WO2021060800A1 - 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물 - Google Patents

난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물 Download PDF

Info

Publication number
WO2021060800A1
WO2021060800A1 PCT/KR2020/012766 KR2020012766W WO2021060800A1 WO 2021060800 A1 WO2021060800 A1 WO 2021060800A1 KR 2020012766 W KR2020012766 W KR 2020012766W WO 2021060800 A1 WO2021060800 A1 WO 2021060800A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
group
flame
zinc
metal
Prior art date
Application number
PCT/KR2020/012766
Other languages
English (en)
French (fr)
Inventor
양희승
남기영
심재용
배선형
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200118225A external-priority patent/KR102634294B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/431,143 priority Critical patent/US20220135762A1/en
Priority to EP20867853.2A priority patent/EP3907266A4/en
Priority to CN202080014097.5A priority patent/CN113423782A/zh
Priority to JP2021551947A priority patent/JP7305250B2/ja
Publication of WO2021060800A1 publication Critical patent/WO2021060800A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/08Organic materials containing halogen

Definitions

  • the present invention relates to a method for producing a flame-retardant aid and a flame-retardant resin composition comprising a flame-retardant aid produced by the method.
  • Thermoplastic resin compositions are applied in various fields from daily life products to automobile interior materials, office equipment, and electrical and electronic products such as displays.
  • flame-retardant thermoplastic resins in which flame retardance is imparted by adding a flame retardant to a thermoplastic resin composition are used in various fields for application to heat generating products or high voltage products.
  • Flame retardants are usually divided into halogen-based and non-halogen-based flame retardants, and as a representative halogen-based flame retardant, there is a bromine-based flame retardant. Bromine-based flame retardants have excellent flame retardancy even in thin films, and when mixed with antimony trioxide, which is a flame retardant aid, have excellent flame retardant effects even if a small amount is added.
  • antimony trioxide used as a flame retardant aid is classified as a first-class carcinogen, and therefore, development of a new flame retardant aid to replace it is required. Accordingly , there have been attempts to use other metal oxides such as Fe 2 O 3 , MoO 2 , and Bi 2 O 3 as flame retardant aids, but these metal oxides have low flame retardant efficiency and have a unique color of inorganic materials, so their application is limited. .
  • the present invention is to solve the above problems, and does not contain a carcinogen, and is applied to a thermoplastic resin composition together with a halogen-based flame retardant to produce a flame retardant aid showing excellent flame retardant efficiency, and a flame retardant manufactured through the above manufacturing method. It is intended to provide a flame retardant resin composition comprising an auxiliary.
  • the present invention comprises the steps of preparing a metal precursor solution by adding a zinc precursor and a precursor including a metal M 1 to a solvent; And adding an acid or a base to the metal precursor solution to perform a sol-gel reaction to prepare a multi-component metal hydroxide represented by Formula 1 below.
  • M 1 is at least one selected from the group consisting of transition metals, alkaline earth metals, and Group 13 to 16 metals excluding zinc, and x and y represent the atomic ratios of Zn and M 1, respectively, and x : y is 0.5 to 2.0: 0.1 to 3.0, and 2 ⁇ z ⁇ 6.
  • the present invention provides a flame-retardant resin composition
  • a flame-retardant resin composition comprising a base resin, a halogen-based flame retardant, and a flame retardant aid, wherein the flame retardant aid is a multi-component metal hydroxide represented by Chemical Formula 1.
  • the method of manufacturing a flame retardant aid according to the present invention is a method of forming a flame retardant aid in the form of a hydroxide including two or more metal components through a sol-gel process.
  • metal components and contents in the flame retardant aid can be variously adjusted, and a flame retardant aid having excellent particle size uniformity can be prepared.
  • the flame retardant aid prepared according to the method of the present invention has high particle size uniformity, excellent dispersibility when mixed with a thermoplastic resin, and has excellent flame retardancy and thermal stability improvement effects.
  • the flame-retardant resin composition including the flame-retardant auxiliary prepared according to the method of the present invention does not use an antimony-based flame-retardant auxiliary that generates a carcinogen, and thus exhibits environmentally friendly, safe and excellent flame retardant performance.
  • the flame retardant aid prepared according to the method of the present invention it is possible to obtain an effect of improving the thermal stability deterioration due to decomposition of the halogen-based flame retardant.
  • FIG. 1 is an SEM photograph of Zn-Sn hydroxide particles prepared in Example 1.
  • FIG. 2 is a photograph showing the distribution of Zn among the Zn-Sn hydroxide particles prepared in Example 1.
  • FIG. 3 is a photograph showing the distribution of Sn in the Zn-Sn hydroxide particles prepared in Example 1.
  • Example 4 is a graph showing the composition ratio of Zn and Sn in the Zn-Sn hydroxide particles prepared in Example 1 measured through EDS mapping.
  • Example 5 is a SEM photograph of Zn-Al hydroxide particles prepared in Example 2.
  • Example 6 is a photograph showing the distribution of Zn and Al in the Zn-Al hydroxide particles prepared in Example 2.
  • Example 7 is a graph showing the composition ratio of Zn and Al in the Zn-Al hydroxide particles prepared in Example 2 measured through EDS mapping.
  • the present invention relates to a method of manufacturing a flame retardant aid that can replace an antimony flame retardant aid, and specifically, a method of forming a flame retardant aid in the form of a multi-component metal hydroxide containing two or more metal components through a sol-gel process It is about.
  • the method for producing a flame retardant aid of the present invention comprises the steps of: (1) preparing a metal precursor solution by adding a zinc precursor and a precursor including a M 1 metal to a solvent; And (2) adding an acid or a base to the metal precursor solution to perform a sol-gel reaction to prepare a multi-component metal hydroxide represented by Formula 1 below.
  • M 1 is at least one selected from the group consisting of transition metals, alkaline earth metals, and Group 13 to 16 metals excluding zinc, and x and y represent the atomic ratios of Zn and M 1, respectively, and x : y is 0.5 to 2.0: 0.1 to 3.0, and 2 ⁇ z ⁇ 6.
  • a metal precursor solution is prepared by adding a zinc precursor and a precursor including the M 1 metal to a solvent.
  • the M 1 metal may be one or more selected from the group consisting of transition metals, alkaline earth metals, and Group 13 to 16 metals excluding zinc, and specifically, Sn, Al, Ti, Nb, Fe, Co, Ni, Cu , Zr, Mo, Pd, Sc, Cd, Ca, Sr, may be one or more selected from the group consisting of Si and Sb.
  • the solvent may be any one capable of dissolving the zinc precursor and the precursor including the M 1 metal, and the type is not particularly limited.
  • the solvent may be deionized water, ethanol, methanol, isopropanol, acetonitrile, dimethylamine borane, or a mixture thereof, but is not limited thereto.
  • the zinc precursor may, for example, zinc chloride, zinc sulfate, zinc acetate, zinc nitrate, zinc sulfide or the like and mixtures thereof
  • the precursor containing the M 1 the metal is a chloride of a metal M 1, sulfur oxides, to be It may be a product, a sulfide, an acetic acid or a mixture thereof.
  • the precursor containing the M 1 metal is a chloride of Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si or Sb , Sulfur oxides, nitrates, sulfides, acetic products, or mixtures thereof.
  • the metal precursor solution, the zinc precursor, and M 1 zinc precursor comprising a metal: M atomic ratio of the first metal is from 0.5 to 2.0: 0.1 to 3.0, preferably 0.5 to 2.0: 0.1 to 2.0, more preferably It is preferably included in an amount such that 0.7 to 1.3: 0.2 to 1.3.
  • a flame retardant aid having excellent flame retardant efficiency and thermal stability improvement effect may be prepared.
  • a metal precursor solution is prepared by stirring and mixing so that they are well dissolved in the solvent.
  • the sol-gel reaction proceeds by adjusting the pH by adding an acid or a base to the metal precursor solution.
  • the acid or base is added to adjust the pH of the metal precursor solution, and acids or bases well known in the art may be used, for example, acetic acid, sodium hydroxide, ammonium hydroxide, calcium hydroxide, etc. may be used. , But is not limited thereto.
  • the acid when an acid is applied to adjust the pH, the acid may be added in an amount such that the pH of the metal precursor solution is 2 to 4.
  • the base when a base is applied to adjust the pH, the base may be added in an amount such that the pH of the metal precursor solution is 8-10.
  • M 1 is at least one selected from the group consisting of transition metals, alkaline earth metals, and Group 13 to 16 metals excluding Zn, preferably Sn, Al, Ti, Nb, Fe, Co, Ni , Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si, and may be one or more selected from the group consisting of Sb.
  • x and y mean the atomic ratio of Zn and M 1 , respectively, x: y is 0.5 to 2.0: 0.1 to 3.0, preferably 0.5 to 2.0: 0.1 to 2.0, more preferably x: y is 0.7 ⁇ 1.3: It may be 0.2 ⁇ 1.3.
  • the z refers to the molar ratio of OH, and 2 ⁇ z ⁇ 6.
  • the multi-component metal hydroxide may be represented by the following [Chemical Formula 2].
  • M 2 is at least one selected from the group consisting of Sn and Al
  • M 3 is one selected from the group consisting of transition metals, alkaline earth metals, and Group 13 to 16 metals excluding Zn, Sn and Al.
  • M 3 may be at least one selected from the group consisting of Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si, and Sb.
  • x, y1, y2 means the atomic ratio of Zn, M 2 and M 3 , respectively, x: y1: y2 is 0.5 to 2.0: 0.1 to 3.0: 0 to 2.9, preferably, 0.5 to 2.0: 0.1 to 2.0: 0 to 1.9, more preferably 0.7 to 1.3: 0.2 to 1.3: may be 0 to 1.1.
  • the z refers to the molar ratio of OH, and 2 ⁇ z ⁇ 6.
  • the multi-component metal hydroxide may be a metal hydroxide containing two or three metal elements, for example, Zn x Sn y (OH) z, Zn x Al y (OH) z , Zn x Sn y1 Al y2 (OH) z, Zn x Sn y1 Ti y2 (OH) z, Zn x Sn y1 Fe y2 (OH) z, Zn x Sn y1 Fe y2 (OH) z, Zn x Sn y1 Ti y2 (OH) z, Zn x Sn y1 Co y2 (OH) z, Zn x Sn y1 Ni y2 (OH) z, Zn x Sn y1 Zr y2 (OH) z, Zn x Sn y1 Mo y2 (OH) z, Zn x Sn y1 Pd y2 (OH) z, Zn x x
  • the formed multi-component metal hydroxide particles are precipitated, the supernatant is removed, washed and dried to obtain a multi-component metal hydroxide.
  • the multi-component metal hydroxide prepared according to the present invention is used together with a flame retardant to improve flame retardancy and thermal stability of a thermoplastic resin, and thus may be usefully used as a flame retardant aid.
  • the hydrothermal synthesis method has a problem in that it is difficult to mass-produce and thus has low economic feasibility.
  • the composition of the metal components in the multi-component metal hydroxide is formed to satisfy the stoichiometry, and since the non-stoichiometric compound cannot be prepared, it has been difficult to prepare metal hydroxides of various composition ratios.
  • thermoplastic resins It has excellent dispersibility when mixed with, and thus, it is possible to maximize a flame retardant synergistic effect and thermal stability improvement effect when a flame retardant resin composition is applied.
  • the flame retardant resin composition of the present invention contains (1) a base resin, (2) a flame retardant, and (3) a flame retardant aid.
  • the base resin includes various thermoplastic resins applied to the flame-retardant resin composition in the art, for example, a rubbery polymer resin, an aromatic vinyl resin, a polycarbonate resin, a polyolefin resin, an acrylic resin, or a mixture thereof. It can be used without limitation, and the type is not particularly limited.
  • the flame-retardant resin composition of the present invention may contain a base resin comprising a conjugated diene-based graft copolymer and a matrix copolymer in which the conjugated diene-based graft copolymer is dispersed.
  • the graft copolymer may be a copolymer in which an aromatic vinyl-based monomer and a vinyl cyan-based monomer are graft-polymerized to a conjugated diene-based polymer.
  • the graft copolymer may be prepared through a conventional graft polymerization method generally known in the art, and specifically, emulsion polymerization of an aromatic vinyl-based monomer and a vinyl cyan-based monomer in the presence of a conjugated diene-based polymer , Suspension polymerization or bulk polymerization.
  • the conjugated diene-based polymer refers to a polymer prepared by polymerization of a conjugated diene-based monomer
  • the conjugated diene-based monomer may be at least one selected from the group consisting of butadiene, isoprene, and chloroisoprene, among which butadiene is It may be desirable.
  • the conjugated diene-based polymer used in the present invention may have an average particle diameter of 0.1 to 1.0 ⁇ m, 0.1 to 0.5 ⁇ m, or 0.1 to 0.3 ⁇ m, of which 0.1 to 0.3 ⁇ m is preferred.
  • the average particle diameter of the conjugated diene-based polymer satisfies the above-described range, mechanical properties, glossiness, and coloring properties of the graft copolymer can be further improved.
  • the conjugated diene-based polymer may be used by mixing two or more types having different average particle diameters within the above-described particle diameter.
  • the average particle diameter may be defined as a particle diameter corresponding to 50% or more of the cumulative volume in the particle diameter distribution curve of the particles.
  • the average particle diameter of the conjugated diene-based polymer can be measured after dissolving a certain amount of the conjugated diene-based polymer in a solvent. Specifically, after dissolving 0.5 g of conjugated diene-based polymer in 100 ml of methyl ethyl ketone, it can be measured using a Coulter counter (brand name: LS230, manufacturer: Beckman Coulter).
  • the aromatic vinyl monomer is one selected from the group consisting of styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, and 4-ethylstyrene. It may be the above, and among these, styrene is particularly preferable.
  • the vinyl cyan-based monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and ethacrylonitrile, among which acrylonitrile is preferable.
  • the graft copolymer of the present invention may include 50 to 65% by weight of a conjugated diene-based polymer, 25 to 35% by weight of units derived from an aromatic vinyl-based monomer, and 5 to 20% by weight of a unit derived from a vinyl cyan-based monomer.
  • mechanical properties, gloss and colorability of the graft copolymer may be improved, and stiffness, processability, surface gloss, chemical resistance, and weather resistance of the flame-retardant resin composition may be further improved.
  • the graft copolymer may have a graft rate of 30 to 70%, 40 to 60%, or 40 to 50%, of which 40 to 50% is preferable. If the above-described range is satisfied, a balance between thermal stability and mechanical properties of the graft copolymer can be achieved.
  • the graft rate can be calculated using the following equation after adding a certain amount of the graft copolymer to a solvent, dissolving it using a vibrator, centrifuging with a centrifugal separator, and drying to obtain an insoluble matter.
  • a certain amount of the graft copolymer was added to acetone and vibrated with a vibrator (brand name: SI-600R, manufacturer: Lab.companion) for 24 hours to dissolve the free graft copolymer, and 1 in a centrifugal separator at 14,000 rpm.
  • a vacuum dryer brand name: DRV320DB, manufacturer: ADVANTEC
  • the matrix copolymer may be a copolymer of an aromatic vinyl-based monomer and a vinyl cyan-based monomer.
  • the aromatic vinyl-based monomer is selected from the group consisting of styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, and 4-ethylstyrene. It may be one or more, and among them, styrene is particularly preferred.
  • the vinyl cyan-based monomer may be at least one selected from the group consisting of acrylonitrile, methacrylonitrile, and ethacrylonitrile, among which acrylonitrile is preferable.
  • the aromatic vinyl-based monomer and the vinyl cyan-based monomer contained in the matrix copolymer of the present invention are included in a weight ratio of 6:4 to 9:1. If the above-described range is satisfied, color, stiffness, processability, productivity, chemical resistance, and weather resistance may be excellent.
  • the base resin comprises a graft copolymer and a matrix copolymer in a weight ratio of 1:9 to 9:1, preferably in a weight ratio of 1:9 to 6:4, and more preferably in a weight ratio of 1:9 to 4:6. It may be included in a weight ratio. If less than the graft copolymer is included, the impact strength is lowered and may be broken during the injection and assembly process of the product, and if more than this is included, there is a problem that scratch resistance and workability may be weakened.
  • the flame retardant is for providing flame retardancy to the flame retardant resin composition, and may be a halogen-based flame retardant generally used in the art.
  • halogen-based flame retardant examples include hexabromocyclododecane, tetrabromocyclooctane, monochloro petabromocyclohexane, and decabromodiphenyl oxide.
  • the flame retardant may be included in an amount of 10 to 30 parts by weight, preferably 10 to 30 parts by weight, more preferably 10 to 25 parts by weight, based on 100 parts by weight of the base resin.
  • flame retardancy can be effectively improved without adversely affecting the physical properties of the base resin.
  • the flame retardant aid serves to increase the flame retardant effect of the flame retardant.
  • a multi-component metal hydroxide represented by the following formula (1) prepared according to the method of the present invention described above is used as the flame retardant aid.
  • M 1 is at least one selected from the group consisting of transition metals excluding zinc, alkaline earth metals, and Group 13 to 16 metals
  • x and y denote the atomic ratios of Zn and M 1, respectively
  • x : y is 0.5 to 2.0: 0.1 to 3.0, and 2 ⁇ z ⁇ 6.
  • the M 1 is 1 selected from the group consisting of Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si and Sb It may be a species or more, and x:y may be 0.5 to 2.0: 0.1 to 2.0, more preferably, 0.7 to 1.3: 0.2 to 1.3.
  • the multi-component metal hydroxide may be represented by the following [Chemical Formula 2].
  • M 2 is at least one selected from the group consisting of Sn and Al
  • M 3 is one selected from the group consisting of transition metals, alkaline earth metals, and Group 13 to 16 metals excluding Zn, Sn and Al.
  • M 3 may be at least one selected from the group consisting of Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si, and Sb.
  • x, y1, y2 means the atomic ratio of Zn, M 2 and M 3 , respectively, x: y1: y2 is 0.5 to 2.0: 0.1 to 3.0: 0 to 2.9, preferably 0.5 to 2.0: 0.1 to 2.0: 0 to 1.9, more preferably, it may be 0.7 to 1.3: 0.2 to 1.3: 0 to 1.1.
  • the z refers to the molar ratio of OH, and 2 ⁇ z ⁇ 6.
  • the multi-component metal hydroxide may be a metal hydroxide containing two or three metal elements, for example, Zn x Sn y (OH) z, Zn x Al y (OH) z , Zn x Sn y1 Al y2 (OH) z, Zn x Sn y1 Ti y2 (OH) z, Zn x Sn y1 Fe y2 (OH) z, Zn x Sn y1 Fe y2 (OH) z, Zn x Sn y1 Ti y2 (OH) z, Zn x Sn y1 Co y2 (OH) z, Zn x Sn y1 Ni y2 (OH) z, Zn x Sn y1 Zr y2 (OH) z, Zn x Sn y1 Mo y2 (OH) z, Zn x Sn y1 Pd y2 (OH) z, Zn x x
  • the multi-component metal hydroxide prepared according to the method of the present invention has high particle size uniformity and excellent dispersibility when mixed with a thermoplastic resin.
  • the multi-component metal hydroxide when used together with a halogen-based flame retardant, it has an excellent flame retardant synergistic effect and prevents discoloration due to decomposition of the flame retardant when staying at a high temperature, thereby enabling excellent flame retardancy and thermal stability.
  • the flame retardant aid may be included in an amount of 1 to 10 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by weight of the base resin.
  • the content of the flame retardant aid satisfies the above range, flame retardancy and thermal stability can be effectively improved without adversely affecting the physical properties of the base resin.
  • the flame-retardant resin composition containing the flame-retardant aid of the present invention does not use an antimony-based flame-retardant aid that generates carcinogens, and thus exhibits eco-friendly, safe and excellent flame retardant performance, as well as excellent thermal stability and discoloration even after staying at high temperature. This is less.
  • the flame-retardant resin composition according to the present invention may further include one or more additives selected from the group consisting of an impact modifier, a lubricant, an anti-drip agent, an antioxidant, a light stabilizer, a sunscreen agent, a pigment, and an inorganic filler. have.
  • the specific material of the additive may be used without particular limitation as long as it is used in the thermoplastic flame-retardant resin composition.
  • the anti-drip agent at least one selected from the group consisting of Teflon, polyamide, polysilicon, PTFE (polytetrafluoroethylene), and TFE-HFP (tetrafluoroethylene-hexafluoropropylene) copolymer can be used in terms of additional flame retardancy improvement.
  • the inorganic filler at least one selected from the group consisting of barium sulfate, barium glass filler, and barium oxide may be used.
  • 0.5M ZnCl 2 and 0.25M SnCl 2 were added to 750 mL ethanol, stirred with a magnetic bar to dissolve until transparent, and then 750 mL of 3.2 M NaOH aqueous solution was slowly injected for 15 minutes to induce a sol-gel reaction. .
  • the hydrolysis reaction occurred with the addition of the aqueous NaOH solution to form white particles, the mixture was stirred rapidly for 1 hour and then precipitated for 12 hours without stirring. After decanting the upper reaction solution from the precipitated reactant, the remaining reactant was sufficiently washed with water and ethanol for 10 minutes at 10000 rpm through a centrifuge and dried in an oven at 80° C. for 12 hours to obtain Zn-Sn hydroxide particles.
  • a base resin was prepared by mixing an ABS copolymer (product name: DP270, LG Chem) and a SAN resin (product name: 90HR, LG Chem) in a weight ratio of 3:7.
  • a flame-retardant resin composition was prepared by mixing 16 parts by weight of tetrabromobisphenol A (TBBA) as a flame retardant and 3 parts by weight of Zn-Sn hydroxide particles prepared above as a flame retardant with respect to 100 parts by weight of the prepared base resin.
  • TBBA tetrabromobisphenol A
  • a base resin was prepared by mixing an ABS copolymer (product name: DP270, LG Chem) and a SAN resin (product name: 90HR, LG Chem) in a weight ratio of 3:7.
  • a flame-retardant resin composition was prepared by mixing 16 parts by weight of tetrabromobisphenol A (TBBA) as a flame retardant and 3 parts by weight of Zn-Al hydroxide particles prepared above as a flame retardant with respect to 100 parts by weight of the prepared base resin.
  • TBBA tetrabromobisphenol A
  • a base resin was prepared by mixing an ABS copolymer (product name: DP270, LG Chem) and a SAN resin (product name: 90HR, LG Chem) in a weight ratio of 3:7.
  • a flame-retardant resin composition was prepared by mixing 16 parts by weight of tetrabromobisphenol A (TBBA) as a flame retardant and 3 parts by weight of Sb 2 O 3 as a flame-retardant aid based on 100 parts by weight of the prepared base resin.
  • TBBA tetrabromobisphenol A
  • a base resin was prepared by mixing an ABS copolymer (product name: DP270, LG Chem) and a SAN resin (product name: 90HR, LG Chem) in a weight ratio of 3:7.
  • a flame retardant resin composition was prepared by mixing 16 parts by weight of tetrabromobisphenol A (TBBA) as a flame retardant, 3 parts by weight of Sb 2 O 3 as a flame retardant, and 0.2 parts by weight of a stabilizer based on 100 parts by weight of the prepared base resin.
  • TBBA tetrabromobisphenol A
  • Example 1 1 component distribution and composition ratio of the Zn-Sn hydroxide particles prepared in Example 1 1 and the Zn-Al hydroxide particles prepared in Example 2 were confirmed through EDS (Energy Dispersive X-ray spectroscopy) component analysis.
  • FIG. 1 is an SEM photograph of Zn-Sn hydroxide particles prepared in Example 1.
  • FIG. 1 the Zn-Sn hydroxide particles prepared in Example 1 were cubic particles having a particle diameter of about 2 ⁇ m, and were found to have a relatively uniform particle size distribution.
  • FIG. 2 is a photograph showing the distribution of Zn among the Zn-Sn hydroxide particles prepared in Example 1
  • FIG. 3 is a photograph showing the distribution of Sn among the Zn-Sn hydroxide particles prepared in Example 1.
  • Figure 4 is a graph showing the composition ratio of Zn and Sn in the Zn-Sn hydroxide particles prepared in Example 1 measured through EDS mapping.
  • the Zn-Sn hydroxide particles prepared in Example 1 showed that Zn and Sn were evenly distributed throughout the particles.
  • composition ratio of Zn and Sn in the Zn-Sn hydroxide particles was calculated using the graph of FIG. 4, and as a result of the calculation, the atomic ratio of Zn:Sn was about 1.25:1.
  • Example 5 is a SEM photograph of Zn-Al hydroxide particles prepared in Example 2. As shown in FIG. 5, the Zn-Al hydroxide particles prepared in Example 2 were plate-shaped particles having a thickness of about 20 nm and an area of about 250 nm ⁇ 250 nm, and were found to have a relatively uniform particle size distribution.
  • FIG. 6 is a photograph showing the distribution of Zn and Al in the Zn-Al hydroxide particles prepared in Example 2. As shown in FIG. 6, in the Zn-Al hydroxide particles prepared according to Example 2, it was found that Zn and Al were evenly distributed throughout the particles.
  • FIG. 7 is a graph showing the composition ratio of Zn and Al among the Zn-Al hydroxide particles prepared in Example 2 measured through EDS mapping.
  • the composition ratio of Zn, Sn, and Al in the Zn-Al hydroxide particles was calculated using the graph of FIG. 7.
  • the Zn-Al hydroxide of Example 2 had an atomic ratio of Zn: Al of about 1.9: 0.1, and general zinc -It was found that the composition has a higher Zn content than aluminum dihydroxide (Zn-Al Layered Double Hydroxide).
  • thermoplastic flame-retardant resin compositions of Examples and Comparative Examples were uniformly mixed using a Henschel mixer, and then put into a twin-screw extruder set at 220°C and extruded to produce pellets. Then, the pellets were injected through an injection machine to prepare a specimen, and physical properties were measured according to the following physical property measurement method. The measurement results of physical properties are shown in the following [Table 1].
  • a flame having a height of 20 mm was contacted with the specimen for 10 seconds, and then the burning time t1 of the specimen was measured. Subsequently, when combustion was terminated after the first welding, the burning time t2 of the specimen after welding for 10 seconds was measured again, and when the sum of the t1 and t2 was 50 seconds or less, it was evaluated as a V-0 grade.
  • the flame-retardant resin composition to which the flame-retardant aids of Examples 1 and 2 prepared according to the method of the present invention are applied has a level of flame retardancy equivalent to that of Comparative Examples 1 and 2 using an antimony trioxide flame-retardant aid.
  • color deterioration after staying at a high temperature was less, and thus thermal stability was more excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은, 용매에 아연 전구체 및 M1 금속을 포함하는 전구체를 첨가하여 금속 전구체 용액을 제조하는 단계; 및 상기 금속 전구체 용액에 산 또는 염기를 첨가하여 졸-겔 반응을 진행하여 화학식 1로 표시되는 다성분계 금속 수산화물을 제조하는 단계를 포함하는 난연 조제의 제조 방법 및 상기 방법으로 제조된 난연 조제를 포함하는 난연성 수지 조성물에 관한 것이다.

Description

난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물
본 발명은 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물에 관한 것이다.
[관련출원과의 상호 인용]
본 출원은 2019년 9월 27일에 출원된 한국특허출원 제10-2019-0120027호 및 2020년 9월 15일에 출원된 한국특허출원 제10-2020-0118225호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
열가소성 수지 조성물은 일상 생활용품으로부터 자동차 내장재, 사무기기, 디스플레이와 같은 전기전자 제품까지 다양한 분야에 적용되고 있다. 또한, 발열 제품이나 고전압 제품 등에 적용하기 위해 열가소성 수지 조성물에 난연제를 투입하여 난연성을 부여한 난연성 열가소성 수지들이 다양한 분야에서 사용되고 있다.
난연제는 통상 할로겐계와 비할로겐계로 나누어지며, 할로겐계를 대표하는 난연제로 브롬계 난연제가 있다. 브롬계 난연제는 박막에서도 난연성이 우수하며 난연 조제인 삼산화 안티몬과 혼합 사용시, 소량 투입하여도 난연 효과가 우수한 장점이 있다.
그러나, 난연 조제로 사용되는 삼산화 안티몬의 경우, 1급 발암물질로 분류되어 있기 때문에, 이를 대체할 새로운 난연 조제의 개발이 요구되고 있다. 이에 Fe2O3, MoO2, Bi2O3와 같은 다른 금속 산화물을 난연 조제로 사용하고자 하는 시도들이 있었으나, 이들 금속 산화물의 경우 난연 효율성이 낮고, 무기물 고유의 색상을 가지고 있어 적용이 제한적이다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 발암 물질을 포함하지 않으며, 할로겐계 난연제와 함께 열가소성 수지 조성물에 적용되어 우수한 난연 효율을 나타내는 난연 조제의 제조 방법 및 상기 제조 방법을 통해 제조된 난연 조제를 포함하는 난연성 수지 조성물을 제공하고자 한다.
일 구현예에 따르면, 본 발명은, 용매에 아연 전구체 및 M1 금속을 포함하는 전구체를 첨가하여 금속 전구체 용액을 제조하는 단계; 및 상기 금속 전구체 용액에 산 또는 염기를 첨가하여 졸-겔 반응을 진행하여 하기 화학식 1로 표시되는 다성분계 금속 수산화물을 제조하는 단계를 포함하는 난연 조제의 제조 방법을 제공한다.
[화학식 1]
ZnxM1 y(OH)z
상기 화학식 1에서, M1은 아연을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이고, x 및 y는 각각 Zn 및 M1의 원자 비율을 의미하며, x : y가 0.5 ~ 2.0 : 0.1 ~ 3.0이며, 2≤z≤6이다.
다른 구현예에 따르면, 본 발명은 베이스 수지, 할로겐계 난연제, 및 난연 조제를 포함하고, 상기 난연 조제가 상기 화학식 1로 표시되는 다성분계 금속 수산화물인 난연성 수지 조성물을 제공한다.
본 발명에 따른 난연 조제의 제조 방법은 졸-겔 공정을 통해 2종 이상의 금속 성분을 포함하는 수산화물 형태의 난연 조제를 형성하는 방법이다. 본 발명과 같이 졸-겔 공정을 통해 난연 조제를 제조할 경우, 난연 조제 내의 금속 성분 및 함량을 다양하게 조절할 수 있으며, 입도 균일성이 우수한 난연 조제를 제조할 수 있다.
또한, 종래에 금속 수산화물 제조에 사용되던 수열 합성법 등의 방법에서는 대량 생산이 불가능하였으나, 본 발명의 제조 방법에 따르면 대량 생산이 가능해 경제성이 우수하다.
본 발명의 방법에 따라 제조된 난연 조제는 입도 균일성이 높아 열가소성 수지와 혼합될 때 분산성이 우수하고, 난연성 및 열 안정성 개선 효과가 우수하다.
또한, 본 발명의 방법에 따라 제조된 난연 조제를 포함하는 난연성 수지 조성물은, 발암 물질을 발생시키는 안티몬계 난연 조제를 사용하지 않아 친환경적이고 안전하면서도 우수한 난연 성능을 나타낸다. 뿐만 아니라, 본 발명의 방법에 따라 제조된 난연 조제를 사용할 경우, 할로겐계 난연제 분해에 의한 열 안정성 저하를 개선하는 효과를 얻을 수 있다.
도 1은 실시예 1에서 제조된 Zn-Sn 수산화물 입자의 SEM 사진이다.
도 2는 실시예 1에서 제조된 Zn-Sn 수산화물 입자 중 Zn의 분포를 보여주는 사진이다.
도 3은 실시예 1에서 제조된 Zn-Sn 수산화물 입자 중 Sn의 분포를 보여주는 사진이다.
도 4는 EDS 맵핑을 통해 측정된 실시예 1에서 제조된 Zn-Sn 수산화물 입자 중 Zn 및 Sn의 조성비를 보여주는 그래프이다.
도 5는 실시예 2에서 제조된 Zn-Al 수산화물 입자의 SEM 사진이다.
도 6은 실시예 2에서 제조된 Zn-Al 수산화물 입자 중 Zn 및 Al의 분포를 보여주는 사진이다.
도 7은 EDS 맵핑을 통해 측정된 실시예 2에서 제조된 Zn-Al 수산화물 입자 중 Zn및 Al의 조성비를 보여주는 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 대해 구체적으로 설명한다.
난연 조제의 제조 방법
본 발명은 안티몬계 난연 조제를 대체할 수 있는 난연 조제의 제조 방법에 관한 것으로, 구체적으로는 졸-겔 공정을 통해 2종 이상의 금속 성분을 포함하는 다성분계 금속 수산화물 형태의 난연 조제를 형성하는 방법에 관한 것이다.
본 발명의 난연 조제의 제조 방법은, (1) 용매에 아연 전구체 및 M1 금속을 포함하는 전구체를 첨가하여 금속 전구체 용액을 제조하는 단계; 및 (2) 상기 금속 전구체 용액에 산 또는 염기를 첨가하여 졸-겔 반응을 진행하여 하기 화학식 1로 표시되는 다성분계 금속 수산화물을 제조하는 단계를 포함한다.
[화학식 1]
ZnxM1 y(OH)z
상기 화학식 1에서, M1은 아연을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이고, x 및 y는 각각 Zn 및 M1의 원자 비율을 의미하며, x : y가 0.5 ~ 2.0 : 0.1 ~ 3.0이며, 2≤z≤6임.
먼저, 용매에 아연 전구체 및 M1 금속을 포함하는 전구체를 첨가하여 금속 전구체 용액을 제조한다. 상기 M1 금속은 아연을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 구체적으로는, Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Ca, Sr, Si 및 Sb로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
이때, 상기 용매는 아연 전구체 및 M1 금속을 포함하는 전구체를 용해시킬 수 있는 것이면 되고, 그 종류가 특별히 한정되는 것은 아니다. 예를 들면, 상기 용매는 탈이온수, 에탄올, 메탄올, 이소프로판올, 아세토니트릴, 디메틸아민보란 또는 이들의 혼합물 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 아연 전구체는, 예를 들면, 염화 아연, 황산 아연, 아세트산 아연, 질산 아연, 황화 아연 또는 이들의 혼합물 등일 수 있으며, 상기 M1 금속을 포함하는 전구체는 M1 금속의 염화물, 황산화물, 질산물, 황화물, 초산물 또는 이들의 혼합물 등일 수 있다. 구체적으로는, 상기 M1 금속을 포함하는 전구체는 Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si 또는 Sb의 염화물, 황산화물, 질산물, 황화물, 초산물 또는 이들의 혼합물 등일 수 있다.
한편, 상기 금속 전구체 용액은, 상기 아연 전구체 및 M1 금속을 포함하는 전구체를 아연 : M1 금속의 원자 비율이 0.5 ~ 2.0 : 0.1 ~ 3.0, 바람직하게는 0.5 ~ 2.0 : 0.1 ~ 2.0, 더 바람직하게는 0.7 ~ 1.3 : 0.2 ~ 1.3이 되도록 하는 양으로 포함하는 것이 바람직하다. 금속 전구체 용액 내의 아연 전구체 및 M1 금속을 포함하는 전구체의 첨가량이 상기 범위를 만족할 때, 난연 효율 및 열 안정성 개선 효과가 우수한 난연 조제를 제조할 수 있다.
아연 전구체와 M1 금속을 포함하는 전구체를 용매에 투입한 후, 용매 중에 잘 용해될 수 있게 교반하며 혼합하여 금속 전구체 용액을 제조한다.
다음으로, 상기 금속 전구체 용액에 산 또는 염기를 첨가하여 pH를 조절함으로써 졸-겔 반응을 진행시킨다.
상기 산 또는 염기는 금속 전구체 용액의 pH를 조절하기 위해 첨가되는 것으로, 당해 기술 분야에 잘 알려진 산 또는 염기들이 사용될 수 있으며, 예를 들면, 아세트산, 수산화나트륨, 수산화암모늄, 수산화칼슘 등이 사용될 수 있으나, 이에 제한되는 것은 아니다.
한편, 상기 pH 조절을 위해 산을 적용할 경우, 상기 산은 금속 전구체 용액의 pH가 2 ~ 4가 되도록 하는 양으로 첨가될 수 있다. 상기 pH 조절을 위해 염기를 적용할 경우, 상기 염기는 금속 전구체 용액의 pH가 8 ~ 10이 되도록 하는 양으로 첨가될 수 있다.
산 또는 염기 투입을 통해 금속 전구체 용액의 pH를 조절한 후, 교반하면 가수 분해가 일어나면서 졸-겔 반응이 진행되고, 상기 반응의 결과로 하기 화학식 1로 표시되는 아연 및 M1 금속을 포함하는 다성분계 수산화물 입자가 형성된다.
[화학식 1]
ZnxM1 y(OH)z
상기 화학식 1에서, M1은 Zn을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이며, 바람직하게는, Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si 및 Sb로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 x 및 y는 각각 Zn 및 M1의 원자 비율을 의미하며, x : y가 0.5 ~ 2.0 : 0.1 ~ 3.0, 바람직하게는 0.5 ~ 2.0 : 0.1 ~ 2.0이고, 더 바람직하게는 x : y는 0.7 ~ 1.3 : 0.2 ~ 1.3일 수 있다.
상기 z는 OH의 몰비를 의미하며, 2≤z≤6이다.
구체적으로는, 상기 다성분계 금속 수산화물은 하기 [화학식 2]로 표시되는 것일 수 있다.
[화학식 2]
ZnxM2 y1M3 y2(OH)z
상기 화학식 2에서, M2는 Sn 및 Al으로 이루어진 군으로부터 선택된 1종 이상이고, M3는 Zn, Sn 및 Al을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이며, 바람직하게는, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si 및 Sb로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 x, y1, y2는 각각 Zn, M2 및 M3의 원자 비율을 의미하며, x : y1 : y2가 0.5 ~ 2.0 : 0.1 ~ 3.0 : 0 ~ 2.9, 바람직하게는, 0.5 ~ 2.0 : 0.1 ~ 2.0 : 0 ~ 1.9, 더 바람직하게는 0.7 ~ 1.3 : 0.2 ~ 1.3 : 0 ~ 1.1 일 수 있다.
상기 z는 OH의 몰비를 의미하며, 2≤z≤6이다.
더 구체적으로는, 상기 다성분계 금속 수산화물은, 2종 또는 3종의 금속 원소를 포함하는 금속 수산화물일 수 있으며, 예를 들면, ZnxSny(OH)z, ZnxAly(OH)z, ZnxSny1Aly2(OH)z, ZnxSny1Tiy2(OH)z, ZnxSny1Fey2(OH)z, ZnxSny1Fey2(OH)z, ZnxSny1Tiy2(OH)z, ZnxSny1Coy2(OH)z, ZnxSny1Niy2(OH)z, ZnxSny1Zry2(OH)z, ZnxSny1Moy2(OH)z, ZnxSny1Pdy2(OH)z, ZnxSny1Scy2(OH)z, ZnxSny1Cdy2(OH)z, ZnxSny1Mgy2(OH)z, ZnxSny1Cay2(OH)z, ZnxSny1Sry2(OH)z, ZnxSny1Siy2(OH)z, ZnxSny1Sby2(OH)z, ZnxAly1Tiy2(OH)z, ZnxAly1Fey2(OH)z, ZnxAly1Fey2(OH)z, ZnxAly1Tiy2(OH)z, ZnxAly1Coy2(OH)z, ZnxAly1Niy2(OH)z, ZnxAly1Zry2(OH)z, ZnxAly1Moy2(OH)z, ZnxAly1Pdy2(OH)z, ZnxAly1Scy2(OH)z, ZnxAly1Cdy2(OH)z, ZnxAly1Mgy2(OH)z, ZnxAly1Cay2(OH)z, ZnxAly1Sry2(OH)z, ZnxAly1Siy2(OH)z, ZnxAly1Sby2(OH)z (여기서, x, y, y1, y2, z는 화학식 1 또는 화학식 2에서 정의된 것과 동일하다) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기와 같은 과정을 통해 다성분계 금속 수산화물 입자가 형성되면, 형성된 다성분계 금속 수산화물 입자를 침전시키고, 상등액을 제거한 후 세척 및 건조하여 다성분계 금속 수산화물을 수득한다.
본 발명에 따라 제조된 상기 다성분계 금속 수산화물은 난연제와 함께 사용되어 열가소성 수지의 난연성 및 열 안정성을 개선하는 효과가 있어, 난연 조제로 유용하게 사용될 수 있다.
한편, 종래에는 수열 합성법을 통해 다성분계 금속 수산화물을 제조하는 것이 일반적이었다. 그러나, 수열 합성법은 대량 생산이 어려워 경제성이 떨어진다는 문제점이 있었다. 또한, 수열 합성법을 이용할 경우 다성분계 금속 수산화물 내의 금속 성분들의 조성이 화학양론을 만족하도록 형성되고, 비화학양론 화합물을 제조할 수 없기 때문에 다양한 조성비의 금속 수산화물을 제조하기 어려웠다.
이에 비해, 본 발명과 같이 졸-겔 공정을 통해 다성분계 금속 수산화물을 제조할 경우, 대량 생산이 가능할 뿐 아니라, 전구체의 투입량 및/또는 반응 조건을 조절함으로써, 비화학양론 금속 조성을 갖는 화합물도 형성할 수 있다. 따라서, 적용되는 열가소성 수지 또는 용도 등을 고려하여 다성분계 금속 수산화물 내의 금속 조성을 조절함으로써 원하는 성능이 최적화된 난연 조제를 제공할 수 있다.
또한, 본 발명의 방법에 따라 제조된 다성분계 금속 수산화물은 수열 합성법에 의해 제조된 다성분계 금속 수산화물에 비해 균일한 입도 분포를 가지고, 제조 과정에서 계면 활성제 등과 같은 첨가제를 사용하지 않기 때문에, 열가소성 수지와 혼합될 때 분산성이 우수하며, 이로 인해 난연 수지 조성물 적용 시에 난연 상승 효과 및 열 안정성 개선 효과를 극대화할 수 있다.
난연성 수지 조성물
다음으로 본 발명에 따른 난연성 수지 조성물에 대해 설명한다. 본 발명의 난연성 수지 조성물은 (1) 베이스 수지, (2) 난연제 및 (3) 난연 조제를 포함한다.
(1) 베이스 수지
본 발명에서 상기 베이스 수지는 당해 기술 분야에서 난연 수지 조성물에 적용되는 다양한 열가소성 수지들, 예를 들면, 고무질 중합체 수지, 방향족 비닐계 수지, 폴리카보네이트 수지, 폴리올레핀 수지, 아크릴 수지 또는 이들의 혼합물 등이 제한 없이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
구체적으로는, 본 발명의 난연성 수지 조성물은, 공액 디엔계 그라프트 공중합체와, 상기 공액 디엔계 그라프트 공중합체가 분산되어 있는 매트릭스 공중합체를 포함하는 베이스 수지를 포함할 수 있다.
이때, 상기 그라프트 공중합체는 공액 디엔계 중합체에 방향족 비닐계 단량체와 비닐 시안계 단량체가 그라프트 중합된 공중합체일 수 있다.
상기 그라프트 공중합체는, 당해 기술 분야에 일반적으로 알려진 통상의 그라프트 중합 방법을 통해 제조될 수 있으며, 구체적으로는, 공액 디엔계 중합체 존재 하에, 방향족 비닐계 단량체와 비닐 시안계 단량체를 유화 중합, 현탁 중합 또는 괴상 중합하는 방법으로 제조될 수 있다.
이때, 상기 공액 디엔계 중합체는 공액 디엔계 단량체가 중합되어 제조된 중합체를 지칭하며, 상기 공액 디엔계 단량체는 부타디엔, 이소프렌 및 클로로이소프렌으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중에서도 부타디엔이 바람직할 수 있다.
본 발명에서 사용되는 상기 공액 디엔계 중합체는 평균 입경이 0.1 내지 1.0 ㎛, 0.1 내지 0.5 ㎛ 또는 0.1 내지 0.3 ㎛ 일 수 있고, 이 중 0.1 내지 0.3 ㎛인 것이 바람직하다. 공액 디엔계 중합체의 평균 입경이 상술한 범위를 만족할 경우, 그라프트 공중합체의 기계적 특성, 광택성, 착색성을 보다 개선시킬 수 있다.
한편, 상기 공액 디엔계 중합체는 상술한 입경 내에서 서로 다른 평균입경을 가지는 2종 이상을 혼합하여 사용할 수도 있다.
한편, 본 발명에서 평균 입경은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50% 이상에 해당하는 입경으로 정의할 수 있다. 본 발명에서 공액 디엔계 중합체의 평균 입경은 공액 디엔계 중합체 일정량을 용매에 용해시킨 후, 측정할 수 있다. 구체적으로는 공액 디엔계 중합체 0.5g을 메틸에틸케톤 100㎖에 용해시킨 후, 쿨터 카운터(상품명: LS230, 제조사: 벡크만 쿨터사)를 이용하여 측정할 수 있다.
상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, 2-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 2-에틸스티렌, 3-에틸스티렌 및 4-에틸스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중에서도 특히 스티렌이 바람직하다.
상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중에서도 아크릴로니트릴이 바람직하다.
본 발명의 그라프트 공중합체는 공액 디엔계 중합체 50 내지 65 중량%, 방향족 비닐계 단량체 유래 단위 25 내지 35 중량%, 비닐 시안계 단량체 유래 단위 5 내지 20 중량%를 포함할 수 있다. 상기 범위를 만족할 경우, 그라프트 공중합체의 기계적 특성, 광택성 및 착색성을 개선시킬 수 있으며, 난연 수지 조성물의 강성, 가공성, 표면 광택, 내화학성 및 내후성을 보다 개선시킬 수 있다.
상기 그라프트 공중합체는 그라프트율이 30 내지 70%, 40 내지 60% 또는 40 내지 50%일 수 있고, 이 중 40 내지 50%이 바람직하다. 상술한 범위를 만족하면, 그라프트 공중합체의 열안정성과 기계적 특성 사이의 균형을 맞출 수 있다.
여기서, 그라프트율은 그라프트 공중합체 일정 양을 용매에 투입하고 진동기를 이용하여 용해시키고, 원심 분리기로 원심 분리하고, 건조하여 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다. 상세하게는 그라프트 공중합체 일정량을 아세톤에 투입하고 진동기(상품명: SI-600R, 제조사: Lab. companion)로 24 시간 동안 진동시켜 유리된 그라프트 공중합체를 용해시키고, 원심 분리기로 14,000 rpm으로 1시간 동안 원심분리하고, 진공 건조기(상품명: DRV320DB, 제조사: ADVANTEC)로 140℃에서 2시간 동안 건조시켜 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
그라프트율(%)=[(Y-(X × R))/(X × R)] × 100
Y: 불용분 중량
X: 불용분 수득시 투입된 그라프트 공중합체의 중량
R: 불용분 수득시 투입된 그라프트 공중합체 내 공액 디엔계 중합체의 분율
한편, 상기 매트릭스 공중합체는 방향족 비닐계 단량체 및 비닐 시안계 단량체의 공중합체일 수 있다.
이때, 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, 2-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 2-에틸스티렌, 3-에틸스티렌 및 4-에틸스티렌으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 이 중에서도 특히 스티렌이 바람직하다.
상기 비닐 시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴 및 에타크릴로니트릴로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중에서도 아크릴로니트릴이 바람직하다.
본 발명의 매트릭스 공중합체에 포함되는 방향족 비닐계 단량체와 비닐 시안계 단량체는 6:4 내지 9:1의 중량비로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 색상, 강성, 가공성, 생산성, 내화학성 및 내후성이 우수할 수 있다.
한편, 상기 베이스 수지는 그라프트 공중합체와 매트릭스 공중합체를 1:9 내지 9:1의 중량비, 바람직하게는 1:9 내지 6:4의 중량비, 더욱 바람직하게는 1:9 내지 4:6의 중량비로 포함하는 것일 수 있다. 그라프트 공중합체가 이보다 적게 포함될 경우, 충격 강도가 저하되어 제품의 사출 및 조립 과정 중 부러질 수 있으며, 이보다 많게 포함될 경우 내스크래치성 및 가공성이 취약해질 수 있다는 문제점이 있다.
(2) 난연제
상기 난연제는 난연 수지 조성물에 난연성을 제공하기 위한 것으로, 당해 기술 분야에서 일반적으로 사용되는 할로겐계 난연제일 수 있다.
상기 할로겐계 난연제의 구제적인 예로는, 헥사브로모시클로도데칸(hexabromocyclododecane), 테트라브르모시클로옥탄(tetrabromocyclooctane), 모노클로로 펜타브로모시클로헥산(monochloro petabromocyclohexane), 데카브로모디페닐 옥사이드(decabromodiphenyl oxide), 옥타브로모디페닐옥사이드(octabromodiphenyl oxide), 데카브로모디페닐에탄(decabromodiphenyl ethane), 에틸렌비스(테트라브로모프탈이미드)(ethylene bis(tetrabromophthalimide)), 테트라브로모비스페놀 A(tetrabromobisphenyl A), 브로미네이티드 에폭시 올리고머(brominated epoxy oligomers), 비스(트리브로모페녹시)에탄(bis(tribromophenoxy)ethane), 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진(2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine), 테트라브로모비스페놀 A 비스(알릴에테르)(tetrabromobisphenol A bis(allyl ether)) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 난연제는 베이스 수지 100중량부에 대하여 10 내지 30중량부, 바람직하게는 10 내지 30중량부, 더 바람직하게는 10 내지 25중량부의 양으로 포함될 수 있다. 난연제의 함량이 상기 범위를 만족할 경우, 베이스 수지의 물성에 악 영향을 주지 않으면서 난연성을 효과적으로 개선할 수 있다.
(3) 난연 조제
상기 난연 조제는 난연제의 난연 효과를 상승시키는 작용을 하는 것으로, 본 발명에서는 상기 난연 조제로 상술한 본 발명의 방법에 따라 제조된 하기 화학식 1로 표시되는 다성분계 금속 수산화물을 사용한다.
[화학식 1]
ZnxM1 y(OH)z
상기 화학식 1에서, M1은 아연을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이며, x 및 y는 각각 Zn 및 M1의 원자 비율을 의미하며, x : y가 0.5 ~ 2.0 : 0.1 ~ 3.0이고, 2≤z≤6이다.
바람직하게는, 상기 M1은 Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si 및 Sb로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, x : y는 0.5 ~ 2.0 : 0.1 ~ 2.0, 더 바람직하게는, 0.7 ~ 1.3 : 0.2 ~ 1.3일 수 있다.
구체적으로는, 상기 다성분계 금속 수산화물은 하기 [화학식 2]로 표시되는 것일 수 있다.
[화학식 2]
ZnxM2 y1M3 y2(OH)z
상기 화학식 2에서, M2는 Sn 및 Al으로 이루어진 군으로부터 선택된 1종 이상이며, M3는 Zn, Sn 및 Al을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이며, 바람직하게는, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si 및 Sb로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 x, y1, y2는 각각 Zn, M2 및 M3의 원자 비율을 의미하며, x : y1 : y2가 0.5 ~ 2.0 : 0.1 ~ 3.0 : 0 ~ 2.9이고, 바람직하게는 0.5 ~ 2.0 : 0.1 ~ 2.0 : 0 ~ 1.9, 더 바람직하게는, 0.7 ~ 1.3 : 0.2 ~ 1.3 : 0 ~ 1.1 일 수 있다.
상기 z는 OH의 몰비를 의미하며, 2≤z≤6이다.
더 구체적으로는, 상기 다성분계 금속 수산화물은, 2종 또는 3종의 금속 원소를 포함하는 금속 수산화물일 수 있으며, 예를 들면, ZnxSny(OH)z, ZnxAly(OH)z, ZnxSny1Aly2(OH)z, ZnxSny1Tiy2(OH)z, ZnxSny1Fey2(OH)z, ZnxSny1Fey2(OH)z, ZnxSny1Tiy2(OH)z, ZnxSny1Coy2(OH)z, ZnxSny1Niy2(OH)z, ZnxSny1Zry2(OH)z, ZnxSny1Moy2(OH)z, ZnxSny1Pdy2(OH)z, ZnxSny1Scy2(OH)z, ZnxSny1Cdy2(OH)z, ZnxSny1Mgy2(OH)z, ZnxSny1Cay2(OH)z, ZnxSny1Sry2(OH)z, ZnxSny1Siy2(OH)z, ZnxSny1Sby2(OH)z, ZnxAly1Tiy2(OH)z, ZnxAly1Fey2(OH)z, ZnxAly1Fey2(OH)z, ZnxAly1Tiy2(OH)z, ZnxAly1Coy2(OH)z, ZnxAly1Niy2(OH)z, ZnxAly1Zry2(OH)z, ZnxAly1Moy2(OH)z, ZnxAly1Pdy2(OH)z, ZnxAly1Scy2(OH)z, ZnxAly1Cdy2(OH)z, ZnxAly1Mgy2(OH)z, ZnxAly1Cay2(OH)z, ZnxAly1Sry2(OH)z, ZnxAly1Siy2(OH)z, ZnxAly1Sby2(OH)z (여기서, x, y, y1, y2, z는 화학식 1 또는 화학식 2에서 정의된 것과 동일하다) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 방법에 따라 제조된 상기 다성분계 금속 수산화물은 입도 균일성이 높아 열가소성 수지와 혼합될 때 분산성이 우수하다. 또한, 상기 다성분계 금속 수산화물은 할로겐계 난연제와 함께 사용되었을 때, 난연 상승 효과가 우수하고, 고온 체류 시에 난연제 분해로 인한 변색을 방지할 수 있도록 함으로써 우수한 난연성 및 열 안정성을 구현할 수 있도록 해준다.
상기 난연 조제는 베이스 수지 100중량부에 대하여 1 내지 10중량부, 바람직하게는 1 내지 5중량부의 양으로 포함될 수 있다. 난연 조제의 함량이 상기 범위를 만족할 경우, 베이스 수지의 물성에 악 영향을 주지 않으면서 난연성 및 열 안정성을 효과적으로 개선할 수 있다.
상기와 같이 본 발명의 난연 조제를 포함하는 난연성 수지 조성물은, 발암 물질을 발생시키는 안티몬계 난연 조제를 사용하지 않아 친환경적이고 안전하면서도 우수한 난연 성능을 나타낼 뿐 아니라, 우수한 열 안정성을 가져 고온 체류 후에도 변색이 적다.
(4) 첨가제
본 발명에 따른 난연 수지 조성물은, 필요에 따라, 충격 보강제, 활제, 적하 방지제, 산화 방지제, 광안정제, 자외선 차단제, 안료, 및 무기 충진제로 이루어진 군에서 선택되는 1종 이상의 첨가제를 더 포함할 수 있다.
상기 첨가제의 구체적인 물질은 열가소성 난연 수지 조성물에 사용되는 것이면 특별히 한정하지 않고 사용할 수 있다. 예를 들면, 상기 적하 방지제로는 추가의 난연성 개선측면에서 테프론, 폴리아마이드, 폴리실리콘, PTFE(polytetrafluoroethylene) 및 TFE-HFP(tetrafluoroethylene-hexafluoropropylene) 공중합체로 이루어진 군에서 선택된 1종 이상을 사용할 수 있고, 상기 무기 충진제로는 황산바륨, 바륨 글라스 필러 및 산화바륨으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
실시예 1
<난연 조제 제조>
0.5M의 ZnCl2와 0.25M의 SnCl2를 750mL 에탄올에 첨가한 후 마그네틱 바로 교반하여 투명해질 때까지 녹여준 다음, 750mL의 3.2M의 NaOH 수용액을 15분간 천천히 주입하면서 졸-겔 반응을 유도하였다. NaOH 수용액 첨가에 따라 가수 분해 반응이 일어나 흰색 입자상이 형성되면 1시간 동안 빠르게 교반한 후, 12시간 동안 교반 없이 침전시켰다. 침전된 반응물에서 상층 반응 용액을 따라낸 다음, 남은 반응물을 원심 분리기를 통해 10000rpm에서 10분간 물과 에탄올로 충분히 세척하고 80도 오븐에서 12시간 건조시켜 Zn-Sn 수산화물 입자를 얻었다.
<난연성 수지 조성물 제조>
ABS 공중합체(제품명: DP270, LG화학)와 SAN 수지(제품명: 90HR, LG화학)를 3:7의 중량비로 혼합하여 베이스 수지를 제조하였다. 제조한 베이스 수지 100중량부에 대하여 난연제로 테트라브로모비스페놀 A(TBBA) 16중량부, 난연 조제로 상기에서 제조된 Zn-Sn 수산화물 입자 3 중량부를 혼합하여 난연 수지 조성물을 제조하였다.
실시예 2
<난연 조제 제조>
1M의 ZnCl2와 0.6M의 AlCl3를 300mL의 증류수와 700mL 에탄올에 첨가한 후 마그네틱 바로 교반하여 투명해질 때까지 녹여준 다음, 750mL의 3.5M의 NaOH 수용액을 20분간 천천히 주입하면서 졸-겔 반응을 유도하였다. NaOH 수용액 첨가에 따라 가수 분해 반응이 일어나 흰색 입자상이 형성되면 30분 동안 빠르게 교반한 후, 4시간 동안 교반 없이 침전시켰다. 침전된 반응물에서 상층 반응 용액을 따라낸 다음, 남은 반응물을 원심 분리기를 통해 10000rpm에서 10분간 물과 에탄올로 충분히 세척하고 80도 오븐에서 12시간 건조시켜 Zn-Al 수산화물 입자를 얻었다.
<난연성 수지 조성물 제조>
ABS 공중합체(제품명: DP270, LG화학)와 SAN 수지(제품명: 90HR, LG화학)를 3:7의 중량비로 혼합하여 베이스 수지를 제조하였다. 제조한 베이스 수지 100중량부에 대하여 난연제로 테트라브로모비스페놀 A(TBBA) 16중량부, 난연 조제로 상기에서 제조된 Zn-Al 수산화물 입자 3중량부를 혼합하여 난연 수지 조성물을 제조하였다.
비교예 1
ABS 공중합체(제품명: DP270, LG화학)와 SAN 수지(제품명: 90HR, LG화학)를 3:7의 중량비로 혼합하여 베이스 수지를 제조하였다. 제조한 베이스 수지 100중량부에 대하여 난연제로 테트라브로모비스페놀 A(TBBA) 16중량부, 난연 조제로 Sb2O3 3 중량부를 혼합하여 난연 수지 조성물을 제조하였다.
비교예 2
ABS 공중합체(제품명: DP270, LG화학)와 SAN 수지(제품명: 90HR, LG화학)를 3:7의 중량비로 혼합하여 베이스 수지를 제조하였다. 제조한 베이스 수지 100중량부에 대하여 난연제로 테트라브로모비스페놀 A(TBBA) 16중량부, 난연 조제로 Sb2O3 3 중량부, 안정제 0.2중량부를 혼합하여 난연 수지 조성물을 제조하였다.
실험예 1
실시예 1에서 제조된 Zn-Sn 수산화물 입자와 실시예 2에서 제조된 Zn-Al 수산화물 입자의 형상을 주사전자현미경(SEM)을 통해 관찰하였다.
또한, EDS(Energy Dispersive X-ray spectroscopy) 성분 분석을 통해, 실시예 1 1에서 제조된 Zn-Sn 수산화물 입자와 실시예 2에서 제조된 Zn-Al 수산화물 입자의 성분 분포 및 조성비를 확인하였다.
도 1은 실시예 1에서 제조된 Zn-Sn 수산화물 입자의 SEM 사진이다. 도 1에 나타난 바와 같이, 실시예 1에 의해 제조된 Zn-Sn 수산화물 입자는 입경이 약 2μm인 큐빅(cubic) 형태의 입자였으며, 비교적 균일한 입도 분포를 가지는 것으로 나타났다.
도 2는 실시예 1에서 제조된 Zn-Sn 수산화물 입자 중 Zn의 분포를 보여주는 사진이며, 도 3은 실시예 1에서 제조된 Zn-Sn 수산화물 입자 중 Sn의 분포를 보여주는 사진이다. 또한, 도 4는 EDS 맵핑을 통해 측정된 실시예 1에서 제조된 Zn-Sn 수산화물 입자 중 Zn 및 Sn의 조성비를 보여주는 그래프이다.
도 2 및 도 3에 도시된 바와 같이, 실시예 1에 의해 제조된 Zn-Sn 수산화물 입자는 Zn 및 Sn이 입자 전체에 고르게 분포되어 있는 것으로 나타났다.
또한, 도 4의 그래프를 이용하여 Zn-Sn 수산화물 입자 내 Zn과 Sn의 조성비를 계산하였으며, 계산 결과, Zn : Sn의 원자 비율은 1.25 : 1 정도였다.
도 5은 실시예 2에서 제조된 Zn-Al 수산화물 입자의 SEM 사진이다. 도 5에 나타난 바와 같이, 실시예 2에 의해 제조된 Zn-Al 수산화물 입자는 두께 약 20nm, 면적(dimension) 약 250nm×250nm인 판상 형태의 입자였으며, 비교적 균일한 입도 분포를 가지는 것으로 나타났다.
도 6은 실시예 2에서 제조된 Zn-Al 수산화물 입자 중 Zn 및 Al의 분포를 보여주는 사진이다. 도 6에 도시된 바와 같이, 실시예 2에 의해 제조된 Zn-Al 수산화물 입자는 Zn 및 Al이 입자 전체에 고르게 분포되어 있는 것으로 나타났다.
또한, 도 7은 EDS 맵핑을 통해 측정된 실시예 2에서 제조된 Zn-Al 수산화물 입자 중 Zn, 및 Al의 조성비를 보여주는 그래프이다. 도 7의 그래프를 이용하여 Zn-Al 수산화물 입자 내 Zn, Sn 및 Al의 조성비를 계산하였으며, 계산 결과, 실시예 2의 Zn-Al 수산화물은 Zn : Al의 원자 비율은 1.9 : 0.1 정도로, 일반적인 아연-알루미늄 이수산화물(Zn-Al Layered Double Hydroxide)에 비해 Zn 함량이 높은 조성을 갖는 것으로 나타났다. Zn의 비율이 높을 수록, 난연제의 Br과 반응성이 우수하여 난연 조제로서의 성능이 우수하다, 또한 Al 함량이 높을 경우, 수지와 블렌딩되었을 때, Al2O3의 산화물 형태로 변화되어 수지의 물성 저하를 유발할 수 있다.
실험예 2
실시예 및 비교예의 열가소성 난연 수지 조성물을 헨셀 믹서를 이용하여 균일하게 혼합한 후, 220℃로 설정된 이축 압출기에 투입하고 압출하여 펠렛을 제조하였다. 그런 다음 상기 펠렛을 사출기를 통해 사출하여 시편을 제작하고, 하기 물성 측정방법에 따라 물성을 측정하였다. 물성 측정 결과는 하기 [표 1]에 나타내었다.
<물성 측정 방법>
(1) 열 안정성: 사출기를 이용하여 사출 성형 시에 가공 온도를 230℃로 세팅하고, 15분간 수지를 체류시킨 후, 시편을 제조하여, CIE Lab 색좌표 값을 측정하였다. 상기 시편에서 측정된 CIE Lab 색좌표 값과 체류 없이 제조된 기준 시편의 CIE Lab 색좌표값을 하기 식에 대입하여 ΔE값을 측정하였다.
Figure PCTKR2020012766-appb-I000001
상기 식에서 L', a', b'은 230℃에서 15분간 수지를 체류시킨 후 제조된 시편을 CIE Lab 색 좌표계로 측정한 L, a, b 값이고, L0, a0, b0은 체류없이 제조된 기준 시편을 CIE Lab 색 좌표계로 측정한 L, a, b 값이다.
(2) 난연성: UL 94 측정법에 의거하여 두께 1/10인치 시편에 대해 하기와 같이 난연성을 평가하였다.
먼저, 20 mm 높이의 불꽃을 10초간 시편에 접염 후, 시편의 연소 시간 t1을 측정하였다. 이어, 1차 접염 후 연소가 종료되면, 다시 10초간 접염 후 시편의 연소 시간 t2을 측정하였으며, 상기 t1 및 t2의 합이 50초 이하인 경우 V-0 등급으로 평가하였다.
열 안정성(ΔE) 난연도
실시예 1 4.12 V-0
실시예 2 5.04 V-0
비교예 1 7.97 V-0
비교예 2 11.85 V-0
상기 [표 1]에 나타난 바와 같이, 본 발명의 방법에 따라 제조된 실시예 1 및 2의 난연 조제를 적용한 난연 수지 조성물은, 삼산화안티몬 난연 조제를 사용한 비교예 1 및 2와 동등 수준의 난연성을 나타냈으며, 삼산화안티몬을 사용한 비교예 1 및 2보다 고온 체류 후 색 저하가 적어 열 안정성이 더 우수한 것으로 나타났다.

Claims (13)

  1. 용매에 아연 전구체 및 M1 금속을 포함하는 전구체를 첨가하여 금속 전구체 용액을 제조하는 단계; 및
    상기 금속 전구체 용액에 산 또는 염기를 첨가하여 졸-겔 반응을 진행하여 하기 화학식 1로 표시되는 다성분계 금속 수산화물을 제조하는 단계를 포함하는 난연 조제의 제조 방법:
    [화학식 1]
    ZnxM1 y(OH)z
    상기 화학식 1에서,
    M1은 아연을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이고,
    x 및 y는 각각 Zn 및 M1의 원자 비율을 의미하며, x : y가 0.5 ~ 2.0 : 0.1 ~ 3.0이며,
    2≤z≤6임.
  2. 제1항에 있어서,
    상기 M1은 Sn, Al, Ti, Nb, Fe, Co, Ni, Cu, Zr, Mo, Pd, Sc, Cd, Mg, Ca, Sr, Si 및 Sb로 이루어진 군으로부터 선택되는 1종 이상인 난연 조제의 제조 방법.
  3. 제1항에 있어서,
    상기 아연 전구체는 염화 아연, 황산 아연, 아세트산 아연, 질산 아연, 황화 아연 또는 이들의 혼합물인 난연 조제의 제조 방법.
  4. 제1항에 있어서,
    상기 M1 금속을 포함하는 전구체 M1 금속의 염화물, 황산화물, 질산물 황화물, 초산물 또는 이들의 혼합물인 난연 조제의 제조 방법.
  5. 제1항에 있어서,
    상기 금속 전구체 용액은 상기 아연 전구체 및 상기 M1 금속을 포함하는 전구체를 아연 : M1 금속의 원자 비율이 0.5 ~ 2.0 : 0.1 ~ 3.0이 되도록 하는 양으로 포함하는 것인 난연 조제의 제조 방법.
  6. 제1항에 있어서,
    상기 다성분계 금속 수산화물은 하기 [화학식 2]로 표시되는 것인 난연 조제의 제조 방법.
    [화학식 2]
    ZnxM2 y1M3 y2(OH)z
    상기 화학식 2에서,
    M2는 Sn 및 Al으로 이루어진 군으로부터 선택된 1종 이상이고,
    M3는 Zn, Sn 및 Al을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이며,
    상기 x, y1, y2는 각각 Zn, M2 및 M3의 원자 비율을 의미하며, x : y1 : y2가 0.5 ~ 2.0 : 0.1 ~ 3.0 : 0 ~ 2.9이고, 2≤z≤6임.
  7. 제1항에 있어서,
    상기 용매는 탈이온수, 에탄올, 메탄올, 이소프로판올, 아세토니트릴, 디메틸아민보란 또는 이들의 혼합물인 난연 조제의 제조 방법.
  8. 베이스 수지, 할로겐계 난연제, 및 난연 조제를 포함하고,
    상기 난연 조제가 하기 화학식 1로 표시되는 다성분계 금속 수산화물인 난연성 수지 조성물:
    [화학식 1]
    ZnxM1 y(OH)z
    상기 화학식 1에서,
    M1은 아연을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이고,
    x 및 y는 각각 Zn 및 M1의 원자 비율을 의미하며, x : y가 0.5 ~ 2.0 : 0.1 ~ 3.0이며,
    2≤z≤6임.
  9. 제8항에 있어서,
    상기 베이스 수지는 공액 디엔계 그라프트 공중합체, 및 방향족 비닐계 단량체와 비닐 시안계 단량체의 공중합체인 매트릭스 공중합체를 포함하는 것인 난연성 수지 조성물.
  10. 제8항에 있어서,
    상기 할로겐계 난연제는 헥사브로모시클로도데칸 (hexabromocyclododecane), 테트라브르모시클로옥탄(tetrabromocyclooctane), 모노클로로 펜타브로모시클로헥산(monochloro petabromocyclohexane), 데카브로모디페닐 옥사이드(decabromodiphenyl oxide), 옥타브로모디페닐옥사이드(octabromodiphenyl oxide), 데카브로모디페닐에탄(decabromodiphenyl ethane), 에틸렌비스(테트라브로모프탈이미드)(ethylene bis(tetrabromophthalimide)), 테트라브로모비스페놀 A(tetrabromobisphenyl A), 브로미네이티드 에폭시 올리고머(brominated epoxy oligomers), 비스(트리브로모페녹시)에탄(bis(tribromophenoxy)ethane), 2,4,6-트리스(2,4,6-트리브로모페녹시)-1,3,5-트리아진(2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine), 및 테트라브로모비스페놀 A 비스(알릴에테르)(tetrabromobisphenol A bis(allyl ether))로 이루어진 군으로부터 선택되는 1종 이상인 난연성 수지 조성물.
  11. 제8항에 있어서,
    상기 난연 조제는 하기 [화학식 2]로 표시되는 다성분계 금속 수산화물인 난연성 수지 조성물:
    [화학식 2]
    ZnxM2 y1M3 y2(OH)z
    상기 화학식 2에서,
    M2는 Sn 및 Al으로 이루어진 군으로부터 선택된 1종 이상이고,
    M3는 Zn, Sn 및 Al을 제외한 전이금속, 알칼리 토금속 및 13 내지 16족 금속으로 이루어진 군으로부터 선택되는 1종 이상이며,
    상기 x, y1, y2는 각각 Zn, M2 및 M3의 원자 비율을 의미하며, x : y1 : y2가 0.5 ~ 2.0 : 0.1 ~ 3.0 : 0 ~ 2.9이고, 2≤z≤6임.
  12. 제8항에 있어서,
    상기 난연성 수지 조성물은,
    상기 베이스 수지 100중량부,
    상기 할로겐계 난연제 10 내지 30중량부, 및
    상기 난연 조제 1 내지 10중량부를 포함하는 것인 난연성 수지 조성물.
  13. 제8항에 있어서,
    상기 난연 수지 조성물은 충격 보강제, 활제, 적하방지제, 산화방지제, 안정제, 자외선차단제, 안료 및 무기 충진제로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 것인 난연 수지 조성물.
PCT/KR2020/012766 2019-09-27 2020-09-22 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물 WO2021060800A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/431,143 US20220135762A1 (en) 2019-09-27 2020-09-22 Method for preparing flame retardant aid and flame retardant resin composition comprising flame retardant aid prepared by same
EP20867853.2A EP3907266A4 (en) 2019-09-27 2020-09-22 METHOD OF PREPARING A FLAME RETARDANT AND FLAME RETARDANT RESIN COMPOSITION CONTAINING THE FLAME RETARDANT
CN202080014097.5A CN113423782A (zh) 2019-09-27 2020-09-22 制备阻燃助剂的方法和包含由此制备的阻燃助剂的阻燃树脂组合物
JP2021551947A JP7305250B2 (ja) 2019-09-27 2020-09-22 難燃助剤の製造方法およびその製造方法により製造された難燃助剤を含む難燃性樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0120027 2019-09-27
KR20190120027 2019-09-27
KR1020200118225A KR102634294B1 (ko) 2019-09-27 2020-09-15 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물
KR10-2020-0118225 2020-09-15

Publications (1)

Publication Number Publication Date
WO2021060800A1 true WO2021060800A1 (ko) 2021-04-01

Family

ID=75165882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012766 WO2021060800A1 (ko) 2019-09-27 2020-09-22 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물

Country Status (1)

Country Link
WO (1) WO2021060800A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000909A1 (en) * 1995-06-22 1997-01-09 Itri Limited Fire retardant products
JP2000351906A (ja) * 1999-06-10 2000-12-19 Ajinomoto Co Inc 非ハロゲン系樹脂用複合難燃剤
JP2003246894A (ja) * 2002-02-25 2003-09-05 Toyo Ink Mfg Co Ltd 難燃性樹脂組成物およびその成形品
KR20110087966A (ko) * 2010-01-28 2011-08-03 김철수 미립 천매암 분말을 이용한 수지 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000909A1 (en) * 1995-06-22 1997-01-09 Itri Limited Fire retardant products
JP2000351906A (ja) * 1999-06-10 2000-12-19 Ajinomoto Co Inc 非ハロゲン系樹脂用複合難燃剤
JP2003246894A (ja) * 2002-02-25 2003-09-05 Toyo Ink Mfg Co Ltd 難燃性樹脂組成物およびその成形品
KR20110087966A (ko) * 2010-01-28 2011-08-03 김철수 미립 천매암 분말을 이용한 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LING YANG , YINGJIAN NIU : "Synthesis of Zinc Hydroxystannate Single-Crystalline Nanocubes and its Flame Retardancy for Rigid PVC", APPLIED MECHANICS AND MATERIALS, vol. 184, 1 January 2012 (2012-01-01), pages 1307 - 1310, XP009526970, ISSN: 1660-9336, DOI: 10.4028/www.scientific.net/AMM.184-185.1307 *

Similar Documents

Publication Publication Date Title
WO2011081287A2 (ko) 중합형 인계 화합물을 포함하는 열가소성 수지 조성물, 상기 조성물로부터 성형된 플라스틱 성형품 및 중합형 인계 화합물의 제조방법
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2017155221A1 (ko) 표면 평활도 및 금속 증착성이 우수한 램프 리플렉터용 수지 조성물
WO2020067681A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2010056089A2 (ko) 클레이 강화 폴리유산 수지 조성물, 이의 제조 방법 및 이를 이용한 성형품
WO2015182862A1 (ko) 고분자 조성물, 성형품 및 그 제조 방법
WO2021060800A1 (ko) 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물
WO2017082661A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
EP3289015A1 (en) Polymer composition, molded article, and method of manufacturing the molded article
WO2019132575A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2016175402A1 (en) Polymer composition, molded article, and method of manufacturing the molded article
WO2012091295A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2020138785A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020138802A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
CN109401317B (zh) 一种耐高温彩色改性聚苯硫醚材料及其制备方法和应用
CN108219427B (zh) 生物级透明阻燃聚碳酸酯复合物及其制备方法
WO2023080476A1 (ko) 금속 포스피네이트계 난연제를 포함하는 난연제 조성물 및 난연성 합성 수지 조성물
WO2022025409A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2020004830A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2016129833A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
WO2021137490A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2015064859A1 (ko) 내화학성 및 보스 강성이 우수한 열가소성 수지 조성물
KR102634294B1 (ko) 난연 조제의 제조 방법 및 그 제조 방법에 의해 제조된 난연 조제를 포함하는 난연성 수지 조성물
WO2022075579A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020867853

Country of ref document: EP

Effective date: 20210806

ENP Entry into the national phase

Ref document number: 2021551947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE