WO2021075040A1 - 蓄熱式給湯器 - Google Patents

蓄熱式給湯器 Download PDF

Info

Publication number
WO2021075040A1
WO2021075040A1 PCT/JP2019/041017 JP2019041017W WO2021075040A1 WO 2021075040 A1 WO2021075040 A1 WO 2021075040A1 JP 2019041017 W JP2019041017 W JP 2019041017W WO 2021075040 A1 WO2021075040 A1 WO 2021075040A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
storage material
erythritol
container
Prior art date
Application number
PCT/JP2019/041017
Other languages
English (en)
French (fr)
Inventor
純一 中園
俊圭 鈴木
浅岡 龍徳
Original Assignee
三菱電機株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人信州大学 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/041017 priority Critical patent/WO2021075040A1/ja
Priority to JP2020519154A priority patent/JP6818942B1/ja
Publication of WO2021075040A1 publication Critical patent/WO2021075040A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid

Definitions

  • the present invention relates to a heat storage type water heater provided with a heat storage material having erythritol and water.
  • Patent Document 1 discloses a configuration using erythritol, which is a kind of sugar alcohol, as a heat storage material for a heat storage type water heater.
  • Erythritol is widely used as a heat storage material because it has a larger amount of latent heat than other types of latent heat storage materials and the temperature at which latent heat is released is as high as 119 ° C.
  • system equipment such as water heaters used at 100 ° C or lower, such as hot water supply
  • the latent heat of erythritol may be sufficiently released during a phase change due to the high melting point of erythritol. This may not be possible and the amount of heat storage may decrease. Therefore, when erythritol is used as a heat storage material in a system device such as a water heater, it is necessary to fill the container with a heat storage material sufficient to obtain a sufficient amount of heat storage, which may increase the size of the device.
  • the present invention has been made to solve the above problems, and heat storage is performed even when a heat storage material containing erythritol as a main component is used for a system device used at 100 ° C or lower, such as a hot water supply. It is an object of the present invention to provide a heat storage type water heater that can realize miniaturization as a whole by suppressing a decrease in the amount.
  • the heat storage type water heater according to the present invention is housed in a container, a heat storage material filled inside the container, and inside the container, exchanges heat with a first heat medium, and stores heat in the heat storage material.
  • a heat exchanger that exchanges heat with a second heat medium to dissipate heat from the heat storage material is provided.
  • the heat storage material has erythritol and water, and the mixing ratio of the erythritol to the water is a weight ratio. It is 60 [wt%] or more and 80 [wt%] or less.
  • erythritol since a heat storage material having erythritol and water and having a mixing ratio of erythritol to water having a weight ratio of 60 [wt%] or more and 80 [wt%] or less is used, erythritol is dissolved in water. By doing so, the temperature (melting point) at which erythritol changes in phase can be lowered to 60 ° C. to 90 ° C., which is suitable for use in the range of 40 ° C. to 90 ° C. for hot water supply. As a result, the latent heat of erythritol can be sufficiently released, and the amount of heat stored in the heat storage material can be improved.
  • FIG. 1 It is a schematic diagram which shows the internal structure of the state at the time of heat dissipation of the heat storage material which is the heat storage type water heater which concerns on Embodiment 1.
  • FIG. 2 It is a graph which showed the relationship between the mixing ratio of erythritol with respect to water, and the melting point of a heat storage material. It is a graph which showed the relationship between the mixing ratio of erythritol with respect to water, and the amount of heat per unit area of a heat storage material.
  • FIG. It is a schematic diagram which shows the internal structure of the state at the time of heat dissipation of the heat storage material which is the heat storage type water heater which concerns on Embodiment 2.
  • FIG. 2 It is a schematic diagram which shows the internal structure of the state at the time of heat dissipation of the heat storage material which is the heat storage type water heater which concerns on Embodi
  • FIG. 1 is a schematic view of the heat storage type water heater according to the first embodiment, showing the internal configuration of the state of the heat storage material at the time of heat dissipation.
  • the heat storage type water heater 100 according to the first embodiment exchanges heat with the container 1, the heat storage material 2, and the first heat medium to store heat in the heat storage material 2, and also stores the heat in the second heat storage material 2.
  • Container 1 has, for example, a substantially rectangular parallelepiped shape.
  • the material of the container 1 is a material having high heat resistance and strength such as SUS, Al, Cu or polycarbonate.
  • a heat storage material 2 Inside the container 1, a heat storage material 2, a heat exchanger 3, and a stirring blade 60 of a stirrer 6 are housed.
  • a plurality of openings into which the hot water supply water inflow pipe 4b, the hot water supply water outflow pipe 4c, the heat medium inflow pipe 5b, and the heat medium outflow pipe 5c of the heat exchanger 3 are inserted are formed.
  • the lower part of the container 1 serves as a deposition space for depositing the solid of erythritol 20 that precipitates on the inner bottom surface of the container 1 when the heat storage material 2 dissipates heat.
  • the heat storage material 2 mainly contains erythritol 20 and water 21.
  • the erythritol 20 includes erythritol, pentaerythritol, dipentaerythritol and the like.
  • the water 21 is preferably pure water, but it does not have to be pure water as long as it does not contain a substance that deteriorates erythritol 20.
  • Erythritol 20 and water 21 have the property of dissolving and have a high heat storage amount.
  • the heat storage type water heater 100 since the heat storage material 2 has a high heat storage amount, the filling amount of the heat storage material 2 to be filled in the container 1 can be reduced, and the size can be reduced as a whole.
  • the heat storage material 2 becomes an aqueous solution in which the solid phase of erythritol 20 is not precipitated as a whole during heat storage, and as shown in FIG. 1, the solid phase portion B in which erythritol 20 is precipitated and erythritol during heat dissipation are used. It has the property of separating the solid phase of 20 into the aqueous solution part A in which the solid phase is not precipitated.
  • the heat exchanger 3 includes a heat exchanger 4 for heat dissipation and a heat exchanger 5 for heat storage.
  • the heat radiating heat exchanger 4 is, for example, a tube-type heat exchanger, and has a heat radiating heat transfer pipe 4a, a hot water supply water inflow pipe 4b, a hot water supply water outflow pipe 4c, and fins 4d.
  • the heat storage heat exchanger 5 is, for example, a tube type heat exchanger, and has a heat storage heat transfer tube 5a, a heat medium inflow pipe 5b, a heat medium outflow pipe 5c, and fins (not shown). There is.
  • the heat transfer tube 4a for heat dissipation is a cylinder, a flat plate, or a flat shape.
  • the heat dissipation tube 4a is formed by processing a metal such as aluminum, Cu, or SUS. Hot water is flowed inside the heat radiating heat transfer tube 4a as a second heat medium for releasing the heat of the heat storage material 2.
  • the hot water supply water inflow pipe 4b and the hot water supply water outflow pipe 4c are formed by processing a metal such as aluminum, Cu, or SUS.
  • the hot water supply water inflow pipe 4b is inserted into an opening formed on one side surface of the container 1 and is provided so as to straddle the inside and the outside of the container 1. It is connected.
  • the hot water supply water outflow pipe 4c is inserted into an opening formed on one side surface of the container 1 and is provided so as to straddle the inside and the outside of the container 1, and the end inside the container is the other end of the heat dissipation tube 4a for heat dissipation. It is connected to the.
  • the hot water supply water inflow pipe 4b is arranged above the container 1, and the hot water supply water outflow pipe 4c is arranged below the container 1.
  • the hot water supply water inflow pipe 4b may be arranged below the container 1
  • the hot water supply water outflow pipe 4c may be arranged above the container 1.
  • the fin 4d is made by processing a metal having high thermal conductivity such as aluminum, Cu, SUS or carbon into a flat plate shape.
  • the fins 4d are provided on the outer peripheral surface of the heat dissipation tube 4a.
  • the heat storage tube 5a is cylindrical, flat or flat.
  • the heat storage tube 5a is formed by processing a metal such as aluminum, Cu, or SUS.
  • An HFC-based refrigerant such as water, oil, carbon dioxide, or R410a flows inside the heat storage tube 5a as a first heat medium for heating the heat storage material 2.
  • the heat medium inflow pipe 5b and the heat medium outflow pipe 5c are formed by processing a metal such as aluminum, Cu, or SUS.
  • the heat medium inflow pipe 5b is inserted into an opening formed on one side surface of the container 1 and is provided so as to straddle the inside and the outside of the container 1. It is connected.
  • the heat medium outflow pipe 5c is inserted into an opening formed on one side surface of the container 1 and is provided so as to straddle the inside and the outside of the container 1, and the end inside the container is the other end of the heat storage tube 5a for heat storage. It is connected to the.
  • the heat medium inflow pipe 5b is arranged above the container 1, and the heat medium outflow pipe 5c is arranged below the container 1.
  • the heat medium inflow pipe 5b may be arranged below the container 1
  • the heat medium outflow pipe 5c may be arranged above the container 1.
  • the fins of the heat storage heat exchanger 5 are made by processing a metal having high thermal conductivity such as aluminum, Cu, SUS or carbon into a flat plate shape.
  • the fins of the heat storage heat exchanger 5 are provided on the outer peripheral surface of the heat storage heat transfer tube 5a.
  • the heat exchanger 4 for heat dissipation may be provided as long as it has a configuration capable of dissipating heat from the heat storage material 2, and the shape of the heat exchanger 4 may be appropriately changed according to the implementation situation.
  • the heat radiating heat exchanger 4 may not have fins 4d and may be composed of only the heat radiating heat transfer pipe 4a, the hot water supply water inflow pipe 4b, and the hot water supply water outflow pipe 4c.
  • the heat storage heat exchanger 5 may be provided as long as it has a structure capable of storing heat in the heat storage material 2, and its shape is appropriately changed according to the implementation situation.
  • the heat storage heat exchanger 5 may not have fins and may be composed of only the heat storage heat transfer pipe 5a, the heat medium inflow pipe 5b, and the heat medium outflow pipe 5c.
  • tube type heat exchanger has been described as an example of the heat dissipation heat exchanger 4 and the heat storage heat exchanger 5, a plurality of flat plates are laminated as long as the heat exchange is possible with the heat storage material 2.
  • a plate type heat exchanger may also be used.
  • the stirrer 6 has a stirrer blade 60 for stirring the heat storage material 2 and a rotary machine 61 for rotating the stirrer blade 60.
  • the stirring blade 60 is made of a metal material such as SUS, aluminum or Cu, a lightweight material such as plastic or resin, or a magnetic material such as a magnet.
  • the stirring blade 60 is rotated by the drive of the rotating machine 61 to stir the heat storage material 2.
  • the rotary machine 61 is a drive source for rotating the stirring blade 60 by, for example, an electrically driven motor or a magnetic field.
  • FIG. 2 is a graph showing the relationship between the mixing ratio of erythritol with respect to water and the melting point of the heat storage material.
  • the horizontal axis represents the mixing ratio [wt%] of erythritol 20 to water 21, and the vertical axis represents the melting point [° C.] of the heat storage material 2.
  • Erythritol 20 has the property of being soluble in water 21.
  • the temperature (melting point) at which the erythritol 20 undergoes a phase change can be lowered by dissolving the erythritol 20 in the water 21.
  • the heat storage material 2 has a property that the melting point decreases as the mixing ratio of erythritol 20 with respect to water 21 decreases.
  • the melting point is preferably in the range of 60 ° C. to 90 ° C.
  • the mixing ratio of erythritol 20 to water 21 is preferably 60 [wt%] or more and 80 [wt%] or less by weight.
  • FIG. 3 is a graph showing the relationship between the mixing ratio of erythritol with respect to water and the amount of heat per unit area of the heat storage material.
  • the horizontal axis represents the mixing ratio [wt%] of erythritol 20 to water 21, and the vertical axis represents the amount of heat [MJ ⁇ L -1 ] per unit volume of the heat storage material 2.
  • the amount of heat per unit volume of the heat storage material 2 increases according to the mixing ratio of erythritol 20, and the mixing ratio of erythritol 20 becomes maximum at around 80 [wt%] by weight. That is, the optimum mixing ratio of erythritol 20 is around 80 [wt%] by weight.
  • the mixing ratio of erythritol 20 to water 21 is 60 [wt%] or more and 80 [wt%] or less by weight. It becomes suitable, and more specifically, a weight ratio of 80 [wt%] is optimal.
  • Heat storage operation of heat storage type water heater 100 Next, the heat storage operation of the heat storage type water heater 100 will be described.
  • the heat storage type water heater 100 when a high-temperature heat medium flows from the heat medium inflow pipe 5b of the heat storage heat exchanger 5, heat is transferred from the heat storage heat transfer tube 5a to the heat storage material 2 via fins.
  • the heat storage type water heater 100 when the low temperature heat storage material 2 is warmed and the temperature rises to reach the melting point, the solid phase of erythritol 20 melts and becomes a liquid phase. On the other hand, the temperature of the heat medium that gives heat to the heat storage material 2 drops, and the heat medium is discharged from the heat medium outflow pipe 5c.
  • the heat storage material 2 can be stirred by rotating the stirring blade 60 of the stirrer 6.
  • the heat source machine for heating the heat medium flowing through the heat storage heat exchanger 5 may be a heat pump, a heater, or a combustor, as long as it can heat the heat medium.
  • the system for heating the heat medium is a circulation type system in which the heat medium is discharged from the heat medium outflow pipe 5c, flows through the heat source machine, and flows into the heat storage heat exchanger 5 again from the heat medium inflow pipe 5b. It may be a transient type that is discharged from 5c to the outside and does not circulate.
  • Heat dissipation operation of heat storage type water heater 100 Next, the heat dissipation operation of the heat storage type water heater 100 will be described.
  • the heat storage type water heater 100 when the hot water supply water flows from the hot water supply water inflow pipe 4b of the heat dissipation heat exchanger 4, the heat of the heat storage material 2 is transferred to the heat dissipation tube 4a via the fins 4d, and the hot water supply flows inside. The temperature of the water rises. At the same time, the heat storage material 2 is deprived of heat and its temperature drops.
  • the temperature of the heat storage material 2 around the heat radiating heat transfer tube 4a reaches the melting point, and a solid phase of erythritol 20 is deposited around the heat radiating heat transfer tube 4a.
  • the hot water supply water to which heat is applied from the heat storage material 2 and the temperature rises is discharged from the hot water supply water outflow pipe 4c.
  • the heat storage material 2 can be agitated by rotating the agitating blade 60 of the agitator 6 at the time of heat dissipation.
  • the solid phase of erythritol 20 has a lower thermal conductivity than a substance such as a metal. Therefore, in the heat storage type water heater 100, the heat exchange performance between the heat storage material 2 and the heat medium can be improved by rotating the stirrer 6 to stir the heat storage material 2.
  • the heat storage material 2 is a mixed solution of erythritol 20 and water 21.
  • the concentration of erythritol 20 in the heat storage material 2 is calculated by the formula (1) using the temperature of the heat storage material 2.
  • x -0.00387T 2 + 1.34T-5.94
  • x is the erythritol concentration [wt%] in the heat storage material 2.
  • T is the temperature [° C.] of the heat storage material 2. That is, the solid phase amount of erythritol 20 precipitated from the heat storage material 2 and the liquid phase amount with the heat storage material 2 are uniquely determined according to the temperature of the heat storage material 2 at the time of heat dissipation.
  • the stirring blade 60 of the stirrer 6 should be arranged in the aqueous solution part A of the heat storage material 2. This is because the stirring blade 60 can stir the heat storage material 2 without causing a decrease in power due to the solid phase of the erythritol 20, so that stable heat exchange is possible and the hot water supply performance is improved.
  • the heat storage type water heater 100 is based on the formula (1) and the solid phase amount of erythritol 20 calculated based on the temperature of the heat storage material 2 at the time of heat dissipation, and the solid phase portion B and the aqueous solution portion A at the time of heat dissipation.
  • the stirring blade 60 of the stirrer 6 By arranging the stirring blade 60 of the stirrer 6 between the heights H'and more and H or less, which is the portion where the aqueous solution part A is located in the state where and is separated, stable heat exchange is possible. Become.
  • the heat storage material 2 is a mixed solution of erythritol 20 and water 21, and is characterized in that the erythritol 20 dissolves in water 21.
  • a general heat storage material 2 such as paraffin, erythritol alone, or sodium acetate trihydrate
  • the temperature of the heat storage material 2 drops from the heat transfer surface, and the heat transfer surface
  • the solid phase of the heat storage material 2 is deposited on the heat storage material 2.
  • the solid phase amount of erythritol 20 deposited on the surface of the heat exchanger 3 can be reduced by stirring the heat storage material 2 with the stirrer 6. Therefore, deterioration of the heat exchange performance of the heat exchanger 3 can be suppressed. That is, since the heat storage type water heater 100 is provided with the stirrer 6, the heat exchange performance can be sufficiently exhibited even if the heat dissipation heat exchanger 4 and the heat storage heat exchanger 5 are miniaturized.
  • the vessel 3 can be miniaturized to miniaturize the entire apparatus.
  • the heat storage type water heater 100 is housed in the container 1, the heat storage material 2 filled in the container 1, and the first heat medium. It is provided with a heat exchanger 3 that exchanges heat to store heat in the heat storage material 2 and exchanges heat with a second heat medium to dissipate heat from the heat storage material 2.
  • the heat storage material 2 has erythritol 20 and water 21.
  • the mixing ratio of erythritol 20 to water 21 is 60 [wt%] or more and 80 [wt%] or less by weight.
  • the temperature (melting point) at which the erythritol 20 undergoes a phase change when the erythritol 20 is dissolved in water 21 is set in the range of 40 ° C. to 90 ° C. for hot water supply. It can be lowered to 60 ° C. to 90 ° C., which is suitable for use. As a result, the latent heat of the erythritol 20 can be sufficiently released, and the amount of heat stored in the heat storage material 2 can be improved.
  • the heat storage type water heater 100 can improve the heat storage amount of the heat storage material 2 even when the heat storage material 2 containing erythritol 20 as a main component is used, the heat storage material 2 to be filled in the container 1 can be improved. By reducing the amount of, it is possible to realize miniaturization as a whole.
  • the heat storage type water heater 100 further includes a stirrer 6 for stirring the heat storage material 2.
  • the heat storage type water heater 100 can reduce the solid phase amount of erythritol 20 deposited on the surface of the heat exchanger 3 by stirring the heat storage material 2 with the stirrer 6, so that the heat exchange of the heat exchanger 3 can be performed. It is possible to suppress the deterioration of performance. Therefore, since the heat storage type water heater 100 is provided with the stirrer 6 so that the heat exchange performance can be sufficiently exhibited even if the heat exchanger 3 is miniaturized, the heat exchanger 3 can be miniaturized to reduce the size of the entire device. It can be miniaturized.
  • the heat storage material 2 has a property of being separated into a solid phase portion B in which the erythritol 20 is precipitated and an aqueous solution portion A in which the solid phase of the erythritol 20 is not precipitated at the time of heat dissipation.
  • the stirring blade 60 is arranged at a portion where the aqueous solution portion A is located in a state where the solid phase portion B and the aqueous solution portion A are separated at the time of heat dissipation. Therefore, in the heat storage type water heater 100, since the stirring blade 60 can agitate the heat storage material 2 without causing a power decrease due to the solid phase of the erythritol 20, stable heat exchange is possible and the hot water supply performance can be improved.
  • FIG. 4 is a schematic view showing a modified example of the heat storage type water heater according to the first embodiment.
  • the heat storage type water heater 100 may include the heat exchanger 3 as one heat exchanger that both stores heat and dissipates heat from the heat storage material 2. That is, since the heat storage heat exchanger 5 may be configured to store heat in the heat storage material 2 in FIG. 1, hot water supply water can be used as the heat medium flowing through the heat storage heat exchanger 5. Therefore, it is possible to use the heat dissipation heat exchanger 4 as the heat storage heat exchanger 5 without using the heat storage heat exchanger 5. That is, in FIG. 4, the heat radiating heat exchanger 4 is also used as the heat storage heat exchanger 5, and the heat storage of the heat storage material 2 is performed by flowing high temperature water through the heat radiating heat exchanger 4.
  • FIG. 5 is a schematic view of the heat storage type water heater according to the second embodiment, showing the internal configuration of the state of the heat storage material at the time of heat dissipation.
  • the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the heat storage type water heater 101 according to the second embodiment is characterized in that it includes a pump 7 for flowing the heat storage material 2 in place of the stirrer 6 of the heat storage type water heater 100 according to the first embodiment. ..
  • the heat storage type water heater 101 has a container 1, a heat storage material 2 filled inside the container 1, and heat exchange for heat dissipation housed inside the container 1. It includes a container 4, a heat storage heat exchanger 5, and a pump 7 for flowing the heat storage material 2 inside the container 1.
  • the container 1 is connected to a suction pipe port 10 to which a pump 7 is connected and discharges the heat storage material 2 to the outside of the container 1, and a pump 7 is connected to the container 1 to discharge heat.
  • a discharge pipe port 11 for allowing the material 2 to flow into the container 1 again is formed.
  • the pump 7 is a device that sucks and discharges a fluid such as a centrifugal pump, a constant volume pump, or a plunger type pump.
  • the material of the pump 7 is, for example, a strong material such as aluminum or SUS, or a lightweight material such as plastic.
  • the suction port is connected to the suction pipe port 10 of the container 1, and the discharge port is connected to the discharge pipe port 11 of the container 1.
  • the heat source machine that gives heat to the heat storage material 2 on the circuit from the suction pipe port 10 to the pump 7 of the container 1 and the heat radiated from the heat storage material 2 are dissipated. It shows the case of not having a vessel.
  • the heat storage type water heater 101 may have other devices arranged on the circuit as long as the pump 7 is used to circulate the heat storage material 2 in the container 1.
  • the heat storage type water heater 101 has fins from the heat storage tube 5a when a high temperature heat medium flows from the heat medium inflow pipe 5b of the heat storage heat exchanger 5. Heat is transferred to the heat storage material 2 through the heat storage material 2.
  • the heat storage type water heater 101 when the low temperature heat storage material 2 is warmed and the temperature rises to reach the melting point, the solid phase of erythritol 20 melts and becomes a liquid phase.
  • the temperature of the heat medium that gives heat to the heat storage material 2 drops, and the heat medium is discharged from the heat medium outflow pipe 5c.
  • the heat storage material 2 can be made to flow by driving the pump 7 to discharge the heat storage material 2 to the outside of the container 1 and flowing the discharged heat storage material 2 into the inside of the container 1 again. ..
  • the heat exchange performance between the heat storage material 2 and the heat medium is improved.
  • the heat source machine for heating the heat medium flowing through the heat storage heat exchanger 5 may be a heat pump, a heater, or a combustor, as long as it can heat the heat medium.
  • the system for heating the heat medium is a circulation type system in which the heat medium is discharged from the heat medium outflow pipe 5c, flows through the heat source machine, and flows into the heat storage heat exchanger 5 again from the heat medium inflow pipe 5b. It may be a transient type that is discharged from 5c to the outside and does not circulate.
  • heat dissipation operation of heat storage type water heater 101 Next, the heat dissipation operation of the heat storage type water heater 101 will be described.
  • the heat storage type water heater 101 according to the second embodiment as in the first embodiment, when the hot water supply water flows from the hot water supply water inflow pipe 4b of the heat dissipation heat exchanger 4, the heat of the heat storage material 2 causes the fins 4d.
  • the temperature of the hot water supply water that is transmitted to the heat dissipation tube 4a for heat dissipation and flows inside rises.
  • the heat storage material 2 is deprived of heat and the temperature drops.
  • the temperature of the heat storage material 2 around the heat radiating heat transfer tube 4a reaches the melting point, and a solid phase of erythritol 20 is deposited around the heat radiating heat transfer tube 4a.
  • the hot water supply water to which heat is applied from the heat storage material 2 and the temperature rises is discharged from the hot water supply water outflow pipe 4c.
  • the heat storage material 2 can be made to flow by driving the pump 7 to discharge the heat storage material 2 to the outside of the container 1 and flowing the discharged heat storage material 2 into the inside of the container 1 again. ..
  • the solid phase of erythritol 20 has a lower thermal conductivity than a substance such as a metal. Therefore, in the heat storage type water heater 101, the heat exchange performance between the heat storage material 2 and the heat medium can be improved by flowing the heat storage material 2 with the pump 7.
  • the heat storage material 2 in the heat storage type water heater 101 of the second embodiment is also a mixed liquid of erythritol 20 and water 21 as in the first embodiment.
  • the concentration of erythritol 20 in the heat storage material 2 is calculated by the formula (1) using the temperature of the heat storage material 2.
  • x -0.00387T 2 + 1.34T-5.94
  • x is the erythritol concentration [wt%] in the heat storage material 2.
  • T is the temperature [° C.] of the heat storage material 2.
  • the solid phase amount of erythritol 20 precipitated from the heat storage material 2 and the liquid phase amount with the heat storage material 2 are uniquely determined according to the temperature of the heat storage material 2 at the time of heat dissipation.
  • the suction pipe port 10 and the discharge pipe port 11 of the container 1 should be arranged in the aqueous solution portion A of the heat storage material 2. This is because if the suction pipe port 10 and the discharge pipe port 11 are arranged in the solid phase portion B, the solid phase of erythritol 20 is deposited in the pipe and the inside of the pipe is blocked by the solid phase. ..
  • the heat storage type water heater 101 includes the solid phase portion B and the aqueous solution portion A at the time of heat dissipation based on the above formula (1) and the solid phase amount of erythritol 20 calculated based on the temperature of the heat storage material 2 at the time of heat dissipation.
  • the temperature (melting point) at which the erythritol 20 undergoes a phase change when the erythritol 20 is dissolved in water 21 is set to 40 ° C. to 90 ° C. for hot water supply.
  • the temperature can be lowered to 60 ° C. to 90 ° C., which is suitable for use in the range of.
  • the latent heat of the erythritol 20 can be sufficiently released, and the amount of heat stored in the heat storage material 2 can be improved.
  • the heat storage type water heater 101 can improve the heat storage amount of the heat storage material 2 even when the heat storage material 2 containing erythritol 20 as a main component is used, the heat storage material 2 to be filled in the container 1 can be improved. By reducing the amount of, it is possible to realize miniaturization as a whole.
  • the heat storage type water heater 101 causes the heat storage material 2 to flow by discharging the heat storage material 2 to the outside of the container 1 and allowing the discharged heat storage material 2 to flow into the inside of the container 1 again.
  • a pump 7 for making the pump 7 is provided.
  • a suction pipe port 10 to which a pump 7 is connected to discharge the heat storage material 2 to the outside of the container 1 and a discharge pipe port 10 to which the pump 7 is connected to discharge the discharged heat storage material 2 into the inside of the container 1 again are connected to the container 1.
  • the piping port 11 is formed.
  • the heat storage type water heater 101 can reduce the solid phase amount of erythritol 20 deposited on the surface of the heat exchanger 3 by driving the pump 7 to flow the heat storage material 2, so that the heat exchanger 101 can reduce the solid phase amount of the erythritol 20. It is possible to suppress the deterioration of the heat exchange performance of 3. Therefore, since the heat storage type water heater 101 is provided with the pump 7, the heat exchange performance can be sufficiently exhibited even if the heat exchanger 3 is miniaturized. Therefore, the heat exchanger 3 is miniaturized and the device as a whole is miniaturized. Can be transformed into.
  • the heat storage material 2 has a property of being separated into a solid phase portion B in which the erythritol 20 is precipitated and an aqueous solution portion A in which the solid phase of the erythritol 20 is not precipitated at the time of heat dissipation.
  • a suction pipe port 10 and a discharge pipe port 11 are formed at a portion where the aqueous solution part A is located in a state where the solid phase part B and the aqueous solution part A are separated at the time of heat dissipation.
  • the heat storage type water heater 101 can prevent a situation in which the inside of the pipe is blocked by the solid phase of erythritol 20 deposited in the pipes of the suction pipe port 10 and the discharge pipe port 11, so that the heat storage type water heater 101 can store heat.
  • the material 2 can be made to flow to enable stable heat exchange, and the hot water supply performance can be improved.
  • the heat exchanger 3 may be composed of one heat exchanger that both stores heat and dissipates heat from the heat storage material 2. That is, since the hot water supply water can be used as the heat medium flowing through the heat storage heat exchanger 5, the heat heat exchanger 4 for heat dissipation should be used as the heat storage exchanger 5 without using the heat storage heat exchanger 5. Is also possible.
  • the heat storage type water heaters 100 and 101 have been described above based on the embodiment, the heat storage type water heaters 100 and 101 are not limited to the configuration of the above-described embodiment.
  • the heat storage type water heaters 100 and 101 are not limited to the above-mentioned components, and may include other components.
  • the heat storage type water heaters 100 and 101 include a range of design changes and application variations normally performed by those skilled in the art within a range that does not deviate from the technical idea thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

蓄熱式給湯器は、容器と、容器の内部に充填された蓄熱材と、容器の内部に収容され、第1の熱媒と熱交換して蓄熱材に蓄熱すると共に、第2の熱媒と熱交換して蓄熱材から放熱させる熱交換器と、を備えている。蓄熱材は、エリスリトールと水とを有している。水に対するエリスリトールの混合比率は、重量比60[wt%]以上80[wt%]以下である。

Description

蓄熱式給湯器
 本発明は、エリスリトール及び水を有する蓄熱材を備えた蓄熱式給湯器に関するものである。
 従来、蓄熱材を使用した蓄熱式給湯器が知られている。蓄熱式給湯器の蓄熱材は、一般的に水が使用されるが、体積あたりの蓄熱量が多い固体から液体に相変化する際の潜熱を利用した潜熱蓄熱材も使用される。例えば特許文献1には、蓄熱式給湯器の蓄熱材として、糖アルコールの一種であるエリスリトールを使用した構成が開示されている。
特開2000-087020号公報
 エリスリトールは、他の種類の潜熱蓄熱材に比べて潜熱量が多く、潜熱を放出する際の温度が融点119℃と高いため、蓄熱材として広く使用されている。しかし、給湯などの100℃以下で使用する給湯器等のシステム機器に、蓄熱材としてエリスリトールを使用すると、エリスリトールの融点が高いことが原因で、相変化時にエリスリトールの潜熱を十分に放出することができず、蓄熱量が低下するおそれがある。そのため、給湯器などのシステム機器に、蓄熱材としてエリスリトールを使用する場合、十分な蓄熱量が得られるだけの蓄熱材を容器に充填する必要があり、機器が大型化するおそれがある。
 本発明は、上記のような課題を解決するためになされたもので、給湯などの100℃以下で使用するシステム機器に、エリスリトールを主成分とした蓄熱材を使用した場合であっても、蓄熱量の低下を抑制することにより、全体として小型化を実現することができる、蓄熱式給湯器を提供することを目的とする。
 本発明に係る蓄熱式給湯器は、容器と、前記容器の内部に充填された蓄熱材と、前記容器の内部に収容され、第1の熱媒と熱交換して前記蓄熱材に蓄熱すると共に、第2の熱媒と熱交換して前記蓄熱材から放熱させる熱交換器と、を備え、前記蓄熱材は、エリスリトールと水とを有し、前記水に対する前記エリスリトールの混合比率は、重量比60[wt%]以上80[wt%]以下である。
 本発明によれば、エリスリトールと水とを有し、水に対するエリスリトールの混合比率を重量比60[wt%]以上80[wt%]以下とした蓄熱材を用いているので、エリスリトールが水に溶解することにより、エリスリトールが相変化する温度(融点)を、給湯用途の40℃~90℃の範囲で使用する場合に適する60℃~90℃に低下させることができる。これにより、エリスリトールの潜熱を十分に放出させることができ、蓄熱材の蓄熱量を向上させることができる。よって、給湯などの100℃以下で使用するシステム機器に、エリスリトールを主成分とした蓄熱材を使用した場合であっても、蓄熱材の蓄熱量を向上させることができるため、容器に充填する蓄熱材の量を削減することで、全体として小型化を実現することができる。
実施の形態1に係る蓄熱式給湯器であって、蓄熱材の放熱時における状態の内部構成を示した模式図である。 水に対するエリスリトールの混合比率と蓄熱材の融点との関係を示したグラフである。 水に対するエリスリトールの混合比率と蓄熱材の単位面積あたりの熱量との関係を示したグラフである。 実施の形態1に係る蓄熱式給湯器の変形例を示した模式図である。 実施の形態2に係る蓄熱式給湯器であって、蓄熱材の放熱時における状態の内部構成を示した模式図である。
 以下、図面を参照して、本発明の実施の形態について説明する。なお、各図中、同一又は相当する部分には、同一符号を付して、その説明を適宜省略又は簡略化する。また、各図に記載の構成について、その形状、大きさ、及び配置等は、本発明の範囲内で適宜変更することができる。
実施の形態1.
(蓄熱式給湯器100の構成)
 図1は、実施の形態1に係る蓄熱式給湯器であって、蓄熱材の放熱時における状態の内部構成を示した模式図である。本実施の形態1に係る蓄熱式給湯器100は、図1に示すように、容器1と、蓄熱材2と、第1の熱媒と熱交換して蓄熱材2に蓄熱すると共に、第2の熱媒と熱交換して蓄熱材2から放熱させる熱交換器3と、蓄熱材2を撹拌する撹拌機6と、を備えている。
 容器1は、例えば略直方体形状である。容器1の材質は、SUS、Al、Cu又はポリカーボネイド等の耐熱性及び強度の高い材料である。容器1の内部には、蓄熱材2、熱交換器3及び撹拌機6の撹拌翼60が収容されている。容器1の側面には、熱交換器3の給湯水流入配管4b、給湯水流出配管4c、熱媒流入配管5b及び熱媒流出配管5cが挿入される複数の開口が形成されている。容器1の下部は、蓄熱材2の放熱時に、容器1の内底面に沈殿するエリスリトール20の固体を堆積させるための堆積空間となる。
 蓄熱材2は、主にエリスリトール20と水21とを有している。エリスリトール20とは、エリスリトール、ペンタエリスリトール及びジペンタエリスリトール等が含まれる。水21は、純水が好ましいが、エリスリトール20を劣化させる物質が含まれていない水であれば純水でなくて良い。エリスリトール20と水21は、溶解する性質があり、且つ高い蓄熱量を有する。蓄熱式給湯器100は、蓄熱材2が高い蓄熱量を有することにより、容器1に充填する蓄熱材2の充填量を削減でき、全体として小型化することができる。また、蓄熱材2は、蓄熱時において、全体においてエリスリトール20の固相が析出していない水溶液となり、放熱時において、図1に示すように、エリスリトール20が析出された固相部Bと、エリスリトール20の固相が析出していない水溶液部Aとに分離される性質を有している。
 熱交換器3は、放熱用熱交換器4と、蓄熱用熱交換器5と、を有している。放熱用熱交換器4は、例えばチューブ型熱交換器であり、放熱用伝熱管4aと、給湯水流入配管4bと、給湯水流出配管4cと、フィン4dと、を有している。また、蓄熱用熱交換器5は、例えばチューブ型熱交換器であり、蓄熱用伝熱管5aと、熱媒流入配管5bと、熱媒流出配管5cと、図示省略のフィンと、を有している。
 放熱用伝熱管4aは、円筒、平板又は扁平状である。放熱用伝熱管4aは、アルミニウム、Cu又はSUS等の金属を加工して形成される。放熱用伝熱管4aの内部には、蓄熱材2の熱を放出するための第2の熱媒として給湯水が流れる。
 給湯水流入配管4b及び給湯水流出配管4cは、アルミニウム、Cu又はSUS等の金属を加工して形成される。給湯水流入配管4bは、容器1の一側面に形成された開口に挿入され、容器1の内部と外部とに跨って設けられており、容器内側の端部が放熱用伝熱管4aの一端に接続されている。給湯水流出配管4cは、容器1の一側面に形成された開口に挿入され、容器1の内部と外部とに跨って設けられており、容器内側の端部が放熱用伝熱管4aの他端に接続されている。実施の形態1に係る蓄熱式給湯器100では、給湯水流入配管4bが容器1の上方に配置され、給湯水流出配管4cが容器1の下方に配置された構成を示している。但し、給湯水流入配管4bが容器1の下方を配置され、給湯水流出配管4cが容器1の上方に配置された構成でもよい。
 フィン4dは、アルミニウム、Cu、SUS又はカーボン等の熱伝導性の高い金属を平板状に加工したものである。フィン4dは、放熱用伝熱管4aの外周面に設けられている。
 蓄熱用伝熱管5aは、円筒、平板又は扁平状である。蓄熱用伝熱管5aは、アルミニウム、Cu又はSUS等の金属を加工して形成される。蓄熱用伝熱管5aの内部には、蓄熱材2を加熱するための第1の熱媒として、例えば水、油、二酸化炭素、又はR410aなどのHFC系冷媒が流れる。
 熱媒流入配管5b及び熱媒流出配管5cは、アルミニウム、Cu又はSUS等の金属を加工して形成される。熱媒流入配管5bは、容器1の一側面に形成された開口に挿入され、容器1の内部と外部とに跨って設けられており、容器内側の端部が蓄熱用伝熱管5aの一端に接続されている。熱媒流出配管5cは、容器1の一側面に形成された開口に挿入され、容器1の内部と外部とに跨って設けられており、容器内側の端部が蓄熱用伝熱管5aの他端に接続されている。実施の形態1に係る蓄熱式給湯器100では、熱媒流入配管5bが容器1の上方に配置され、熱媒流出配管5cが容器1の下方に配置された構成を示している。但し、熱媒流入配管5bが容器1の下方を配置され、熱媒流出配管5cが容器1の上方に配置された構成でもよい。
 蓄熱用熱交換器5のフィンは、アルミニウム、Cu、SUS又はカーボン等の熱伝導性の高い金属を平板状に加工したものである。蓄熱用熱交換器5のフィンは、蓄熱用伝熱管5aの外周面に設けられている。
 なお、放熱用熱交換器4は、蓄熱材2から熱を放熱させることができる構成であれば良く、実施の状況に応じて形状を適宜変更して設けるものとする。例えば、放熱用熱交換器4は、フィン4dを有さず、放熱用伝熱管4a、給湯水流入配管4b及び給湯水流出配管4cのみで構成してもよい。
 同様に、蓄熱用熱交換器5は、蓄熱材2に熱を蓄熱させることができる構成であれば良く、実施の状況に応じて形状を適宜変更して設けるものとする。例えば、蓄熱用熱交換器5は、フィンを有さず、蓄熱用伝熱管5a、熱媒流入配管5b及び熱媒流出配管5cのみで構成してもよい。
 また、放熱用熱交換器4及び蓄熱用熱交換器5は、一例としてチューブ式熱交換器について説明したが、蓄熱材2と熱交換できる構成であれば平板状の板を複数枚積層させたプレート式の熱交換器でも良い。
 撹拌機6は、蓄熱材2を撹拌するための撹拌翼60と、撹拌翼60を回転させる回転機61と、を有している。撹拌翼60は、SUS、アルミニウム若しくはCu等の金属材料、プラスチック若しくは樹脂等の軽量材料、又は磁石等の磁性材料で形成されている。撹拌翼60は、回転機61の駆動によって回転し、蓄熱材2を撹拌する。回転機61は、例えば電気で駆動するモータ又は磁場等によって、撹拌翼60を回転させる駆動源である。
(エリスリトール20と水21の混合割合)
 次に、図2及び図3に基づいてエリスリトール20と水21の混合比率について説明する。図2は、水に対するエリスリトールの混合比率と蓄熱材の融点との関係を示したグラフである。図2では、横軸が水21に対するエリスリトール20の混合比率[wt%]を示し、縦軸が蓄熱材2の融点[℃]を示している。エリスリトール20は、水21と溶解する性質を有する。蓄熱材2は、エリスリトール20が水21に溶解することにより、エリスリトール20が相変化する温度(融点)を低下させることができる。図2に示すように、蓄熱材2は、水21に対するエリスリトール20の混合比率が低下するにしたがって融点が下がる性質を有する。蓄熱材2は、給湯用途の40℃~90℃の範囲で使用する場合、融点を60℃~90℃の範囲にすることが好ましい。そうすると、図2から、水21に対するエリスリトール20の混合比率は、重量比60[wt%]以上80[wt%]以下が適することになる。
 次に、図3は、水に対するエリスリトールの混合比率と蓄熱材の単位面積あたりの熱量との関係を示したグラフである。図3では、横軸が水21に対するエリスリトール20の混合比率[wt%]を示し、縦軸が蓄熱材2の単位体積あたりの熱量[MJ・L-1]を示している。図3に示すように、蓄熱材2の単位体積あたりの熱量は、エリスリトール20の混合比率に応じて増加し、エリスリトール20の混合比率が重量比80[wt%]付近で最大となる。つまり、エリスリトール20の混合比率は、重量比80[wt%]付近が最適となる。よって、図2及び図3の結果から、給湯用途40℃~90℃の範囲で使用する場合、水21に対するエリスリトール20の混合比率は、重量比60[wt%]以上80[wt%]以下が適することになり、更に言えば重量比80[wt%]が最適となる。
(蓄熱式給湯器100の蓄熱動作)
 次に、蓄熱式給湯器100の蓄熱動作について説明する。蓄熱式給湯器100は、蓄熱用熱交換器5の熱媒流入配管5bから高温の熱媒が流れると、蓄熱用伝熱管5aからフィンを介して、蓄熱材2に熱が伝えられる。蓄熱式給湯器100は、低温の蓄熱材2が温められ温度が上昇し融点に達すると、エリスリトール20の固相が融解し液相になる。一方、蓄熱材2に熱を与えた熱媒は、温度が低下し、熱媒流出配管5cから排出される。また、蓄熱時に、撹拌機6の撹拌翼60を回転させることで蓄熱材2を撹拌させることができる。蓄熱材2を撹拌させることで、蓄熱材2と熱媒の熱交換性能が向上する。ここで、蓄熱用熱交換器5を流れる熱媒を加熱する熱源機は、ヒートポンプ、ヒータ又は燃焼器であり、熱媒を加熱できるものであれば良い。また、熱媒を加熱するシステムは、熱媒流出配管5cから排出され熱源機を流れ、再び熱媒流入配管5bから蓄熱用熱交換器5内に流入する循環式のものでも、熱媒流出配管5cから外部へ排出され循環しない一過式のものでも良い。
(蓄熱式給湯器100の放熱動作)
 次に、蓄熱式給湯器100の放熱動作について説明する。蓄熱式給湯器100は、放熱用熱交換器4の給湯水流入配管4bから給湯水が流れると、蓄熱材2の熱がフィン4dを介して放熱用伝熱管4aに伝えられ、内部を流れる給湯水の温度が上昇する。同時に、蓄熱材2は、熱を奪われて温度が下がる。すると、放熱用伝熱管4aの周りの蓄熱材2の温度が融点に達し、放熱用伝熱管4aの周囲にエリスリトール20の固相が析出する。蓄熱材2から熱を与えられ温度が上昇した給湯水は、給湯水流出配管4cから排出される。また、放熱時に、撹拌機6の撹拌翼60を回転させることで蓄熱材2を撹拌させることができる。エリスリトール20の固相は、熱伝導率が金属等の物質に比べ低い。そのため、蓄熱式給湯器100では、撹拌機6を回転させて蓄熱材2を撹拌することで、蓄熱材2と熱媒の熱交換性能が向上させることができる。
(撹拌翼60の配置位置)
 次に、撹拌翼60の配置位置について説明する。蓄熱材2は、エリスリトール20と水21との混合液である。この蓄熱材2におけるエリスリトール20の濃度は、蓄熱材2の温度を用いて式(1)で求められる。
x=-0.00387T+1.34T-5.94   (1)
 xは、蓄熱材2におけるエリスリトール濃度[wt%]である。Tは、蓄熱材2の温度[℃]である。つまり、放熱時の蓄熱材2の温度に応じて蓄熱材2から析出するエリスリトール20の固相量と、蓄熱材2との液相量は、一意に定まる。なお、放熱時の蓄熱材2の温度に応じて蓄熱材2から析出するエリスリトール20の固相量は、式(1)から求めることができる。具体的には、容器の大きさ(幅W[mm]×奥行きB[mm]×高さH[mm])とし、固相量をV[mm3]とすると、容器1の底面積(幅W[mm]×奥行きB[mm])から固相が析出する高さH’は、H’=V/(B×W)となる。
 一方、撹拌機6の撹拌翼60は、蓄熱材2の水溶液部Aに配置した方が良い。撹拌翼60がエリスリトール20の固相によって動力低下を起こすことなく蓄熱材2を撹拌することができるので、安定した熱交換が可能となり、給湯性能が向上するからである。
 したがって、蓄熱式給湯器100は、式(1)と、放熱時の蓄熱材2の温度を基に計算されるエリスリトール20の固相量と、に基づき、放熱時に固相部Bと水溶液部Aとが分離された状態における水溶液部Aが位置する部分である高さH’以上H以下の高さの間に、撹拌機6の撹拌翼60を配置することで、安定した熱交換が可能となる。
(撹拌機6を備える効果)
 次に、蓄熱材2を撹拌する撹拌機6の効果について説明する。蓄熱材2は、エリスリトール20と水21の混合液であり、エリスリトール20が水21に溶解する点に特徴を有する。例えばパラフィン、エリスリトール単体、又は酢酸ナトリウム三水和物等の一般的な蓄熱材2を、熱交換器等を用いて冷却した場合、伝熱面から蓄熱材2の温度が低下し、伝熱面に蓄熱材2の固相が析出する。一方、本実施の形態1の蓄熱材2を冷却した場合、水21からエリスリトール20が析出して凝固する。そして、撹拌機6で蓄熱材2を流動させつつ冷却した場合、蓄熱材2の温度は均一になるため伝熱面から離れたところにある水21からもエリスリトール20の凝固が生じる。伝熱面以外で凝固したエリスリトール20の固相は、蓄熱材2の密度よりも大きいため、容器1の下部に堆積する。即ち、本実施の形態1に係る蓄熱式給湯器100では、撹拌機6で蓄熱材2を撹拌させることで、熱交換器3の表面に析出するエリスリトール20の固相量を低下させることができるので、熱交換器3の熱交換性能の低下を抑制できる。つまり、蓄熱式給湯器100は、撹拌機6を備えることで、放熱用熱交換器4、蓄熱用熱交換器5を小型化しても熱交換性能を十分に発揮させることができるので、熱交換器3を小型化して装置全体を小型化することができる。
 以上のように、本実施の形態1に係る蓄熱式給湯器100は、容器1と、容器1の内部に充填された蓄熱材2と、容器1の内部に収容され、第1の熱媒と熱交換して蓄熱材2に蓄熱すると共に、第2の熱媒と熱交換して蓄熱材2から放熱させる熱交換器3と、を備えている。蓄熱材2は、エリスリトール20と水21とを有している。水21に対するエリスリトール20の混合比率は、重量比60[wt%]以上80[wt%]以下である。つまり、本実施の形態1に係る蓄熱式給湯器100は、エリスリトール20が水21に溶解することにより、エリスリトール20が相変化する温度(融点)を、給湯用途の40℃~90℃の範囲で使用する場合に適する60℃~90℃に低下させることができる。これにより、エリスリトール20の潜熱を十分に放出させることができ、蓄熱材2の蓄熱量を向上させることができる。よって、蓄熱式給湯器100は、エリスリトール20を主成分とした蓄熱材2を使用した場合であっても、蓄熱材2の蓄熱量を向上させることができるため、容器1に充填する蓄熱材2の量を削減することで、全体として小型化を実現することができる。
 また、本実施の形態1に係る蓄熱式給湯器100は、蓄熱材2を撹拌する撹拌機6を更に備えている。蓄熱式給湯器100は、撹拌機6で蓄熱材2を撹拌させることで、熱交換器3の表面に析出するエリスリトール20の固相量を低下させることができるので、熱交換器3の熱交換性能の低下を抑制できる。よって、蓄熱式給湯器100は、撹拌機6を備えることで、熱交換器3を小型化しても熱交換性能を十分に発揮させることができるので、熱交換器3を小型化して装置全体を小型化することができる。
 また、蓄熱材2は、放熱時において、エリスリトール20が析出された固相部Bと、エリスリトール20の固相が析出していない水溶液部Aとに分離される性質を有している。撹拌機6は、放熱時に固相部Bと水溶液部Aとが分離された状態における水溶液部Aが位置する部分に、撹拌翼60が配置されている。よって、蓄熱式給湯器100は、撹拌翼60がエリスリトール20の固相によって動力低下を起こすことなく蓄熱材2を撹拌できるので、安定した熱交換が可能となり、給湯性能を向上させることができる。
 図4は、実施の形態1に係る蓄熱式給湯器の変形例を示した模式図である。蓄熱式給湯器100は、図4に示すように、熱交換器3を蓄熱材2の蓄熱と放熱とを兼ねた1つの熱交換器で構成してもよい。つまり、図1において蓄熱用熱交換器5が蓄熱材2に蓄熱する構成であれば良いので、蓄熱用熱交換器5に流れる熱媒として給湯水を使用することもできる。よって、蓄熱用熱交換器5を用いず、放熱用熱交換器4を蓄熱用熱交換器5としても使用することも可能である。すなわち、図4においては、放熱用熱交換器4を蓄熱用熱交換器5と兼用するものであり、蓄熱材2の蓄熱が放熱用熱交換器4に高温水を流して行われる。
実施の形態2.
 次に、実施の形態2に係る蓄熱式給湯器101を図5に基づいて説明する。図5は、実施の形態2に係る蓄熱式給湯器であって、蓄熱材の放熱時における状態の内部構成を示した模式図である。なお、本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
 本実施の形態2に係る蓄熱式給湯器101は、実施の形態1に係る蓄熱式給湯器100の撹拌機6に代えて、蓄熱材2を流動させるポンプ7を備えている点に特徴を有する。
(蓄熱式給湯器101の構成)
 まず、蓄熱式給湯器101の構成について説明する。本実施の形態2に係る蓄熱式給湯器101は、図5に示すように、容器1と、容器1の内部に充填された蓄熱材2と、容器1の内部に収容された放熱用熱交換器4及び蓄熱用熱交換器5と、容器1の内部の蓄熱材2を流動させるポンプ7と、を備えている。
 容器1には、実施の形態1で説明した構成に加えて、ポンプ7が接続され、蓄熱材2を容器1の外部へ排出させる吸引用配管口10と、ポンプ7が接続され、排出した蓄熱材2を容器1の内部へ再び流入させる吐出用配管口11と、が形成されている。
 ポンプ7は、例えば遠心型ポンプ、定容積ポンプ又はプランジャ式ポンプなどの流体を吸引し吐出する装置である。ポンプ7の材質は、例えばアルミニウム若しくはSUS等の強度材料、又はプラスチックなどの軽量材料である。ポンプ7は、吸引口が容器1の吸引用配管口10と接続され、吐出口が容器1の吐出用配管口11と接続されている。
 なお、本実施の形態2に係る蓄熱式給湯器101では、容器1の吸引用配管口10からポンプ7までの回路上に蓄熱材2に熱を与える熱源機、及び蓄熱材2から放熱する放熱器を有さない場合を示している。但し、蓄熱式給湯器101は、ポンプ7を用いて容器1内の蓄熱材2を循環する構成であれば回路上にその他の機器が配置されても良い。
(蓄熱式給湯器101の蓄熱動作)
 次に、蓄熱式給湯器101の蓄熱動作について説明する。本実施の形態2に係る蓄熱式給湯器101は、実施の形態1と同様に、蓄熱用熱交換器5の熱媒流入配管5bから高温の熱媒が流れると、蓄熱用伝熱管5aからフィンを介して蓄熱材2に熱が伝えられる。蓄熱式給湯器101は、低温の蓄熱材2が温められ温度が上昇し融点に達すると、エリスリトール20の固相が融解し液相になる。一方、蓄熱材2に熱を与えた熱媒は、温度が低下し、熱媒流出配管5cから排出される。また、蓄熱時に、ポンプ7を駆動させて、蓄熱材2を容器1の外部へ排出し、排出した蓄熱材2を再び容器1の内部へ流入させることにより、蓄熱材2を流動させることができる。蓄熱材2を流動させることで、蓄熱材2と熱媒の熱交換性能が向上する。ここで、蓄熱用熱交換器5を流れる熱媒を加熱する熱源機は、ヒートポンプ、ヒータ又は燃焼器であり、熱媒を加熱できるものであれば良い。また、熱媒を加熱するシステムは、熱媒流出配管5cから排出され熱源機を流れ、再び熱媒流入配管5bから蓄熱用熱交換器5内に流入する循環式のものでも、熱媒流出配管5cから外部へ排出され循環しない一過式のものでも良い。
(蓄熱式給湯器101の放熱動作)
 次に、蓄熱式給湯器101の放熱動作について説明する。本実施の形態2に係る蓄熱式給湯器101は、実施の形態1と同様に、放熱用熱交換器4の給湯水流入配管4bから給湯水が流れると、蓄熱材2の熱がフィン4dを介して、放熱用伝熱管4aに伝えられ内部を流れる給湯水の温度が上昇する。同時に、蓄熱材2は、熱を奪われ温度が下がる。すると、放熱用伝熱管4aの周りの蓄熱材2の温度が融点に達し、放熱用伝熱管4aの周囲にエリスリトール20の固相が析出する。蓄熱材2から熱を与えられ温度が上昇した給湯水は、給湯水流出配管4cから排出される。また、放熱時に、ポンプ7を駆動させて、蓄熱材2を容器1の外部へ排出し、排出した蓄熱材2を再び容器1の内部へ流入させることにより、蓄熱材2を流動させることができる。エリスリトール20の固相は、熱伝導率が金属等の物質に比べ低い。そのため、蓄熱式給湯器101では、ポンプ7で蓄熱材2を流動させることで、蓄熱材2と熱媒の熱交換性能が向上させることができる。
(吸引用配管口10及び吐出用配管口11の配置位置)
 次に、容器1の吸引用配管口10及び吐出用配管口11の配置位置について説明する。本実施の形態2の蓄熱式給湯器101における蓄熱材2も、実施の形態1と同様に、エリスリトール20と水21の混合液である。この蓄熱材2におけるエリスリトール20の濃度は、蓄熱材2の温度を用いて式(1)で求められる。
x=-0.00387T+1.34T-5.94   (1)
 xは、蓄熱材2におけるエリスリトール濃度[wt%]である。Tは、蓄熱材2の温度[℃]である。つまり、放熱時の蓄熱材2の温度に応じて蓄熱材2から析出するエリスリトール20の固相量と、蓄熱材2との液相量は、一意に定まる。一方、容器1の吸引用配管口10及び吐出用配管口11は、蓄熱材2の水溶液部Aに配置した方が良い。吸引用配管口10及び吐出用配管口11を固相部Bに配置してしまうと、エリスリトール20の固相が配管内に析出し、該固相によって配管内が塞がれてしまうためである。したがって、蓄熱式給湯器101は、上記式(1)と、放熱時の蓄熱材2の温度を元に計算されるエリスリトール20の固相量に基づき、放熱時に固相部Bと水溶液部Aとが分離された状態における水溶液部Aが位置する部分に、吸引用配管口10及び吐出用配管口11を配置することで、安定した熱交換が可能となり、給湯性能が向上する。
 以上のように、本実施の形態2に係る蓄熱式給湯器101も、エリスリトール20が水21に溶解することにより、エリスリトール20が相変化する温度(融点)を、給湯用途の40℃~90℃の範囲で使用する場合に適する60℃~90℃に低下させることができる。これにより、エリスリトール20の潜熱を十分に放出させることができ、蓄熱材2の蓄熱量を向上させることができる。よって、蓄熱式給湯器101は、エリスリトール20を主成分とした蓄熱材2を使用した場合であっても、蓄熱材2の蓄熱量を向上させることができるため、容器1に充填する蓄熱材2の量を削減することで、全体として小型化を実現することができる。
 また、本実施の形態2に係る蓄熱式給湯器101は、蓄熱材2を容器1の外部へ排出し、排出した蓄熱材2を再び容器1の内部へ流入させることにより、蓄熱材2を流動させるポンプ7を更に備えている。容器1には、ポンプ7が接続され、蓄熱材2を容器1の外部へ排出させる吸引用配管口10と、ポンプ7が接続され、排出した蓄熱材2を容器1の内部へ再び流入させる吐出用配管口11と、が形成されている。よって、蓄熱式給湯器101は、ポンプ7を駆動させて蓄熱材2を流動させることで、熱交換器3の表面に析出するエリスリトール20の固相量を低下させることができるので、熱交換器3の熱交換性能の低下を抑制できる。よって、蓄熱式給湯器101は、ポンプ7を備えることで、熱交換器3を小型化しても熱交換性能を十分に発揮させることができるので、熱交換器3を小型化して装置全体として小型化することができる。
 蓄熱材2は、放熱時において、エリスリトール20が析出された固相部Bと、エリスリトール20の固相が析出していない水溶液部Aとに分離される性質を有している。容器1には、放熱時に固相部Bと水溶液部Aとが分離された状態における水溶液部Aが位置する部分に、吸引用配管口10及び吐出用配管口11が形成されている。よって、蓄熱式給湯器101は、吸引用配管口10及び吐出用配管口11の配管内に析出するエリスリトール20の固相で、該配管内が塞がれる事態を防止することができるので、蓄熱材2を流動させて安定した熱交換が可能となり、給湯性能を向上させることができる。
 なお、実施の形態2に係る蓄熱式給湯器101においても、熱交換器3を蓄熱材2の蓄熱と放熱とを兼ねた1つの熱交換器で構成してもよい。つまり、蓄熱用熱交換器5に流れる熱媒として給湯水を使用することもできるので、蓄熱用熱交換器5を用いず、放熱用熱交換器4を蓄熱用熱交換器5として使用することも可能である。
 以上に、蓄熱式給湯器100及び101を実施の形態に基づいて説明したが、蓄熱式給湯器100及び101は上述した実施の形態の構成に限定されるものではない。例えば、蓄熱式給湯器100及び101は、上述した構成要素に限定されるものではなく、他の構成要素を含んでもよい。要するに、蓄熱式給湯器100及び101は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。
 1 容器、2 蓄熱材、3 熱交換器、4 放熱用熱交換器、4a 放熱用伝熱管、4b 給湯水流入配管、4c 給湯水流出配管、4d フィン、5 蓄熱用熱交換器、5a 蓄熱用伝熱管、5b 熱媒流入配管、5c 熱媒流出配管、6 撹拌機、7 ポンプ、10 吸引用配管口、11 吐出用配管口、20 エリスリトール、21 水、60 撹拌翼、61 回転機、100、101 蓄熱式給湯器、A 水溶液部、B 固相部。

Claims (7)

  1.  容器と、
     前記容器の内部に充填された蓄熱材と、
     前記容器の内部に収容され、第1の熱媒と熱交換して前記蓄熱材に蓄熱すると共に、第2の熱媒と熱交換して前記蓄熱材から放熱させる熱交換器と、を備え、
     前記蓄熱材は、エリスリトールと水とを有し、
     前記水に対する前記エリスリトールの混合比率は、重量比60[wt%]以上80[wt%]以下である、蓄熱式給湯器。
  2.  前記蓄熱材を撹拌する撹拌機を更に備えている、請求項1に記載の蓄熱式給湯器。
  3.  前記蓄熱材は、放熱時において、前記エリスリトールが析出された固相部と、前記エリスリトールの固相が析出していない水溶液部とに分離される性質を有し、
     前記撹拌機は、放熱時に前記固相部と前記水溶液部とが分離された状態における前記水溶液部が位置する部分に、撹拌翼が配置されている、請求項2に記載の蓄熱式給湯器。
  4.  前記蓄熱材を前記容器の外部へ排出し、排出した前記蓄熱材を再び前記容器の内部へ流入させることにより、前記蓄熱材を流動させるポンプを更に備えており、
     前記容器には、前記ポンプが接続され、前記蓄熱材を前記容器の外部へ排出させる吸引用配管口と、前記ポンプが接続され、排出した前記蓄熱材を前記容器の内部へ再び流入させる吐出用配管口と、が形成されている、請求項1に記載の蓄熱式給湯器。
  5.  前記蓄熱材は、放熱時において、前記エリスリトールが析出された固相部と、前記エリスリトールの固相が析出していない水溶液部とに分離される性質を有し、
     前記容器には、放熱時に前記固相部と前記水溶液部とが分離された状態における前記水溶液部が位置する部分に、前記吸引用配管口及び前記吐出用配管口が形成されている、請求項4に記載の蓄熱式給湯器。
  6.  前記熱交換器は、
     熱媒が流れる蓄熱用熱交換器と、
     給湯水が流れる放熱用熱交換器と、を有する、請求項1~5のいずれか一項に記載の蓄熱式給湯器。
  7.  前記熱交換器は、前記蓄熱材の蓄熱と放熱とを兼ねた1つの熱交換器で構成されている、請求項1~6のいずれか一項に記載の蓄熱式給湯器。
PCT/JP2019/041017 2019-10-18 2019-10-18 蓄熱式給湯器 WO2021075040A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/041017 WO2021075040A1 (ja) 2019-10-18 2019-10-18 蓄熱式給湯器
JP2020519154A JP6818942B1 (ja) 2019-10-18 2019-10-18 蓄熱式給湯器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041017 WO2021075040A1 (ja) 2019-10-18 2019-10-18 蓄熱式給湯器

Publications (1)

Publication Number Publication Date
WO2021075040A1 true WO2021075040A1 (ja) 2021-04-22

Family

ID=74200194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041017 WO2021075040A1 (ja) 2019-10-18 2019-10-18 蓄熱式給湯器

Country Status (2)

Country Link
JP (1) JP6818942B1 (ja)
WO (1) WO2021075040A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176190A1 (ja) * 2021-02-22 2022-08-25 三菱電機株式会社 蓄熱材組成物及び蓄熱デバイス

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144377U (ja) * 1983-03-15 1984-09-27 積水化成品工業株式会社 蓄熱槽
JPH05322465A (ja) * 1992-05-27 1993-12-07 Matsushita Electric Works Ltd 蓄熱システム
JPH06313688A (ja) * 1993-04-27 1994-11-08 Matsushita Electric Works Ltd 蓄熱システム
JP2000038577A (ja) * 1998-07-24 2000-02-08 Mitsubishi Chemicals Corp 蓄熱方法及び蓄熱装置
JP2000044939A (ja) * 1998-07-30 2000-02-15 Mitsubishi Chemicals Corp 蓄熱装置
JP2001207163A (ja) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp 蓄熱槽及びそれを用いた蓄熱装置
JP2003090548A (ja) * 2001-09-14 2003-03-28 Daikin Ind Ltd 蓄熱装置
JP2006234310A (ja) * 2005-02-25 2006-09-07 Osaka Gas Co Ltd 蓄熱装置
JP2007321029A (ja) * 2006-05-31 2007-12-13 Jfe Engineering Kk 潜熱蓄熱材
JP2008309344A (ja) * 2007-06-12 2008-12-25 Kurimoto Ltd 蓄熱装置
JP2009074750A (ja) * 2007-09-21 2009-04-09 Tokyo Electric Power Co Inc:The 給湯システム
JP2015194318A (ja) * 2014-03-31 2015-11-05 ダイキン工業株式会社 給湯システム
JP6501990B1 (ja) * 2018-06-18 2019-04-17 三菱電機株式会社 蓄熱器、蓄熱システム及び蓄熱方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426828B1 (ko) * 1995-07-12 2004-05-24 미쓰비시 가가꾸 가부시키가이샤 축열재조성물
US5916477A (en) * 1996-10-29 1999-06-29 Mitsubishi Chemical Corporation Heat storage/heat radiation method
JP2001004290A (ja) * 1999-06-22 2001-01-12 Kobe Steel Ltd 潜熱蓄熱材の融解方法および潜熱蓄熱装置
JP2001280134A (ja) * 2000-03-31 2001-10-10 Mitsubishi Chemicals Corp エンジン暖機用の蓄熱装置
JP5134808B2 (ja) * 2006-10-16 2013-01-30 玉井化成株式会社 糖アルコールを含有する蓄熱材組成物
JP2009270757A (ja) * 2008-05-07 2009-11-19 Toyota Motor Corp 蓄熱装置
JP5573193B2 (ja) * 2010-01-25 2014-08-20 トヨタ自動車株式会社 蓄熱材組成物
JP5908877B2 (ja) * 2013-08-30 2016-04-26 Jfeスチール株式会社 熱利用方法
JP2015218212A (ja) * 2014-05-15 2015-12-07 株式会社ネギシ 新規な潜熱蓄熱材組成物
JP6590607B2 (ja) * 2014-09-29 2019-10-16 パナソニック株式会社 蓄熱材組成物、蓄熱装置及び蓄熱方法
JP7249646B2 (ja) * 2016-11-02 2023-03-31 アールト・ユニバーシティ・ファウンデイション・エスアール 冷結晶化材および蓄熱において冷結晶化を利用するための方法
JP6439059B1 (ja) * 2018-01-18 2018-12-19 東邦瓦斯株式会社 潜熱蓄熱材組成物
JP6674495B2 (ja) * 2018-03-16 2020-04-01 東邦瓦斯株式会社 蓄熱システム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144377U (ja) * 1983-03-15 1984-09-27 積水化成品工業株式会社 蓄熱槽
JPH05322465A (ja) * 1992-05-27 1993-12-07 Matsushita Electric Works Ltd 蓄熱システム
JPH06313688A (ja) * 1993-04-27 1994-11-08 Matsushita Electric Works Ltd 蓄熱システム
JP2000038577A (ja) * 1998-07-24 2000-02-08 Mitsubishi Chemicals Corp 蓄熱方法及び蓄熱装置
JP2000044939A (ja) * 1998-07-30 2000-02-15 Mitsubishi Chemicals Corp 蓄熱装置
JP2001207163A (ja) * 1999-11-15 2001-07-31 Mitsubishi Chemicals Corp 蓄熱槽及びそれを用いた蓄熱装置
JP2003090548A (ja) * 2001-09-14 2003-03-28 Daikin Ind Ltd 蓄熱装置
JP2006234310A (ja) * 2005-02-25 2006-09-07 Osaka Gas Co Ltd 蓄熱装置
JP2007321029A (ja) * 2006-05-31 2007-12-13 Jfe Engineering Kk 潜熱蓄熱材
JP2008309344A (ja) * 2007-06-12 2008-12-25 Kurimoto Ltd 蓄熱装置
JP2009074750A (ja) * 2007-09-21 2009-04-09 Tokyo Electric Power Co Inc:The 給湯システム
JP2015194318A (ja) * 2014-03-31 2015-11-05 ダイキン工業株式会社 給湯システム
JP6501990B1 (ja) * 2018-06-18 2019-04-17 三菱電機株式会社 蓄熱器、蓄熱システム及び蓄熱方法

Also Published As

Publication number Publication date
JPWO2021075040A1 (ja) 2021-11-11
JP6818942B1 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
JP4067577B2 (ja) 遠心ポンプ装置の電気駆動モータの外部冷却装置
JP6818942B1 (ja) 蓄熱式給湯器
CN1603591A (zh) 具有泵单元的电子设备
JP2007120879A (ja) 温調装置
JP2017536838A (ja) アイスクリーム製造器およびアイスクリーム製造器用熱交換装置
US8230901B2 (en) Electronic device cooling apparatus
WO2010095373A1 (ja) 沸騰冷却装置
CN210496107U (zh) 一种低温稳定的液体速凝剂输送装置
WO2004009728A1 (en) Multi-phase suspension coolant
CN109686710B (zh) 一种基于液态金属多相流体的散热装置
JP4853851B2 (ja) 潜熱輸送無機水和物スラリーを用いた高温域冷却装置
JP2020065009A (ja) 冷却ユニット
WO2020100816A1 (ja) 気泡放出装置を備えた電子機器
JP6427852B2 (ja) 蓄熱剤の蓄放熱速度の調整方法
JP2004289049A (ja) 熱輸送装置及びこの装置を備えた携帯可能な電子機器
JPH0680914B2 (ja) タンク
CN209763593U (zh) 冷水制造装置
JP2007285627A (ja) 蓄熱材の凝固融解促進方法及び蓄熱装置
CN217588629U (zh) 一种具有循环冷却功能的油浸式变压器
JP2006066509A (ja) 冷却システム及び電気機器
JP2002368471A (ja) 冷却装置
CN212933436U (zh) 一种水冷散热器
CN101193527B (zh) 液冷散热装置
CN217795922U (zh) 一种耐高温搅拌轴
JPH0439380A (ja) 蓄放熱方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020519154

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949348

Country of ref document: EP

Kind code of ref document: A1