WO2021052365A1 - 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池 - Google Patents

一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池 Download PDF

Info

Publication number
WO2021052365A1
WO2021052365A1 PCT/CN2020/115616 CN2020115616W WO2021052365A1 WO 2021052365 A1 WO2021052365 A1 WO 2021052365A1 CN 2020115616 W CN2020115616 W CN 2020115616W WO 2021052365 A1 WO2021052365 A1 WO 2021052365A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
microspheres
conductive
ceramic
shell layer
Prior art date
Application number
PCT/CN2020/115616
Other languages
English (en)
French (fr)
Inventor
李素丽
唐伟超
张祖来
赵伟
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP20865496.2A priority Critical patent/EP4033560A4/en
Publication of WO2021052365A1 publication Critical patent/WO2021052365A1/zh
Priority to US17/698,079 priority patent/US20220278421A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of microspheres and lithium ion batteries, and particularly relates to a ceramic microsphere, a diaphragm containing the ceramic microsphere with high safety, and a lithium ion battery containing the diaphragm.
  • lithium-ion batteries Compared with traditional secondary batteries, lithium-ion batteries have the advantages of high energy density, environmental protection, and long service life. They have been widely used in the field of power batteries, digital products, and energy storage. Lithium-ion batteries are mainly composed of positive electrode materials, negative electrode materials, separators and electrolytes. Due to the material system and structural characteristics of lithium-ion batteries, during actual use, lithium-ion batteries may cause the battery temperature to rise, and at the same time high temperature It will accelerate the exothermic reaction rate in the lithium-ion battery, which will lead to thermal runaway and cause safety accidents.
  • lithium-ion power battery pack management system and the lithium-ion battery cooling system are a temporary solution and not a cure.
  • the development of materials for lithium-ion safety structures can fundamentally improve the safety of lithium-ion batteries.
  • a voltage-sensitive separator is disclosed in the literature. Microcrystalline graphite is added to a chloroform solution containing poly(3-decyl-thiophene), and the separator is homogenized by mechanical ball milling to obtain a modified separator. The separator is impregnated with the membrane and dried to obtain a voltage-sensitive membrane. The membrane has a reversible overcharge protection function, especially for lithium iron phosphate batteries. However, the separator has a large degree of self-discharge and The voltage sensitive range is small, which limits its application in high-energy-density power batteries.
  • the purpose of the present invention is to provide a separator containing a coating layer and a lithium ion battery containing the separator.
  • the coating layer is composed of conductive microspheres having a core-shell structure and a core-shell structure.
  • Structured ceramic microspheres are coated with a mixed system; the conductive microspheres and the ceramic microspheres both have a core-shell structure, that is, include a shell layer and a core core; in the conductive microspheres, the shell layer is formed
  • the material includes a heat-sensitive polymer, the material forming the core includes a conductive material; in the ceramic microspheres, the material forming the shell layer includes a heat-sensitive polymer and a conductive agent, and the material forming the core includes ceramic material.
  • thermosensitive polymer on the surface of the ceramic microspheres begins to melt, forming a continuous blocking layer in the build-up layer, which is mainly composed of a thermosensitive polymer and a conductive agent, It has the function of blocking lithium ion transmission and conducting electrons, and can effectively improve the safety performance of lithium ion batteries.
  • a ceramic microsphere wherein the ceramic microsphere has a core-shell structure, that is, includes a shell layer and a core core, the material forming the shell layer includes a thermosensitive polymer and a conductive agent, and the material forming the core core includes Ceramic material.
  • the ceramic microspheres can be used in the field of lithium ion batteries, as well as in the field of semiconductors, coatings, and other ion system primary or secondary batteries.
  • the shell-forming material including the heat-sensitive polymer and the conductive agent is coated on the surface of the core-forming material including the ceramic material to prepare the ceramic microspheres;
  • the ceramic microsphere has a core-shell structure, that is, it includes a shell layer and a core core.
  • the material forming the shell layer includes a thermosensitive polymer and a conductive agent
  • the material forming the core core includes a ceramic material.
  • a diaphragm wherein the diaphragm includes a diaphragm base layer and a coating layer on at least one side surface of the diaphragm base layer, and the coating layer is formed on at least one side of the diaphragm base layer by a mixed system including conductive microspheres and the above-mentioned ceramic microspheres. The surface is coated.
  • step (b) Coating the mixed slurry of step (a) on the surface of the diaphragm base layer, and obtaining the diaphragm after drying.
  • a lithium ion battery includes the above-mentioned diaphragm.
  • the invention provides a ceramic microsphere, a diaphragm containing conductive microspheres and the ceramic microsphere with high safety, and a lithium ion battery containing the diaphragm.
  • the present invention is different from conventional lithium ion battery separators, and mainly adopts the method of polymer coating to separately prepare two kinds of high-safety coated microspheres-conductive microspheres and thermal conductive microspheres, thermal blocking lithium ions and thermal conductive electrons. Ceramic microspheres, and two kinds of high-safety coated microspheres are used in the lithium-ion battery separator.
  • the lithium-ion battery separator has the functions of thermal blocking lithium ions and thermal conduction, which can effectively improve lithium-ion batteries The safety performance.
  • two kinds of coated microspheres are prepared by using polymers with solvent resistance, electrolyte resistance and heat sensitivity as the coating layer.
  • the polymer material has heat sensitivity and the temperature in the heat sensitive interval is 100° C.-140° C.
  • the coating layer polymer material is stable with conventional solvents and electrolytes, and does not dissolve or swell.
  • Two kinds of coated microspheres of the present invention one is a ceramic microsphere coated with a heat-sensitive blocking material, that is, a ceramic microsphere, in which the surface is a solvent-resistant, electrolyte-resistant, heat-sensitive polymer and a conductive agent
  • the composite coating layer is made of ceramic material inside; the other is a microsphere with a heat-sensitive blocking material coated with a conductive material, that is, conductive microsphere, where the surface is a polymer with solvent resistance, electrolyte resistance, and heat sensitivity.
  • the inside is conductive material.
  • the separator including the two kinds of coated microspheres is used in lithium-ion batteries.
  • the thermally sensitive polymer coating layer on the surface of the ceramic microspheres begins to melt. And form a continuous composite blocking layer that blocks lithium ions and conducts electrons.
  • the composite blocking layer is composed of a heat-sensitive polymer and a conductive agent.
  • the heat-sensitive polymer coating layer on the surface of the conductive microsphere is heated.
  • the heat-sensitive range is reached, the surface polymer melts and releases internal conductive materials, forming a micro short circuit inside the lithium-ion battery, which can effectively improve the safety performance of the lithium-ion battery.
  • the lithium ion diaphragm prepared by the present invention has the dual functions of thermally blocking the passage of lithium ions and thermally conducting electrons. Compared with the conventional single thermally sensitive material blocking, the present invention can block the positive and negative electrodes faster and effectively control the heat. Out of control, and a micro short circuit occurs internally, which can effectively slow down thermal runaway and improve the safety performance of lithium-ion batteries.
  • the present invention can prepare functional coated microspheres by screening the types of polymers of the coating layer of the microspheres, controlling the thickness of the coating layer and other conditions, and the coated microspheres can be directly introduced into the existing diaphragm preparation system. It is also used in lithium-ion batteries and has less impact on the performance of lithium-ion batteries, and has good application potential in the field of lithium-ion battery safety.
  • FIG. 1 is a schematic diagram of the structure of the conductive microspheres in the present invention.
  • thermosensitive polymer coating layer refers to the shell layer of the conductive microspheres, and the material forming the shell layer includes a thermosensitive polymer
  • Conductive material refers to the core of the conductive microsphere, and the material forming the core includes a conductive material.
  • thermosensitive polymer coating layer refers to the shell layer of the ceramic microspheres, and the materials forming the shell layer include thermosensitive polymers and conductive materials.
  • Agent refers to the core of the ceramic microspheres, and the material forming the core includes ceramic materials.
  • Figure 3 is a schematic diagram of the structure of the diaphragm according to a preferred embodiment of the present invention; wherein, "functional microspheres" refer to the conductive microspheres of the present invention.
  • Fig. 4 is a schematic diagram of the diaphragm structure reaching the heat-sensitive interval according to a preferred embodiment of the present invention; wherein, "functional microspheres" refer to the conductive microspheres of the present invention.
  • Fig. 5 is a graph showing the charge-discharge cycle performance of the batteries of Examples 1-7 and Comparative Example 1, and Comparative Example 3-4.
  • Fig. 6 shows the battery voltage during the test temperature rise of the batteries of Examples 1-7 and Comparative Examples 1, and Comparative Examples 3-4.
  • the present invention provides a ceramic microsphere.
  • the ceramic microsphere has a core-shell structure, that is, includes a shell layer and a core core.
  • the material forming the shell layer includes a thermosensitive polymer.
  • the conductive agent, the material forming the core includes a ceramic material.
  • the ceramic microspheres can be used in the field of lithium ion batteries, as well as in the field of semiconductors, coatings, and other ion system primary or secondary batteries.
  • the mass ratio of the shell layer to the core core is (0.2-1300): (50-80).
  • the mass ratio of the thermosensitive polymer and the conductive agent forming the shell layer is (100-1000): (1-10).
  • the thickness of the shell layer in the ceramic microspheres is 1 nm-5000 nm.
  • it is 1 nm, 10 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1000 nm, 2000 nm, 3000 nm, 4000 nm, or 5000 nm.
  • the average particle size of the ceramic microspheres is 0.01 ⁇ m-20 ⁇ m.
  • it is 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, or 20 ⁇ m.
  • the thermosensitive polymer is selected from thermoplastic polymers that can form a relatively stable system with the electrolyte and have phase change properties.
  • the heat-sensitive temperature range of the heat-sensitive polymer is, for example, 100°C-140°C.
  • the heat-sensitive polymer is selected from polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polyethylene naphthalate, poly At least one of imide, polyamide, aramid, polyparaphenylene series, etc. or a polymer modified and copolymerized with its monomers.
  • the particle size of the ceramic material is 0.01 ⁇ m-20 ⁇ m.
  • it is 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, or 20 ⁇ m.
  • the ceramic material is selected from the group consisting of silicon dioxide, aluminum oxide, zirconium dioxide, magnesium hydroxide, boehmite, barium sulfate, fluorophlogopite, fluoroapatite, mullite At least one of stone, cordierite, aluminum titanate, titanium dioxide, copper oxide, zinc oxide, boron nitride, aluminum nitride, magnesium nitride, attapulgite, and the like.
  • the conductive agent is selected from at least one of conductive carbon black, Ketjen black, conductive fiber, acetylene black, carbon nanotube, graphene, flake graphite, conductive oxide, metal particles, etc. kind.
  • the heat-sensitive polymer on the surface melts, and the adjacent ceramic particles are blocked by a continuous blocking layer formed by the melted heat-sensitive polymer.
  • the blocking layer is mainly composed of a thermosensitive polymer and a conductive agent. The blocking layer can block the passage of lithium ions and still conduct electrons, so it can effectively improve the safety of the lithium ion battery.
  • the present invention also provides a method for preparing the above-mentioned ceramic microspheres, and the method includes the following steps:
  • the shell-forming material including the heat-sensitive polymer and the conductive agent is coated on the surface of the core-forming material including the ceramic material to prepare the ceramic microspheres;
  • the ceramic microsphere has a core-shell structure, that is, it includes a shell layer and a core core.
  • the material forming the shell layer includes a thermosensitive polymer and a conductive agent
  • the material forming the core core includes a ceramic material.
  • the liquid phase coating method includes the following steps:
  • Solvent to obtain the ceramic microspheres wherein the ceramic microspheres have a core-shell structure, that is, include a shell layer and a core core, and the material forming the shell layer includes a thermosensitive polymer and a conductive agent to form the core
  • the material of the core includes a ceramic material.
  • the solvent is selected from cresol, benzene, nitrobenzene, trichloroacetic acid, chlorophenol, toluene, xylene, tetrachloroethane, styrene, isopropane, chloroform, carbon tetrachloride, and methyl ethyl ketone.
  • the solid phase coating method includes the following steps:
  • the material that forms the shell layer and the material that forms the core are solid-phase coated by stirring, ball milling, and mechanical fusion, and then heated to the temperature of the heat-sensitive zone of the thermosensitive polymer.
  • the material that forms the shell layer is the material that forms the core.
  • a coating layer is formed on the surface.
  • the mixed system of the coating layer of the diaphragm of the present invention also includes a conductive microsphere.
  • the conductive microsphere has a core-shell structure, that is, it includes a shell layer and a core.
  • the material forming the shell layer includes a thermosensitive polymer
  • the material forming the core includes a conductive material.
  • the mass ratio of the shell layer to the core core is (0.5-640): (50-80).
  • the thickness of the shell layer is 1 nm-2000 nm.
  • the thickness of the shell layer is 1 nm, 10 nm, 50 nm, 100 nm, 200 nm, 500 nm, 1000 nm, or 2000 nm.
  • the average particle size of the conductive microspheres is 0.01 ⁇ m-10 ⁇ m.
  • it is 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m, or 10 ⁇ m.
  • the thermosensitive polymer is selected from thermoplastic polymers that can form a relatively stable system with the electrolyte and have phase change properties.
  • the heat-sensitive temperature range of the heat-sensitive polymer is, for example, 100°C-140°C.
  • the heat-sensitive polymer is selected from polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polyethylene naphthalate, poly At least one of imide, polyamide, aramid, polyparaphenylene series, etc. or a polymer modified and copolymerized with its monomers.
  • the particle size of the conductive material is 0.01 ⁇ m-8 ⁇ m.
  • they are 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 4 ⁇ m, 5 ⁇ m, 8 ⁇ m.
  • the conductive material is an electron acceptor doped and/or undoped polymer material.
  • an electron acceptor doped polymer material, an electron acceptor undoped polymer material, or a mixture of an electron acceptor doped polymer material and an electron acceptor undoped polymer material preferably an electron acceptor doped polymer material, or A mixture of an electron acceptor doped polymer material and an electron acceptor undoped polymer material.
  • the mass content of the electron acceptor may generally be 20-50% by weight.
  • the doping method is, for example, gas phase doping, liquid phase doping, electrochemical doping, photoinitiated doping, or ion implantation.
  • the electron acceptor is selected from chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), iodine chloride (ICl), iodine bromide (IBr), iodine trichloride (ICl 3 ), Iodine pentafluoride (IF 5 ), phosphorus pentafluoride (PF 5 ), arsenic (As), antimony pentafluoride (SbF 5 ), boron trifluoride (BF 3 ), boron trichloride (BCl 3 ), Boron tribromide (BBr 3 ), sulfur trioxide (SO 3 ), hydrogen fluoride (HF), hydrogen chloride (HCl), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), perchloric acid (HClO 4 ), fluorine Sulfonic acid (FSO 3 H), chlorosulfonic acid (ClSO 3 H), perfluoromethane
  • the polymeric material is selected from polyacetylene, poly(p-phenylene sulfide), poly(p-phenylene), polyaniline, polypyrrole, polythiophene, pyrolyzed polyacrylonitrile, pyrolyzed polyvinyl alcohol, pyrolyzed polyimide, Polynaphthalene system polymer, polyethylene, polypropylene, polyvinyl chloride, polystyrene, epoxy resin, (meth)acrylate resin, unsaturated polyester, polyurethane, polyimide, silicone resin, butyl At least one of rubber, styrene butadiene rubber, nitrile rubber, and natural rubber.
  • the surface heat-sensitive polymer melts and releases the internal conductive material.
  • the internal conductive material has good conductivity and part of the conductive material can Dissolve in the electrolyte to form a chain-shaped conductive channel, and the electrons can continue to be conducted, that is, a micro short circuit is formed inside the lithium-ion battery, which slows down the thermal runaway of the lithium-ion battery.
  • the present invention also provides a method for preparing the above-mentioned conductive microspheres, and the method includes the following steps:
  • the shell-forming material including the heat-sensitive polymer is coated on the surface of the core-forming material including the conductive material to prepare the conductive microspheres; wherein
  • the conductive microsphere has a core-shell structure, that is, includes a shell layer and a core.
  • the material forming the shell layer includes a thermosensitive polymer, and the material forming the core includes a conductive material.
  • the liquid phase coating method includes the following steps:
  • the conductive microspheres Dissolve the material forming the shell layer in a solvent by stirring to form a solution containing the material forming the shell layer; add the core-forming material to the aforementioned solution, stir and mix uniformly; remove the mixed system by vacuum heating or spray drying, etc.
  • the conductive microspheres wherein the conductive microspheres have a core-shell structure, that is, include a shell layer and a core, the material forming the shell layer includes a thermosensitive polymer, and the material forming the core core Including conductive materials.
  • the solvent is selected from the group consisting of cresol, benzene, methyl ethyl ketone, nitrobenzene, trichloroacetic acid, chlorophenol, toluene, xylene, tetrachloroethane, styrene, isopropane, chloroform and carbon tetrachloride At least one.
  • the solid phase coating method includes the following steps:
  • the material that forms the shell layer and the material that forms the core are solid-phase coated by stirring, ball milling, and mechanical fusion, and then heated to the temperature of the heat-sensitive zone of the thermosensitive polymer.
  • the material that forms the shell layer is the material that forms the core.
  • a coating layer is formed on the surface.
  • the present invention also provides a diaphragm.
  • the diaphragm includes a diaphragm base layer and a coating layer on at least one side surface of the diaphragm base layer.
  • the above-mentioned hybrid system of ceramic microspheres is obtained by coating at least one side surface of the diaphragm base layer.
  • the coating layer has a thickness of 1-10 ⁇ m, for example, 2-5 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m.
  • the thickness of the coating layer can be obtained by one coating or multiple coatings.
  • the thickness of the coating layers on both sides of the base layer is the same or different.
  • the mixing system further includes at least one of a polymer binder and an auxiliary agent.
  • the mixed system also includes a polymer binder and auxiliary agents.
  • the mass parts of each component in the mixed system are as follows:
  • the mass parts of each component in the mixed system are as follows:
  • the parts by mass of the aforementioned conductive microspheres are 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 or 60 parts by mass.
  • the mass parts of the above-mentioned ceramic microspheres are 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170 or 180 parts by mass.
  • the parts by mass of the above-mentioned polymer binder are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18 or 20 parts by mass.
  • the parts by mass of the aforementioned auxiliary agent are 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 parts by mass.
  • the mixing system further includes 100-5000 parts by mass of solvent.
  • the polymer binder is selected from polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyimide, polyacrylonitrile, poly(methyl) ) Methyl acrylate, aramid resin, poly(meth)acrylic acid, styrene butadiene rubber (SBR), polyvinyl alcohol, polyvinyl acetate, carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose (CMC- Na), carboxyethyl cellulose, polyacrylamide, phenolic resin, epoxy resin, water-based polyurethane, ethylene-vinyl acetate copolymer, polyacrylic copolymer, lithium polystyrene sulfonate, water-based silicone resin, butyronitrile -One or more combinations of polyvinyl chloride blends, styrene-acrylic latex, pure benzene late
  • the auxiliary agent is selected from the group consisting of multi-branched alcohols, triethyl phosphate, polyethylene glycol, fluorinated polyethylene oxide, polyethylene oxide, stearic acid, dodecyl benzene sulfonate At least one of sodium salt, sodium cetyl sulfonate, fatty acid glyceride, sorbitan fatty acid ester, and polysorbate.
  • the solvent is selected from water, methanol, ethanol, acetone, N-methyl-2-pyrrolidone (NMP), chloroform, xylene, tetrahydrofuran, o-chlorobenzaldehyde, hexafluoroisopropyl At least one of alcohol, N,N-dimethylformamide, butanone, and acetonitrile.
  • the present invention also provides a method for preparing the above-mentioned diaphragm, wherein the method includes the following steps:
  • step (b) Coating the mixed slurry of step (a) on the surface of the base layer of the diaphragm, and obtaining the diaphragm after drying.
  • step (a) in the mixed slurry, the quality of the above-mentioned conductive microspheres, the above-mentioned ceramic microspheres, optionally polymer binder, optionally auxiliary agent and solvent
  • step (a) in the mixed slurry, the quality of the above-mentioned conductive microspheres, the above-mentioned ceramic microspheres, optionally polymer binder, optionally auxiliary agent and solvent
  • the number of copies is as follows:
  • the mass parts of each component in the mixed system are as follows:
  • the coating method is, for example, spray coating, dip coating, gravure printing, extrusion coating, transfer coating, and the like.
  • the porosity of the diaphragm base layer is 20%-80%, the thickness is 5 ⁇ m-50 ⁇ m, and the pore size is D ⁇ 80nm;
  • the material system of the diaphragm base layer is selected From polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polynaphthalene system polymer, polyimide, polyamide, aramid and polyparaphenylene At least one of benzodiazole and the like.
  • the diaphragm when the temperature reaches the thermal sensitive range of 100°C to 140°C, the diaphragm has thermal blocking lithium ion conduction and thermal electronic conduction performance. As shown in Figure 4, the main reason is that the diaphragm contains two kinds of microspheres. When the diaphragm reaches the heat-sensitive area, the surface heat-sensitive polymer begins to melt, forming a barrier layer between the ceramic particles that continuously blocks the conduction of lithium ions.
  • the diaphragm forms an internal micro short circuit to improve battery safety.
  • the present invention also provides a lithium ion battery, which includes the above-mentioned separator.
  • the lithium ion battery when the lithium ion battery is at a thermal runaway or temperature sensitive temperature, a micro short circuit is formed inside, and the safety of the lithium ion battery is higher than that of a conventional lithium ion battery.
  • the shell layer is polyethylene terephthalate
  • the core is pyrolyzed polyvinyl alcohol doped with 20wt.% perfluoromethanesulfonic acid (CF 3 SO 3 H); the shell layer and The mass ratio of core to core is 0.5:50, the thickness of the shell layer is 1 nm, and the average particle size of the microspheres is about 0.01 ⁇ m.
  • the shell layer is polyethylene terephthalate and conductive carbon black
  • the core is boehmite
  • the mass ratio of the shell layer to the core is 0.2:50
  • the thickness of the shell layer is 1 nm
  • the average particle size of the microspheres is about 0.01 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the shell layer is polystyrene
  • the core core is polyacetylene doped with 30wt% tungsten hexafluoride (WF 6 ); the mass ratio of the shell layer to the core core is 200:60, and the shell layer is The thickness is 400 nm, and the average particle size of the microspheres is about 10 ⁇ m.
  • the shell layer is polystyrene and conductive agent Ketjen Black
  • the core is zirconium dioxide
  • the mass ratio of the shell layer to the core is 0.32:80
  • the thickness of the shell layer is 1 nm
  • the microspheres The average particle size is about 10 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • thermosensitive polymer coating layer on the surface of the conductive material to obtain microspheres in which the thermosensitive polymer coats the conductive material.
  • the shell layer is polyethylene and polypropylene
  • the core core is polypyrrole and polyaniline doped with 50wt.% tetrachloro-p-benzoquinone
  • the mass ratio of the shell layer to the core core is 640:80
  • the thickness of the shell layer is 2000 nm
  • the average particle size of the microspheres is about 10 ⁇ m.
  • thermosensitive polymer and the conductive agent form a coating layer of the thermosensitive polymer and the conductive agent on the surface of the ceramic material to obtain microspheres in which the thermosensitive polymer and the conductive agent coat the ceramic material.
  • the shell layer is polystyrene and conductive fiber, and the core core is boehmite; the mass ratio of the shell layer to the core core is 12:60, the thickness of the shell layer is 50 nm, and the average particle size of the microspheres is 12:60.
  • the diameter is about 6 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • thermosensitive polymer 33.6g of polyethylene naphthalate and 70g of poly(p-phenylene sulfide) doped with 35wt.% boron tribromide (BBr 3 ) were solid-phase coated by ball milling, and then heated to the heat of the thermosensitive polymer When the temperature is in the sensitive interval, the heat-sensitive polymer forms a heat-sensitive polymer coating layer on the surface of the conductive material to obtain microspheres in which the heat-sensitive polymer coats the conductive material.
  • BBr 3 boron tribromide
  • the shell layer is polyethylene naphthalate
  • the core is poly(p-phenylene sulfide) doped with 35wt.% boron tribromide (BBr 3 ); the quality of the shell layer and the core The ratio is 33.6:70, the thickness of the shell layer is 100 nm, and the average particle size of the microspheres is about 5 ⁇ m.
  • the shell layer is polyethylene naphthalate and the conductive agent acetylene black
  • the core core is boehmite and fluorophlogopite
  • the mass ratio of the shell layer to the core core is 1300:65
  • the shell layer is 1300:65.
  • the thickness of the layer is 5000 nm, and the average particle size of the microspheres is about 20 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the shell is polystyrene
  • the core is polypyrrole doped with 40wt.% titanium tetrachloride (TiCl 4 ); the mass ratio of the shell to the core is 52:65, and the shell
  • TiCl 4 titanium tetrachloride
  • the thickness of the microspheres is 200nm, and the average particle size of the microspheres is about 8 ⁇ m.
  • the shell layer is polystyrene and conductive agent carbon nanotubes
  • the core core is silica and fluoroapatite
  • the mass ratio of the shell layer to the core core is 280:70
  • the thickness of the shell layer At 1000 nm, the average particle size of the microspheres is about 4 ⁇ m.
  • the mixed slurry is obtained after uniform mixing, and the mixed slurry is transferred and coated on the surface of the base layer of the diaphragm, and the diaphragm is obtained after drying.
  • the thickness of the coating layer on the surface of the diaphragm is 8 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • thermosensitive polymer coating layer 300g of polyimide and 75g of polythiophene doped with 25wt.% lanthanum nitrate (La(NO 3 ) 3 ) were solid-phase coated with mechanical stirring, and then heated to the temperature of the thermal sensitive polymer.
  • the sensitive polymer forms a thermosensitive polymer coating layer on the surface of the conductive material to obtain microspheres in which the thermosensitive polymer coats the conductive material.
  • the shell layer is polyimide
  • the core is polythiophene doped with 25wt.% lanthanum nitrate (La(NO 3 ) 3 ); the mass ratio of the shell layer to the core core is 300:75, The thickness of the shell layer is 1000 nm, and the average particle size of the microspheres is about 5 ⁇ m.
  • Solid phase coating is carried out by mechanical stirring, and then heated to the temperature of the thermal sensitive area of the thermal polymer.
  • the thermal polymer and conductive agent are on the surface of the ceramic material.
  • a coating layer of thermosensitive polymer and conductive agent is formed, and microspheres in which the thermosensitive polymer and conductive agent are coated with ceramic material are obtained.
  • the shell layer is polyimide and conductive agent graphene
  • the core core is silicon dioxide, aluminum oxide and boehmite
  • the mass ratio of the shell layer to the core core is 240:60
  • the thickness of the shell layer is 1000 nm
  • the average particle size of the microspheres is about 5 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the shell layer is polystyrene
  • the core core is polythiophene doped with 30wt.% silver tetrafluoroborate (AgBF 4 ); the mass ratio of the shell layer to the core core is 120:60, and the shell layer
  • the thickness of the microspheres is 500nm, and the average particle size of the microspheres is about 4 ⁇ m.
  • the shell layer is polystyrene and conductive agent carbon nanotubes
  • the core core is aluminum oxide
  • the mass ratio of the shell layer to the core core is 192:60
  • the thickness of the shell layer is 800 nm.
  • the average particle size of the balls is about 8 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the ceramic microspheres were prepared using the same preparation method as in Example 7.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • AgBF 4 silver tetrafluoroborate
  • the shell layer is polystyrene
  • the core core is polythiophene doped with 30wt.% silver tetrafluoroborate (AgBF 4 ); the mass ratio of the shell layer to the core core is 90:3, and the shell layer
  • the thickness of the microspheres is 500nm, and the average particle size of the microspheres is about 4 ⁇ m.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • Lithium-ion battery cells are prepared by laminating or winding the above-mentioned separator with the positive electrode and negative electrode, and a high-safety lithium-ion battery is obtained after baking, liquid injection, formation, and packaging.
  • the lithium ion batteries prepared in Examples 1-7 and Comparative Examples 1-5 were subjected to a full-charge voltage test and an internal resistance test at room temperature. The test process was to combine the lithium ion batteries prepared in Examples 1-7 and Comparative Examples 1-5. After the battery is fully charged, it is placed in an environment of 25°C and 50% humidity, and the voltage and internal resistance of the battery in the fully charged state are tested with a voltage internal resistance meter (Amber-Applent, model AT526B). The results are shown in Table 1.
  • Examples 1-7 conductive microspheres and ceramic microspheres of conductive materials coated with thermosensitive polymers were applied in the separator and assembled into lithium ion batteries.
  • Table 1 it is known that Examples 1-7, Comparative Example 1, The voltage of the lithium-ion battery prepared in Comparative Example 3-4 is normal after sorting. The data shows that the addition of conductive microspheres and ceramic particles will not affect the full-charge average voltage and internal resistance of the lithium-ion battery; Comparative Example 2, Comparative Example 5 After the prepared lithium ion batteries are sorted, there is a phenomenon of low or zero voltage, which is mainly due to the direct addition of conductive materials to the separator coatings of Comparative Example 2 and Comparative Example 5, resulting in a micro short circuit inside the battery cell.
  • the lithium ion batteries prepared in Examples 1-7, Comparative Examples 1, and Comparative Examples 3-4 were subjected to charge-discharge cycle tests. The results are shown in Fig. 5, and the test conditions are 25° C., 50% humidity, and 1C/1C charge and discharge.
  • conductive microspheres and ceramic microspheres are coated with thermosensitive polymer and applied in the lithium ion battery separator, which does not affect the internal resistance of the lithium ion battery, does not affect the voltage of the lithium ion battery, and does not affect the lithium ion Battery charge and discharge cycles to meet application requirements.
  • thermosensitive polymer 100°C-140°C
  • heat-sensitive interval of Examples 2, 4, 5, and 7 100°C-120°C
  • heat-sensitive interval of Examples 1, 3, and 6 120 °C-140°C
  • thermosensitive polymer can effectively coat conductive microspheres and ceramic microspheres, and be used in lithium-ion batteries, and meet the requirements of specific application indicators;
  • thermosensitive polymers and conductive materials in lithium-ion batteries will cause internal micro-short circuits
  • Comparative Example 1 contains thermosensitive polymer coated ceramic microspheres, which can effectively block the passage of lithium ions and electrons;
  • Examples 1-7 contain thermosensitive polymer coated conductive microspheres and ceramic microspheres.
  • the polymer-coated microspheres can effectively block the passage of lithium ions in the heat-sensitive interval.
  • the lithium ion batteries prepared in Examples 1-7, Comparative Examples 1, and Comparative Examples 3-4 were subjected to puncture and extrusion tests.
  • the test process was to charge and discharge the fully charged cells obtained after charging and discharging the lithium ion batteries at 140°C for 10 minutes. , Cool to room temperature and perform puncture, squeeze and drop experiments to observe the battery condition. The results are shown in Table 3.
  • Examples 1-7 can pass the puncture, squeeze, and drop safety tests of lithium batteries under these conditions, effectively improving the safety performance of lithium ion batteries;
  • Comparative Example 1 and Comparative Example 4 are not very high. Although it can improve the safety, the improvement performance is limited;
  • Comparative Example 3 cannot be used for puncture, squeeze, and drop tests, and the safety of lithium-ion batteries is poor;
  • the lithium-ion batteries prepared in Examples 1-7, Comparative Examples 1, and Comparative Examples 3-4 were subjected to dynamic voltage testing.
  • the test process was to charge and discharge the lithium-ion batteries to fully charge the cells, and then heat up at a heating rate of 2°C/min. , And continuously test the battery voltage and battery status during the temperature rise process, as shown in Figure 6.
  • the heat-sensitive temperature range of the heat-sensitive microspheres in Examples 1, 3, and 6 is 120°C-140°C
  • the heat-sensitive temperature range of the heat-sensitive microspheres in Examples 2, 4, 5, and 7 is 100°C-120. °C, when the heat-sensitive polymer-coated conductive microspheres and ceramic microspheres reach the heat-sensitive range, the surface heat-sensitive polymer begins to melt, and the rupture of the microspheres causes an electronic short circuit inside the battery and blocks the passage of lithium ions, resulting in battery voltage Decrease and slow down battery thermal runaway;
  • comparative example 3 uses thermosensitive polymer to coat ceramic microspheres. When the temperature reaches the thermosensitive range, the thermosensitive polymer on the surface of the ceramic microspheres begins to melt and form a continuous barrier layer , The barrier layer can effectively increase the thermal runaway temperature of lithium-ion batteries, but it cannot improve the degree of thermal runaway of lithium-ion batteries;
  • the heat-sensitive polymer coats the conductive microspheres and ceramic microspheres, and the heat-sensitive polymer on the surface begins to melt and form a continuous barrier layer.
  • the barrier layer can effectively block the passage of lithium ions and reduce the degree of thermal runaway; at the same time, the barrier layer can form continuous electronic channels due to the conductive agent contained therein, forming a micro short circuit inside the lithium battery, thereby effectively improving the safety performance of the lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本发明提供了一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池。本发明区别于常规锂离子电池隔膜,主要是采用聚合物包覆的方法,制备热敏阻断锂离子和热敏导通电子两种高安全性性能包覆微球——导电微球和陶瓷微球,并将两种高安全性包覆微球应用在锂离子电池隔膜中,该锂离子电池隔膜具有热敏阻断锂离子和热敏导通两项功能,能有效改善锂离子电池的安全性能。

Description

一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池 技术领域
本发明属于微球和锂离子电池技术领域,尤其涉及一种陶瓷微球、具有高安全性的含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池。
背景技术
与传统二次电池相比,锂离子电池具有能量密度高、绿色环保、使用寿命长等优点,目前已经广泛应用于动力电池领域、数码产品及储能等领域。锂离子电池主要由正极材料、负极材料、隔膜和电解液等构成,因锂离子电池材料体系及结构特点,锂离子电池在实际使用过程中,可能会存在导致电池温度升高的情况,同时高温会加速锂离子电池中放热反应速度,从而导致热失控,引起安全事故。目前为改善锂离子安全性能,有研究人员从锂离子动力电池组管理系统、锂离子电池冷却系统、锂离子安全结构等方面进行改善。但是锂离子动力电池组管理系统、锂离子电池冷却系统属于治标不治本,开发锂离子安全结构用材料才能从根本上改善锂离子电池安全问题,目前主要有高安全性隔膜、PTC效应涂层、阻燃电解液等方向。
为改善锂离子电池隔膜的安全性能,有文献中公开了一种电压敏感性隔膜,将含聚(3-癸基-噻吩)的氯仿溶液中加入微晶石墨,机械球磨匀浆,得到隔膜改性浆液,浸渍隔膜,干燥后得到电压敏感性隔膜,该隔膜具有可逆过充保护功能,特别是对磷酸铁锂电池起到有效的可逆过充保护作用,但是该隔膜存在自放电程度较大且电压敏感区间较小,限制了其在高能量密度的动力电池中的应用。还有文献中公开了一种具有热封闭性和优良透气性的隔膜,其采用静电纺丝技术将热敏感材料纺丝于基底膜上,干燥后得到二次电池用安全性隔膜,但是该文献中采用静电纺丝技术,存在成本高、工业化难度大等缺点,限制了其应用。
发明内容
为了改善现有技术的不足,本发明的目的是提供一种含有涂覆层的隔膜及含有该隔膜的锂离子电池,所述涂覆层由包括具有核壳结构的导电微球和具有核壳结构的陶瓷微球的混合体系涂覆得到;所述导电微球和所述陶瓷微球均具 有核壳结构,即包括壳层和核芯;所述导电微球中,形成所述壳层的材料包括热敏聚合物,形成所述核芯的材料包括导电材料;所述陶瓷微球中,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
所述隔膜的涂覆层中,陶瓷微球和导电微球堆积形成堆积层。在锂离子电池受热达到热敏温度区间时,导电微球中热敏聚合物发生相变而释放出内部包覆的导电材料,该导电材料在锂离子电池内部形成微短路,降低锂离子电池电量,改善锂离子电池的安全性能;同时,陶瓷微球表面热敏聚合物开始融化,在所述堆积层中形成连续的阻断层,该阻断层主要由热敏聚合物与导电剂构成,具有阻断锂离子传输、导通电子的作用,能有效改善锂离子电池的安全性能。
为实现上述目的,本发明采用以下的技术解决方案:
一种陶瓷微球,其中,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
根据本发明,所述陶瓷微球可以用于锂离子电池领域,也可以用于半导体领域、涂料领域、其他离子体系的一次电池或二次电池领域。
上述的陶瓷微球的制备方法,其中,所述方法包括如下步骤:
采用液相包覆法或固相包覆法,将包括热敏聚合物和导电剂的形成壳层的材料包覆在包括陶瓷材料的形成核芯的材料表面,制备得到所述陶瓷微球;其中,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
一种隔膜,其中,所述隔膜包括隔膜基层和位于隔膜基层至少一侧表面的涂覆层,所述涂覆层由包括导电微球和上述的陶瓷微球的混合体系在隔膜基层至少一侧表面涂覆得到。
上述的隔膜的制备方法,其中,所述方法包括如下步骤:
(a)将上述导电微球、上述陶瓷微球、任选地聚合物粘结剂和任选地助剂加入到溶剂中,混合,得到混合浆料;
(b)将步骤(a)的混合浆料涂覆在隔膜基层表面,经干燥后得到所述隔膜。
一种锂离子电池,所述锂离子电池包括上述的隔膜。
本发明的有益效果:
本发明提供了一种陶瓷微球、具有高安全性的含有导电微球和该陶瓷微球的隔膜及含有该隔膜的锂离子电池。本发明区别于常规锂离子电池隔膜,主要是采用聚合物包覆的方法,分别制备热敏阻断锂离子和热敏导通电子两种高安全性性能包覆微球——导电微球和陶瓷微球,并将两种高安全性包覆微球应用在锂离子电池隔膜中,该锂离子电池隔膜具有热敏阻断锂离子和热敏导通两项功能,能有效改善锂离子电池的安全性能。
本发明采用耐溶剂、耐电解液、热敏性能的聚合物作为包覆层制备两种包覆微球。所述聚合物材料具有热敏性且热敏区间温度为100℃-140℃,该包覆层聚合物材料与常规溶剂和电解液稳定,不存在溶解或溶胀。
本发明的两种包覆微球,一种为具有热敏阻断材料包覆陶瓷的微球,即陶瓷微球,其中表面为耐溶剂、耐电解液、热敏性能的聚合物与导电剂复合包覆层,内部为陶瓷材料;另外一种为具有热敏阻断材料包覆导电材料的微球,即导电微球,其中表面为耐溶剂、耐电解液、热敏性能的聚合物,内部为导电材料。两种微球与粘结剂、助剂等混合后,喷涂、浸涂、凹版印刷、挤压涂覆、转移涂覆在隔膜基材表面制备功能性隔膜,不需要引入过多的工序流程且无需增加额外的涂层,能有效减少两种微球导入对锂离子电池性能影响和锂离子电池加工成本。
另外,包括所述两种包覆微球的隔膜应用在锂离子电池中,在锂离子电池处于高温或热失控温度达到热敏区间时,陶瓷微球表面的热敏聚合物包覆层开始融化并形成连续、阻断锂离子、导通电子的复合阻断层,该复合阻断层为热敏聚合物和导电剂组成;同时导电微球表面的热敏聚合物包覆层受热,当温度达到热敏区间时,表面聚合物融化,并释放出内部导电材料,在锂离子电池内部形成微短路,能有效改善锂离子电池的安全性能。
本发明制备的锂离子隔膜,具有热敏阻断锂离子通过和热敏导通电子双重功效,与常规单一热敏材料阻断相比,本发明能更快阻断正负极,有效控制热失控,同时内部发生微短路,能有效减缓热失控,提升锂离子电池安全性能。
与此同时,本发明可以通过筛选微球包覆层的聚合物种类、控制包覆层厚度等条件,制备出功能性包覆微球,该包覆微球能直接导入现有隔膜制备体系,并应用于锂离子电池中且对锂离子电池性能影响较少,在锂离子电池安全领域 具有良好的应用潜力。
附图说明
图1为本发明中所述导电微球的结构示意图;其中,“热敏聚合物包覆层”指所述导电微球的壳层,形成所述壳层的材料包括热敏聚合物;“导电材料”指所述导电微球的核芯,形成所述核芯的材料包括导电材料。
图2为本发明中所述陶瓷微球的结构示意图;其中,“热敏聚合物包覆层”指所述陶瓷微球的壳层,形成所述壳层的材料包括热敏聚合物和导电剂;“陶瓷颗粒”指所述陶瓷微球的核芯,形成所述核芯的材料包括陶瓷材料。
图3为本发明一个优选方案所述的隔膜的结构示意图;其中,“功能微球”指本发明的导电微球。
图4为本发明一个优选方案所述达到热敏区间的隔膜结构示意图;其中,“功能微球”指本发明的导电微球。
图5为实施例1-7和对比例1、对比例3-4的电池的充放电循环性能图。
图6为实施例1-7和对比例1、对比例3-4的电池的测试温升过程中电池电压情况。
具体实施方式
[陶瓷微球]
如前所述,本发明提供一种陶瓷微球,如图2所示,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
所述陶瓷微球可以用于锂离子电池领域,也可以用于半导体领域、涂料领域、其他离子体系的一次电池或二次电池领域。
在本发明的一个优选方案中,所述陶瓷微球中,壳层和核芯的质量比为(0.2~1300):(50~80)。
在本发明的一个优选方案中,所述陶瓷微球中,形成所述壳层的热敏聚合物和导电剂的质量比为(100~1000):(1~10)。
在本发明的一个优选方案中,所述陶瓷微球中,壳层的厚度为1nm-5000nm。例如为1nm、10nm、50nm、100nm、200nm、500nm、1000nm、2000nm、3000nm、 4000nm或5000nm。
在本发明的一个优选方案中,所述陶瓷微球的平均粒径为0.01μm-20μm。例如为0.01μm、0.05μm、0.1μm、0.5μm、1μm、4μm、5μm、8μm、10μm、12μm、15μm、18μm或20μm。
在本发明的一个优选方案中,所述热敏聚合物选自可以与电解液形成相对稳定的体系,且具有相变性能的热塑性聚合物。所述热敏聚合物的热敏温度区间例如为100℃-140℃。示例性地,所述热敏聚合物选自聚乙烯、聚丙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚苯乙烯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚酰胺、芳纶、聚对苯撑系列等或其单体改性共聚的聚合物的至少一种。
在本发明的一个优选方案中,所述陶瓷材料的粒径为0.01μm-20μm。例如为0.01μm、0.05μm、0.1μm、0.5μm、1μm、4μm、5μm、8μm、10μm、12μm、15μm、18μm或20μm。
在本发明的一个优选方案中,所述陶瓷材料选自二氧化硅、三氧化二铝、二氧化锆、氢氧化镁、勃姆石、硫酸钡、氟金云母、氟磷灰石、莫来石、堇青石、钛酸铝、二氧化钛、氧化铜、氧化锌、氮化硼、氮化铝、氮化镁、凹凸棒石等中的至少一种。
在本发明的一个优选方案中,所述导电剂选自导电炭黑、科琴黑、导电纤维、乙炔黑、碳纳米管、石墨烯、鳞片石墨、导电氧化物、金属颗粒等中的至少一种。
在本发明的一个优选方案中,所述陶瓷微球在温度达到热敏区间时,表面热敏聚合物融化,相邻陶瓷颗粒之间被熔化的热敏聚合物形成连续的阻断层阻断,阻断层主要由热敏聚合物和导电剂构成,所述阻断层能够阻断锂离子通过,且仍旧可以导通电子,因此能有效改善锂离子电池安全性。
[陶瓷微球的制备方法]
如前所述,本发明还提供上述陶瓷微球的制备方法,所述方法包括如下步骤:
采用液相包覆法或固相包覆法,将包括热敏聚合物和导电剂的形成壳层的材料包覆在包括陶瓷材料的形成核芯的材料表面,制备得到所述陶瓷微球;其中,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包 括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
示例性地,在采用液相包覆法的情况下,所述液相包覆法包括如下步骤:
将形成壳层的材料通过搅拌方式溶解于溶剂中形成含有形成壳层的材料的溶液;在前述溶液中加入形成核芯的材料,搅拌混合均匀;通过真空加热干燥或喷雾干燥等除去混合体系中的溶剂,得到所述陶瓷微球,其中,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
其中,所述溶剂选自甲酚、苯、硝基苯、三氯醋酸、氯苯酚、甲苯、二甲苯、四氯乙烷、苯乙烯、异丙烷、氯仿、四氯化碳、甲乙酮。
示例性地,在采用固相包覆法的情况下,所述固相包覆法包括如下步骤:
将形成壳层的材料和形成核芯的材料用搅拌、球磨、机械融合方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,形成壳层的材料在形成核芯的材料表面形成包覆层。
[导电微球]
如前所述,本发明的隔膜的涂覆层的混合体系中还包括一种导电微球,具体的,如图1所示,所述导电微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物,形成所述核芯的材料包括导电材料。
在本发明的一个优选方案中,所述导电微球中,壳层和核芯的质量比为(0.5-640):(50-80)。
在本发明的一个优选方案中,所述导电微球中,壳层的厚度为1nm-2000nm。例如为1nm、10nm、50nm、100nm、200nm、500nm、1000nm或2000nm。
在本发明的一个优选方案中,所述导电微球的平均粒径为0.01μm-10μm。例如为0.01μm、0.05μm、0.1μm、0.5μm、1μm、4μm、5μm、8μm或10μm。
在本发明的一个优选方案中,所述热敏聚合物选自可以与电解液形成相对稳定的体系,且具有相变性能的热塑性聚合物。所述热敏聚合物的热敏温度区间例如为100℃-140℃。示例性地,所述热敏聚合物选自聚乙烯、聚丙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚苯乙烯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚酰胺、芳纶、聚对苯撑系列等或其单体改性共聚的聚合物的至少一种。
在本发明的一个优选方案中,所述导电材料的粒径为0.01μm-8μm。例如为 0.01μm、0.05μm、0.1μm、0.5μm、1μm、4μm、5μm、8μm。
在本发明的一个优选方案中,所述导电材料为电子受体掺杂和/或不掺杂的聚合材料。例如为电子受体掺杂聚合材料、电子受体不掺杂聚合材料、或电子受体掺杂聚合材料与电子受体不掺杂聚合材料的混合物;优选为电子受体掺杂聚合材料、或电子受体掺杂聚合材料与电子受体不掺杂聚合材料的混合物。
具体地,电子受体掺杂聚合材料中,电子受体的质量含量一般可以为20wt%-50wt%。
其中,所述掺杂方法例如为气相掺杂、液相掺杂、电化学掺杂、光引发掺杂或离子注入法。
其中,所述电子受体选自氯(Cl 2)、溴(Br 2)、碘(I 2)、氯化碘(ICl)、溴化碘(IBr)、三氯化碘(ICl 3)、五氟化碘(IF 5)、五氟化磷(PF 5)、砷(As)、五氟化锑(SbF 5)、三氟化硼(BF 3)、三氯化硼(BCl 3)、三溴化硼(BBr 3)、三氧化硫(SO 3)、氟化氢(HF)、氯化氢(HCl)、硝酸(HNO 3)、硫酸(H 2SO 4)、高氯酸(HClO 4)、氟磺酸(FSO 3H)、氯磺酸(ClSO 3H)、全氟甲磺酸(CF 3SO 3H)、氟化钽(TaF 5)、六氟化钨(WF 6)、五氟化铋(BiF 5)、四氯化钛(TiCl 4)、四氯化锆(ZrCl 4)、五氯化钼(MoCl 5)、三氯化铁(FeCl 3)、氯酸银(AgClO 3)、四氟硼酸银(AgBF 4)、氯铱酸(H 2IrCl 6)、硝酸镧(La(NO 3) 3)、硝酸铈(Ce(NO 3) 3)、四氰基乙烯(TCNE)、四氰代二次甲基苯醌(TCNQ)、四氯对苯醌和二氯二氰代苯醌(DDQ)等中的至少一种。
其中,所述聚合材料选自聚乙炔、聚对苯硫醚、聚对苯撑、聚苯胺、聚吡咯、聚噻吩、热解聚丙烯腈、热解聚乙烯醇、热解聚酰亚胺、聚萘体系聚合物、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、环氧树脂、(甲基)丙烯酸酯树脂、不饱和聚酯、聚氨酯、聚酰亚胺、有机硅树脂、丁基橡胶、丁苯橡胶、丁腈橡胶和天然橡胶等中的至少一种。
在本发明的一个优选方案中,所述导电微球在温度达到热敏区间时,表面热敏聚合物融化,释放出内部的导电材料,内部的导电材料具有良好的导电性且部分导电材料能在电解液中溶解,形成链状导电通道,电子可以继续被导通,即在锂离子电池内部形成微短路,减缓锂离子电池热失控程度。
[导电微球的制备方法]
本发明还提供上述导电微球的制备方法,所述方法包括如下步骤:
采用液相包覆法或固相包覆法,将包括热敏聚合物的形成壳层的材料包覆在包括导电材料的形成核芯的材料表面,制备得到所述导电微球;其中,所述导电微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物,形成所述核芯的材料包括导电材料。
示例性地,采用液相包覆法的情况下,所述液相包覆法包括如下步骤:
将形成壳层的材料通过搅拌方式溶解于溶剂中形成含有形成壳层的材料的溶液;在前述溶液中加入形成核芯的材料,搅拌混合均匀;通过真空加热干燥或喷雾干燥等除去混合体系中的溶剂,得到所述导电微球,其中,所述导电微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物,形成所述核芯的材料包括导电材料。
其中,所述溶剂选自甲酚、苯、丁酮、硝基苯、三氯醋酸、氯苯酚、甲苯、二甲苯、四氯乙烷、苯乙烯、异丙烷、氯仿和四氯化碳中的至少一种。
示例性地,采用固相包覆法的情况下,所述固相包覆法包括如下步骤:
将形成壳层的材料和形成核芯的材料用搅拌、球磨、机械融合方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,形成壳层的材料在形成核芯的材料表面形成包覆层。
[隔膜]
如前所述,本发明还提供一种隔膜,如图3所示,所述隔膜包括隔膜基层和位于隔膜基层至少一侧表面的涂覆层,所述涂覆层由包括上述导电微球和上述陶瓷微球的混合体系在隔膜基层至少一侧表面涂覆得到。
在本发明的一个优选方案中,所述涂覆层的厚度为1-10μm,例如为2-5μm,如1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm,所述厚度的涂覆层可以是一次涂覆得到的,也可以是多次涂覆得到的。
在本发明的一个优选方案中,若所述隔膜包括隔膜基层和位于隔膜基层两侧表面的涂覆层,则两侧表面的涂覆层的厚度相同或不同。
在本发明的一个优选方案中,所述混合体系中还包括聚合物粘结剂和助剂中的至少一种。例如,所述混合体系中还包括聚合物粘结剂和助剂。
在本发明的一个优选方案中,所述混合体系中各组分的质量份数如下所示:
5-60质量份的上述导电微球、20-180质量份的陶瓷微球、0-20质量份的聚合物粘结剂和0-10质量份的助剂。
例如,所述混合体系中各组分的质量份数如下所示:
5-40质量份的上述导电微球、20-150质量份的陶瓷微球、1-20质量份聚合物粘结剂和1-10质量份助剂。
示例性地,上述导电微球的质量份为5、10、15、20、25、30、35、40、45、50、55或60质量份。
示例性地,上述陶瓷微球的质量份为20、25、30、35、40、45、50、55、60、70、80、90、100、110、120、130、140、150、160、170或180质量份。
示例性地,上述聚合物粘结剂的质量份为1、2、3、4、5、6、7、8、9、10、12、15、18或20质量份。
示例性地,上述助剂的质量份为1、2、3、4、5、6、7、8、9或10质量份。
在本发明的一个优选方案中,所述混合体系还包括100-5000质量份的溶剂。
在本发明的一个优选方案中,所述聚合物粘结剂选自聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、聚酰亚胺、聚丙烯腈、聚(甲基)丙烯酸甲酯、芳纶树脂、聚(甲基)丙烯酸、丁苯橡胶(SBR)、聚乙烯醇、聚醋酸乙烯酯、羧甲基纤维素(CMC)、羧甲基纤维素钠(CMC-Na)、羧乙基纤维素、聚丙烯酰胺、酚醛树脂、环氧树脂、水性聚氨酯、乙烯-醋酸乙烯共聚物、多元丙烯酸类共聚物、聚苯乙烯磺酸锂、水性有机硅树脂、丁腈-聚氯乙烯共混物、苯丙乳胶、纯苯乳胶等及由前述聚合物改性衍生的共混、共聚聚合物中的一种或多种组合。
在本发明的一个优选方案中,所述助剂选自多支链醇、磷酸三乙酯、聚乙二醇、氟化聚氧化乙烯、聚氧化乙烯、硬脂酸、十二烷基苯磺酸钠、十六烷基磺酸钠、脂肪酸甘油酯,山梨坦脂肪酸酯和聚山梨酯中的至少一种。
在本发明的一个优选方案中,所述溶剂选自水、甲醇、乙醇、丙酮、N-甲基-2-吡咯烷酮(NMP)、氯仿、二甲苯、四氢呋喃、邻氯苯甲醛、六氟异丙醇、N,N-二甲基甲酰胺、丁酮和乙腈中的至少一种。
[隔膜的制备方法]
本发明还提供上述隔膜的制备方法,其中,所述方法包括如下步骤:
(a)将上述导电微球、上述陶瓷微球、任选地聚合物粘结剂和任选地助剂加入到溶剂中,混合,得到混合浆料;
(b)将步骤(a)的混合浆料涂覆在隔膜基层表面,经干燥后得到所述隔 膜。
在本发明的一个优选方案中,步骤(a)中,所述混合浆料中,上述导电微球、上述陶瓷微球、任选地聚合物粘结剂、任选地助剂和溶剂的质量份数如下所示:
5-60质量份的上述导电微球、20-180质量份的陶瓷微球、0-20质量份的聚合物粘结剂、0-10质量份的助剂和100-5000质量份溶剂。
例如,所述混合体系中各组分的质量份数如下所示:
5-40质量份的上述导电微球、20-150质量份的陶瓷微球、1-20质量份聚合物粘结剂、1-10质量份助剂和100-5000质量份溶剂。
在本发明的一个优选方案中,步骤(b)中,所述涂覆的方式例如为喷涂、浸涂、凹版印刷、挤压涂覆、转移涂覆等。
在本发明的一个优选方案中,步骤(b)中,所述隔膜基层的孔隙率为20%-80%、厚度为5μm-50μm、孔径大小为D<80nm;所述隔膜基层的材料体系选自聚乙烯、聚丙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚苯乙烯、聚萘体系聚合物、聚酰亚胺、聚酰胺、芳纶和聚对苯撑苯并二唑等中的至少一种。
在本发明的一个优选方案中,所述隔膜在温度达到热敏区间100℃-140℃时,具有热敏阻断锂离子导通和热敏电子导通性能。如图4所示,主要是由于隔膜中含有两种的微球,在隔膜达到热敏区间时,表面热敏聚合物开始熔融,在陶瓷颗粒之间形成连续阻断锂离子导通的阻隔层,阻断正负极持续热失控,同时热敏包覆层的热敏聚合物熔融且释放出内部导电材料,所述导电材料能进入隔膜孔道且部分导电材料能溶于电解液形成电子导通隔膜,形成内部微短路,改善电池安全。
[锂离子电池]
如前所述,本发明还提供一种锂离子电池,所述锂离子电池包括上述的隔膜。
在本发明的一个优选方案中,所述锂离子电池在处于热失控或热敏温度时,内部形成微短路,该锂离子电池的安全性高于常规锂离子电池。
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当 理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
将0.5g聚对苯二甲酸乙二酯通过搅拌方式溶解于甲酚中,形成混合溶液,加入50g掺杂20wt.%全氟甲磺酸(CF 3SO 3H)的热解聚乙烯醇,搅拌混合均匀后,通过喷雾干燥技术除去混合物中的溶剂,得到热敏聚合物包覆导电材料的微球。
制备得到的导电微球中,壳层为聚对苯二甲酸乙二酯,核芯为掺杂20wt.%全氟甲磺酸(CF 3SO 3H)的热解聚乙烯醇;壳层和核芯的质量比为0.5:50,壳层的厚度为1nm,微球的平均粒径约为0.01μm。
将0.2g聚对苯二甲酸乙二酯及导电炭黑(其中热敏聚合物:导电炭黑的质量比=100:1)通过搅拌方式溶解于甲酚中,形成混合溶液,加入50g勃姆石,搅拌混合均匀后,通过喷雾干燥技术除去混合物中的溶剂,得到热敏聚合物和导电剂包覆陶瓷的微球。
制备得到的陶瓷微球中,壳层为聚对苯二甲酸乙二酯及导电炭黑,核芯为勃姆石;壳层和核芯的质量比为0.2:50,壳层的厚度为1nm,微球的平均粒径约为0.01μm。
将10g上述制备得到的导电微球、180g上述制备得到的陶瓷微球、1g聚偏氟乙烯-六氟丙烯和1g聚乙二醇加入到100g丙酮中,均匀混合后得到混合浆料,将混合浆料喷涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为1μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例2
将200g聚苯乙烯通过搅拌方式溶解于苯中,形成混合溶液,加入60g掺杂30wt%六氟化钨(WF 6)的聚乙炔,搅拌混合均匀后,通过喷雾干燥技术除去混 合物中的溶剂,得到热敏聚合物包覆导电材料的微球。
制备得到的导电微球中,壳层为聚苯乙烯,核芯为掺杂30wt%六氟化钨(WF 6)的聚乙炔;壳层和核芯的质量比为200:60,壳层的厚度为400nm,微球的平均粒径约为10μm。
将0.32g聚苯乙烯及导电剂科琴黑(其中热敏聚合物:导电剂科琴黑的质量比=1000:1)通过搅拌方式溶解于苯中,形成混合溶液,加入80g二氧化锆,搅拌混合均匀后,通过喷雾干燥技术除去混合物中的溶剂,得到热敏聚合物和导电剂包覆陶瓷的微球。
制备得到的陶瓷微球中,壳层为聚苯乙烯及导电剂科琴黑,核芯为二氧化锆;壳层和核芯的质量比为0.32:80,壳层的厚度为1nm,微球的平均粒径约为10μm。
将60g上述制备得到的导电微球、80g上述制备得到的陶瓷微球、20g聚偏氟乙烯和10g十六烷基磺酸钠加入到5000gN-甲基-2-吡咯烷酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为10μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例3
将240g聚乙烯、400g聚丙烯和40g掺杂50wt.%四氯对苯醌的聚吡咯、40g聚苯胺用球磨方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,热敏聚合物在导电材料表面形成热敏聚合物包覆层,得到热敏聚合物包覆导电材料的微球。
制备得到的导电微球中,壳层为聚乙烯和聚丙烯,核芯为掺杂50wt.%四氯对苯醌的聚吡咯和聚苯胺;壳层和核芯的质量比为640:80,壳层的厚度为2000nm,微球的平均粒径约为10μm。
将12g聚苯乙烯及导电纤维(其中热敏聚合物:导电纤维的质量比=10:1)和60g勃姆石,用球磨方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,热敏聚合物和导电剂在陶瓷材料表面形成热敏聚合物和导电剂的包覆层,得到热敏聚合物和导电剂包覆陶瓷材料的微球。
制备得到的陶瓷微球中,壳层为聚苯乙烯及导电纤维,核芯为勃姆石;壳层和核芯的质量比为12:60,壳层的厚度为50nm,微球的平均粒径约为6μm。
将50g上述制备得到的导电微球、20g上述制备得到的陶瓷微球、2g聚偏氟乙烯-六氟丙烯、1g聚甲基丙烯酸甲酯和9g聚氧化乙烯加入到2000g丙酮中,均匀混合后得到混合浆料,将混合浆料凹版印刷在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为10μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例4
将33.6g聚萘二甲酸乙二醇酯和70g掺杂35wt.%三溴化硼(BBr 3)的聚对苯硫醚用球磨方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,热敏聚合物在导电材料表面形成热敏聚合物包覆层,得到热敏聚合物包覆导电材料的微球。
制备得到的导电微球中,壳层为聚萘二甲酸乙二醇酯,核芯为掺杂35wt.%三溴化硼(BBr 3)的聚对苯硫醚;壳层和核芯的质量比为33.6:70,壳层的厚度为100nm,微球的平均粒径约为5μm。
将1300g聚萘二甲酸乙二醇酯及导电剂乙炔黑(其中热敏聚合物:乙炔黑的质量比=100:1)和65g勃姆石及氟金云母(其中勃姆石:氟金云母的质量比=11:1)用球磨方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,热敏聚合物和导电剂在陶瓷材料表面形成热敏聚合物和导电剂的包覆层,得到热敏聚合物和导电剂包覆陶瓷材料的微球。
制备得到的陶瓷微球中,壳层为聚萘二甲酸乙二醇酯及导电剂乙炔黑,核芯为勃姆石及氟金云母;壳层和核芯的质量比为1300:65,壳层的厚度为5000nm,微球的平均粒径约为20μm。
将30g上述制备得到的导电微球、55g上述制备得到的陶瓷微球、5g丁苯橡胶(SBR)和5g羧甲基纤维素钠(CMC-Na)和2g十六烷基磺酸钠加入到500g水中,均匀混合后得到混合浆料,将混合浆料挤压涂覆在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为10μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯, 经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例5
将52g聚苯乙烯通过搅拌方式溶解于甲苯中,形成混合溶液,加入65g掺杂40wt.%四氯化钛(TiCl 4)的聚吡咯,搅拌混合均匀后,通过加热干燥技术除去混合物中的溶剂,得到热敏聚合物包覆导电材料的微球。
制备得到的导电微球中,壳层为聚苯乙烯,核芯为掺杂40wt.%四氯化钛(TiCl 4)的聚吡咯;壳层和核芯的质量比为52:65,壳层的厚度为200nm,微球的平均粒径约为8μm。
将280g聚苯乙烯及导电剂碳纳米管(其中热敏聚合物:碳纳米管的质量比=250:1)通过搅拌方式溶解于甲苯中,形成混合溶液,加入70g二氧化硅及氟磷灰石(其中二氧化硅:氟磷灰石的质量比=3:1),搅拌混合均匀后,通过加热干燥技术除去混合物中的溶剂,得到热敏聚合物和导电剂包覆陶瓷材料的微球。
制备得到的陶瓷微球中,壳层为聚苯乙烯及导电剂碳纳米管,核芯为二氧化硅及氟磷灰石,壳层和核芯的质量比为280:70,壳层的厚度为1000nm,微球的平均粒径约为4μm。
将60g上述制备得到的导电微球、30g上述制备得到的陶瓷微球、3g聚丙烯腈、2g聚酰亚胺和8g聚乙二醇加入到1000gN-甲基-2-吡咯烷酮(NMP)中,均匀混合后得到混合浆料,将混合浆料转移涂覆在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例6
将300g聚酰亚胺和75g掺杂25wt.%硝酸镧(La(NO 3) 3)的聚噻吩用机械搅拌方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,热敏聚合物在导电材料表面形成热敏聚合物包覆层,得到热敏聚合物包覆导电材料的微球。
制备得到的微球中,壳层为聚酰亚胺,核芯为掺杂25wt.%硝酸镧(La(NO 3) 3)的聚噻吩;壳层和核芯的质量比为300:75,壳层的厚度为1000nm,微球的平均粒径约为5μm。
将240g聚酰亚胺及导电剂石墨烯(其中热敏聚合物:石墨烯的质量比=200:5)和60g二氧化硅、三氧化二铝及勃姆石(其中二氧化硅:三氧化二铝:勃姆石的质量比=3:1:1)用机械搅拌方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,热敏聚合物和导电剂在陶瓷材料表面形成热敏聚合物和导电剂的包覆层,得到热敏聚合物和导电剂包覆陶瓷材料的微球。
制备得到的陶瓷微球中,壳层为聚酰亚胺及导电剂石墨烯,核芯为二氧化硅、三氧化二铝及勃姆石;壳层和核芯的质量比为240:60,壳层的厚度为1000nm,微球的平均粒径约为5μm。
将40g上述制备得到的导电微球、50g上述制备得到的陶瓷微球、10g聚偏氟乙烯-六氟丙烯、8g聚醋酸乙烯酯和4g磷酸三乙酯加入到1500g丙酮中,均匀混合后得到混合浆料,将混合浆料喷涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为5μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
实施例7
将120g聚苯乙烯通过搅拌方式溶解于丁酮中,形成混合溶液,加入60g掺杂30wt.%四氟硼酸银(AgBF 4)的聚噻吩,搅拌混合均匀后,通过喷雾干燥技术除去混合物中的溶剂,得到热敏聚合物材料包覆导电材料的微球。
制备得到的导电微球中,壳层为聚苯乙烯,核芯为掺杂30wt.%四氟硼酸银(AgBF 4)的聚噻吩;壳层和核芯的质量比为120:60,壳层的厚度为500nm,微球的平均粒径约为4μm。
将192g聚苯乙烯及导电剂碳纳米管(其中热敏聚合物:碳纳米管的质量比=600:4)通过搅拌方式溶解于丁酮中,形成混合溶液,加入60g三氧化二铝,搅拌混合均匀后,通过喷雾干燥技术除去混合物中的溶剂,得到热敏聚合物和导电剂包覆陶瓷材料的微球。
制备得到的陶瓷微球中,壳层为聚苯乙烯及导电剂碳纳米管,核芯为三氧化二铝;壳层和核芯的质量比为192:60,壳层的厚度为800nm,微球的平均粒径约为8μm。
将20g上述制备得到的导电微球、70g上述制备得到的陶瓷微球、15g聚偏氟 乙烯-六氟丙烯和6g聚乙二醇加入到4000g丙酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例1
采用同实施例7的制备方法制备陶瓷微球。
将70g上述制备得到的陶瓷微球、15g聚偏氟乙烯-六氟丙烯和6g聚乙二醇加入到4000g丙酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例2
将13.3g聚苯乙烯、6.7g掺杂30wt.%四氟硼酸银(AgBF 4)的聚噻吩、15g聚偏氟乙烯-六氟丙烯和6g聚乙二醇加入到4000g丙酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例3
将53.3g聚苯乙烯及导电剂碳纳米管(其中热敏聚合物:碳纳米管的质量比=600:4)、16.7g三氧化二铝、15g聚偏氟乙烯-六氟丙烯和6g聚乙二醇加入到4000g丙酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例4
将90g聚苯乙烯通过搅拌方式溶解于丁酮中,形成混合溶液,加入3g掺杂30wt.%四氟硼酸银(AgBF 4)的聚噻吩,搅拌混合均匀后,通过喷雾干燥技术除去混合物中的溶剂,得到热敏聚合物材料包覆导电材料的微球。
制备得到的导电微球中,壳层为聚苯乙烯,核芯为掺杂30wt.%四氟硼酸银(AgBF 4)的聚噻吩;壳层和核芯的质量比为90:3,壳层的厚度为500nm,微球的平均粒径约为4μm。
将20g上述制备得到的导电微球、16.7g三氧化二铝、15g聚偏氟乙烯-六氟丙烯和6g聚乙二醇加入到4000g丙酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
对比例5
将13.3g聚苯乙烯、0.67g掺杂30wt.%四氟硼酸银(AgBF 4)的聚噻吩、53.3g聚苯乙烯及导电剂碳纳米管(其中热敏聚合物:碳纳米管的质量比=600:4)、16.7g三氧化二铝、15g聚偏氟乙烯-六氟丙烯和6g聚乙二醇加入到4000g丙酮中,均匀混合后得到混合浆料,将混合浆料浸涂在隔膜基层表面,经干燥后得到所述隔膜,隔膜表面涂覆层厚度为8μm。
将上述隔膜与正极、负极采用叠片或卷绕等方法,制备锂离子电池电芯,经烘烤、注液、化成、封装后得到高安全锂离子电池。
测试例1
将实施例1-7、对比例1-5制备的锂离子电池进行常温状态下的满电电压测试和内阻测试,测试过程是将实施例1-7、对比例1-5制备的锂离子电池充满电后置于25℃、50%湿度的环境中,用电压内阻仪(安柏-Applent,型号AT526B)测试电池满电状态下的电压和内阻,结果如表1所示。
表1实施例1-7、对比例1-5的锂离子电池的电压测试和内阻测试结果
Figure PCTCN2020115616-appb-000001
Figure PCTCN2020115616-appb-000002
实施例1-7采用热敏聚合物包覆导电材料导电微球和陶瓷微球应用在隔膜中并组装成锂离子电池,通过表1的数据得知,实施例1-7、对比例1、对比例3-4制备的锂离子电池分选后,电压正常,其数据说明导电微球和陶瓷颗粒的加入不会影响锂离子电池的满电平均电压和内阻;对比例2、对比例5制备的锂离子电池分选后,存在低压或零压现象,其主要原因是由于对比例2、对比例5的隔膜涂层中直接添加了导电材料,导致电芯内部微短路。
测试例2
将实施例1-7、对比例1、对比例3-4制备的锂离子电池进行充放电循环测试,结果如图5所示,测试条件为25℃、50%湿度、1C/1C充放电。
通过对比实施例1-7、对比例1、对比例3-4的实验结果,得出以下结论:
1、单纯的将热敏聚合物和导电材料共混,应用在锂离子电池隔膜中,导电材料在锂离子电池内部形成微短路,导致锂离子电池的低压和零压现象,无法进行正常充放电;
2、实施例1-7中采用热敏聚合物包覆导电微球和陶瓷微球并应用在锂离子电池隔膜中,不影响锂离子电池内阻、不影响锂离子电池电压、不影响锂离子电池充放电循环,满足应用需求。
测试例3
将实施例1-7、对比例1-5制备的锂离子电池进行导电性测试,测试过程是将实施例1-7、对比例1-2制备的隔膜于90℃、120℃、140℃温度下分别处理10分钟后,滴加电解液测试隔膜的电子导电性;实施例1-7、对比例1-5制备的锂离子电池于90℃、120℃、140℃温度下分别处理10分钟后,静置至常温后,用电压内 阻仪进行测试锂离子电池的内阻,得到如下表2所示的结果。
表2实施例1-7、对比例1-5制备的锂离子电池进行高温导电性测试结果
Figure PCTCN2020115616-appb-000003
通过上述表2中的数据,对比实施例1-7、对比例1-5的实验结果,得出以下结论:
1、热敏聚合物的热敏区间为100℃-140℃,实施例2、4、5、7的热敏区间为100℃-120℃,实施例1、3、6的热敏区间为120℃-140℃;
2、热敏聚合物能够有效包覆导电微球和陶瓷微球,并应用于锂离子电池中,并满足具体应用指标需求;
3、热敏聚合物和导电材料直接共混应用在锂离子电池中会存在内部微短路现象;
4、对比例1中含有热敏聚合物包覆陶瓷微球,能有效阻断锂离子及电子通过;实施例1-7中含有热敏聚合物包覆导电微球和陶瓷微球,该热敏聚合物包覆的微球,在热敏区间时能有效阻断锂离子通过,陶瓷微球表面有导电剂能够导通电子,基于以上含有实施例1-7隔膜的锂离子电池,具有良好的安全性,可以很好的控制或减缓热失控的发生。
测试例4
将实施例1-7、对比例1、对比例3-4制备的锂离子电池进行穿刺和挤压测试,测试过程是将锂离子电池充放电后得到的满电电芯于140℃处理10min后,冷却至常温进行穿刺、挤压和跌落实验,观察电池情况,结果如表3所示。
表3实施例1-7、对比例1、对比例3-4的锂离子电池进行穿刺和挤压测试结果
样品编号 穿刺 挤压 跌落
实施例1 通过(通过率99%) 通过(通过率97%) 通过(通过率99%)
实施例2 通过(通过率96%) 通过(通过率98%) 通过(通过率98%)
实施例3 通过(通过率97%) 通过(通过率99%) 通过(通过率99%)
实施例4 通过(通过率99%) 通过(通过率99%) 通过(通过率98%)
实施例5 通过(通过率98%) 通过(通过率98%) 通过(通过率99%)
实施例6 通过(通过率99%) 通过(通过率97%) 通过(通过率98%)
实施例7 通过(通过率99%) 通过(通过率99%) 通过(通过率99%)
对比例1 通过(通过率70%) 通过(通过率60%) 通过(通过率72%)
对比例3 热失控起火 热失控起火 不通过
对比例4 通过(通过率55%) 通过(通过率62%) 通过(通过率75%)
通过上述表3中的数据,其结果表明:
1、实施例1-7在该条件下能通过锂电池的穿刺、挤压、跌落安全性测试,有效改善锂离子电池的安全性能;
2、对比例1、对比例4通过率不是很高,虽然能改善安全性,但是改善性能有限;
3、对比例3不能同归穿刺、挤压、跌落测试,锂离子电池安全性差;
综合以上实验数据,得出以下结论:当热敏聚合物包覆导电微球和陶瓷微球,应用在隔膜中,能有效改善锂离子电池的安全性。
测试例5
将实施例1-7、对比例1、对比例3-4制备的锂离子电池进行动态电压测试,测试过程是将锂离子电池充放电后满电电芯,以2℃/min升温速率进行升温,并连续测试温升过程中电池电压情况及电池状态,如图6所示。
从图6中可以看出,比较实施例1-7与对比例1、对比例3-4的实验结果:
1、对比例1满电电池,随着温度的升高从而导致电池电压下降,对比例1在160℃左右电池热失控,发生起火爆炸,其主要原因是随着温度的升高,锂离子电池发生热失控;
2、实施例1、3、6中热敏微球的热敏温度区间为120℃-140℃,实施例2、4、5、7中热敏微球的热敏温度区间为100℃-120℃,热敏聚合物包覆导电微球和陶瓷微球在达到热敏区间时,表面热敏聚合物开始熔融,微球破裂导致电池内部形成电子短路且阻断锂离子通过,从而致使电池电压下降、减缓电池热失控情况;
3、对比例1与对比例3相比,对比例3采用热敏聚合物包覆陶瓷微球,在温 度达到热敏区间时,陶瓷微球表面热敏聚合物开始熔融并形成连续的阻隔层,该阻隔层能有效提高锂离子电池热失控温度,但是并不能改善锂离子电池热失控的程度;
4、实施例1-7在160℃-200℃区间内,未发生起火爆炸现象;
由此可见,实施例1-7在电池达到热敏温度区间时,热敏聚合物包覆导电微球和陶瓷微球,表面热敏聚合物开始熔融并形成连续的阻隔层。该阻隔层能有效阻断锂离子的通过,减少热失控程度;同时该阻隔层由于其中含有导电剂能形成连续电子通道,形成锂电池内部微短路,从而有效改善锂离子电池的安全性能。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种陶瓷微球,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
  2. 根据权利要求1所述的陶瓷微球,其中,所述陶瓷微球中,壳层和核芯的质量比为(0.2~1300):(50~80);
    和/或,所述陶瓷微球中,形成所述壳层的热敏聚合物和导电剂的质量比为(100~1000):(1~10);
    和/或,所述陶瓷微球中,壳层的厚度为1nm-5000nm;
    和/或,所述陶瓷微球中,所述陶瓷微球的平均粒径为0.01μm-20μm。
  3. 权利要求1或2所述的陶瓷微球的制备方法,其中,所述方法包括如下步骤:
    采用液相包覆法或固相包覆法,将包括热敏聚合物和导电剂的形成壳层的材料包覆在包括陶瓷材料的形成核芯的材料表面,制备得到所述陶瓷微球;其中,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料。
  4. 根据权利要求3所述的制备方法,其中,采用液相包覆法的情况下,所述液相包覆法包括如下步骤:
    将形成壳层的材料通过搅拌方式溶解于溶剂中形成含有形成壳层的材料的溶液;在前述溶液中加入形成核芯的材料,搅拌混合均匀;通过真空加热干燥或喷雾干燥等除去混合体系中的溶剂,得到所述陶瓷微球,其中,所述陶瓷微球具有核壳结构,即包括壳层和核芯,形成所述壳层的材料包括热敏聚合物和导电剂,形成所述核芯的材料包括陶瓷材料;
    或者,采用固相包覆法的情况下,所述固相包覆法包括如下步骤:
    将形成壳层的材料和形成核芯的材料用搅拌、球磨、机械融合方式进行固相包覆,然后加热到热敏聚合物的热敏区间温度,形成壳层的材料在形成核芯的材料表面形成包覆层。
  5. 一种隔膜,其中,所述隔膜包括隔膜基层和位于隔膜基层至少一侧表面的涂覆层,所述涂覆层由包括导电微球和权利要求1或2所述的陶瓷微球的混合体系在隔膜基层至少一侧表面涂覆得到。
  6. 根据权利要求5所述的隔膜,其中,所述导电微球具有核壳结构,即包括 壳层和核芯,形成所述壳层的材料包括热敏聚合物,形成所述核芯的材料包括导电材料;
    优选地,所述导电微球中,壳层和核芯的质量比为(0.5~640):(50~80);
    优选地,所述导电微球中,壳层的厚度为1nm-2000nm;
    优选地,所述导电微球的平均粒径为0.01μm-10μm;
    优选地,所述导电材料的粒径为0.01μm-8μm。
  7. 根据权利要求5或6所述的隔膜,其中,所述混合体系中还包括聚合物粘结剂和助剂中的至少一种;
    优选地,所述混合体系中各组分的质量份数如下所示:
    5-60质量份的上述导电微球、20-180质量份的陶瓷微球、0-20质量份的聚合物粘结剂和0-10质量份的助剂。
  8. 根据权利要求7所述的隔膜,其中,所述混合体系中各组分的质量份数如下所示:
    5-40质量份的上述导电微球、20-150质量份的陶瓷微球、1-20质量份聚合物粘结剂和1-10质量份助剂。
  9. 权利要求5-8任一项所述的隔膜的制备方法,其中,所述方法包括如下步骤:
    (a)将上述导电微球、上述陶瓷微球、任选地聚合物粘结剂和任选地助剂加入到溶剂中,混合,得到混合浆料;
    (b)将步骤(a)的混合浆料涂覆在隔膜基层表面,经干燥后得到所述隔膜。
  10. 一种锂离子电池,所述锂离子电池包括权利要求5-8任一项所述的隔膜。
PCT/CN2020/115616 2019-09-18 2020-09-16 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池 WO2021052365A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20865496.2A EP4033560A4 (en) 2019-09-18 2020-09-16 CERAMIC MICROBALL, SEPARATOR COMPRISING THE CERAMIC MICROBALL, AND LITHIUM ION BATTERY COMPRISING THE SEPARATOR
US17/698,079 US20220278421A1 (en) 2019-09-18 2022-03-18 Ceramic microsphere, diaphragm including ceramic microsphere and lithium ion battery including diaphragm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910883010.7A CN112531290B (zh) 2019-09-18 2019-09-18 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池
CN201910883010.7 2019-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/698,079 Continuation US20220278421A1 (en) 2019-09-18 2022-03-18 Ceramic microsphere, diaphragm including ceramic microsphere and lithium ion battery including diaphragm

Publications (1)

Publication Number Publication Date
WO2021052365A1 true WO2021052365A1 (zh) 2021-03-25

Family

ID=74884316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115616 WO2021052365A1 (zh) 2019-09-18 2020-09-16 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池

Country Status (4)

Country Link
US (1) US20220278421A1 (zh)
EP (1) EP4033560A4 (zh)
CN (1) CN112531290B (zh)
WO (1) WO2021052365A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142167A (zh) * 2021-11-30 2022-03-04 珠海冠宇电池股份有限公司 一种隔膜和含有该隔膜的锂离子电池
CN115347319A (zh) * 2022-07-01 2022-11-15 上海兰钧新能源科技有限公司 一种改善jr变形的电池隔离膜及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611983A (zh) * 2021-08-02 2021-11-05 湖南烁普新材料有限公司 一种复合隔膜浆料及其制备方法、电池隔膜
CN114665061B (zh) * 2022-02-24 2023-03-21 江苏中兴派能电池有限公司 热开裂复合微球、含有其复合微球的正极片及锂离子电池
CN114907671B (zh) * 2022-05-07 2023-08-18 重庆大学 一种氟化石墨烯高导热绝缘复合薄膜材料及其制备方法和应用
CN115172986A (zh) * 2022-08-02 2022-10-11 长园泽晖新能源材料研究院(珠海)有限公司 一种多层复合锂离子电池隔膜及其制备方法
CN115224443B (zh) * 2022-08-12 2023-06-30 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的电池
CN115548583B (zh) * 2022-11-24 2023-05-05 合肥长阳新能源科技有限公司 一种高安全性锂离子电池复合隔膜及其应用
CN116144071B (zh) * 2023-04-18 2023-06-27 合肥长阳新能源科技有限公司 一种锂电池复合隔膜及其制备方法与应用
CN116190916B (zh) * 2023-05-04 2023-08-01 合肥长阳新能源科技有限公司 一种阻燃耐高温锂电池隔膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146810A (ja) * 2007-12-17 2009-07-02 Casio Hitachi Mobile Communications Co Ltd 電池、および、電子機器
CN102272977A (zh) * 2008-12-30 2011-12-07 株式会社Lg化学 包括多孔性涂层的隔膜和包括所述隔膜的电化学装置
CN103650203A (zh) * 2011-07-07 2014-03-19 丰田自动车株式会社 二次电池
CN104051773A (zh) * 2013-03-15 2014-09-17 福特全球技术公司 具有切断层的可再充电电池
KR20150040103A (ko) * 2013-10-04 2015-04-14 주식회사 엘지화학 코어-쉘 구조의 충전재를 포함하는 다공성 폴리올레핀 분리막, 이를 포함하는 전기화학 소자, 및 상기 분리막의 제조방법
CN105140453A (zh) * 2015-08-26 2015-12-09 厦门大学 一种具有热关断功能的陶瓷复合隔膜及其应用
CN107342386A (zh) * 2017-07-03 2017-11-10 河北金力新能源科技股份有限公司 一种耐高温低电阻率锂离子电池隔膜的制备方法
CN108155328A (zh) * 2017-12-27 2018-06-12 银隆新能源股份有限公司 电池用隔离膜及其制备方法
CN110350127A (zh) * 2018-04-04 2019-10-18 宁德时代新能源科技股份有限公司 一种隔离膜及电化学储能装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440770B (zh) * 2014-06-30 2021-05-04 四川茵地乐材料科技集团有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN104900833B (zh) * 2015-07-07 2017-04-12 佛山市盈博莱科技股份有限公司 一种锂离子电池隔膜及其制备方法
CN105304850A (zh) * 2015-09-17 2016-02-03 中航锂电(洛阳)有限公司 锂离子电池复合隔膜用混合涂料、复合隔膜及其制备方法、锂离子电池
CN107819095B (zh) * 2016-09-12 2019-11-01 中国科学院金属研究所 一种高安全性复合锂电隔膜及其制备方法
CN108428924A (zh) * 2017-02-13 2018-08-21 谷涛 一种内部微短路失效安全锂离子电池
TW201838222A (zh) * 2017-04-11 2018-10-16 鴻海精密工業股份有限公司 鋰離子電池隔膜及其製備方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146810A (ja) * 2007-12-17 2009-07-02 Casio Hitachi Mobile Communications Co Ltd 電池、および、電子機器
CN102272977A (zh) * 2008-12-30 2011-12-07 株式会社Lg化学 包括多孔性涂层的隔膜和包括所述隔膜的电化学装置
CN103650203A (zh) * 2011-07-07 2014-03-19 丰田自动车株式会社 二次电池
CN104051773A (zh) * 2013-03-15 2014-09-17 福特全球技术公司 具有切断层的可再充电电池
KR20150040103A (ko) * 2013-10-04 2015-04-14 주식회사 엘지화학 코어-쉘 구조의 충전재를 포함하는 다공성 폴리올레핀 분리막, 이를 포함하는 전기화학 소자, 및 상기 분리막의 제조방법
CN105140453A (zh) * 2015-08-26 2015-12-09 厦门大学 一种具有热关断功能的陶瓷复合隔膜及其应用
CN107342386A (zh) * 2017-07-03 2017-11-10 河北金力新能源科技股份有限公司 一种耐高温低电阻率锂离子电池隔膜的制备方法
CN108155328A (zh) * 2017-12-27 2018-06-12 银隆新能源股份有限公司 电池用隔离膜及其制备方法
CN110350127A (zh) * 2018-04-04 2019-10-18 宁德时代新能源科技股份有限公司 一种隔离膜及电化学储能装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033560A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142167A (zh) * 2021-11-30 2022-03-04 珠海冠宇电池股份有限公司 一种隔膜和含有该隔膜的锂离子电池
CN114142167B (zh) * 2021-11-30 2023-05-02 珠海冠宇电池股份有限公司 一种隔膜和含有该隔膜的锂离子电池
CN115347319A (zh) * 2022-07-01 2022-11-15 上海兰钧新能源科技有限公司 一种改善jr变形的电池隔离膜及其制备方法和应用
CN115347319B (zh) * 2022-07-01 2024-03-26 上海兰钧新能源科技有限公司 一种改善jr变形的电池隔离膜及其制备方法和应用

Also Published As

Publication number Publication date
CN112531290A (zh) 2021-03-19
CN112531290B (zh) 2022-03-29
EP4033560A1 (en) 2022-07-27
US20220278421A1 (en) 2022-09-01
EP4033560A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021052365A1 (zh) 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池
US9225012B2 (en) Electrode of secondary cell including porous insulating layer, and manufacturing method thereof
KR100939585B1 (ko) 세퍼레이터 및 이것을 이용한 비수전해액 2차전지
CN111785925B (zh) 极片及应用、含有该极片的低温升高安全性锂离子电池
CN102244220A (zh) 电化学元件用隔板
CN108987671B (zh) 一种高安全复合正极极片、其制备方法及其应用
CN117423957A (zh) 一种陶瓷微球、含有该陶瓷微球的隔膜及含有该隔膜的锂离子电池
WO2023155604A1 (zh) 复合隔膜及电化学装置
EP3675232A1 (en) Separator for electrochemical device, electrochemical device comprising same, and method for manufacturing separator
CN112072109A (zh) 锂离子电池及其制备方法
CN112615107B (zh) 一种微球、含有该微球的隔膜及含有该隔膜的锂离子电池
CN112615110B (zh) 一种金属-陶瓷微球、含有该金属-陶瓷微球的隔膜及含有该隔膜的锂离子电池
WO2023246704A1 (zh) 一种锂离子电池极片及其制备方法
CN107275594B (zh) 锂离子电池正极材料的制备方法及采用该方法制备得到的锂离子电池正极材料
CN111613399B (zh) 一种ptc材料及其应用
US20230124048A1 (en) Positive electrode plate and lithium-ion battery including the positive electrode plate
CN105762404B (zh) 一种锂离子电池用混合材料、动力锂离子电池及制备方法
CN111900317A (zh) 复合隔膜及其制备方法和锂离子电池
CN111933879A (zh) 一种锂离子电池
CN116780109A (zh) 隔膜、电池及电池的制备方法
CN116376280A (zh) 聚对苯撑苯并二噁唑多孔膜及其制备方法和应用、复合隔膜及电池
CN114883527A (zh) 一种多层负极片、其制备方法及二次电池
CN115411459A (zh) 隔膜、电池及隔膜的制备方法
CN112750974B (zh) 锂电池正极片及卷绕式电芯及锂离子电池
CN113871707A (zh) 一种固态电解质及其制备方法和用途

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865496

Country of ref document: EP

Effective date: 20220419

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865496

Country of ref document: EP

Kind code of ref document: A1