WO2021260980A1 - 洗浄方法、洗浄機構、および原料供給システム - Google Patents

洗浄方法、洗浄機構、および原料供給システム Download PDF

Info

Publication number
WO2021260980A1
WO2021260980A1 PCT/JP2021/001017 JP2021001017W WO2021260980A1 WO 2021260980 A1 WO2021260980 A1 WO 2021260980A1 JP 2021001017 W JP2021001017 W JP 2021001017W WO 2021260980 A1 WO2021260980 A1 WO 2021260980A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
solvent
raw material
container
nozzle
Prior art date
Application number
PCT/JP2021/001017
Other languages
English (en)
French (fr)
Inventor
栄一 小森
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021260980A1 publication Critical patent/WO2021260980A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • This disclosure relates to a cleaning method, a cleaning mechanism, and a raw material supply system.
  • a technique of performing a film forming process such as CVD using a raw material gas obtained by sublimating a solid raw material is known. Then, as a technique for supplying a solid raw material, the solid raw material is dissolved in a solvent and supplied as a solution, and such a solution is sprayed on a vaporizer to vaporize the solvent, and the remaining solid raw material is sublimated into a raw material gas.
  • a technique has been proposed (eg, Patent Document 1).
  • Patent Document 2 discloses a technique in which a cleaning liquid for dissolving a residue is supplied to a container (vaporizer), the cleaning liquid is vaporized while removing the residue by heating the container, and the cleaning liquid is removed together with the residue. Proposed.
  • the present disclosure discloses a cleaning method, a cleaning mechanism, and a raw material supply capable of efficiently removing residues existing in a nozzle or the like for spraying a solvent when a solid raw material is supplied in a solution, slurry, or sol state with a solvent. Provide the system.
  • a solution in which a solid raw material is dissolved in a solvent or a slurry or sol in which a solid raw material is dispersed in a solvent is sprayed from a nozzle into a container depressurized and described in the container.
  • a device for vaporizing and removing a solvent from a solution, the slurry, or the sol it is a cleaning method for cleaning the nozzle and a portion in the vicinity of the nozzle, and the pressure in the container is the pressure at which the solvent is vaporized. It includes adjusting so as to change from the above, and supplying the cleaning liquid to the nozzle to clean the nozzle and a portion in the vicinity of the nozzle.
  • a cleaning method, a cleaning mechanism, and a cleaning mechanism capable of efficiently removing residues existing in a nozzle or the like for spraying a solvent when a solid raw material is supplied in a solution, slurry, or sol state with a solvent.
  • a raw material supply system is provided.
  • FIG. 1 is a schematic configuration diagram showing an example of a raw material supply system in which the cleaning method according to the embodiment is used.
  • the raw material supply system 100 transports a solid raw material in a solution state or a slurry or sol state, vaporizes the solvent from the solution, slurry or sol by a vaporizing unit, and sublimates the remaining solid raw material to generate a raw material gas. It is supplied to the processing device 200. It also has a cleaning mechanism that cleans the sprayer and the like used when vaporizing the solvent.
  • the solution is a solid raw material powder dissolved in a solvent, and the slurry and sol are solid raw material powder dispersed in a solvent.
  • the difference between a slurry and a sol is that the slurry is simply a dispersion of solid raw materials, whereas the sol is a state in which colloidal particles are dispersed.
  • solutions, slurries, and sol are collectively referred to as liquid raw materials.
  • the processing apparatus 200 performs a specific process, for example, a film forming process on a substrate such as a semiconductor wafer by the raw material gas supplied from the raw material supply system 100.
  • the film forming process may be CVD or ALD.
  • the raw material supply system 100 includes a liquid raw material supply system 10, first and second vaporization units 20a and 20b, first and second heating units 30a and 30b, a raw material gas transfer system 40, and first and first. It has pressure adjusting units 50a and 50b, a solvent supply system 60, and a control unit 80.
  • the solvent supply system 60 is configured as a cleaning mechanism that supplies the solvent as a cleaning liquid as described later.
  • the liquid raw material supply system 10 supplies the liquid raw material (solution, slurry, or sol) S to the first and second vaporization units 20a and 20b, and has a raw material container 11 for storing the liquid raw material S and a raw material container. It has a pipe group 12 for transporting the liquid raw material S from 11.
  • the raw material container 11 is provided with a liquid level gauge 11a.
  • the pipe group 12 has a pressure feeding pipe 13, a sending pipe 14, an intermediate pipe 15, and branch pipes 16a and 16b.
  • One end of the pressure feeding pipe 13 is inserted into the raw material container 11 from above, and a pressure feeding gas, for example, N 2 gas is introduced into the raw material container 11.
  • One end of the delivery pipe 14 is inserted into the raw material container 11 so as to be immersed in the liquid raw material S from above, and the liquid raw material S is delivered by supplying the pumping gas.
  • the other end of the delivery pipe 14 is connected to the intermediate pipe 15, and the branch pipes 16a and 16b branch from the intermediate pipe 15 to reach the first vaporization section 20a and the second vaporization section 20b.
  • a valve 17 is provided in the pumping pipe 13, and a valve 18 is provided in the vicinity of the connection point of the sending pipe 14 with the intermediate pipe 15. Further, a valve 19a is provided in the vicinity of the first vaporization portion 22a of the branch pipe 16a, and a valve 19b is provided in the vicinity of the second vaporization portion 22b of the branch pipe 16b.
  • the liquid raw material S can be sent from the raw material container 11 not only by gas pressure feeding but also by its own weight, or by providing a discharge pipe at the bottom of the raw material container 11 and sending it by free fall due to gravity. good. Further, when transporting the slurry, the raw material container 11 may be placed on a shaking table so that the slurry does not solidify, and the raw material container 11 may be transported while vibrating.
  • the solid raw material is a compound raw material in a solid state at room temperature.
  • the solid raw material is not particularly limited as long as it is used for processing the substrate, and an appropriate solid material may be used depending on the processing.
  • a raw material for forming a metal film used for a semiconductor device, particularly 3D NAND or DRAM can be mentioned.
  • Specific examples include organic compounds and inorganic compounds for forming strontium (Sr), molybdenum (Mo), ruthenium (Ru), zirconium (Zr), hafnium (Hf), tungsten (W), aluminum (Al) and the like.
  • Compounds eg, organic metal complexes and chlorides
  • the solvent is not particularly limited as long as it can produce a solution, slurry, or sol of a solid raw material.
  • Hexane can be mentioned as an example.
  • the first vaporization unit 20a has a container 21a, a nozzle 22a to which a branch pipe 16a is connected and injects the liquid raw material S into the container 21a, a carrier gas introduction unit 24a, and a raw material gas discharge unit 25a.
  • the nozzle 22a, the carrier gas introduction portion 24a, and the raw material gas discharge portion 25a are provided on the upper surface of the container 21a.
  • the second vaporization section 20b includes a nozzle 22b to which the container 21b and the branch pipe 16b are connected to inject the liquid raw material S into the container 21b, a carrier gas introduction section 24b for introducing the carrier gas into the container 21b, and a raw material gas. It has a discharge unit 25b.
  • the nozzle 22b, the carrier gas introduction section 24b, and the raw material gas discharge section 25b are provided on the upper surface of the container 21b.
  • Both the first vaporization unit 20a and the second vaporization unit 20b have a function of vaporizing the solvent from the liquid raw material S. Further, the first vaporization unit 20a and the second vaporization unit 20b also have a function of storing the solid raw material after vaporizing the solvent.
  • the nozzles 22a and 22b spray the liquid raw material S onto the containers 21a and 21b in order to vaporize the solvent of the liquid raw material S, and are configured as a spray nozzle.
  • the liquid raw material S is sprayed from the nozzles 22a and 22b and the solvent is vaporized to generate the solid raw material S'. That is, before the liquid raw material S sprayed from the nozzles 22a and 22b, which are the spray nozzles, reaches the containers 21a and 21b, the solvent in the liquid raw material S is vaporized and the solid raw material S'is stored in the containers 21a and 21b.
  • the carrier gas introduction units 24a and 24b introduce the carrier gas from the carrier gas pipe of the raw material gas transport system 40, which will be described later. Further, the raw material gas discharge units 25a and 25b discharge the raw material gas conveyed to the carrier gas to the raw material gas delivery pipe of the raw material gas transport system 40 described later.
  • the first heating unit 30a and the second heating unit 30b have a function of sublimating the solid raw material stored in the containers 21a and 21b into a raw material gas. Further, the first heating unit 30a and the second heating unit 30b have a function of heating the injected (sprayed) liquid raw material S to vaporize the solvent by heating the containers 21a and 21b.
  • the raw material gas transport system 40 includes a carrier gas pipe 41 for supplying carrier gas, a first branch pipe 43a and a second branch pipe 43b branched from the carrier gas pipe 41, a first raw material gas delivery pipe 44a, and a second raw material gas. It has a delivery pipe 44b.
  • N 2 gas is supplied to the carrier gas pipe 41 as a carrier gas from a carrier gas supply source (not shown).
  • the carrier gas pipe 41 is provided with a flow rate controller 42 such as a mass flow controller (MFC).
  • MFC mass flow controller
  • the carrier gas may be an inert gas other than the N 2 gas.
  • the first branch pipe 43a and the second branch pipe 43b are connected from above to the carrier gas introduction section 24a of the first vaporization section 20a and the carrier gas introduction section 24b of the second vaporization section 20b, respectively. Further, the first raw material gas delivery pipe 44a and the second raw material gas delivery pipe 44b are connected to the raw material gas discharge unit 25a of the first vaporization unit 20a and the raw material gas discharge unit 25b of the second vaporization unit 20b from above, respectively. To.
  • a first bypass pipe 45a is provided so as to connect the two.
  • a second bypass pipe 45b is provided so as to connect the two.
  • the first raw material gas delivery pipe 44a and the second raw material gas delivery pipe 44b join the merging pipe 46, and the merging pipe 46 is connected to the processing device 200.
  • Valves 47a1 and 47a2 are provided on the upstream side and the downstream side of the confluence point of the first branch pipe 43a with the first bypass pipe 45a, respectively. Further, valves 48a1 and 48a2 are provided on the upstream side and the downstream side of the confluence point with the first bypass pipe 45a in the first raw material gas delivery pipe 44a, respectively. Further, the bypass pipe 45a is provided with a valve 49a. By opening and closing the valves 47a1, 47a2, 48a1, 48a2, the carrier gas supply / stop and the raw material gas supply / stop can be switched.
  • the carrier gas flows into the bypass pipe 45a, bypasses the container 21a, and the carrier gas is sent to the processing device 200. Can be supplied.
  • Valves 47b1 and 47b2 are provided on the upstream side and the downstream side of the confluence point of the second branch pipe 43b with the second bypass pipe 45b, respectively. Further, valves 48b1 and 48b2 are provided on the upstream side and the downstream side of the confluence point with the second bypass pipe 45b in the second raw material gas delivery pipe 44b, respectively. Further, the bypass pipe 45b is provided with a valve 49b. By opening and closing the valves 47b1, 47b2, 48b1, 48b2, the carrier gas supply / stop and the raw material gas supply / stop can be switched.
  • the carrier gas flows into the bypass pipe 45b, bypasses the container 21b, and the carrier gas is sent to the processing device 200. Can be supplied.
  • first raw material gas delivery pipe 44a is provided with a valve 441a in the vicinity of the confluence point with the confluence pipe 46.
  • second raw material gas delivery pipe 44b is provided with a valve 441b in the vicinity of the confluence point with the confluence pipe 46.
  • the first pressure adjusting unit 50a includes a first exhaust pipe 51a branched from the first raw material gas delivery pipe 44a, a valve 52a interposed in the first exhaust pipe 51a, and a vacuum connected to the first exhaust pipe 51a. It has an exhaust device 53a such as a pump.
  • the second pressure adjusting unit 50b includes a second exhaust pipe 51b branched from the second raw material gas delivery pipe 44b, a valve 52b interposed in the second exhaust pipe 51b, and a vacuum connected to the second exhaust pipe 51b. It has an exhaust device 53b such as a pump.
  • the pressure in the container 21a in the first vaporization unit 20a and the pressure in the container 21b in the second vaporization unit 20b are adjusted by the first pressure adjustment unit 50a and the second pressure adjustment unit 50b, respectively.
  • the pressure of the containers 20a and 20b is set to, for example, 100 to 300 Torr.
  • the pressure of the containers 20a, 20b is based on the pressure at which the solvent of the liquid raw material S is vaporized. Adjusted to change.
  • the pressure adjustment of the first pressure adjusting unit 50a and the second pressure adjusting unit 50b is controlled by the control unit 80. That is, the first pressure adjusting unit 50a, the second pressure adjusting unit 50b, and the control unit 80 also function as a cleaning mechanism. Further, from the viewpoint of quickly responding to a change in pressure, an automatic pressure control valve (APC) may be used as the valves 52a and 52b.
  • APC automatic pressure control valve
  • the solvent supply system 60 supplies the solvent to the first and second vaporization units 20a and 20b as a cleaning liquid, and is a solvent container 61 for storing the solvent L and a piping group 62 for transporting the solvent L from the solvent container 61. And have.
  • the solvent container 61 is provided with a liquid level gauge 61a.
  • the nozzles 22a and 22b and their vicinity are cleaned. That is, the solvent supply system 60 functions as a cleaning mechanism.
  • the portions in the vicinity of the nozzles 22a and 22b are, for example, a piping portion in the vicinity of the nozzles 22a and 22b (a portion in the vicinity of the nozzles of the branch pipes 16a and 16b) and valves 19a and 19b provided therein.
  • the pipe group 62 has a pressure feeding pipe 63 and a sending pipe 64.
  • One end of the pressure feeding pipe 63 is inserted into the solvent container 61 from above, and a pressure feeding gas, for example, N 2 gas is introduced into the solvent container 61.
  • One end of the delivery pipe 64 is inserted into the solvent container 61 so as to be immersed in the solvent L from above, and the solvent L is delivered by supplying the pumping gas.
  • the other end of the delivery pipe 64 is connected to the connection portion between the delivery pipe 14 and the intermediate pipe 15 of the liquid raw material supply system 10, and the solvent L passing through the delivery pipe 64 passes through the intermediate pipe 15 and the branch pipes 16a and 16b. It is supplied to the first vaporization unit 20a and the second vaporization unit 20b. That is, the intermediate pipe 15 of the liquid raw material supply system 10 and the branch pipes 16a and 16b also function as a part of the solvent supply system 60.
  • the pressure feeding pipe 63 is provided with a valve 65, and the sending pipe 64 is provided with valves 66 and 67, respectively, in the vicinity of the solvent container 61 and the vicinity of the confluence with the intermediate pipe 15 of the liquid raw material supply system 10. ..
  • the intermediate pipe 15 and the branch pipes 16a and 16b of the liquid raw material supply system 10 can be connected to the liquid raw material supply unit 10 or It can function as a solvent supply system 60. That is, by opening and closing the valve, the liquid raw material S and the solvent L can be switched and supplied to the container 21a of the first vaporization unit 20a and the container 21b of the second vaporization unit 20b.
  • the solvent L of the solvent container 61 can be supplied to the raw material container 11 and used for producing the liquid raw material S.
  • the solvent used for the liquid raw material S is used as the cleaning liquid, it is not necessary to separately prepare the cleaning liquid, which is efficient.
  • the solvent container 61 may be dedicated to the cleaning liquid. As a result, it is not necessary to limit the cleaning liquid to the solvent for producing the liquid raw material S, and the cleaning liquid can be freely selected.
  • the control unit 80 is composed of a computer, and has a main control unit including a CPU, an input device, an output device, a display device, and a storage device (storage medium).
  • the main control unit controls the operation of each component of the raw material supply system 100, for example, each valve, pressure adjusting units 50a, 50b, and the like.
  • the control of each component by the main control unit is performed based on the control program stored in the storage medium (hard disk, optical desk, semiconductor memory, etc.) built in the storage device.
  • the processing recipe is stored in the storage medium as a control program, and the processing of the raw material supply system 100 is executed based on the processing recipe.
  • control unit 80 changes the pressure of the container 21a of the first vaporization unit 20a and the pressure of the container 21b of the second vaporization unit 20b from the pressure at which the solvent is vaporized from the liquid raw material at the time of cleaning. Controls the pressure adjusting units 50a and 50b.
  • the first vaporization unit 20a a process of vaporizing the solvent of the liquid raw material to store the solid raw material S'in the container 21a and a process of heating the solid raw material S'stored in the container 21a to store the solid raw material S' Is sublimated and a process of supplying the raw material gas to the processing apparatus 200 is performed. Then, the nozzle 22a or the nozzle 22a and its vicinity are periodically cleaned.
  • FIG. 2 is a diagram showing the state of the first vaporization unit 20a when "vaporization of the solvent of the liquid raw material" is performed.
  • the open state of the valve is shown in white, and the closed state is shown in black (the same applies to FIGS. 3, 4, and 10 below).
  • the container 21a When vaporizing the liquid raw material S, first, the container 21a is heated to a temperature at which the solvent can be vaporized by the heating unit 30a. Then, with the valves 47a1, 47a2, 48a1, 48a2, 52a open and the valve 441a closed, the carrier gas is supplied to the container 21a as the pressure adjusting gas from the first branch pipe 43a, and the first pressure is adjusted.
  • the pressure inside the container 21a is regulated by the portion 50a.
  • the pressure in the container 21a at this time is in a depressurized state where spraying is possible, for example, 100 to 300 Torr.
  • the valves 17, 18, and 19a are opened, the valve 67 is closed, and the liquid raw material S in the raw material container 11 is a spray nozzle via the delivery pipe 14, the intermediate pipe 15, and the branch pipe 16a. It is supplied to the nozzle 22a and sprayed from the nozzle 22a into the container 21a.
  • the solvent in the sprayed liquid raw material S is vaporized before reaching the container 21a.
  • the vaporized solvent is discharged through the exhaust pipe 51a. As a result, only the solid raw material S'is stored in the container 21a.
  • FIG. 3 is a diagram showing a state of the first vaporization unit 20a when "sublimation of a solid raw material" is performed.
  • the valve 19a of the branch pipe 16a is closed to stop the supply of the liquid raw material S. Then, the valves 47a1, 47a2, 48a1, 48a2, 441a are opened, the valve 52a is closed, and the container 21a is heated by the heating unit 30a to sublimate the solid raw material S'.
  • the first branch pipe 43a from the carrier gas pipe 41, the carrier gas into the container 21a via the carrier gas inlet 24a, to introduce, for example, N 2 gas.
  • the sublimated raw material gas is carried by the carrier gas to reach the first raw material gas delivery pipe 44a, and is supplied to the processing apparatus 200 via the merging pipe 46.
  • FIG. 4 is a diagram showing a state of the first vaporizing unit 20a when "cleaning the nozzle or the like" is being performed.
  • the carrier gas is supplied to the container 21a as a pressure regulating gas from the first branch pipe 43a with the valves 47a1, 47a2, 48a1, 48a2, 52a open and the valve 441a closed. While doing so, the pressure inside the container 21a is adjusted by the first pressure adjusting unit 50a. At this time, the control unit 80 controls the first pressure adjusting unit 50a so that the pressure in the container 21a changes from the pressure at which the solvent of the liquid raw material S is vaporized.
  • the valves 65, 67, 19a are opened, the valve 18 is closed, and the liquid raw material S is switched to the solvent L in the solvent container 61. That is, the solvent L in the solvent container 61 is supplied as a cleaning liquid to the nozzle 22a via the delivery pipe 64, the intermediate pipe 15, and the branch pipe 16a, and is supplied from the nozzle 22a into the container 21a. This cleans the nozzle 22a and its vicinity.
  • the portion near the nozzle 22a is, for example, a piping portion near the nozzle 22a (a portion near the nozzle of the branch pipe 16a) and a valve 19a provided therein.
  • the state of the solvent L supplied as the cleaning liquid is vaporized. It can be in a different state than when it is made to. Therefore, the solvent L can be easily supplied to the raw material (residue) that adheres to or solidifies in or near the nozzle 22a, and a high cleaning effect can be obtained.
  • the pressure at the time of cleaning is made higher than the pressure at the time of solvent vaporization of the liquid raw material S can be mentioned.
  • the solvent supplied as the cleaning liquid is in a state of higher humidity, which is closer to a liquid state, and the nozzle 22a and the vicinity thereof can be cleaned with high cleaning power.
  • the pressure in the container 20a may be varied. By giving a fluctuation in pressure, it is possible to perform cleaning of difficult-to-clean parts such as dead spaces existing in nozzles, valves, etc., where the cleaning liquid is difficult to spread or the flow rate of the cleaning liquid is low. In addition, it is possible to change the impact applied to the residue that is difficult to remove to make it easier to remove. Thereby, the cleaning effect can be further enhanced. Pulsation can be mentioned as an aspect of pressure fluctuation. By pulsating, the above effect can be more effectively exerted.
  • Examples of the mode in which the pressure in the container 20a is varied include those shown in FIGS. 7 to 9.
  • FIG. 7 is an example of fluctuating (pulsating) the pressure while maintaining the pressure at the time of cleaning higher than the pressure at the time of solvent vaporization of the liquid raw material S.
  • FIG. 8 is an example of fluctuating (pulsating) the pressure while maintaining the pressure at the time of cleaning lower than the pressure at the time of solvent vaporization of the liquid raw material S.
  • FIG. 9 is an example in which the pressure during cleaning is fluctuated (pulsated) so as to straddle the pressure during solvent vaporization of the liquid raw material S.
  • the state of the solvent as the cleaning liquid can be changed between the high humidity state and the high-speed spraying state, so that the effect due to the pressure fluctuation can be further enhanced and a higher cleaning effect can be obtained. can.
  • FIGS. 5 to 9 may be appropriately combined.
  • the solid raw material described in Patent Document 1 is dissolved in a solvent and supplied as a solution, and such a solution is sprayed on a vaporizer to vaporize the solvent, and the remaining solid raw material is sublimated to form a raw material gas.
  • the technique of using a slurry instead of a solution is also known. With such a technique, it is possible to solve the problem that the solid raw material is frequently replaced when the solid raw material is directly placed in a container and sublimated. However, in such a technique, the raw material adheres or solidifies to the nozzle for spraying the solution after long-term operation. In particular, since the slurry has a high viscosity and tends to aggregate, the nozzle is likely to be clogged. Therefore, the maintenance cycle such as overhaul is shortened.
  • the sol is also a solid raw material dispersed in a solvent, and the same problem arises.
  • Patent Document 2 when a solution in which a solid raw material is dissolved is sprayed and vaporized in a container, a residue accumulated in a container or a nozzle for spraying the solution in the container is dissolved in a cleaning liquid and heated. Describes a technique for removing the cleaning liquid together with the residue.
  • the same problem arises, and the high viscosity makes it easy for nozzles to become clogged, making it even more difficult to clean the residue. Similar problems occur with sol.
  • the solvent as a cleaning liquid is supplied into the container of the vaporization section in a state where the pressure in the container of the vaporization section is changed from the pressure at the time of solvent vaporization of the liquid raw material to provide a nozzle or the like.
  • the state of the solvent supplied as the cleaning liquid can be changed to a state different from that when the solvent is vaporized, and it is easy to supply the solvent to the raw material (residue) that adheres to or solidifies in the nozzle or the valve in the vicinity thereof. can do. Therefore, a higher cleaning effect can be obtained as compared with the case where the cleaning liquid is simply supplied as in Patent Document 2.
  • the cleaning process of nozzles and valves having a high cleaning effect can be performed in-line, the maintenance cycle such as overhaul can be lengthened, and the downtime of the processing device can be reduced.
  • an automatic pressure control valve can be used as the valve 52a (52b) of the pressure adjusting unit 50a (50b).
  • an automatic pressure control valve APC
  • the automatic pressure control valve APC can easily control the pressure even when the pressure is fluctuated as shown in FIGS. 7 to 9, and is particularly effective when the pressure is fluctuated.
  • the raw material supply system 100 two vaporization units, a first vaporization unit 20a and a second vaporization unit 20b, are provided, and the following effects can be obtained by this.
  • the second vaporization unit 20b A cleaning process can be performed.
  • the solvent can be vaporized from the liquid raw material S by the second vaporizing unit 20b.
  • the solid raw material is transported in the form of a solution or a slurry, the solvent is vaporized from the solution, the slurry, or the sol by the vaporizing unit, and the remaining solid raw material is sublimated to generate a raw material gas.
  • the raw material supply system to supply to the processing equipment is shown.
  • the present invention is not limited to this, and is applicable to a device for spraying a solution or slurry in which a solid raw material is dissolved or dispersed from a nozzle, as long as the nozzle or the like is washed.
  • the number of vaporization units may be one or three or more.
  • the raw material gas can be supplied to the other vaporization units while one vaporization unit is being cleaned or the solvent is vaporized, so that the throughput is improved. The effect is obtained.
  • the exhaust pipe of the pressure adjusting part is provided in the raw material gas delivery pipe of the container of the vaporization part, but the exhaust pipe may be directly connected to the container.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

固体原料を溶剤に溶解させた溶液または固体原料を溶剤に分散させたスラリーもしくはゾルを、ノズルから減圧された容器内に噴霧し、容器内で溶液またはスラリーもしくはゾルから溶剤を気化させて除去する装置において、ノズルおよびノズルの近傍部分を洗浄する洗浄方法は、容器内の圧力を、溶剤を気化させる際の圧力から変化するように調整することと、洗浄液をノズルに供給してノズルおよびノズルの近傍部分を洗浄することとを有する。

Description

洗浄方法、洗浄機構、および原料供給システム
 本開示は、洗浄方法、洗浄機構、および原料供給システムに関する。
 半導体デバイスの製造工程において、固体原料を昇華させた原料ガスを用いてCVDのような成膜処理を行う技術が知られている。そして、固体原料を供給する技術として、固体原料を溶剤に溶解させ溶液として供給し、そのような溶液を気化器にスプレーして溶媒を気化させ、残存した固体原料を昇華させて原料ガスとする技術が提案されている(例えば特許文献1)。
 このように、固体原料を溶解させた溶液をスプレーして容器内で気化させる場合、容器や、溶液を容器内にスプレーするノズル等に残渣が蓄積する。このため、特許文献2には、残渣を溶かすクリーニング液を容器(気化器)に供給し、容器を加熱することによって残渣を除去しながらクリーニング液を気化し、残渣とともにクリーニング液を除去する技術が提案されている。
特開2004-115831号公報 特開平11-12739号公報
 本開示は、固体原料を溶剤により溶液やスラリーもしくはゾル状態にして供給する際に、溶剤を噴霧するノズル等に存在する残渣を効率的に除去することができる洗浄方法、洗浄機構、および原料供給システムを提供する。
 本開示の一態様に係る洗浄方法は、固体原料を溶剤に溶解させた溶液または固体原料を溶剤に分散させたスラリーもしくはゾルを、ノズルから減圧された容器内に噴霧し、前記容器内で前記溶液または前記スラリーもしくは前記ゾルから溶剤を気化させて除去する装置において、前記ノズルおよび前記ノズルの近傍部分を洗浄する洗浄方法であって、前記容器内の圧力を、前記溶剤を気化させる際の圧力から変化するように調整することと、洗浄液を前記ノズルに供給して前記ノズルおよび前記ノズルの近傍部分を洗浄することと、を有する。
 本開示によれば、固体原料を溶媒により溶液やスラリーもしくはゾル状態にして供給する際に、溶剤を噴霧するノズル等に存在する残渣を効率的に除去することができる洗浄方法、洗浄機構、および原料供給システムが提供される。
一実施形態に係る洗浄方法が用いられる原料供給システムの一例を示す概略構成図である。 液状原料の溶剤の気化を行っている際の第1の気化部の状態を示す図である。 固体原料の昇華を行っている際の第1の気化部の状態を示す図である。 ノズル等の洗浄を行っている際の第1の気化部の状態を示す図である。 洗浄時における気化部の容器内の圧力変化の一例を示す図である。 洗浄時における気化部の容器内の圧力変化の他の例を示す図である。 洗浄時に気化部の容器内の圧力を変動させる際の一例を示す図である。 洗浄時に気化部の容器内の圧力を変動させる際の他の例を示す図である。 洗浄時に気化部の容器内の圧力を変動させる際の他の例を示す図である。 第1の気化部で容器に貯留されている固体原料を昇華させて原料ガスを処理装置に供給している間に、第2の気化部で洗浄処理を行っている状態を示す図である。
 以下、添付図面を参照しながら、実施形態について説明する。
 図1は、一実施形態に係る洗浄方法が用いられる原料供給システムの一例を示す概略構成図である。
 原料供給システム100は、固体原料を溶液の状態またはスラリーやゾルの状態にして輸送し、溶液、スラリー、またはゾルから溶剤を気化部により気化させ、残存した固体原料を昇華させて原料ガスを生成し、処理装置200に供給するものである。また、溶剤を気化する際に用いる噴霧器等の洗浄を行う洗浄機構も有している。
 溶液は固体原料の粉末を溶剤に溶解させたものであり、スラリーおよびゾルは固体原料の粉末を溶剤に分散させたものである。スラリーとゾルの違いは、スラリーが単に固体原料を分散させたものであるのに対し、ゾルはコロイド粒子が分散した状態のものである。なお、以下においては、溶液、スラリー、およびゾルを総称して液状原料とも記す。
 処理装置200は、原料供給システム100から供給された原料ガスにより半導体ウエハ等の基板に対して特定の処理、例えば成膜処理を行う。成膜処理としてはCVDやALDであってよい。
 原料供給システム100は、液状原料供給系10と、第1および第2の気化部20a,20bと、第1および第2の加熱部30a,30bと、原料ガス搬送系40と、第1および第2の圧力調整部50a,50bと、溶剤供給系60と、制御部80とを有している。溶剤供給系60は、後述するように溶剤を洗浄液として供給する洗浄機構として構成される。
 液状原料供給系10は、第1および第2の気化部20a,20bに液状原料(溶液、スラリー、またはゾル)Sを供給するものであり、液状原料Sを貯留する原料容器11と、原料容器11からの液状原料Sを輸送する配管群12とを有する。原料容器11には、液面計11aが設けられている。
 配管群12は、圧送配管13、送出配管14、中間配管15、および分岐配管16a,16bを有している。圧送配管13は、その一端が原料容器11内に上方から挿入されており、圧送ガス、例えばNガスを原料容器11内に導入する。送出配管14は、その一端が原料容器11内に上方から液状原料S内に浸漬するように挿入され、圧送ガスが供給されることにより液状原料Sを送出する。送出配管14の他端は中間配管15に接続され、分岐配管16aおよび16bは、中間配管15から分岐して第1の気化部20aおよび第2の気化部20bに至る。
 圧送配管13にはバルブ17が設けられ、送出配管14の中間配管15との接続点近傍にはバルブ18が設けられている。また、分岐配管16aの第1の気化部22a近傍にはバルブ19aが設けられ、分岐配管16bの第2の気化部22b近傍にはバルブ19bが設けられている。
 なお、原料容器11からの液状原料Sの送出は、ガス圧送に限らず、自重による送出であってもよいし、原料容器11の底部に排出配管を設けて重力による自然落下により送出してもよい。また、スラリーを搬送する場合には、スラリーが固まらないように振動台の上に原料容器11を載置して原料容器11を振動させながら搬送してもよい。
 ここで、固体原料とは、常温で固体状態の化合物原料である。固体原料は、基板の処理に用いるものであれば特に限定されず、処理に応じて適切なものを使用すればよい。例えば、半導体装置、特に3DNANDやDRAMに用いる金属膜を成膜するための原料を挙げることができる。具体例としては、ストロンチウム(Sr)、モリブデン(Mo)、ルテニウム(Ru)、ジルコニウム(Zr)、ハフニウム(Hf)、タングステン(W)、アルミニウム(Al)等を成膜するための有機化合物や無機化合物(例えば、有機金属錯体や塩化物)を挙げることができる。
 溶剤も、固体原料の溶液、スラリー、またはゾルを生成できればよく、特に限定されない。一例としてヘキサンを挙げることができる。
 第1の気化部20aは、容器21aと、分岐配管16aが接続され、液状原料Sを容器21a内に注入するノズル22aと、キャリアガス導入部24aと、原料ガス排出部25aとを有する。ノズル22a、キャリアガス導入部24a、および原料ガス排出部25aは、容器21aの上面に設けられている。
 第2の気化部20bは、容器21bと、分岐配管16bが接続され、液状原料Sを容器21b内に注入するノズル22bと、キャリアガスを容器21bに導入するキャリアガス導入部24bと、原料ガス排出部25bとを有する。ノズル22b、キャリアガス導入部24b、および原料ガス排出部25bは、容器21bの上面に設けられている。
 第1の気化部20aおよび第2の気化部20bは、いずれも、液状原料Sから溶剤を気化させる機能を有する。また、第1の気化部20aおよび第2の気化部20bは、溶剤を気化させた後の固体原料を貯留する機能も有する。
 ノズル22a,22bは、液状原料Sの溶剤を気化させるために、液状原料Sを容器21a,21bに噴霧(スプレー)するものであり、スプレーノズルとして構成される。液状原料Sがノズル22a,22bから噴霧されて溶剤が気化されることにより固体原料S´が生成される。すなわち、スプレーノズルであるノズル22a,22bから噴霧された液状原料Sが容器21a,21bに到達する前に、液状原料S中の溶剤が気化し、固体原料S´が容器21a,21bに貯留される。
 キャリアガス導入部24a,24bは、後述する原料ガス搬送系40のキャリアガス配管からのキャリアガスを導入するものである。また、原料ガス排出部25a,25bは、後述する原料ガス搬送系40の原料ガス送出配管へキャリアガスに搬送された原料ガスを排出させるものである。
 第1の加熱部30aおよび第2の加熱部30bは、容器21a,21b内に貯留された固体原料を昇華させて原料ガスとする機能を有する。また、第1の加熱部30aおよび第2の加熱部30bは、容器21a,21bを加熱することにより、注入(噴霧)された液状原料Sを加熱して溶剤を気化させる機能を有する。
 原料ガス搬送系40は、キャリアガスを供給するキャリアガス配管41と、キャリアガス配管41から分岐した第1分岐配管43aおよび第2分岐配管43bと、第1原料ガス送出配管44aおよび第2原料ガス送出配管44bとを有する。キャリアガス配管41にはキャリアガス供給源(図示せず)からキャリアガスとして例えばNガスが供給される。キャリアガス配管41には、マスフローコントローラ(MFC)のような流量制御器42が設けられている。なお、キャリアガスはNガス以外の他の不活性ガスであってもよい。
 第1分岐配管43aおよび第2分岐配管43bは、それぞれ第1の気化部20aのキャリアガス導入部24aおよび第2の気化部20bのキャリアガス導入部24bに上方から接続される。また、第1原料ガス送出配管44aおよび第2原料ガス送出配管44bは、それぞれ第1の気化部20aの原料ガス排出部25aおよび第2の気化部20bの原料ガス排出部25bに上方から接続される。
 また、第1分岐配管43aと第1原料ガス送出配管44aとの間の容器21aの近傍部分には、両者をつなぐように第1バイパス配管45aが設けられている。また、第2分岐配管43bと第2原料ガス送出配管44bとの間の容器21bの近傍には、両者をつなぐように第2バイパス配管45bが設けられている。さらに、第1原料ガス送出配管44aおよび第2原料ガス送出配管44bは合流配管46に合流し、合流配管46は処理装置200に接続される。
 第1分岐配管43aにおける第1バイパス配管45aとの合流点の上流側および下流側には、それぞれバルブ47a1および47a2が設けられている。また、第1原料ガス送出配管44aにおける第1バイパス配管45aとの合流点の上流側および下流側には、それぞれバルブ48a1および48a2が設けられている。また、バイパス配管45aにはバルブ49aが設けられている。バルブ47a1,47a2,48a1,48a2の開閉操作により、キャリアガスの供給/停止、原料ガスの供給/停止の切り替えを行えるように構成されている。また、バルブ47a1,48a1を開、バルブ47a2,48a2を閉にした状態で、バルブ49aを開にすることにより、キャリアガスをバイパス配管45aに流し、容器21aをバイパスして処理装置200にキャリアガスを供給することができる。
 第2分岐配管43bにおける第2バイパス配管45bとの合流点の上流側および下流側には、それぞれバルブ47b1および47b2が設けられている。また、第2原料ガス送出配管44bにおける第2バイパス配管45bとの合流点の上流側および下流側には、それぞれバルブ48b1および48b2が設けられている。また、バイパス配管45bにはバルブ49bが設けられている。バルブ47b1,47b2,48b1,48b2の開閉操作により、キャリアガスの供給/停止、原料ガスの供給/停止の切り替えを行えるように構成されている。また、バルブ47b1,48b1を開、バルブ47b2,48b2を閉にした状態で、バルブ49bを開にすることにより、キャリアガスをバイパス配管45bに流し、容器21bをバイパスして処理装置200にキャリアガスを供給することができる。
 また、第1原料ガス送出配管44aには、合流配管46との合流点近傍分にバルブ441aが設けられている。また、第2原料ガス送出配管44bには、合流配管46との合流点近傍部分にバルブ441bが設けられている。バルブ441aを開、バルブ441bを閉にすることにより、第1の気化部20aからの原料ガスが合流配管46を経て処理装置200に供給される。また、バルブ441aを閉、バルブ441bを開にすることにより、第2の気化部20bからの原料ガスが合流配管46を経て処理装置200に供給される。
 第1の圧力調整部50aは、第1原料ガス送出配管44aから分岐した第1排気配管51aと、第1排気配管51aに介装されたバルブ52aと、第1排気配管51aに接続された真空ポンプ等の排気装置53aとを有する。
 第2の圧力調整部50bは、第2原料ガス送出配管44bから分岐した第2排気配管51bと、第2排気配管51bに介装されたバルブ52bと、第2排気配管51bに接続された真空ポンプ等の排気装置53bとを有する。
 第1の圧力調整部50aおよび第2の圧力調整部50bにより、それぞれ第1の気化部20aにおける容器21a内の圧力および第2の気化部20bにおける容器21b内の圧力が調整される。第1および第2の気化部20a,20bにおいてノズル22a、22bで液状原料Sを噴霧して気化させる際には、容器20a,20bの圧力が例えば、100~300Torrに設定される。また、後述するように、溶剤容器61内の溶剤を洗浄液として用いてノズル22a,22b等を洗浄する際には、容器20a,20bの圧力が、液状原料Sの溶剤を気化させる際の圧力から変化するように調整される。この際に、後述するように、第1の圧力調整部50aおよび第2の圧力調整部50bの圧力調整は、制御部80により制御される。すなわち、第1の圧力調整部50aおよび第2の圧力調整部50b、ならびに制御部80も洗浄機構として機能する。また、圧力の変化に迅速に対応する観点から、バルブ52a,52bとして自動圧力制御バルブ(APC)を用いてもよい。
 溶剤供給系60は、第1および第2の気化部20a,20bに溶剤を洗浄液として供給するものであり、溶剤Lを貯留する溶剤容器61と、溶剤容器61から溶剤Lを輸送する配管群62とを有する。溶剤容器61には、液面計61aが設けられている。
 溶剤Lを洗浄液として第1および第2の気化部20a,20bに供給することにより、ノズル22a,22bおよびその近傍部分が洗浄される。すなわち、溶剤供給系60は洗浄機構として機能する。ノズル22a,22bの近傍部分は、例えば、ノズル22a,22bの近傍の配管部分(分岐配管16a,16bのノズル近傍部分)およびそこに設けられたバルブ19a,19bである。
 配管群62は、圧送配管63および送出配管64を有する。圧送配管63は、その一端が溶剤容器61内に上方から挿入されており、圧送ガス、例えばNガスを溶剤容器61内に導入する。送出配管64は、その一端が溶剤容器61内に上方から溶剤L内に浸漬するように挿入され、圧送ガスが供給されることにより溶剤Lを送出する。送出配管64の他端は、液状原料供給系10の送出配管14と中間配管15の接続部に接続されており、送出配管64を経た溶剤Lは、中間配管15ならびに分岐配管16aおよび16bを介して第1の気化部20aおよび第2の気化部20bに供給されるようになっている。すなわち、液状原料供給系10の中間配管15ならびに分岐配管16aおよび16bも溶剤供給系60の一部として機能する。
 圧送配管63にはバルブ65が設けられ、送出配管64には、溶剤容器61の近傍および液状原料供給系10の中間配管15との合流点近傍に、それぞれ、バルブ66および67が設けられている。バルブ66を開にした状態で、バルブ67と液状原料供給系10のバルブ18とを開閉させることにより、液状原料供給系10の中間配管15ならびに分岐配管16aおよび16bを、液状原料供給部10または溶剤供給系60として機能させることができる。すなわち、バルブの開閉により、第1の気化部20aの容器21aおよび第2の気化部20bの容器21bに対して、液状原料Sと溶剤Lとを切り替えて供給することができる。
 溶剤供給系60のバルブ67と液状原料供給系10のバルブ18を両方とも開にすることにより、溶剤容器61の溶剤Lを原料容器11に供給して液状原料Sの生成に用いることができる。
 このように、液状原料Sに用いる溶剤を洗浄液として用いるので、別途に洗浄液を用意する必要がなく効率的である。
 なお、溶剤容器61を洗浄液専用のものとしてもよい。これにより、洗浄液を液状原料S生成のための溶剤に限定する必要がなく、洗浄液を自由に選択することができる。
 制御部80はコンピュータで構成されており、CPUを備えた主制御部と、入力装置、出力装置、表示装置、記憶装置(記憶媒体)を有している。主制御部は、原料供給システム100の各構成部、例えば、各バルブや圧力調整部50a,50b等の動作を制御する。主制御部による各構成部の制御は、記憶装置に内蔵された記憶媒体(ハードディスク、光デスク、半導体メモリ等)に記憶された制御プログラムに基づいてなされる。記憶媒体には、制御プログラムとして処理レシピが記憶されており、処理レシピに基づいて原料供給システム100の処理が実行される。特に、本実施形態では、制御部80により、洗浄時に第1の気化部20aの容器21aおよび第2の気化部20bの容器21bの圧力が液状原料から溶剤を気化させる際の圧力から変化するように圧力調整部50a,50bを制御する。
 次に、以上のように構成される原料供給システム100の動作について説明する。
 第1の気化部20aおよび第2の気化部20bにおいては同様の処理が行われるので、ここでは、第1の気化部20aについてのみ説明する。
 第1の気化部20aにおいては、液状原料の溶剤を気化させて容器21a内に固体原料S´を貯留させる処理と、容器21a内に貯留された固体原料S´を加熱して固体原料S´を昇華させ、処理装置200に原料ガスを供給する処理が行われる。そして、定期的にノズル22aまたはノズル22aとその近傍部分の洗浄処理が行われる。
 まず、「液状原料の溶剤の気化」について説明する。
 図2は、「液状原料の溶剤の気化」を行っている際の第1の気化部20aの状態を示す図である。なお、図2において、バルブは開の状態を白抜き、閉の状態を黒塗りで示している(以下の図3、4、10も同じ)。
 液状原料Sを気化する際には、まず、加熱部30aにより容器21aを溶剤の気化が可能な温度に加熱する。そして、バルブ47a1,47a2、48a1,48a2、52aを開にし、バルブ441aを閉にした状態で、第1分岐配管43aからキャリアガスを調圧ガスとして容器21aに供給しつつ、第1の圧力調整部50aにより容器21a内の圧力を調圧する。このときの容器21a内の圧力は噴霧可能な減圧状態、例えば100~300Torrとする。この状態で、バルブ17、18、19aを開にし、バルブ67を閉にして、原料容器11内の液状原料Sを、送出配管14、中間配管15、および分岐配管16aを介してスプレーノズルであるノズル22aに供給し、ノズル22aから容器21a内に噴霧する。噴霧された液状原料Sは、容器21aに到達する前にその中の溶剤が気化される。気化された溶剤は排気配管51aを介して排出される。これにより、固体原料S´のみが容器21a内に貯留される。
 次に、「固体原料の昇華」について説明する。
 図3は、「固体原料の昇華」を行っている際の第1の気化部20aの状態を示す図である。
 固体原料の昇華を行う際には、分岐配管16aのバルブ19aを閉じて液状原料Sの供給を停止する。そして、バルブ47a1,47a2、48a1,48a2、441aを開にし、バルブ52aを閉にした状態とし、加熱部30aで容器21aを加熱して固体原料S´を昇華させる。原料ガス搬送系40では、キャリアガス配管41から第1分岐配管43a、キャリアガス導入部24aを経て容器21a内にキャリアガス、例えばNガスを導入する。昇華した原料ガスは、キャリアガスにキャリアされて第1原料ガス送出配管44aに至り、合流配管46を経て処理装置200へ供給される。
 次に、「ノズル等の洗浄」について説明する。
 図4は、「ノズル等の洗浄」を行っている際の第1の気化部20aの状態を示す図である。
 ノズル等の洗浄を行う際には、バルブ47a1,47a2、48a1,48a2、52aを開にし、バルブ441aを閉にした状態で、第1分岐配管43aからキャリアガスを調圧ガスとして容器21aに供給しつつ、第1の圧力調整部50aにより容器21a内の圧力を調圧する。このとき、制御部80により、容器21a内の圧力が、液状原料Sの溶剤を気化させる際の圧力から変化するように第1の圧力調整部50aが制御される。
 そして、バルブ65,67,19aを開にし、バルブ18を閉にして、液状原料Sを溶剤容器61内の溶剤Lに切り替える。すなわち、溶剤容器61内の溶剤Lを洗浄液として、送出配管64、中間配管15、および分岐配管16aを介してノズル22aに供給し、ノズル22aから容器21a内に供給する。これによりノズル22aおよびその近傍部分を洗浄する。ノズル22aの近傍部分は、例えばノズル22a近傍の配管部分(分岐配管16aのノズル近傍部分)およびそこに設けられたバルブ19aである。
 このように、洗浄の際の容器21a内の圧力を、液状原料Sの溶剤を気化させる際の圧力から変化させるように調整することにより、洗浄液として供給される溶剤Lの状態を、溶剤を気化させる際とは異なった状態とすることができる。このため、ノズル22aやその近傍に付着または固化する原料(残渣)に溶剤Lを供給しやすくすることができ、高い洗浄効果が得られる。
 以下、ノズル洗浄時の容器21aの圧力を溶剤気化時の圧力から変化させる際の態様について説明する。
 一例として、図5に示すように、洗浄時の圧力を、液状原料Sの溶剤気化の際の圧力より高圧にする場合を挙げることができる。この場合は、クリーニング液として供給された溶剤が、より液体状に近い、湿度が高い状態となり、高い洗浄力でノズル22aやその近傍部分を洗浄することができる。
 他の例として、図6に示すように、洗浄時の圧力を、液状原料Sの溶剤気化の際の圧力より低圧にする場合を挙げることができる。この場合は、クリーニング液として供給された溶剤が、ノズル22aから、より高速で噴霧されて、高い洗浄力でノズル22aやその近傍部分を洗浄することができる。
 また、容器20a内の圧力を変動させてもよい。圧力の変動を与えることにより、ノズルやバルブ等に存在する、洗浄液が行き渡りにくいまたは洗浄液の流速が低くなるデッドスペース等の洗浄しにくい箇所の洗浄も行うことができる。また、除去しにくい残渣に与える衝撃を変化させて除去しやすくすることもできる。これにより、洗浄効果をより高めることができる。圧力の変動の態様としては脈動を挙げることができる。脈動させることにより、上記効果をより有効に発揮することができる。
 容器20a内の圧力を変動させる態様としては、図7~9に示すようなものを挙げることができる。
 図7は、洗浄時の圧力を、液状原料Sの溶剤気化の際の圧力より高圧に保ったまま、圧力を変動(脈動)させる例である。これにより、高圧にした場合の溶剤を湿度が高い状態として高い洗浄力を保つ効果を維持しつつ、上述したような圧力変動による効果を得ることができ、さらに高い洗浄効果を得ることができる。
 図8は、洗浄時の圧力を、液状原料Sの溶剤気化の際の圧力より低圧に保ったまま、圧力を変動(脈動)させる例である。これにより、低圧にした場合の溶媒の高速噴霧による高い洗浄力を保つ効果を維持しつつ、上述したような圧力変動による効果を得ることができ、さらに高い洗浄効果を得ることができる。
 図9は、洗浄時の圧力を、液状原料Sの溶剤気化の際の圧力を跨ぐように変動(脈動)させる例である。これにより、クリーニング液である溶剤の状態を湿度が高い状態と高速噴霧状態との間で変化させることができるので、圧力変動による効果をより高めることができ、より一層高い洗浄効果を得ることができる。
 また、洗浄の際の圧力を溶剤気化の際の圧力から変化させる態様としては、図5~9に示す態様を適宜組み合わせたものであってもよい。
 上述したように特許文献1に記載された、固体原料を溶剤に溶解させ溶液として供給し、そのような溶液を気化器にスプレーして溶媒を気化させ、残存した固体原料を昇華させて原料ガスとする技術は知られており、溶液の代わりにスラリーを用いる技術も知られている。このような技術により、固体原料を直接容器に入れて昇華させる場合における固体原料の交換頻度が高いという問題を解決することができる。しかし、このような技術では、長時間運用すると溶液をスプレーするためのノズルに原料が付着または固化する。特に、スラリーは高粘度であり、凝集しやすいため、ノズルの目詰まりが生じやすい。このため、オーバーホール等のメンテナンス周期が短くなってしまう。ゾルも固体原料を溶剤に分散させたものであり、同様な問題が生じる。
 一方、特許文献2には、固体原料を溶解させた溶液をスプレーして容器内で気化させる場合に、容器や、溶液を容器内にスプレーするノズル等に蓄積する残渣をクリーニング液に溶かし、加熱によって残渣とともにクリーニング液を除去する技術が記載されている。しかし、このような手法では、ノズルやバルブ等のデッドスペースに付着または固化した原料(残渣)を十分に除去できない場合がある。スラリーの場合には、同様の問題が生じるとともに、高粘度であるためノズルの目詰まりが発生しやすく、残渣の洗浄がますます難しくなる。ゾルの場合にも同様な問題が生じる。
 そこで、本実施形態では、気化部の容器内の圧力を、液状原料の溶剤気化の際の圧力から変化させた状態で、洗浄液である溶剤を気化部の容器内に供給することによりノズル等を洗浄する。これにより、洗浄液として供給される溶剤の状態を、溶剤を気化させる際とは異なった状態とすることができ、ノズルやその近傍のバルブに付着または固化する原料(残渣)に溶剤を供給しやすくすることができる。このため、特許文献2のように単にクリーニング液を供給する場合よりも高い洗浄効果が得られる。特に、圧力を変動させることにより、デッドスペース等にも洗浄液である溶剤を供給して洗浄することができ、また残渣に与える衝撃を変化させることにより除去し難い残渣を除去しやすくすることもでき、一層洗浄効果を高めることができる。このように、高い洗浄効果を有するノズルやバルブ等の洗浄処理をインラインで行うことができるので、オーバーホール等のメンテナンス周期を長くすることができ、処理装置のダウンタイムを低減することができる。
 圧力調整部50a(50b)のバルブ52a(52b)としては、上述したように、自動圧力制御バルブ(APC)を用いることができる。自動圧力制御バルブ(APC)を用いることにより、洗浄の際の圧力の変化に迅速に対応することができる。また、自動圧力制御バルブ(APC)は、例えば図7~9に示すように圧力を変動させる場合にも容易に圧力を制御することができ、圧力を変動させる場合に特に有効である。
 原料供給システム100では、第1の気化部20aと第2の気化部20bの2つの気化部を設けているが、これにより以下のような効果を得ることができる。例えば、図10に示すように、第1の気化部20aで容器21aに貯留されている固体原料を昇華させて原料ガスを処理装置200に供給している間に、第2の気化部20bで洗浄処理を行うことができる。第1の気化部20aで容器21aに貯留されている固体原料を昇華させている間に、第2の気化部20bで液状原料Sから溶剤を気化させることもできる。
 このように、一方の気化部で固体原料S´を昇華させて処理装置200への原料ガスを供給している間に、他の気化部で洗浄処理や液状原料Sからの溶剤気化処理を行うことにより、原料ガスの処理装置200への供給を止める時間を少なくするまたはなくすことができる。このため、処理のスループットを高くすることができる。
 <他の適用>
 以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 例えば、上記実施形態では、固体原料を溶液の状態またはスラリーの状態にして輸送し、溶液、スラリー、またはゾルから溶剤を気化部により気化させ、残存した固体原料を昇華させて原料ガスを生成し、処理装置に供給する原料供給システムを示した。しかし、これに限らず、固体原料を溶解または分散させた溶液またはスラリーをノズルから噴霧する装置において、ノズル等を洗浄する場合であれば適用可能である。
 また、上記実施形態では、原料供給システムとして気化部を2つ設けた例を示したが、気化部は1つでも、3つ以上でもよい。ただし、気化部を2つ以上設けることにより、1つの気化部を洗浄処理や溶剤の気化処理を行っている間に他の気化部で原料ガスの供給が可能となるため、スループットが向上するという効果が得られる。
 さらに、上記実施形態では、気化部の容器の原料ガス送出配管に圧力調整部の排気配管を設けたが、排気配管を容器に直接接続してもよい。
 10;液状原料供給系、11;原料容器、12;配管群、20a;第1の気化部、20b;第2の気化部、21a,21b;容器、22a,22b;ノズル、30a;第1の加熱部、30b;第2の加熱部、40;原料ガス搬送系、50a;第1の圧力調整部、50b;第2の圧力調整部、60;溶剤供給系、61;溶剤容器、62;配管群、80;制御部、100;原料供給システム、200;処理装置、S;液状原料

Claims (19)

  1.  固体原料を溶剤に溶解させた溶液または固体原料を溶剤に分散させたスラリーもしくはゾルを、ノズルから減圧された容器内に噴霧し、前記容器内で前記溶液または前記スラリーもしくは前記ゾルから溶剤を気化させて除去する装置において、前記ノズルおよび前記ノズルの近傍部分を洗浄する洗浄方法であって、
     前記容器内の圧力を、前記溶剤を気化させる際の圧力から変化するように調整することと、
     洗浄液を前記ノズルに供給して前記ノズルおよび前記ノズルの近傍部分を洗浄することと、
    を有する、洗浄方法。
  2.  前記容器内の圧力の調整を行うバルブとして、自動圧力制御バルブが用いられる、請求項1に記載の洗浄方法。
  3.  前記容器内の圧力は、前記溶剤を気化させる際の圧力よりも高圧である、請求項1に記載の洗浄方法。
  4.  前記容器内の圧力は、前記溶剤を気化させる際の圧力よりも低圧である、請求項1に記載の洗浄方法。
  5.  前記容器内の圧力を変動させる、請求項1に記載の洗浄方法。
  6.  前記容器内の圧力を、前記溶剤を気化させる際の圧力よりも高圧に保ったまま変動させる、請求項5に記載の洗浄方法。
  7.  前記容器内の圧力を、前記溶剤を気化させる際の圧力よりも低圧に保ったまま変動させる、請求項5に記載の洗浄方法。
  8.  前記容器内の圧力を、前記溶剤を気化させる際の圧力を跨ぐように変動させる、請求項5に記載の洗浄方法。
  9.  前記溶剤を気化させる際の圧力は、100~300Torrである、請求項1に記載の洗浄方法。
  10.  前記洗浄液として前記溶液または前記スラリーの前記溶剤を用いる、請求項1に記載の洗浄方法。
  11.  固体原料を溶剤に溶解させた溶液または固体原料を溶剤に分散させたスラリーもしくはゾルを、ノズルから減圧された容器内に噴霧し、前記容器内で前記溶液または前記スラリーもしくは前記ゾルから溶剤を気化させて除去する装置において、前記ノズルおよび前記ノズルの近傍部分を洗浄する洗浄機構であって、
     前記容器内の圧力を調整する圧力調整部と、
     前記ノズルおよび前記ノズルの近傍部分を洗浄する洗浄液を前記ノズルに供給する洗浄液供給部と、
     前記洗浄液を前記ノズルに供給する際に、前記容器内の圧力を、前記溶剤を気化させる際の圧力から変化するように前記圧力調整部を制御する制御部と、
    を有する、洗浄機構。
  12.  前記圧力調整部は、自動圧力制御バルブを有する、請求項11に記載の洗浄機構。
  13.  前記制御部は、前記容器内の圧力が、前記溶剤を気化させる際の圧力よりも高圧になるように前記圧力調整部を制御する、請求項11に記載の洗浄機構。
  14.  前記制御部は、前記容器内の圧力が、前記溶剤を気化させる際の圧力よりも低圧になるように前記圧力調整部を制御する、請求項11に記載の洗浄機構。
  15.  前記制御部は、前記容器内の圧力を変動させるように前記圧力調整部を制御する、請求項11に記載の洗浄機構。
  16.  前記制御部は、前記容器内の圧力を、前記溶剤を気化させる際の圧力よりも高圧に保ったまま変動させるように前記圧力調整部を制御する、請求項15に記載の洗浄機構。
  17.  前記制御部は、前記容器内の圧力を、前記溶剤を気化させる際の圧力よりも低圧に保ったまま変動させるように前記圧力調整部を制御する、請求項15に記載の洗浄機構。
  18.  前記制御部は、前記容器内の圧力を、前記溶剤を気化させる際の圧力を跨ぐように変動させるように前記圧力調整部を制御する、請求項15に記載の洗浄機構。
  19.  固体原料を溶剤に溶解させた溶液または固体原料を溶剤に分散させたスラリーもしくはゾルを供給する原料供給部と、
     前記原料供給部から供給された前記溶液または前記スラリーもしくは前記ゾルを、ノズルから減圧された容器内に噴霧し、前記容器内で前記溶液または前記スラリーから溶剤を気化させて除去し、前記容器内に前記溶剤が気化した後の前記固体原料を貯留する気化部と、
     前記気化部の前記容器内に貯留された固体原料を昇華させて原料ガスとする加熱部と、
     前記原料ガスを基板に対して処理を行う処理装置に搬送する原料ガス搬送系と、
     前記容器内の圧力を調整する圧力調整部と、
     前記ノズルおよび前記ノズルの近傍部分を洗浄する洗浄液を前記ノズルに供給する洗浄液供給部と、
     前記洗浄液を前記ノズルに供給する際に、前記容器内の圧力を、前記溶剤を気化させる際の圧力から変化するように前記圧力調整部を制御する制御部と、
    を有する、原料供給システム。
PCT/JP2021/001017 2020-06-26 2021-01-14 洗浄方法、洗浄機構、および原料供給システム WO2021260980A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020110745A JP2022007656A (ja) 2020-06-26 2020-06-26 洗浄方法、洗浄機構、および原料供給システム
JP2020-110745 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021260980A1 true WO2021260980A1 (ja) 2021-12-30

Family

ID=79282255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001017 WO2021260980A1 (ja) 2020-06-26 2021-01-14 洗浄方法、洗浄機構、および原料供給システム

Country Status (2)

Country Link
JP (1) JP2022007656A (ja)
WO (1) WO2021260980A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253404A (ja) * 1992-03-11 1993-10-05 Okawara Mfg Co Ltd 真空乾燥装置における供給ノズルの付着防止構造
JPH0731101U (ja) * 1993-11-10 1995-06-13 株式会社奈良機械製作所 液状物質の乾燥装置に用いる液状物質の供給ノズル
JP2003282449A (ja) * 2002-03-20 2003-10-03 Japan Pionics Co Ltd 気化器及び半導体製造装置の洗浄方法
JP2005256107A (ja) * 2004-03-12 2005-09-22 Nara Institute Of Science & Technology 有機金属化学気相堆積装置用原料気化器
JP2010078232A (ja) * 2008-09-26 2010-04-08 Kyocera Corp 噴霧乾燥装置およびこの噴霧乾燥装置を用いて造粒された顆粒を用いて得られたセラミックス焼結体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253404A (ja) * 1992-03-11 1993-10-05 Okawara Mfg Co Ltd 真空乾燥装置における供給ノズルの付着防止構造
JPH0731101U (ja) * 1993-11-10 1995-06-13 株式会社奈良機械製作所 液状物質の乾燥装置に用いる液状物質の供給ノズル
JP2003282449A (ja) * 2002-03-20 2003-10-03 Japan Pionics Co Ltd 気化器及び半導体製造装置の洗浄方法
JP2005256107A (ja) * 2004-03-12 2005-09-22 Nara Institute Of Science & Technology 有機金属化学気相堆積装置用原料気化器
JP2010078232A (ja) * 2008-09-26 2010-04-08 Kyocera Corp 噴霧乾燥装置およびこの噴霧乾燥装置を用いて造粒された顆粒を用いて得られたセラミックス焼結体

Also Published As

Publication number Publication date
JP2022007656A (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5200551B2 (ja) 気化原料供給装置、成膜装置及び気化原料供給方法
JP3122311B2 (ja) 成膜処理室への液体材料供給装置及びその使用方法
TW201510269A (zh) 氣相成長裝置以及氣相成長方法
TWI416616B (zh) Etching liquid regeneration device
WO2021260980A1 (ja) 洗浄方法、洗浄機構、および原料供給システム
WO2021060083A1 (ja) 原料供給装置及び原料供給方法
JP4150356B2 (ja) 成膜装置及び成膜方法
TW201400629A (zh) 成膜裝置及成膜方法
US7323220B2 (en) Gas phase growth system, method of operating the system, and vaporizer for the system
WO2022054656A1 (ja) 原料供給装置及び原料供給方法
WO2022059507A1 (ja) 原料供給装置及び原料供給方法
WO2023037880A1 (ja) 原料供給装置
JP4334968B2 (ja) 成膜装置
JP2000150497A (ja) 成膜装置
JP2022143760A (ja) 原料供給方法及び原料供給装置
JP7282188B2 (ja) 原料供給装置及び原料供給方法
JP4218942B2 (ja) 薄膜製造装置及び薄膜製造方法
KR102180282B1 (ko) 박막 증착용 가스공급장치 및 그 제어방법
JPH10195658A (ja) 液体原料の気化装置及びその運転方法
JP3106990B2 (ja) 液体材料気化装置
JP4680246B2 (ja) 気相成長装置の異常生成物除去方法
TW202135923A (zh) 氣體供給方法、基板處理方法及氣體供給裝置
JP2004018994A (ja) 残留原料液除去方法並びに薄膜製造方法及び薄膜製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830037

Country of ref document: EP

Kind code of ref document: A1