WO2021060083A1 - 原料供給装置及び原料供給方法 - Google Patents

原料供給装置及び原料供給方法 Download PDF

Info

Publication number
WO2021060083A1
WO2021060083A1 PCT/JP2020/034970 JP2020034970W WO2021060083A1 WO 2021060083 A1 WO2021060083 A1 WO 2021060083A1 JP 2020034970 W JP2020034970 W JP 2020034970W WO 2021060083 A1 WO2021060083 A1 WO 2021060083A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
material supply
container
supply device
solid
Prior art date
Application number
PCT/JP2020/034970
Other languages
English (en)
French (fr)
Inventor
庸之 岡部
栄一 小森
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US17/761,091 priority Critical patent/US20220341038A1/en
Priority to CN202080064709.1A priority patent/CN114402093A/zh
Priority to JP2021548838A priority patent/JP7297082B2/ja
Priority to KR1020227011892A priority patent/KR20220061200A/ko
Publication of WO2021060083A1 publication Critical patent/WO2021060083A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4402Reduction of impurities in the source gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a raw material supply device and a raw material supply method.
  • the processing chamber After dissolving the solid raw material in a solvent and spraying it into the processing chamber, the processing chamber is heated to remove the solvent to leave the solid raw material, and then the processing chamber is heated to sublimate the solid raw material.
  • a technique for producing a gas is known (see, for example, Patent Document 1).
  • This disclosure provides a technology that can improve the operating rate of processing equipment.
  • the raw material supply device includes a container for storing a solution in which a first solid raw material is dissolved in a solvent or a dispersion system in which a first solid raw material is dispersed in a dispersion medium, and the solution or the dispersion system.
  • the injection unit that is sprayed and injected into the container, the exhaust port that exhausts the inside of the container, and the second solid raw material formed by removing the solvent or the dispersion medium from the solution or the dispersion system are heated. It has a heating part to be heated, and a depositing part provided between the injection part and the exhaust port in the container and for depositing the second solid raw material.
  • the operating rate of the processing device can be improved.
  • the figure which shows an example of the raw material supply system Diagram showing an example of raw material supply source Diagram showing an example of raw material supply source Diagram showing an example of raw material supply source Diagram showing another example of a raw material source The figure which shows the 1st configuration example of the raw material supply apparatus The figure which shows the 2nd structural example of the raw material supply apparatus The figure which shows the 3rd structural example of the raw material supply apparatus The figure which shows the 4th structural example of the raw material supply apparatus The figure which shows the 5th structural example of the raw material supply apparatus The figure which shows the 6th structural example of the raw material supply apparatus FIG. 6 for explaining the operation of the raw material supply system (1) Figure (2) for explaining operation of raw material supply system
  • FIG. 1 is a diagram showing an example of a raw material supply system.
  • the raw material supply system 1 includes a raw material supply source 10, a carrier gas supply source 20, raw material supply devices 30 and 40, a processing device 50, and a control device 90.
  • the raw material supply source 10 supplies the raw material supply devices 30 and 40 with a solution in which the first solid raw material is dissolved in a solvent or a slurry in which the first solid raw material is dispersed in a solvent (dispersion medium).
  • the raw material supply source 10 may be any as long as it can supply the solution or slurry to the raw material supply devices 30 and 40, and its form is not particularly limited.
  • FIG. 2A to 2C are diagrams showing an example of the raw material supply source 10, and is a configuration example in which the raw material supply source 10 supplies a solution obtained by dissolving the first solid raw material in a solvent to the raw material supply devices 30 and 40.
  • the raw material supply source 10 includes, for example, as shown in FIG. 2A, a tank 11 filled with a solution, a pipe 12 inserted into the tank 11 from above, and a valve 13 interposed in the pipe 12.
  • the solution is supplied from the pipe 12 under pressure by the weight of the solution filled in the tank 11. Further, as shown in FIG.
  • the raw material supply source 10 includes a tank 11 filled with a solution, pipes 12 and 14 inserted into the tank 11 from above, and valves interposed in the pipes 12 and 14. It may have 13, 15 and.
  • the inside of the tank 11 is pressurized by supplying an inert gas such as nitrogen (N 2) into the tank 11 from the pipe 14, and the solution is supplied from the pipe 12.
  • the raw material supply source 10 includes, for example, as shown in FIG. 2C, a tank 11 filled with a solution, a pipe 16 connected below the tank 11, and a valve 17 interposed in the pipe 16. You may have.
  • the solution is supplied from below the tank 11 through the pipe 16 by using free fall due to gravity.
  • FIG. 3 is a diagram showing another example of the raw material supply source 10, and is a configuration example in which the raw material supply source 10 supplies the slurry in which the first solid raw material is dispersed in a solvent to the raw material supply devices 30 and 40.
  • the raw material supply source 10 includes a tank 11 filled with slurry, a pipe 12 inserted into the tank 11 from above, a valve 13 interposed in the pipe 12, and the tank 11. It has a vibrating table 18 and a vibrating table 18.
  • the tank 11 placed on the shaking table 18 is vibrated and pressurized by the weight of the slurry filled in the tank 11 to supply the slurry from the pipe 12.
  • the raw material supply source 10 is connected to the raw material supply device 30 via the pipes L10 and L11, and the raw material supply device 30 is connected to the raw material supply device 30 via the pipes L10 and L11 with a solution obtained by dissolving the first solid raw material in a solvent or the first.
  • a slurry in which a solid raw material is dispersed in a solvent is supplied.
  • a valve V11 is interposed in the pipe L11. When the valve V11 is opened, the solution or slurry is supplied from the raw material supply source 10 to the raw material supply device 30, and when the valve V11 is closed, the supply of the solution or slurry from the raw material supply source 10 to the raw material supply device 30 is cut off.
  • the pipe L11 may be provided with a flow rate controller (not shown) for controlling the flow rate of the solution or slurry flowing through the pipe L11, an additional valve, or the like.
  • the raw material supply source 10 is connected to the raw material supply device 40 via the pipes L10 and L12, and is a solution obtained by dissolving the first solid raw material in a solvent in the raw material supply device 40 via the pipes L10 and L12.
  • a slurry in which the solid raw material of 1 is dispersed in a solvent is supplied.
  • a valve V12 is interposed in the pipe L12. When the valve V12 is opened, the solution or slurry is supplied from the raw material supply source 10 to the raw material supply device 40, and when the valve V12 is closed, the supply of the solution or slurry from the raw material supply source 10 to the raw material supply device 40 is cut off.
  • the pipe L12 may be provided with a flow rate controller (not shown) for controlling the flow rate of the solution or slurry flowing through the pipe L12, an additional valve, or the like.
  • the first solid raw material is not particularly limited, but is a metal such as strontium (Sr), molybdenum (Mo), ruthenium (Ru), zirconium (Zr), hafnium (Hf), tungsten (W), aluminum (Al) and the like. It may be an organic metal complex containing an element, or a chloride containing a metal element such as tungsten (W) or aluminum (Al).
  • a metal such as strontium (Sr), molybdenum (Mo), ruthenium (Ru), zirconium (Zr), hafnium (Hf), tungsten (W), aluminum (Al) and the like. It may be an organic metal complex containing an element, or a chloride containing a metal element such as tungsten (W) or aluminum (Al).
  • the solvent may be hexane, for example, as long as it can dissolve or disperse the first solid raw material to produce a solution or slurry.
  • the carrier gas supply source 20 supplies the carrier gas to the raw material supply devices 30 and 40.
  • the carrier gas supply source 20 is connected to the raw material supply device 30 via the pipes L20 and L21, and supplies the carrier gas to the raw material supply device 30 via the pipes L20 and L21.
  • a valve V21 is interposed in the pipe L21. When the valve V21 is opened, the carrier gas is supplied from the carrier gas supply source 20 to the raw material supply device 30, and when the valve V21 is closed, the carrier gas supply from the carrier gas supply source 20 to the raw material supply device 30 is cut off.
  • the pipe L21 may be provided with a flow rate controller (not shown) for controlling the flow rate of the carrier gas flowing through the pipe L21, an additional valve, or the like.
  • the carrier gas supply source 20 is connected to the raw material supply device 40 via the pipes L20 and L22, and supplies the carrier gas to the raw material supply device 40 via the pipes L20 and L22.
  • a valve V22 is interposed in the pipe L22. When the valve V22 is opened, the carrier gas is supplied from the carrier gas supply source 20 to the raw material supply device 40, and when the valve V22 is closed, the carrier gas supply from the carrier gas supply source 20 to the raw material supply device 40 is cut off.
  • the pipe L22 may be provided with a flow rate controller (not shown) for controlling the flow rate of the carrier gas flowing through the pipe L22, an additional valve, or the like.
  • the carrier gas is not particularly limited, but may be, for example , an inert gas such as nitrogen (N 2 ) or argon (Ar).
  • the raw material supply devices 30 and 40 store a solution in which the first solid raw material is dissolved in a solvent or a slurry in which the first solid raw material is dispersed in the solvent, which is supplied from the raw material supply source 10.
  • the raw material supply device 30 and the raw material supply device 40 are provided in parallel, and may have the same configuration, for example.
  • the raw material supply device 30 will be described as an example, but the raw material supply device 40 may have the same configuration as the raw material supply device 30.
  • FIG. 4 is a diagram showing a first configuration example of the raw material supply device 30.
  • the raw material supply device 30 includes a container 31, a raw material injection section 32, a carrier gas injection section 33, an exhaust port 34, a heating section 35, and a deposit section 36.
  • Container 31 stores a solution or slurry.
  • the raw material injection unit 32 sprays the solution or slurry supplied from the raw material supply source 10 via the pipe L11 and injects it into the container 31.
  • the raw material injection unit 32 vaporizes the solvent before the solution or slurry reaches the deposition unit 36 by spraying the solution or slurry.
  • the raw material injection unit 32 may be, for example, a spray nozzle.
  • the carrier gas injection unit 33 injects the carrier gas supplied from the carrier gas supply source 20 through the pipe L21 into the container 31.
  • the exhaust port 34 is provided below the container 31 and exhausts the inside of the container 31.
  • the processing device 50 is connected to the exhaust port 34 via the pipe L51. Further, a valve V51 is interposed in the pipe L51.
  • An exhaust device 60 is connected between the exhaust port 34 and the valve V51 in the pipe L51 via the pipe L61, and by opening the valve V61, the inside of the container 31 can be exhausted by the exhaust device 60. ..
  • the heating unit 35 sublimates the second solid raw material M2 by heating the solid raw material (hereinafter, also referred to as “second solid raw material M2”) formed by removing the solvent from the solution or slurry. Produces a reactive gas.
  • the heating unit 35 may be, for example, a heater arranged so as to cover the bottom portion and the outer periphery of the container 31.
  • the heating unit 35 is configured to be able to heat the inside of the container 31 to a temperature at which the second solid raw material M2 can be sublimated to generate a reactive gas.
  • the depositing portion 36 is provided between the raw material injection portion 32 in the container 31 and the exhaust port 34, and deposits the second solid raw material M2.
  • the deposit portion 36 is preferably arranged so as to partition the inside of the container 31 into a region including the raw material injection portion 32 and a region including the exhaust port 34.
  • the deposit portion 36 may be formed of a material that allows the reactive gas to permeate and captures impurities such as the second solid raw material M2 and particles, and is formed of, for example, a porous material.
  • the porous material may be a porous metal material such as a sintered body of stainless steel, or a porous ceramic material.
  • the solvent is vaporized before the solution or slurry reaches the deposition portion 36 by opening the valve V11 and spraying and injecting the solution or slurry into the container 31 from the raw material injection portion 32.
  • the second solid raw material M2 is deposited on the deposition portion 36. In this way, in the raw material supply device 30, since the solution or slurry is deposited and stored as a solid in the deposition portion 36, the amount of solid raw material that can be stored per fixed volume increases.
  • the raw material injection unit 32 and the carrier gas injection unit 33 are separately provided has been described, but the present disclosure is not limited to this.
  • the raw material injection unit 32 may have the function of the carrier gas injection unit 33.
  • the pipe L21 is connected between the valve V11 in the pipe L11 and the raw material injection unit 32, and the carrier gas is injected from the raw material injection unit 32 into the container 31.
  • FIG. 5 is a diagram showing a second configuration example of the raw material supply device 30.
  • FIG. 6 is a diagram showing a third configuration example of the raw material supply device 30.
  • FIG. 7 is a diagram showing a fourth configuration example of the raw material supply device 30.
  • the deposit portion 36 is not provided in the container 31
  • the exhaust port 34 is provided above the container 31
  • the filter F is connected to the pipe L51 connected to the exhaust port 34. It differs from the raw material supply device 30 shown in FIG. 4 in that it is interposed. Hereinafter, the differences from the raw material supply device 30 shown in FIG. 4 will be mainly described.
  • the raw material supply device 30 includes a container 31, a raw material injection unit 32, a carrier gas injection unit 33, an exhaust port 34, and a heating unit 35.
  • the container 31, the raw material injection unit 32, the carrier gas injection unit 33, and the heating unit 35 are the same as the raw material supply device 30 shown in FIG.
  • the exhaust port 34 is provided above the container 31 and exhausts the inside of the container 31.
  • the processing device 50 is connected to the exhaust port 34 via the pipe L51. Further, a valve V51 is interposed in the pipe L51.
  • An exhaust device 60 is connected between the exhaust port 34 and the valve V51 in the pipe L51 via the pipe L61, and by opening the valve V61, the inside of the container 31 can be exhausted by the exhaust device 60. .. Further, a filter F is interposed between the exhaust port 34 and the valve V51 in the pipe L51.
  • the deposition portion 36 is not provided between the raw material injection portion 32 and the exhaust port 34, the second solid raw material M2 is sublimated in the container 31 together with the reactive gas generated.
  • the filter F captures impurities such as particles flowing into the pipe L51. As a result, it is possible to suppress the supply of impurities such as particles to the processing device 50.
  • the filter F may be formed of a material that allows the reactive gas to pass through and captures impurities such as the second solid raw material M2 and particles, and may be formed of, for example, the same material as the deposition portion 36.
  • the solvent is vaporized before the solution or slurry reaches the bottom 31b of the container 31.
  • the second solid raw material M2 is deposited on the bottom 31b of the container 31.
  • the raw material injection unit 32 and the carrier gas injection unit 33 are separately provided has been described, but the present disclosure is not limited to this.
  • the raw material injection unit 32 may have the function of the carrier gas injection unit 33.
  • the pipe L21 is connected between the valve V11 in the pipe L11 and the raw material injection unit 32, and the carrier gas is injected from the raw material injection unit 32 into the container 31.
  • FIG. 8 is a diagram showing a fifth configuration example of the raw material supply device 30.
  • FIG. 9 is a diagram showing a sixth configuration example of the raw material supply device 30.
  • the processing device 50 is connected to the raw material supply device 30 via the pipes L51 and L50, and the processing device 50 is a reaction generated by heating and sublimating the second solid raw material M2 in the raw material supply device 30. Sex gas is supplied.
  • a valve V51 is interposed in the pipe L51. When the valve V51 is opened, the reactive gas is supplied from the raw material supply device 30 to the processing device 50, and when the valve V51 is closed, the supply of the reactive gas from the raw material supply device 30 to the processing device 50 is cut off.
  • the processing device 50 is connected to the raw material supply device 40 via the pipes L52 and L50, and the processing device 50 is generated by heating and sublimating the second solid raw material M2 in the raw material supply device 40. Reactive gas is supplied.
  • a valve V52 is interposed in the pipe L52. When the valve V52 is opened, the reactive gas is supplied from the raw material supply device 40 to the processing device 50, and when the valve V52 is closed, the supply of the reactive gas from the raw material supply device 40 to the processing device 50 is cut off.
  • the processing device 50 executes various processes such as a film forming process on a substrate such as a semiconductor wafer by using the reactive gas supplied from the raw material supply devices 30 and 40.
  • the processing device 50 includes a processing container 51, a mass flow meter 52, and a valve 53.
  • the processing container 51 accommodates one or more substrates.
  • the mass flow meter 52 is interposed in the pipe L50 and measures the flow rate of the reactive gas flowing through the pipe L50.
  • the valve 53 is interposed in the pipe L50. When the valves V53 are opened, the reactive gas is supplied from the raw material supply devices 30 and 40 to the processing container 51, and when the valve V53 is closed, the supply of the reactive gas from the raw material supply devices 30 and 40 to the processing container 51 is cut off.
  • the control device 90 controls each part of the raw material supply system.
  • the control device 90 controls the operations of the raw material supply source 10, the carrier gas supply source 20, the raw material supply devices 30, 40, the processing device 50, and the like. Further, the control device 90 controls the opening and closing of various valves.
  • the control device 90 may be, for example, a computer.
  • FIG. 10 is a diagram for explaining the operation of the raw material supply system 1.
  • a pipe through which the carrier gas, solution or slurry and the reactive gas are flowing is shown by a thick solid line
  • a pipe in which the carrier gas, the solution or slurry and the reactive gas are not flowing is shown by a thin solid line.
  • the raw material supply system 1 in the initial state, as shown in FIG. 1, all the valves V11, V12, V21, V22, V51, and V52 are closed, and the raw material supply device 30 has a second It will be described as assuming that the solid raw material M2 is stored.
  • the control device 90 controls the heating unit 35 (see FIG. 4) of the raw material supply device 30 to heat and sublimate the second solid raw material M2 (see FIG. 4) deposited on the deposition unit 36 in the container 31. This produces a reactive gas. Further, the control device 90 opens the valves V21 and V51. As a result, the carrier gas is injected from the carrier gas supply source 20 into the container 31 of the raw material supply device 30 via the pipes L20 and L21, and the reactive gas generated in the container 31 together with the carrier gas passes through the pipes L51 and L50. It is supplied to the processing device 50 via. The control device 90 also opens the valve V12.
  • the solution or slurry is injected from the raw material supply source 10 into the raw material supply device 40 via the pipes L10 and L12, and the second solid raw material M2 is deposited on the deposit portion in the container of the raw material supply device 40.
  • the raw material supply device 30 supplies the reactive gas to the processing device 50.
  • the raw material supply device 40 fills the solid raw material. Note that FIG. 10 shows a state in which the valves V12, V21, and V51 are open, and a state in which the valves V11, V22, and V52 are closed.
  • FIG. 11 is a diagram for explaining the operation of the raw material supply system 1.
  • the pipe through which the carrier gas, solution or slurry and the reactive gas are flowing is shown by a thick solid line
  • the pipe in which the carrier gas, the solution or slurry and the reactive gas are not flowing is shown by a thin solid line.
  • control device 90 turns off the heating unit 35 of the raw material supply device 30, and closes the valves V21, V51, and V12. As a result, the supply of the reactive gas from the raw material supply device 30 to the processing device 50 is stopped.
  • the control device 90 subsequently controls the heating portion of the raw material supply device 40 to heat and sublimate the second solid raw material M2 deposited on the deposit portion in the container to generate a reactive gas. Further, the control device 90 opens the valves V22 and V52. As a result, the carrier gas is injected from the carrier gas supply source 20 into the raw material supply device 40 via the pipes L20 and L22, and the reactive gas generated in the container together with the carrier gas is processed through the pipes L52 and L50. Is supplied to. The control device 90 also opens the valve V11.
  • the solution or slurry is injected from the raw material supply source 10 into the raw material supply device 30 via the pipes L10 and L11, and the second solid raw material M2 is deposited on the deposit portion 36 in the container 31 of the raw material supply device 30.
  • the raw material supply device 40 supplies the reactive gas to the processing device 50.
  • the raw material supply device 30 fills the solid raw material. Note that FIG. 11 shows a state in which the valves V11, V22, and V52 are open, and a state in which the valves V12, V21, and V51 are closed.
  • the control device 90 controls the opening and closing of the valves V11, V12, V21, V22, V51, and V52 to one of the two raw material supply devices 30 and 40 to the processing device 50.
  • Reactive gas is supplied, while the solid raw material is filled.
  • the raw material supply devices 30 and 40 can be automatically replenished with raw materials, the continuous operation capacity of the processing device 50 can be improved, and the operating rate of the processing device 50 can be improved.
  • the solution or slurry is sprayed and injected into the container 31 from the raw material injection section 32 to vaporize the solvent before the solution or slurry reaches the deposit section 36 or the bottom portion 31b of the container 31. And deposit as a second solid raw material M2.
  • the solution or slurry injected into the container 31 is deposited and stored as a solid on the deposition portion 36 or the bottom portion 31b of the container 31, so that the solid raw material that can be stored per fixed volume is stored. The amount can be increased.
  • the size of the container 31 depends on the solubility of the solid raw material in the solvent, and in the case of a solid raw material having low solubility, it can be stored in the container 31.
  • the limit value of solid raw materials is lowered.
  • the raw material supply system 1 a solution in which the solid raw material was dissolved in a solvent or a slurry in which the solid raw material was dispersed in the solvent was sprayed to vaporize the solvent, and the solid raw material M2 was once deposited in the deposition portion 36 as the second solid raw material M2. After that, the second solid raw material M2 is sublimated and supplied to the processing apparatus 50. This facilitates control such as simplification of flow rate control and increase in flow rate.
  • a solution in which the first solid raw material is dissolved in a solvent or a slurry in which the first solid raw material is dispersed in a dispersion medium has been described as an example.
  • a dispersion system such as a colloidal solution in which the first solid raw material is dispersed in a dispersion medium
  • Dispersions include slurries and colloids as subordinate concepts.
  • the slurry is also referred to as a suspension.
  • Colloid includes a colloidal solution as a subordinate concept.
  • Colloidal solutions are also referred to as sol.
  • Raw material supply system 30
  • Raw material supply device 31
  • Container 32
  • Raw material injection section 34
  • Heating section 36
  • Accumulation section 40
  • Processing device 60

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本開示の一態様による原料供給装置は、第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を分散媒に分散させた分散系を貯留する容器と、前記溶液又は前記分散系を噴霧して前記容器内に注入する注入部と、前記容器内を排気する排気ポートと、前記溶液又は分散系から前記溶媒又は前記分散媒を除去することにより形成された第2の固体原料を加熱する加熱部と、前記容器内の前記注入部と前記排気ポートとの間に設けられ、前記第2の固体原料を堆積させる堆積部と、を有する。

Description

原料供給装置及び原料供給方法
 本開示は、原料供給装置及び原料供給方法に関する。
 固体原料を溶媒に溶解して処理室内にスプレー噴射した後、処理室内を加熱して溶媒を除去して固体原料を残留させ、続いて、処理室内を加熱して固体原料を昇華し、対応のガスを生成する技術が知られている(例えば、特許文献1参照)。
特開2004-115831号公報
 本開示は、処理装置の稼働率を向上できる技術を提供する。
 本開示の一態様による原料供給装置は、第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を分散媒に分散させた分散系を貯留する容器と、前記溶液又は前記分散系を噴霧して前記容器内に注入する注入部と、前記容器内を排気する排気ポートと、前記溶液又は分散系から前記溶媒又は前記分散媒を除去することにより形成された第2の固体原料を加熱する加熱部と、前記容器内の前記注入部と前記排気ポートとの間に設けられ、前記第2の固体原料を堆積させる堆積部と、を有する。
 本開示によれば、処理装置の稼働率を向上できる。
原料供給システムの一例を示す図 原料供給源の一例を示す図 原料供給源の一例を示す図 原料供給源の一例を示す図 原料供給源の別の例を示す図 原料供給装置の第1構成例を示す図 原料供給装置の第2構成例を示す図 原料供給装置の第3構成例を示す図 原料供給装置の第4構成例を示す図 原料供給装置の第5構成例を示す図 原料供給装置の第6構成例を示す図 原料供給システムの動作を説明するための図(1) 原料供給システムの動作を説明するための図(2)
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。
 〔原料供給システム〕
 図1は、原料供給システムの一例を示す図である。図1に示されるように、原料供給システム1は、原料供給源10と、キャリアガス供給源20と、原料供給装置30,40と、処理装置50と、制御装置90と、を備える。
 原料供給源10は、第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を溶媒(分散媒)に分散させたスラリーを原料供給装置30,40に供給する。原料供給源10は、原料供給装置30,40に溶液又はスラリーを供給可能であればよく、その形態は特に限定されない。
 図2A~図2Cは、原料供給源10の一例を示す図であり、原料供給源10が第1の固体原料を溶媒に溶解した溶液を原料供給装置30,40に供給する場合の構成例を示す。原料供給源10は、例えば図2Aに示されるように、溶液が充填されたタンク11と、タンク11に上方から挿入された配管12と、配管12に介設されたバルブ13と、を有する。図2Aに示される原料供給源10では、タンク11内に充填された溶液の自重で加圧して配管12から溶液を供給する。また、原料供給源10は、例えば図2Bに示されるように、溶液が充填されたタンク11と、タンク11に上方から挿入された配管12,14と、配管12,14に介設されたバルブ13,15と、を有していてもよい。図2Bに示される原料供給源10では、配管14からタンク11内に窒素(N)等の不活性ガスを供給することでタンク11内を加圧して配管12から溶液を供給する。また、原料供給源10は、例えば図2Cに示されるように、溶液が充填されたタンク11と、タンク11の下方に接続された配管16と、配管16に介設されたバルブ17と、を有していてもよい。図2Cに示される原料供給源10では、重力による自然落下を用いてタンク11の下方から配管16を介して溶液を供給する。
 図3は、原料供給源10の別の例を示す図であり、原料供給源10が第1の固体原料を溶媒に分散させたスラリーを原料供給装置30,40に供給する場合の構成例を示す。原料供給源10は、例えば図3に示されるように、スラリーが充填されたタンク11と、タンク11に上方から挿入された配管12と、配管12に介設されたバルブ13と、タンク11を振動させる振動台18と、を有する。図3に示される原料供給源10では、振動台18上に載置されたタンク11を振動させながら、タンク11内に充填されたスラリーの自重で加圧して配管12からスラリーを供給する。
 原料供給源10は、配管L10,L11を介して原料供給装置30と接続されており、配管L10,L11を介して原料供給装置30に第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を溶媒に分散させたスラリーを供給する。配管L11には、バルブV11が介設されている。バルブV11を開くと原料供給源10から原料供給装置30へ溶液又はスラリーが供給され、バルブV11を閉じると原料供給源10から原料供給装置30への溶液又はスラリーの供給が遮断される。また、配管L11には、配管L11を流れる溶液又はスラリーの流量を制御する流量制御器(図示せず)や追加のバルブ等が介設されていてもよい。
 また、原料供給源10は、配管L10,L12を介して原料供給装置40と接続されており、配管L10,L12を介して原料供給装置40に第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を溶媒に分散させたスラリーを供給する。配管L12には、バルブV12が介設されている。バルブV12を開くと原料供給源10から原料供給装置40へ溶液又はスラリーが供給され、バルブV12を閉じると原料供給源10から原料供給装置40への溶液又はスラリーの供給が遮断される。また、配管L12には、配管L12を流れる溶液又はスラリーの流量を制御する流量制御器(図示せず)や追加のバルブ等が介設されていてもよい。
 第1の固体原料は、特に限定されないが、例えばストロンチウム(Sr)、モリブデン(Mo)、ルテニウム(Ru)、ジルコニウム(Zr)、ハフニウム(Hf)、タングステン(W)、アルミニウム(Al)等の金属元素を含有する有機金属錯体、タングステン(W)、アルミニウム(Al)等の金属元素を含有する塩化物であってよい。
 溶媒は、第1の固体原料を溶解又は分散して溶液又はスラリーを生成できればよく、例えばヘキサンであってよい。
 キャリアガス供給源20は、キャリアガスを原料供給装置30,40に供給する。キャリアガス供給源20は、配管L20,L21を介して原料供給装置30と接続されており、配管L20,L21を介して原料供給装置30にキャリアガスを供給する。配管L21には、バルブV21が介設されている。バルブV21を開くとキャリアガス供給源20から原料供給装置30へキャリアガスが供給され、バルブV21を閉じるとキャリアガス供給源20から原料供給装置30へのキャリアガスの供給が遮断される。また、配管L21には、配管L21を流れるキャリアガスの流量を制御する流量制御器(図示せず)や追加のバルブ等が介設されていてもよい。
 また、キャリアガス供給源20は、配管L20,L22を介して、原料供給装置40と接続されており、配管L20,L22を介して原料供給装置40にキャリアガスを供給する。配管L22には、バルブV22が介設されている。バルブV22を開くとキャリアガス供給源20から原料供給装置40へキャリアガスが供給され、バルブV22を閉じるとキャリアガス供給源20から原料供給装置40へのキャリアガスの供給が遮断される。また、配管L22には、配管L22を流れるキャリアガスの流量を制御する流量制御器(図示せず)や追加のバルブ等が介設されていてもよい。
 キャリアガスは、特に限定されないが、例えば窒素(N)、アルゴン(Ar)等の不活性ガスであってよい。
 原料供給装置30,40は、原料供給源10から供給される、第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を溶媒に分散させたスラリーを貯留する。原料供給装置30と原料供給装置40とは並列に設けられており、例えば同じ構成であってよい。以下、原料供給装置30を例示して説明するが、原料供給装置40についても原料供給装置30と同じ構成であってよい。
 図4は、原料供給装置30の第1構成例を示す図である。図4に示されるように、原料供給装置30は、容器31と、原料注入部32と、キャリアガス注入部33と、排気ポート34と、加熱部35と、堆積部36と、を有する。
 容器31は、溶液又はスラリーを貯留する。
 原料注入部32は、原料供給源10から配管L11を介して供給される溶液又はスラリーを噴霧して容器31内に注入する。原料注入部32は、溶液又はスラリーを噴霧することにより、溶液又はスラリーが堆積部36に到達する前に溶媒を気化させる。原料注入部32は、例えば噴霧ノズルであってよい。
 キャリアガス注入部33は、キャリアガス供給源20から配管L21を介して供給されるキャリアガスを容器31内に注入する。
 排気ポート34は、容器31の下方に設けられており、容器31内を排気する。排気ポート34には、配管L51を介して処理装置50が接続されている。また、配管L51には、バルブV51が介設されている。配管L51における排気ポート34とバルブV51との間には、配管L61を介して排気装置60が接続されており、バルブV61を開くことで、排気装置60により容器31内を排気可能となっている。
 加熱部35は、溶液又はスラリーから溶媒を除去することにより形成された固体原料(以下「第2の固体原料M2」ともいう。)を加熱することにより、第2の固体原料M2を昇華させて反応性ガスを生成する。加熱部35は、例えば容器31の底部及び外周を覆うように配置されたヒータであってよい。加熱部35は、第2の固体原料M2を昇華させて反応性ガスを生成できる温度に容器31内を加熱できるように構成されている。
 堆積部36は、容器31内の原料注入部32と排気ポート34との間に設けられ、第2の固体原料M2を堆積させる。堆積部36は、容器31内を、原料注入部32を含む領域と排気ポート34を含む領域とに区画するように配置されることが好ましい。これにより、第2の固体原料M2を昇華させて生成した反応性ガスを排気ポート34から処理装置50に供給する際、堆積部36によってパーティクル等の不純物が捕捉されるため、処理装置50にパーティクル等の不純物が供給されることを抑制できる。堆積部36は、反応性ガスを透過し、第2の固体原料M2及びパーティクル等の不純物を捕捉する材料により形成されていればよく、例えば多孔性材料により形成されている。多孔性材料は、例えばステンレス鋼の焼結体等の多孔性の金属材料、多孔性のセラミック材料であってよい。
 係る原料供給装置30では、バルブV11を開いて原料注入部32から容器31内に溶液又はスラリーを噴霧して注入することにより、溶液又はスラリーが堆積部36に到達する前に溶媒が気化し、第2の固体原料M2が堆積部36に堆積する。このように、原料供給装置30では、溶液又はスラリーを堆積部36に固体として堆積させて貯留するので、一定の体積当たりに貯留可能な固体原料の量が増加する。
 なお、図4の例では、原料注入部32とキャリアガス注入部33とが別に設けられている場合を説明したが、本開示はこれに限定されない。例えば図5に示されるように、原料注入部32がキャリアガス注入部33の機能を有していてもよい。図5の例では、配管L21が配管L11におけるバルブV11と原料注入部32との間に接続され、キャリアガスが原料注入部32から容器31内に注入される。なお、図5は、原料供給装置30の第2構成例を示す図である。
 また、図4の例では、1つの排気ポート34に処理装置50及び排気装置60が接続されている場合を説明したが、本開示はこれに限定されない。例えば図6に示されるように、容器31に2つの排気ポート34a,34bが設けられ、排気ポート34a,34bにそれぞれ処理装置50及び排気装置60が接続されていてもよい。図6の例では、排気ポート34aにバルブV51が介設された配管L51を介して処理装置50が接続され、排気ポート34bにバルブV61が介設された配管L61を介して排気装置60が接続されている。なお、図6は、原料供給装置30の第3構成例を示す図である。
 図7は、原料供給装置30の第4構成例を示す図である。図7に示される原料供給装置30では、容器31内に堆積部36が設けられておらず、排気ポート34が容器31の上方に設けられ、排気ポート34に接続された配管L51にフィルタFが介設されている点で、図4に示される原料供給装置30と異なる。以下、図4に示される原料供給装置30と異なる点を中心に説明する。
 図7に示されるように、原料供給装置30は、容器31と、原料注入部32と、キャリアガス注入部33と、排気ポート34と、加熱部35と、を有する。容器31、原料注入部32、キャリアガス注入部33及び加熱部35については、図4に示される原料供給装置30と同じである。
 排気ポート34は、容器31の上方に設けられており、容器31内を排気する。排気ポート34には、配管L51を介して処理装置50が接続されている。また、配管L51には、バルブV51が介設されている。配管L51における排気ポート34とバルブV51との間には、配管L61を介して排気装置60が接続されており、バルブV61を開くことで、排気装置60により容器31内を排気可能となっている。また、配管L51における排気ポート34とバルブV51との間には、フィルタFが介設されている。図7に示される例では、原料注入部32と排気ポート34との間に堆積部36が設けられていないので、容器31内で第2の固体原料M2を昇華させて生成した反応性ガスと共にパーティクル等の不純物が排気ポート34を介して配管L51に流れ込む。フィルタFは、配管L51に流れ込むパーティクル等の不純物を捕捉する。これにより、処理装置50にパーティクル等の不純物が供給されることを抑制できる。フィルタFは、反応性ガスを透過し、第2の固体原料M2及びパーティクル等の不純物を捕捉する材料により形成されていればよく、例えば堆積部36と同じ材料により形成されていてよい。
 係る原料供給装置30では、バルブV11を開いて原料注入部32から容器31内に溶液又はスラリーを噴霧して注入することにより、溶液又はスラリーが容器31の底部31bに到達する前に溶媒が気化し、第2の固体原料M2が容器31の底部31bに堆積する。このように、原料供給装置30では、溶液又はスラリーを容器31の底部31bに固体として堆積させて貯留するので、一定の体積当たりに貯留可能な固体原料の量が増加する。
 なお、図7の例では、原料注入部32とキャリアガス注入部33とが別に設けられている場合を説明したが、本開示はこれに限定されない。例えば図8に示されるように、原料注入部32がキャリアガス注入部33の機能を有していてもよい。図8の例では、配管L21が配管L11におけるバルブV11と原料注入部32との間に接続され、キャリアガスが原料注入部32から容器31内に注入される。なお、図8は、原料供給装置30の第5構成例を示す図である。
 また、図7の例では、1つの排気ポート34に処理装置50及び排気装置60が接続されている場合を説明したが、本開示はこれに限定されない。例えば図9に示されるように、容器31に2つの排気ポート34a,34bが設けられ、排気ポート34a,34bにそれぞれ処理装置50及び排気装置60が接続されていてもよい。図9の例では、排気ポート34aにバルブV51及びフィルタFが介設された配管L51を介して処理装置50が接続され、排気ポート34bにバルブV61が介設された配管L61を介して排気装置60が接続されている。なお、図9は、原料供給装置30の第6構成例を示す図である。
 処理装置50は、配管L51,L50を介して原料供給装置30と接続されており、処理装置50には原料供給装置30において第2の固体原料M2を加熱して昇華させることで生成される反応性ガスが供給される。配管L51には、バルブV51が介設されている。バルブV51を開くと原料供給装置30から処理装置50へ反応性ガスが供給され、バルブV51を閉じると原料供給装置30から処理装置50への反応性ガスの供給が遮断される。
 また、処理装置50は、配管L52,L50を介して原料供給装置40と接続されており、処理装置50には原料供給装置40において第2の固体原料M2を加熱して昇華させることで生成される反応性ガスが供給される。配管L52には、バルブV52が介設されている。バルブV52を開くと原料供給装置40から処理装置50へ反応性ガスが供給され、バルブV52を閉じると原料供給装置40から処理装置50への反応性ガスの供給が遮断される。
 処理装置50は、原料供給装置30,40から供給される反応性ガスを用いて半導体ウエハ等の基板に対し、成膜処理等の各種の処理を実行する。処理装置50は、処理容器51と、マスフローメータ52と、バルブ53と、を有する。処理容器51は、1又は複数の基板を収容する。マスフローメータ52は、配管L50に介設されており、配管L50を流れる反応性ガスの流量を計測する。バルブ53は、配管L50に介設されている。バルブV53を開くと原料供給装置30,40から処理容器51へ反応性ガスが供給され、バルブV53を閉じると原料供給装置30,40から処理容器51への反応性ガスの供給が遮断される。
 制御装置90は、原料供給システムの各部を制御する。例えば、制御装置90は、原料供給源10、キャリアガス供給源20、原料供給装置30,40、処理装置50等の動作を制御する。また、制御装置90は、各種のバルブの開閉を制御する。制御装置90は、例えばコンピュータであってよい。
 〔原料供給システムの動作〕
 原料供給システム1の動作(原料供給方法)の一例について説明する。原料供給システム1では、制御装置90がバルブV11,V12,V21,V22,V51,V52の開閉を制御することで、並列に設けられた2つの原料供給装置30,40のうちの一方で処理装置50への反応性ガスの供給を行い、他方で固体原料の充填を行う。以下、原料供給システム1の動作の一例について具体的に説明する。
 まず、図10を参照し、原料供給装置30で処理装置50への反応性ガスの供給を行い、原料供給装置40で固体原料の充填を行う場合について説明する。図10は、原料供給システム1の動作を説明するための図である。図10では、キャリアガス、溶液又はスラリー及び反応性ガスが流れている配管を太い実線で示し、キャリアガス、溶液又はスラリー及び反応性ガスが流れていない配管を細い実線で示す。なお、原料供給システム1は、初期状態において、図1に示されるように、バルブV11,V12,V21,V22,V51,V52はすべて閉じられているものとし、原料供給装置30には第2の固体原料M2が貯留されているものとして説明する。
 制御装置90は、原料供給装置30の加熱部35(図4参照)を制御して、容器31内の堆積部36に堆積した第2の固体原料M2(図4参照)を加熱して昇華させることで反応性ガスを生成する。また、制御装置90は、バルブV21,V51を開く。これにより、キャリアガス供給源20から配管L20,L21を介して原料供給装置30の容器31内にキャリアガスが注入され、キャリアガスと共に容器31内で生成された反応性ガスが配管L51,L50を介して処理装置50に供給される。また、制御装置90は、バルブV12を開く。これにより、原料供給源10から配管L10,L12を介して原料供給装置40に溶液又はスラリーが注入され、原料供給装置40の容器内の堆積部に第2の固体原料M2が堆積する。このように、バルブV12,V21,V51が開いた状態であり、バルブV11,V22,V52が閉じた状態である場合、原料供給装置30で処理装置50への反応性ガスの供給が行われ、原料供給装置40で固体原料の充填が行われる。なお、図10では、バルブV12,V21,V51が開いた状態、バルブV11,V22,V52が閉じた状態を示している。
 次に、図11を参照し、原料供給装置30で処理装置50への反応性ガスの供給を行っている状態(図10参照)から、原料供給装置40で処理装置50への反応性ガスの供給を行い、原料供給装置30で固体原料の充填を行う状態へ切り替える場合を説明する。図11は、原料供給システム1の動作を説明するための図である。図11では、キャリアガス、溶液又はスラリー及び反応性ガスが流れている配管を太い実線で示し、キャリアガス、溶液又はスラリー及び反応性ガスが流れていない配管を細い実線で示す。
 制御装置90は、まず、原料供給装置30の加熱部35をオフにし、バルブV21,V51,V12を閉じる。これにより、原料供給装置30から処理装置50への反応性ガスの供給が停止される。
 制御装置90は、続いて、原料供給装置40の加熱部を制御して、容器内の堆積部に堆積した第2の固体原料M2を加熱して昇華させることで反応性ガスを生成する。また、制御装置90は、バルブV22,V52を開く。これにより、キャリアガス供給源20から配管L20,L22を介して原料供給装置40にキャリアガスが注入され、キャリアガスと共に容器内で生成された反応性ガスが配管L52,L50を介して処理装置50に供給される。また、制御装置90は、バルブV11を開く。これにより、原料供給源10から配管L10,L11を介して原料供給装置30に溶液又はスラリーが注入され、原料供給装置30の容器31内の堆積部36に第2の固体原料M2が堆積する。このように、バルブV11,V22,V52が開いた状態であり、バルブV12,V21,V51が閉じた状態である場合、原料供給装置40で処理装置50への反応性ガスの供給が行われ、原料供給装置30で固体原料の充填が行われる。なお、図11では、バルブV11,V22,V52が開いた状態、バルブV12,V21,V51が閉じた状態を示している。
 このように原料供給システム1では、制御装置90がバルブV11,V12,V21,V22,V51,V52の開閉を制御することで、2つの原料供給装置30,40のうちの一方で処理装置50への反応性ガスの供給を行い、他方で固体原料の充填を行う。これにより、原料供給装置30,40への原料の自動補充が可能となり、処理装置50の連続運転能力を向上させ、処理装置50の稼働率を向上させることができる。
 また、原料供給システム1では、原料注入部32から容器31内に溶液又はスラリーを噴霧して注入することにより、溶液又はスラリーが堆積部36又は容器31の底部31bに到達する前に溶媒を気化させ、第2の固体原料M2として堆積させる。このように原料供給システム1では、容器31内に注入された溶液又はスラリーを堆積部36又は容器31の底部31bに固体として堆積させて貯留するので、一定の体積当たりに貯留可能な固体原料の量を増やすことができる。これに対し、容器31内に溶液を液体の状態で貯留する場合、容器31のサイズは溶媒に対する固体原料の溶解度に依存することになり、溶解度が低い固体原料の場合、容器31内に貯留できる固体原料の限界値が低くなる。
 また、原料供給システム1では、固体原料を溶媒に溶解した溶液又は固体原料を溶媒に分散させたスラリーを噴霧して溶媒を気化させ、第2の固体原料M2として堆積部36に一度堆積させた後、第2の固体原料M2を昇華させて処理装置50に供給する。これにより、流量制御の簡易化や、大流量化等の制御が容易になる。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 上記の実施形態では、第1の固体原料を溶媒に溶解した溶液(solution)又は第1の固体原料を分散媒に分散させたスラリー(slurry)を例に挙げて説明したが、本開示はこれに限定されない。例えば、スラリーに代えて、第1の固体原料を分散媒に分散させたコロイド溶液(colloidal solution)等の分散系(dispersion)を用いることもできる。例えば、コロイド溶液を用いることにより、溶液やスラリーを用いるよりも高濃度なプリカーサを充填できる。分散系(dispersion)は、下位概念としてスラリーとコロイド(colloid)を含む。スラリーは、懸濁液(suspension)とも称される。コロイドは下位概念としてコロイド溶液を含む。コロイド溶液は、ゾル(sol)とも称される。
 本国際出願は、2019年9月24日に出願した日本国特許出願第2019-173419号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
1  原料供給システム
30 原料供給装置
31 容器
32 原料注入部
34 排気ポート
35 加熱部
36 堆積部
40 原料供給装置
50 処理装置
60 排気装置
M1 第1の固体原料
M2 第2の固体原料

Claims (13)

  1.  第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を分散媒に分散させた分散系を貯留する容器と、
     前記溶液又は前記分散系を噴霧して前記容器内に注入する注入部と、
     前記容器内を排気する排気ポートと、
     前記溶液又は分散系から前記溶媒又は前記分散媒を除去することにより形成された第2の固体原料を加熱する加熱部と、
     前記容器内の前記注入部と前記排気ポートとの間に設けられ、前記第2の固体原料を堆積させる堆積部と、
     を有する、原料供給装置。
  2.  前記堆積部は、前記容器内を、前記注入部を含む領域と前記排気ポートを含む領域とに区画する、
     請求項1に記載の原料供給装置。
  3.  前記堆積部は、多孔性材料により形成されている、
     請求項1又は2に記載の原料供給装置。
  4.  前記注入部は、前記溶液又は前記分散系が前記堆積部に到達する前に前記溶媒又は前記分散媒を気化させる、
     請求項1乃至3のいずれか一項に記載の原料供給装置。
  5.  前記排気ポートは、前記第2の固体原料が加熱されて昇華した反応性ガスを用いた処理を行う処理装置に接続される、
     請求項1乃至4のいずれか一項に記載の原料供給装置。
  6.  前記排気ポートは、前記容器内を排気する排気装置に接続される、
     請求項1乃至5のいずれか一項に記載の原料供給装置。
  7.  第1の固体原料を分散媒に分散させた分散系を貯留する容器と、
     前記分散系を噴霧して前記容器に注入する注入部と、
     前記分散系から前記分散媒を除去することにより形成された第2の固体原料を加熱する加熱部と、
     を有する、原料供給装置。
  8.  前記容器内を排気する排気ポートと、
     前記容器内の前記注入部と前記排気ポートとの間に設けられ、前記第2の固体原料を堆積させる堆積部と、
     を有する、請求項7に記載の原料供給装置。
    原料供給装置。
  9.  前記堆積部は、多孔性材料により形成されている、
     請求項8に記載の原料供給装置。
  10.  前記注入部は、前記分散系が前記堆積部に到達する前に前記分散媒を気化させる、
     請求項8又は9に記載の原料供給装置。
  11.  前記排気ポートは、前記第2の固体原料が加熱されて昇華した反応性ガスを用いた処理を行う処理装置に接続される、
     請求項8乃至10のいずれか一項に記載の原料供給装置。
  12.  前記排気ポートは、前記容器内を排気する排気装置に接続される、
     請求項8乃至11のいずれか一項に記載の原料供給装置。
  13.  容器内に第1の固体原料を溶媒に溶解した溶液又は第1の固体原料を分散媒に分散させた分散系を噴霧することにより、前記溶液又は前記分散系から溶媒を気化させて除去する工程と、
     前記溶液又は前記分散系から前記溶媒又は前記分散媒を除去することにより形成された第2の固体原料を前記容器内に堆積させる工程と、
     前記容器内に堆積した前記第2の固体原料を加熱することにより、前記第2の固体原料を昇華させて反応性ガスを生成する工程と、
     を有する、原料供給方法。
PCT/JP2020/034970 2019-09-24 2020-09-15 原料供給装置及び原料供給方法 WO2021060083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/761,091 US20220341038A1 (en) 2019-09-24 2020-09-15 Raw material supply apparatus and raw material supply method
CN202080064709.1A CN114402093A (zh) 2019-09-24 2020-09-15 原料供给装置和原料供给方法
JP2021548838A JP7297082B2 (ja) 2019-09-24 2020-09-15 原料供給装置及び原料供給方法
KR1020227011892A KR20220061200A (ko) 2019-09-24 2020-09-15 원료 공급 장치 및 원료 공급 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019173419 2019-09-24
JP2019-173419 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021060083A1 true WO2021060083A1 (ja) 2021-04-01

Family

ID=75166946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034970 WO2021060083A1 (ja) 2019-09-24 2020-09-15 原料供給装置及び原料供給方法

Country Status (5)

Country Link
US (1) US20220341038A1 (ja)
JP (1) JP7297082B2 (ja)
KR (1) KR20220061200A (ja)
CN (1) CN114402093A (ja)
WO (1) WO2021060083A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059507A1 (ja) * 2020-09-15 2022-03-24 東京エレクトロン株式会社 原料供給装置及び原料供給方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115831A (ja) * 2002-09-24 2004-04-15 Fujitsu Ltd 固体材料のガス化方法及び装置ならびに薄膜形成方法及び装置
JP2005256107A (ja) * 2004-03-12 2005-09-22 Nara Institute Of Science & Technology 有機金属化学気相堆積装置用原料気化器
JP2008038211A (ja) * 2006-08-08 2008-02-21 Sekisui Chem Co Ltd Cvd原料の供給方法及び供給装置
JP2008522029A (ja) * 2004-11-29 2008-06-26 東京エレクトロン株式会社 交換式の積み重ね可能なトレイを備える固体前駆体供給システム
JP2008538158A (ja) * 2005-03-16 2008-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 固体原料から試薬を送出するためのシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033121A (ja) * 2003-07-11 2005-02-03 Tokyo Electron Ltd 気化器及びこれを用いた成膜装置
CN100485870C (zh) * 2004-08-13 2009-05-06 东京毅力科创株式会社 成膜装置和气化器
JP4317174B2 (ja) * 2005-09-21 2009-08-19 東京エレクトロン株式会社 原料供給装置および成膜装置
JP4972657B2 (ja) * 2009-02-02 2012-07-11 東京エレクトロン株式会社 気化器及び成膜装置
JP2012190828A (ja) * 2011-03-08 2012-10-04 Air Liquide Japan Ltd 固体材料ガスの供給装置および供給方法
JP6477044B2 (ja) * 2014-10-28 2019-03-06 東京エレクトロン株式会社 原料ガス供給装置、原料ガス供給方法及び成膜装置
JP6627464B2 (ja) * 2015-03-30 2020-01-08 東京エレクトロン株式会社 原料ガス供給装置及び成膜装置
KR102344996B1 (ko) * 2017-08-18 2021-12-30 삼성전자주식회사 전구체 공급 유닛, 기판 처리 장치 및 그를 이용한 반도체 소자의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115831A (ja) * 2002-09-24 2004-04-15 Fujitsu Ltd 固体材料のガス化方法及び装置ならびに薄膜形成方法及び装置
JP2005256107A (ja) * 2004-03-12 2005-09-22 Nara Institute Of Science & Technology 有機金属化学気相堆積装置用原料気化器
JP2008522029A (ja) * 2004-11-29 2008-06-26 東京エレクトロン株式会社 交換式の積み重ね可能なトレイを備える固体前駆体供給システム
JP2008538158A (ja) * 2005-03-16 2008-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 固体原料から試薬を送出するためのシステム
JP2008038211A (ja) * 2006-08-08 2008-02-21 Sekisui Chem Co Ltd Cvd原料の供給方法及び供給装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059507A1 (ja) * 2020-09-15 2022-03-24 東京エレクトロン株式会社 原料供給装置及び原料供給方法

Also Published As

Publication number Publication date
JPWO2021060083A1 (ja) 2021-04-01
KR20220061200A (ko) 2022-05-12
JP7297082B2 (ja) 2023-06-23
CN114402093A (zh) 2022-04-26
US20220341038A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US20090266296A1 (en) Atomic layer growing apparatus
JP4317174B2 (ja) 原料供給装置および成膜装置
JP2000199066A (ja) 液体運送装置
WO2021060083A1 (ja) 原料供給装置及び原料供給方法
JP4399517B2 (ja) 成膜装置と成膜方法
WO2021187134A1 (ja) 原料供給システム
WO2005087975A1 (ja) 有機金属化学気相堆積装置用原料気化器
WO2022054656A1 (ja) 原料供給装置及び原料供給方法
WO2022059507A1 (ja) 原料供給装置及び原料供給方法
JP2022143760A (ja) 原料供給方法及び原料供給装置
JP7282188B2 (ja) 原料供給装置及び原料供給方法
WO2023037880A1 (ja) 原料供給装置
WO2021260980A1 (ja) 洗浄方法、洗浄機構、および原料供給システム
JP4421119B2 (ja) 半導体装置の製造方法
JP2021147700A (ja) 原料供給システム
KR102180282B1 (ko) 박막 증착용 가스공급장치 및 그 제어방법
JP4754087B2 (ja) 成膜方法
JP2005129782A (ja) 基板処理装置
KR20200016428A (ko) 원자층 증착장치용 가스 공급시스템
JP2000034572A (ja) 蒸着薄膜作製装置
KR20050075632A (ko) 박막 증착율 재현성을 확보할 수 있는 원자층 증착 장치와이를 이용한 박막 증착 방법
KR20050049696A (ko) 퍼징유닛을 구비한 원자층 증착설비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227011892

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20869789

Country of ref document: EP

Kind code of ref document: A1