスライドドア用駆動装置であって、
     前記制御装置は、前記シャント抵抗の出力に基づいて取得した前記モータの回転角度に応じて、前記電力変換装置を制御する、スライドドア用駆動装置。
  4.  請求項1に記載のスライドドア用駆動装置であって、
     前記制御装置は、前記シャント抵抗の出力に基づいて異物の挟み込みを判定する、スライドドア用駆動装置。
  5.  請求項4に記載のスライドドア用駆動装置であって、
     前記モータは、ロータの回転位置に応じた信号を出力する位置センサをさらに備え、
     前記制御装置は、
     前記位置センサの出力に基づいて前記スライドドアの位置を取得し、
     前記シャント抵抗の出力が、前記スライドドアの位置に応じた閾値となった場合に、前記異物の挟み込みを判定する、スライドドア用駆動装置。
  6.  請求項1~5のいずれか一項に記載のスライドドア用駆動装置であって、
     前記モータ駆動回路は、
     前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチを備え、
     前記制御装置は、前記モータの非駆動時に、前記シャント抵抗の出力が第1所定値となった場合に、前記スイッチを閉状態として前記電源を充電する第1ブレーキ制御を実行する、スライドドア用駆動装置。
  7.  請求項1~5のいずれか一項に記載のスライドドア用駆動装置であって、
     前記モータ駆動回路は、
     前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチを備え、
     前記電力変換装置は、
     第1ハイサイド・トランジスタと、第1ローサイド・トランジスタと、前記第1ハイサイド・トランジスタと前記第1ローサイド・トランジスタを直列接続する第1ノードとを備えた第1支流回路と、
     第2ハイサイド・トランジスタと、第2ローサイド・トランジスタと、前記第2ハイサイド・トランジスタと前記第2ローサイド・トランジスタを直列接続する第2ノードとを備えた第2支流回路と、
     第3ハイサイド・トランジスタと、第3ローサイド・トランジスタと、前記第3ハイサイド・トランジスタと前記第3ローサイド・トランジスタを直列接続する第3ノードとを備えた第3支流回路と、
     前記第1支流回路と前記第2支流回路と前記第3支流回路とを並列接続する第4ノードと第5ノードと、を備え、
     前記モータは、三相交流モータであって、ステータコイルが前記第1ノードと前記第2ノードと前記第3ノードとにデルタ結線され、
     前記電源は、前記第4ノードと前記第5ノードとに接続され、
     前記制御装置は、
     前記モータの非駆動時に、前記シャント抵抗の出力が第2所定値となった場合に、前記スイッチを開状態にするとともに、
     前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタを開状態とし、且つ、前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタの少なくとも一つを閉状態とする、又は、
     前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタを開状態とし、且つ、前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタの少なくとも一つを閉状態とする第2ブレーキ制御を実行する、スライドドア用駆動装置。
  8.  請求項7に記載のスライドドア用駆動装置であって、
     前記制御装置は、
     前記第2ブレーキ制御において、前記シャント抵抗の出力が高いほど、前記閉状態とするトランジスタの数を増やす、スライドドア用駆動装置。
  9.  請求項7に記載のスライドドア用駆動装置であって、
     前記第2ブレーキ制御において、前記シャント抵抗の出力が高いほど、前記閉状態となるデューティ比を増やす、スライドドア用駆動装置。
  10.  請求項1~5のいずれか一項に記載のスライドドア用駆動装置であって、
     前記モータ駆動回路は、
     前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチを備え、
     前記制御装置は、
     前記モータの非駆動時に、前記シャント抵抗の出力が第3所定値となった場合に、前記スイッチを閉状態として前記スライドドアの移動を規制する方向に前記モータを駆動する第3ブレーキ制御を実行する、スライドドア用駆動装置。
  11.  請求項1~5のいずれか一項に記載のスライドドア用駆動装置であって、
     前記モータ駆動回路は、
     前記電源の正極側と前記電力変換装置の正極側との間に配置され、前記電源と前記電力変換装置との間の電力伝達経路を開閉するスイッチを備え、
     前記電力変換装置は、
     第1ハイサイド・トランジスタと、第1ローサイド・トランジスタと、前記第1ハイサイド・トランジスタと前記第1ローサイド・トランジスタを直列接続する第1ノードとを備えた第1支流回路と、
     第2ハイサイド・トランジスタと、第2ローサイド・トランジスタと、前記第2ハイサイド・トランジスタと前記第2ローサイド・トランジスタを直列接続する第2ノードとを備えた第2支流回路と、
     第3ハイサイド・トランジスタと、第3ローサイド・トランジスタと、前記第3ハイサイド・トランジスタと前記第3ローサイド・トランジスタを直列接続する第3ノードとを備えた第3支流回路と、
     前記第1支流回路と前記第2支流回路と前記第3支流回路とを並列接続する第4ノードと第5ノードと、を備え、
     前記モータは、三相交流モータであって、ステータコイルが前記第1ノードと前記第2ノードと前記第3ノードとにデルタ結線され、
     前記電源は、前記第4ノードと前記第5ノードとに接続され、
     前記制御装置は、前記モータの非駆動時に、
     前記シャント抵抗の出力が第1所定値となった場合に、前記スイッチを閉状態として前記電源を充電する第1ブレーキ制御を実行可能に構成され、
     前記シャント抵抗の出力が第2所定値となった場合に、前記スイッチを開状態にするとともに、
     前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタを開状態とし、且つ、前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタの少なくとも一つを閉状態とする、又は、
     前記第1ローサイド・トランジスタ、前記第2ローサイド・トランジスタ、及び前記第3ローサイド・トランジスタを開状態とし、且つ、前記第1ハイサイド・トランジスタ、前記第2ハイサイド・トランジスタ、及び前記第3ハイサイド・トランジスタの少なくとも一つを閉状態とする第2ブレーキ制御を実行する可能に構成され、
     前記シャント抵抗の出力が第3所定値となった場合に、前記スイッチを閉状態として前記スライドドアの移動を規制する方向に前記モータを駆動する第3ブレーキ制御を実行可能に構成され、
     前記第2ブレーキ制御における前記スライドドアの保持力は、前記第1ブレーキ制御における前記スライドドアの保持力よりも高く、
     前記第3ブレーキ制御における前記スライドドアの保持力は、前記第2ブレーキ制御における前記スライドドアの保持力よりも高い、スライドドア用駆動装置。
PCT/JP2020/043509 2019-11-27 2020-11-20 スライドドア用駆動装置 WO2021106807A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20893084.2A EP4067614A4 (en) 2019-11-27 2020-11-20 DRIVE DEVICE FOR SLIDING DOORS
US17/764,006 US20220341242A1 (en) 2019-11-27 2020-11-20 Sliding door driving device
JP2021561389A JP7463658B2 (ja) 2019-11-27 2020-11-20 スライドドア用駆動装置
CN202080068888.6A CN114503405A (zh) 2019-11-27 2020-11-20 滑动门驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019214746 2019-11-27
JP2019-214746 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021106807A1 true WO2021106807A1 (ja) 2021-06-03

Family

ID=76130216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043509 WO2021106807A1 (ja) 2019-11-27 2020-11-20 スライドドア用駆動装置

Country Status (5)

Country Link
US (1) US20220341242A1 (ja)
EP (1) EP4067614A4 (ja)
JP (1) JP7463658B2 (ja)
CN (1) CN114503405A (ja)
WO (1) WO2021106807A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133449A (ja) * 2003-10-31 2005-05-26 Tokai Rika Co Ltd パワーウィンドウ装置
JP2007327220A (ja) * 2006-06-07 2007-12-20 Tokai Rika Co Ltd パワーウィンドウ装置
JP2009068220A (ja) * 2007-09-12 2009-04-02 Hi-Lex Corporation 車両用の開閉体の挟み込み検出方法及び開閉体の挟み込み検出装置
JP2009127336A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 開閉体制御装置
JP2014181544A (ja) 2013-03-21 2014-09-29 Mitsuba Corp スライドドア制御装置及びその制御方法
WO2015093514A1 (ja) * 2013-12-19 2015-06-25 株式会社ミツバ 開閉体制御装置及び開閉体制御方法
US20170260795A1 (en) * 2016-03-08 2017-09-14 Ford Global Technologies, Llc Method of controlling a movable closure member of a vehicle
JP2018003426A (ja) * 2016-07-01 2018-01-11 アルプス電気株式会社 開閉制御装置
JP2019214746A (ja) 2018-06-11 2019-12-19 株式会社アルバック 炭素ナノ構造体成長用装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528486A (en) * 1983-12-29 1985-07-09 The Boeing Company Controller for a brushless DC motor
US5015927A (en) * 1989-08-04 1991-05-14 Thor Technology Corporation Electric motor with regeneration current commutation
US5202614A (en) * 1989-09-25 1993-04-13 Silicon Systems, Inc. Self-commutating, back-emf sensing, brushless dc motor controller
JP3437039B2 (ja) * 1996-08-19 2003-08-18 株式会社大井製作所 車両用スライドドアの開閉制御装置
JP3675202B2 (ja) * 1998-11-30 2005-07-27 アイシン精機株式会社 開閉体制御装置
JP4262578B2 (ja) * 2003-11-17 2009-05-13 株式会社ミツバ バックドア自動開閉装置
US7414425B2 (en) * 2004-05-10 2008-08-19 Temic Automotive Of North America, Inc. Damping control in a three-phase motor with a single current sensor
DE202005010174U1 (de) * 2005-06-29 2006-11-23 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Steuerungssystem für Fensterheber eines Kraftfahrzeugs
JP4691150B2 (ja) * 2008-10-10 2011-06-01 株式会社東芝 モータ制御装置、モータ制御方法およびエアコンディショナ
CN101761284B (zh) * 2008-12-22 2012-12-19 重庆川仪自动化股份有限公司 轨道交通安全门的控制器
JP5574187B2 (ja) * 2011-05-11 2014-08-20 株式会社デンソー 駆動装置
JP6114642B2 (ja) * 2013-06-13 2017-04-12 アイシン精機株式会社 開閉装置
JP6317904B2 (ja) * 2013-10-02 2018-04-25 日立ジョンソンコントロールズ空調株式会社 モータ制御装置、及び空気調和機
JP6333563B2 (ja) * 2014-01-29 2018-05-30 日立ジョンソンコントロールズ空調株式会社 インバータ制御装置およびそれを用いた冷凍装置
JP6232010B2 (ja) * 2015-05-13 2017-11-15 アトミック株式会社 自動ドア装置
JP6700738B2 (ja) * 2015-11-24 2020-05-27 株式会社メタコ 電動スクリーン装置
JP6870915B2 (ja) * 2016-03-23 2021-05-12 株式会社ミツバ 開閉体制御装置
JP6856921B2 (ja) * 2016-09-29 2021-04-14 千蔵工業株式会社 自動ドア、及び自動ドアの制御方法
DE102017201955A1 (de) * 2017-02-08 2018-08-09 Geze Gmbh Bremsvorrichtung
US11031880B2 (en) * 2017-03-29 2021-06-08 Nidec Corporation Power converter, motor driving unit, and electric power steering device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133449A (ja) * 2003-10-31 2005-05-26 Tokai Rika Co Ltd パワーウィンドウ装置
JP2007327220A (ja) * 2006-06-07 2007-12-20 Tokai Rika Co Ltd パワーウィンドウ装置
JP2009068220A (ja) * 2007-09-12 2009-04-02 Hi-Lex Corporation 車両用の開閉体の挟み込み検出方法及び開閉体の挟み込み検出装置
JP2009127336A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 開閉体制御装置
JP2014181544A (ja) 2013-03-21 2014-09-29 Mitsuba Corp スライドドア制御装置及びその制御方法
WO2015093514A1 (ja) * 2013-12-19 2015-06-25 株式会社ミツバ 開閉体制御装置及び開閉体制御方法
US20170260795A1 (en) * 2016-03-08 2017-09-14 Ford Global Technologies, Llc Method of controlling a movable closure member of a vehicle
JP2018003426A (ja) * 2016-07-01 2018-01-11 アルプス電気株式会社 開閉制御装置
JP2019214746A (ja) 2018-06-11 2019-12-19 株式会社アルバック 炭素ナノ構造体成長用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067614A4

Also Published As

Publication number Publication date
EP4067614A1 (en) 2022-10-05
JPWO2021106807A1 (ja) 2021-06-03
CN114503405A (zh) 2022-05-13
US20220341242A1 (en) 2022-10-27
EP4067614A4 (en) 2023-04-19
JP7463658B2 (ja) 2024-04-09

Similar Documents

Publication Publication Date Title
JP5201192B2 (ja) 回転機の制御装置
JP6845843B2 (ja) 車両の電源システム
WO2008102916A1 (ja) 回転電機の駆動制御装置および車両
JP2008005656A (ja) 車両用自動開閉装置
JP6544173B2 (ja) 車両用開閉体制御装置
JP2006197750A (ja) モータ駆動制御装置
JP5036918B2 (ja) 電力変換装置
JP2013038902A (ja) 電動機制御装置
JP5191351B2 (ja) 電力変換装置
CN113677865A (zh) 用于闭合面板的直接驱动线缆操作的致动系统
WO2021106807A1 (ja) スライドドア用駆動装置
JPH10174212A (ja) 電気自動車の制御装置
JP2009011029A (ja) 電気車両の制御装置及び電気車両
JP5804984B2 (ja) モータ駆動装置
JP2022180245A (ja) スライドドア用駆動装置
JP6643862B2 (ja) モータ制御装置
JP5660996B2 (ja) 電動機制御装置
JP4413565B2 (ja) 電源供給システム
JP2008184740A (ja) 車両用自動開閉装置
JP6870173B2 (ja) 車両用開閉体制御装置
JP2002068632A (ja) エレベータドア駆動装置
JP2011140363A (ja) エレベータドアの制御装置
JP4180460B2 (ja) 電動シャッター開閉装置
JP4804890B2 (ja) ドア装置
JP2007138633A (ja) ドア装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020893084

Country of ref document: EP

Effective date: 20220627