WO2021049235A1 - 積層体およびその製造方法 - Google Patents

積層体およびその製造方法 Download PDF

Info

Publication number
WO2021049235A1
WO2021049235A1 PCT/JP2020/030620 JP2020030620W WO2021049235A1 WO 2021049235 A1 WO2021049235 A1 WO 2021049235A1 JP 2020030620 W JP2020030620 W JP 2020030620W WO 2021049235 A1 WO2021049235 A1 WO 2021049235A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
film layer
plating film
gold
layer
Prior art date
Application number
PCT/JP2020/030620
Other languages
English (en)
French (fr)
Inventor
章 古谷
忠昭 小島
鈴木 広志
文彰 那賀
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US17/614,172 priority Critical patent/US20220227104A1/en
Priority to CN202080037913.4A priority patent/CN113874550B/zh
Priority to SG11202113245YA priority patent/SG11202113245YA/en
Priority to EP20863294.3A priority patent/EP4029689A4/en
Priority to KR1020217041402A priority patent/KR20220010770A/ko
Priority to JP2021545174A priority patent/JPWO2021049235A1/ja
Publication of WO2021049235A1 publication Critical patent/WO2021049235A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the present invention relates to a laminate and a method for producing the same. More specifically, the present invention relates to a laminate suitable as a constituent member of a semiconductor manufacturing apparatus or the like, and a method for manufacturing the laminate.
  • halogen-based reactivity and corrosiveness such as fluorine, hydrogen chloride, boron trichloride, nitrogen trifluoride, chlorine trifluoride, and hydrogen bromide in the dry etching process and cleaning of the manufacturing equipment.
  • a strong special gas hereinafter also referred to as "corrosive gas" is used.
  • pinholes on the plated surface can also cause corrosion to proceed.
  • the cause of pinholes is, for example, that hydrogen gas generated by the plating reaction becomes bubbles during the formation of the plating film and inhibits the film formation, or impurities (oxide film, dirt, oil, etc.) left on the base material are present.
  • impurities oxide film, dirt, oil, etc.
  • Patent Document 4 discloses a method in which a hard alloy plating layer is formed on gold plating to improve wear resistance and prevent discoloration and corrosion due to oxidation, sulfide, etc. caused by gas and moisture. Has been done.
  • Japanese Patent No. 29541716 Japanese Patent No. 3094000 Japanese Unexamined Patent Publication No. 2004-3600066 Japanese Patent No. 2581021
  • an object of the present invention is to provide a metal material that can be applied to a constituent member of a semiconductor manufacturing apparatus and has excellent corrosion resistance, particularly corrosion resistance to acid.
  • the present invention relates to, for example, the following [1] to [14].
  • [1] A metal base material, a first nickel-containing plating film layer formed on the metal base material, a gold plating film layer formed on the first nickel-containing plating film layer, and the gold plating.
  • a laminate having a second nickel-containing plating coating layer formed on the coating layer and a nickel fluoride coating layer formed on the second nickel-containing plating coating layer.
  • the pinholes of the gold-plated coating layer are sealed with the metal of a single nickel, and the pinholes of the first and second nickel-containing plating coating layers are sealed with the metal of a single gold.
  • the nickel strike layer is provided between the metal substrate and the first nickel-containing plating film layer, and between the gold plating film layer and the second nickel-containing plating film layer.
  • the first nickel-containing plating film layer contains a nickel-phosphorus alloy plating layer having a phosphorus concentration of 8% by mass or more and less than 10% by mass, and the second nickel-containing plating film layer has a phosphorus concentration.
  • a laminate including a step (C) of forming a second nickel-containing plating film layer on the coating layer and a step (D) of forming a nickel fluoride coating layer on the second nickel-containing plating film layer. Production method.
  • a pinhole in the gold-plated coating layer is formed by heat-treating the laminate obtained in the step (C) at a temperature of 250 ° C. or higher between the step (C) and the step (D). [8]. Method for manufacturing a laminate.
  • the step (A) includes a step of forming a nickel-phosphorus alloy plating layer having a phosphorus concentration of 8% by mass or more and less than 10% by mass, and the step (C) has a phosphorus concentration of 10% by mass.
  • the step (B) includes a step (b1) of forming a replacement type gold plating film layer and a step (b2) of forming a reduction type gold plating film layer after the step (b1).
  • a component of a semiconductor manufacturing apparatus which comprises the laminate according to any one of the above [1] to [7].
  • the laminate of one embodiment of the present invention includes a metal base material, a first nickel-containing plating film layer formed on the metal base material, and gold formed on the first nickel-containing plating film layer. It has a plating film layer, a second nickel-containing plating film layer formed on the gold plating film layer, and a nickel fluoride film layer formed on the second nickel-containing plating film layer.
  • the pinholes of the gold plating coating layer are sealed with the metal of a single nickel substance, and the pinholes of the first and second nickel-containing plating coating layers are gold. It is preferably sealed with a single metal.
  • the method for producing a laminate includes a step (A) of forming a first nickel-containing plating film layer on a metal substrate, and a gold plating film layer on the first nickel-containing plating film layer. (B), a step of forming a second nickel-containing plating film layer on the gold plating film layer (C), and a step of forming a nickel fluoride film layer on the second nickel-containing plating film layer.
  • the step (D) is included.
  • the laminate obtained in the step (C) is heated at a temperature of 250 ° C. or higher and for 2 hours or longer between the steps (C) and the step (D).
  • the pinholes of the gold-plated coating layer are sealed with the metal of the single nickel, and the pinholes of the first and second nickel-containing plating coating layers are sealed with the metal of the single gold. It is preferable to include the step (X) of sealing.
  • the metal base material used in one embodiment of the present invention is a base material whose surface is at least made of metal.
  • the metal base material is not particularly limited, and examples thereof include metals generally used for constituent members of semiconductor manufacturing equipment, preferably stainless steel, iron, aluminum, aluminum alloys, copper and copper alloys.
  • the metal base material is subjected to a treatment according to the base material such as degreasing, acid cleaning or nickel strike treatment as a pretreatment in the step (A). May be good.
  • the nickel strike treatment is a preliminary plating treatment using a nickel-containing plating bath, and the current density in the nickel strike treatment is preferably 3 to 20 A / dm 2 , more preferably 6 to 10 A / dm 2 .
  • the nickel strike treatment time is preferably 1 minute or more and 5 minutes or less.
  • the first nickel-containing plating film layer is formed on the metal substrate by the step (A).
  • a nickel strike layer is provided between the metal base material and the first nickel plating film layer.
  • the nickel-containing plating film layer preferably contains phosphorus from the viewpoint of improving corrosion resistance, and preferably contains a nickel-phosphorus alloy plating layer having a phosphorus concentration of 8% by mass or more and less than 10% by mass.
  • the nickel content in the first nickel-containing plating film layer is preferably 80% by mass or more, more preferably 85 to 95% by mass, and particularly preferably 90 to 90% by mass, assuming that the entire nickel-containing plating film layer is 100% by mass. It is 92% by mass.
  • the nickel content is in the above range, the ratio of phosphorus in the coating layer is increased, and excellent corrosion resistance can be exhibited.
  • the first nickel-containing plating film layer can be formed on a metal substrate by using an electroless plating bath containing a nickel salt and a phosphorus compound as a reducing agent.
  • a nickel salt include nickel sulfate, nickel chloride, nickel acetate, nickel carbonate and the like.
  • phosphorus compound include sodium hypophosphite, potassium hypophosphite and the like.
  • the film formation rate of the first nickel-phosphorus alloy plating layer is preferably 20 to 30 ⁇ m / h (hours), more preferably 22 to 25 ⁇ m / h (hours).
  • the film thickness of the first nickel-phosphorus-containing plating film layer is preferably 5 ⁇ m or more, more preferably 7 to 25 ⁇ m, and further preferably 9 to 20 ⁇ m from the viewpoint of film performance and cost in which pinholes are less likely to occur.
  • the gold plating film layer is formed on the nickel-containing plating film layer by the step (B).
  • the gold content in the gold plating film is preferably 90% by mass or more, more preferably 99% by mass or more, and particularly preferably 99.9% by mass or more, when the entire gold plating film is 100% by mass. ..
  • the gold content is determined by the impurity quantification method, that is, the gold plating is dissolved in aqua regia and measured by atomic absorption spectrometry and high frequency inductively coupled plasma (ICP) emission spectroscopic analysis.
  • the thickness of the gold-plated coating is preferably 0.1 ⁇ m to 2 ⁇ m, more preferably 0.2 to 1.5 ⁇ m, and particularly preferably 0.3, from the viewpoint of coating performance and cost in which pinholes are less likely to occur. It is ⁇ 0.8 ⁇ m. It is known from the prior art that the number of pinholes decreases when the noble metal plating film is thickened, and high corrosion resistance is expected, but it is preferable to make the thickness appropriate because the price is high.
  • the method for forming the gold plating film layer is not particularly limited, but an electroless gold plating method is preferable.
  • the electroless gold plating method it is preferable to perform reduction type gold plating after performing replacement type gold plating. That is, the step (B) may include a step (b1) of forming a replacement mold plating coating layer and a step (b2) of forming a reduction mold plating coating layer after the step (b1). preferable.
  • nickel is dissolved from the nickel film, and the gold ions in the solution are reduced by the electrons emitted at that time and precipitated as a gold plating film.
  • gold ions in the solution are reduced by electrons released by the oxidation reaction of the reducing agent, and a gold plating film is precipitated.
  • Examples of the electroless gold plating solution include a plating bath containing potassium gold cyanide, gold chloride, gold sulfite, gold thiosulfate and the like, and examples of the reducing agent include sodium hydroxide, dimethylamine borane and hexa. Examples thereof include methylenetetramine, a chain polyamine having an alkyl group having 3 or more carbon atoms and a plurality of amino groups.
  • Substitution gold plating is preferably performed at 50 to 90 ° C. for 3 to 7 minutes, more preferably 65 to 75 ° C. for 3 to 7 minutes, and reduction gold plating is preferably performed at 55 to 65 ° C. for 7 to 15 minutes, more preferably.
  • the gold plating film layer can be formed by carrying out at 58 to 62 ° C. for 7 to 15 minutes.
  • the second nickel-containing plating film layer is formed on the gold plating film layer by the step (C).
  • a nickel strike layer is provided between the gold plating film layer and the second nickel plating film layer.
  • the nickel-containing plating film layer preferably contains phosphorus from the viewpoint of improving corrosion resistance, and preferably contains a nickel-phosphorus alloy plating layer having a phosphorus concentration of 10% by mass or more and 12% by mass or less.
  • the nickel content in the second nickel-containing plating film layer is preferably 80% by mass or more, more preferably 85 to 95% by mass, and particularly preferably 90 to 90% by mass, assuming that the entire nickel-containing plating film layer is 100% by mass. It is 92% by mass.
  • the nickel content is in the above range, the ratio of phosphorus in the coating layer is increased, and excellent corrosion resistance can be exhibited.
  • electroless nickel-phosphorus alloy plating films with different phosphorus concentrations are laminated, pinhole defects are formed at different positions while forming a film, which makes it difficult for disturbances to reach the substrate directly and has corrosion resistance. Improvement can be expected.
  • the second nickel-containing plating film layer can be formed on a metal substrate by using an electroless plating bath containing a nickel salt and a phosphorus compound as a reducing agent.
  • a nickel salt include nickel sulfate, nickel chloride, nickel acetate, nickel carbonate and the like.
  • phosphorus compound include sodium hypophosphite, potassium hypophosphite and the like.
  • the film formation rate of the second nickel-phosphorus alloy plating layer is preferably 10 to 15 ⁇ m / h (hours), more preferably 11 to 13 ⁇ m / h (hours).
  • the film thickness of the second nickel-phosphorus alloy plating film layer is preferably 5 ⁇ m or more, more preferably 7 to 25 ⁇ m, and further preferably 10 to 20 ⁇ m from the viewpoint of film performance and cost in which pinholes are less likely to occur.
  • the sealing treatment is performed by sealing the pinholes of the gold plating film layer with a metal of a single nickel, and sealing the pinholes of the first and second nickel-containing plating film layers with a metal of a single gold.
  • the metal is thermally diffused by heat-treating the laminate obtained in the step (C) between the step (C) and the step (D) described later, and the gold-plated coating film is formed.
  • the pinholes of the layer are sealed with the metal of a single nickel, and the pinholes of the first and second nickel-containing plating film layers are sealed with the metal of a single gold.
  • the presence of gold and nickel alone can be confirmed by energy dispersive X-ray analysis (EDS).
  • the heating conditions are preferably 250 ° C. or higher for 2 hours or longer, and more preferably 300 to 350 ° C. for 2 to 6 hours.
  • the nickel fluoride coating layer is formed on the second nickel-containing plating coating layer.
  • the nickel fluoride coating layer is a passivation coating.
  • a nickel fluoride film layer is formed as a passivation film on the nickel-containing plating film layer.
  • the thickness of the nickel fluoride coating layer is preferably 70 nm or more, more preferably 80 to 200 nm, and further preferably 100 to 150 nm. When the thickness of the nickel fluoride coating layer is within the above range, the adhesion between the gold plating coating layer and the second nickel-containing plating coating layer is improved.
  • the nickel fluoride coating layer is formed by fluorinating the surface of the nickel-containing plating coating layer with fluorine gas through the steps (A) to (C) and, if necessary, the step (X). To form.
  • the step (D) is performed in an atmosphere where the fluorine gas concentration is preferably 8% by volume or more, more preferably 10% by volume or more.
  • the film formation temperature is preferably 250 ° C. or higher, more preferably 300 ° C. or higher.
  • the fluorine treatment time is preferably 2 hours or more.
  • the gas accompanied by the fluorine gas include an inert gas such as nitrogen gas.
  • a fluorinated passivation film made of thick nickel fluoride can be obtained under the above reaction conditions, but the thickness, reaction temperature, and reaction time of the nickel alloy plating film can be adjusted according to the intended use of the member. By doing so, the film thickness of the nickel fluoride coating can be arbitrarily adjusted.
  • the reaction temperature means the temperature at which the gas atmosphere in the reaction furnace is measured by a heat transfer pair.
  • the film thickness of each layer of the laminate was calculated from the increase in weight, the layer area, and the known density.
  • the film thickness of the nickel fluoride coating layer was calculated by the method described later by X-ray photoelectron spectroscopy (XPS).
  • Example 1 ⁇ Process (A)> The surface of stainless steel (SUS316L) was subjected to degreasing, acid cleaning and nickel strike treatment as pretreatment.
  • An electroless nickel-phosphorus plating agent "Nimden (trademark) NSX” (manufactured by Uemura Kogyo Co., Ltd.) was used on the surface of the nickel strike-treated stainless steel, and the plating temperature was 90 ° C., pH 4.5-4. Under the condition of 0.8, the first nickel-containing plating film layer (thickness: 10 ⁇ m) having a phosphorus content of 8% by mass or more and less than 10% by mass at the time of film formation was formed in a plating time of 25 minutes.
  • ⁇ Process (C)> The surface of the gold-plated coating layer formed in the step (B) was subjected to a nickel strike treatment in the same manner as in the step (A).
  • An electroless nickel-phosphorus plating agent "Nimden (trademark) HDX” (manufactured by Uemura Kogyo Co., Ltd.) was used on the surface of the nickel-strike-treated gold-plated coating layer to form a film in a plating time of 50 minutes.
  • the stainless steel was analyzed by energy dispersion X-ray analysis (EDS). As a result, the pinholes of the first and second nickel-containing plating film layers were sealed with the metal of gold alone, and the gold plating film layer It was confirmed that the pinhole was sealed with the metal of nickel alone.
  • EDS energy dispersion X-ray analysis
  • Example 2 After the step (A) was carried out in the same manner as in Example 1, the thickness of 1.2 ⁇ m was 1.2 ⁇ m in the same manner as in Example 1 except that the reduction plating treatment of gold was changed to 20 minutes in the step (B) of Example 1. A gold-plated film layer was formed. Then, the step (C), the step (X) and the step (D) were carried out in the same manner as in Example 1. When the thickness of the nickel fluoride coating was determined in the same manner as in Example 1, it was 103 nm.
  • Example 3 In Example 1, an aluminum alloy (A5052) was used instead of stainless steel (SUS316L), and as pretreatment, degreasing, activation treatment, acid cleaning and zinc substitution treatment were performed. Then, step (A), step (B), step (C), step (X) and step (D) were carried out in the same manner as in Example 1.
  • the thickness of the nickel fluoride coating was determined in the same manner as in Example 1, it was 103 nm.
  • the activation treatment was carried out at room temperature for 30 seconds using a mixed acid of acidic ammonium fluoride and nitric acid as a treatment agent.
  • the acid cleaning was carried out at room temperature for 25 seconds using nitric acid as a cleaning agent.
  • the zinc substitution treatment was carried out at room temperature for 25 seconds using a zincate bath as a treatment agent. Further, the acid washing and the zinc replacement treatment were carried out twice under the above conditions.
  • step (D) was carried out in the same manner as in Example 1 to form a nickel-containing plating film layer and a nickel fluoride coating layer on the surface of the nickel strike-treated stainless steel.
  • Comparative Example 2 In Comparative Example 1, the metal base material was subjected to degreasing, activation treatment, acid cleaning and zinc substitution treatment as pretreatment using stainless steel (SUS316L) to aluminum alloy (A5052), and then the same as in Comparative Example 1. An electroless nickel-phosphorus alloy plating film layer and a nickel fluoride film layer were formed on the surface.
  • Example 3 In Example 1, only the steps (A), (B) and (C) were carried out, that is, the steps (X) and (D) were not carried out, and the first nickel-containing plating film layer on the stainless steel was carried out. , A gold-plated coating layer and a second nickel-containing plating coating layer were formed.
  • ⁇ Hydrochloric acid corrosion resistance test> A test piece having a length of 15 mm, a width of 15 mm, and a thickness of 1 mm was immersed in a 35 mass% hydrochloric acid solution at 25 ° C. for 5 hours. Hydrochloric acid corrosion resistance was evaluated according to the following criteria based on the amount of mass loss [mg / dm 2] before and after immersion. (Evaluation criteria) A: Less than 0.1 mg / dm 2 B: 0.1 mg / dm 2 or more and less than 3.0 mg / dm 2 C: 3.0 mg / dm 2 or more and less than 10.0 mg / dm 2 D: 10.0 mg / dm 2 or more
  • SUS indicates stainless steel (SUS316L) and Al indicates an aluminum alloy (A5052).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、半導体製造装置の構成部材に適用可能であり、耐食性、特に酸に対する耐食性に優れた金属材料を提供することにある。本発明に係る積層体は、金属基材と、前記金属基材上に形成された第1のニッケル含有めっき被膜層と、前記第1のニッケル含有めっき被膜層上に形成された金めっき被膜層と、前記金めっき被膜層上に形成された第2のニッケル含有めっき被膜層と、前記第2のニッケル含有めっき被膜層上に形成されたフッ化ニッケル被膜層とを有する。

Description

積層体およびその製造方法
 本発明は、積層体およびその製造方法に関する。より具体的には、半導体製造装置等の構成部材として好適な積層体およびその製造方法に関する。
 従来、半導体製造プロセスでは、ドライエッチング工程および製造装置のクリーニング等において、フッ素、塩化水素、三塩化ホウ素、三フッ化窒素、三フッ化塩素、臭化水素等のハロゲン系の反応性および腐食性の強い特殊ガス(以下「腐食性ガス」ともいう。)が使用されている。
 しかしながら、前記腐食性ガスが雰囲気下の水分と反応して加水分解すると、フッ化水素、シュウ酸、および塩化水素等の生成物が発生する。前記生成物は、前記腐食性ガスを使用する際のバルブ、継ぎ手、配管および反応チャンバー等の構成部材の金属表面を容易に腐食するため、問題となっている。
 これまで、耐食性の向上を図るために、金属基材にニッケル-リン合金めっきを施し、ニッケルのフッ化不働態膜を形成する方法が行われている(例えば、特許文献1~3を参照)が、これらの方法は十分ではない場合があった。
 さらに、めっき表面のピンホールも腐食を進ませる原因となり得る。ピンホールの発生要因は、例えば、めっき反応により発生した水素ガスが、めっき被膜の形成時に泡となり成膜を阻害する、または、基材に残された不純物(酸化膜、汚れ、油分等)が前処理工程で除去されず成膜を阻害する等、複数の原因が考えられる。これに対して、特許文献4には、金めっき上に硬質の合金めっき層が形成され、耐摩耗性の向上及びガスや水分に起因する酸化、硫化等による変色や腐食が防止できる手法が開示されている。
特許第2954716号公報 特許第3094000号公報 特開2004-360066号公報 特許第2581021号公報
 本発明者らの検討によれば、特許文献1~3のように、ニッケル-リン合金めっき表面にニッケルのフッ化不働態膜を形成する方法では、ニッケル-リン合金めっきのピンホールを起点とした腐食が発生し、塩酸耐食性について不十分な場合があることが分かった。また、特許文献4の方法では、最表面層が合金めっきであるため、著しい耐食性向上は見込めないという課題があった。
 そこで本発明の課題は、半導体製造装置の構成部材に適用可能であり、耐食性、特に酸に対する耐食性に優れた金属材料を提供することにある。
 本発明は、例えば以下の[1]~[14]に関する。
 [1]金属基材と、前記金属基材上に形成された第1のニッケル含有めっき被膜層と、前記第1のニッケル含有めっき被膜層上に形成された金めっき被膜層と、前記金めっき被膜層上に形成された第2のニッケル含有めっき被膜層と、前記第2のニッケル含有めっき被膜層上に形成されたフッ化ニッケル被膜層とを有する積層体。
 [2]前記金めっき被膜層のピンホールがニッケル単体の金属によって封孔され、かつ、前記第1および第2のニッケル含有めっき被膜層のピンホールが金単体の金属によって封孔されている、前記[1]に記載の積層体。
 [3]前記金属基材が、ステンレス鋼、鉄、アルミニウム、アルミニウム合金、銅および銅合金からなる群より選ばれる少なくとも1つの金属を含む、前記[1]または[2]に記載の積層体。
 [4]前記金属基材と前記第1のニッケル含有めっき被膜層の間、および、前記金めっき被膜層と前記第2のニッケル含有めっき被膜層の間に、ニッケルストライク層を有する、前記[1]~[3]のいずれかに記載の積層体。
 [5]前記第1のニッケル含有めっき被膜層が、リン濃度が8質量%以上10質量%未満のニッケル-リン合金めっき層を含み、かつ、前記第2のニッケル含有めっき被膜層が、リン濃度が10質量%以上12質量%以下のニッケル-リン合金めっき層を含む、前記[1]~[4]のいずれかに記載の積層体。
 [6]前記金めっき被膜層が、置換型金めっき被膜層および還元型金めっき被膜層を、前記第1のニッケル含有めっき被膜層側からこの順で含む、前記[1]~[5]のいずれかに記載の積層体。
 [7]前記フッ化ニッケル被膜層の厚みが70nm以上である、前記[1]~[6]のいずれかに記載の積層体。
 [8]金属基材上に第1のニッケル含有めっき被膜層を形成する工程(A)、前記第1のニッケル含有めっき被膜層上に金めっき被膜層を形成する工程(B)、前記金めっき被膜層上に第2のニッケル含有めっき被膜層を形成する工程(C)、および前記第2のニッケル含有めっき被膜層上にフッ化ニッケル被膜層を形成する工程(D)を含む、積層体の製造方法。
 [9]前記工程(C)と前記工程(D)の間に、工程(C)で得られた積層体を温度250℃以上の条件で加熱処理することにより、前記金めっき被膜層のピンホールをニッケル単体の金属によって封孔し、かつ、前記第1および第2のニッケル含有めっき被膜層のピンホールを金単体の金属によって封孔する工程(X)を含む、前記[8]に記載の積層体の製造方法。
 [10]前記工程(D)が、フッ素ガス濃度8体積%以上および温度250℃以上の雰囲気下で行われる、前記[8]または[9]に記載の積層体の製造方法。
 [11]前記工程(A)の前および前記工程(C)の前に、金属基材に対し電流密度3~20A/dm2の条件でニッケルストライク処理を施す工程を含む、前記[8]~[10]のいずれかに記載の積層体の製造方法。
 [12]前記工程(A)が、リン濃度が8質量%以上10質量%未満のニッケル-リン合金めっき層を形成させる工程を含み、かつ、前記工程(C)が、リン濃度が10質量%以上12質量%以下のニッケル-リン合金めっき層を形成させる工程を含む、前記[8]~[11]のいずれかに記載の積層体の製造方法。
 [13]前記工程(B)が、置換型金めっき被膜層を形成させる工程(b1)と、該工程(b1)の後に、還元型金めっき被膜層を形成させる工程(b2)とを含む、前記[8]~[12]のいずれかに記載の積層体の製造方法。
 [14]前記[1]~[7]のいずれかに記載の積層体からなる、半導体製造装置の構成部材。
 本発明によれば、耐食性、特に酸に対する耐食性に優れた積層体を提供することができる。
封孔処理前後の積層体を示す概略図である((a):封孔処理前、(b):封孔処理後)。
 以下、本発明の一実施形態について具体的に説明する。
 本発明の一実施形態の積層体は、金属基材と、前記金属基材上に形成された第1のニッケル含有めっき被膜層と、前記第1のニッケル含有めっき被膜層上に形成された金めっき被膜層と、前記金めっき被膜層上に形成された第2のニッケル含有めっき被膜層と、前記第2のニッケル含有めっき被膜層上に形成されたフッ化ニッケル被膜層とを有する。
 また、本発明の一実施形態の積層体は、前記金めっき被膜層のピンホールがニッケル単体の金属によって封孔され、かつ、前記第1および第2のニッケル含有めっき被膜層のピンホールが金単体の金属によって封孔されていることが好ましい。
 本発明の一実施形態の積層体の製造方法は、金属基材上に第1のニッケル含有めっき被膜層を形成する工程(A)、前記第1のニッケル含有めっき被膜層上に金めっき被膜層を形成する工程(B)、前記金めっき被膜層上に第2のニッケル含有めっき被膜層を形成する工程(C)、および前記第2のニッケル含有めっき被膜層上にフッ化ニッケル被膜層を形成する工程(D)を含む。
 また、本発明の一実施形態の積層体の製造方法は、前記工程(C)と前記工程(D)の間に、工程(C)で得られた積層体を温度250℃以上および2時間以上の条件で加熱処理することにより、前記金めっき被膜層のピンホールをニッケル単体の金属によって封孔し、かつ、前記第1および第2のニッケル含有めっき被膜層のピンホールを金単体の金属によって封孔する工程(X)を含むことが好ましい。
 [金属基材]
 本発明の一実施形態に用いられる金属基材は、少なくとも表面が金属からなる基材である。前記金属基材としては、特に限定されず、半導体製造装置の構成部材に一般的に用いられる金属が挙げられ、好ましくはステンレス鋼、鉄、アルミニウム、アルミニウム合金、銅および銅合金である。
 前記金属基材は、ニッケル含有めっき被膜層との密着性を強固にするために、工程(A)の前処理として、脱脂、酸洗浄またはニッケルストライク処理等の基材に応じた処理を施してもよい。ニッケルストライク処理は、ニッケル含有めっき浴を使った予備的めっき処理であり、ニッケルストライク処理における電流密度は、好ましくは3~20A/dm2、より好ましくは6~10A/dm2である。また、ニッケルストライク処理の時間は、1分以上5分以下が好ましい。
 [第1のニッケル含有めっき被膜層]
 第1のニッケル含有めっき被膜層は、工程(A)により前記金属基材上に形成される。なお、前記金属基材にニッケルストライク処理を施した場合、金属基材と第1のニッケルめっき被膜層の間にニッケルストライク層を有する。
 ニッケル含有めっき被膜層は、耐食性向上の観点から、リンを含有することが好ましく、リン濃度が8質量%以上10質量%未満のニッケル-リン合金めっき層を含むことが好ましい。
 第1のニッケル含有めっき被膜層中のニッケル含有量は、ニッケル含有めっき被膜層全体を100質量%とした場合、好ましくは80質量%以上、より好ましくは85~95質量%、特に好ましくは90~92質量%である。ニッケル含有量が前記範囲であることにより、被膜層中のリンの比率が増え、優れた耐食性が発揮できる。
 <工程(A)>
 前記第1のニッケル含有めっき被膜層は、ニッケル塩と、還元剤としてリン化合物とを含む無電解メッキ浴を用いて金属基材上に形成することができる。ニッケル塩としては、例えば、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、炭酸ニッケルなどが挙げられる。リン化合物としては、例えば、次亜リン酸ナトリウム、次亜リン酸カリウムなどが挙げられる。
 前記第1のニッケル-リン合金めっき層の成膜速度は、好ましくは20~30μm/h(時間)、より好ましくは22~25μm/h(時間)である。第1のニッケル-リン含有めっき被膜層の膜厚は、5μm以上が好ましく、7~25μmがより好ましく、ピンホールが発生しにくい被膜性能およびコストの観点から9~20μmがさらに好ましい。
 [金めっき被膜層]
 金めっき被膜層は、工程(B)により前記ニッケル含有めっき被膜層上に形成される。
 金めっき被膜中の金含有量は、金めっき被膜全体層全体を100質量%とした場合、好ましくは90質量%以上、より好ましくは99質量%以上、特に好ましくは99.9質量%以上である。金含有量が前記範囲であることにより、本願発明の積層体の耐食性が安定する。金含有量は、不純物定量法で求められる、すなわち、金めっきを王水で溶解し、原子吸光分析および高周波誘導結合プラズマ(ICP)発光分光分析で測定される。
 金めっき被膜の厚みは、ピンホールが発生しにくい被膜性能およびコストの観点から、好ましくは0.1μm~2μmであり、より好ましくは0.2~1.5μmが好ましく、特に好ましくは0.3~0.8μmである。貴金属めっき被膜を厚くするとピンホールが減少していくことは、従来技術から公知であり、高い耐食性が期待されるが、価格が高額になるため適切な厚さとすることが好ましい。
 <工程(B)>
 前記金めっき被膜層の形成方法としては、特に限定されないが、無電解金めっき法が好ましい。無電解金めっき法では、置換型金めっきを行った後、還元型金めっきを行うことが好ましい。すなわち、前記工程(B)は、置換型金めっき被膜層を形成させる工程(b1)と、該工程(b1)の後に、還元型金めっき被膜層を形成させる工程(b2)とを含むことが好ましい。
 置換型金めっきでは、ニッケル被膜からニッケルが溶解し、その際に放出される電子によって溶液中の金イオンが還元され金めっき被膜として析出する。還元型金めっきでは、溶液中の金イオンが還元剤の酸化反応で放出される電子によって還元され、金めっき被膜が析出する。
 無電解金めっき液としては、例えば、シアン化金カリウム、塩化金、亜硫酸金、チオ硫酸金などを含んだめっき浴などが挙げられ、還元剤としては例えば、水酸化ナトリウム、ジメチルアミンボラン、ヘキサメチレンテトラミン、炭素数3個以上のアルキル基と複数アミノ基を有する鎖状ポリアミンなどが挙げられる。
 置換金めっきを、好ましくは50~90℃で3~7分、より好ましくは65~75℃で3~7分、還元型金めっきを、好ましくは55~65℃で7~15分、より好ましくは58~62℃で7~15分実施することで金めっき被膜層を形成することができる。
 [第2のニッケル含有めっき被膜層]
 第2のニッケル含有めっき被膜層は、工程(C)により前記金めっき被膜層上に形成される。なお、前記金めっき被膜層にニッケルストライク処理を施した場合、金めっき被膜層と第2のニッケルめっき被膜層の間にニッケルストライク層を有する。
 ニッケル含有めっき被膜層は、耐食性向上の観点から、リンを含有することが好ましく、リン濃度が10質量%以上12質量%以下のニッケル-リン合金めっき層を含むことが好ましい。
 第2のニッケル含有めっき被膜層中のニッケル含有量は、ニッケル含有めっき被膜層全体を100質量%とした場合、好ましくは80質量%以上、より好ましくは85~95質量%、特に好ましくは90~92質量%である。ニッケル含有量が前記範囲であることにより、被膜層中のリンの比率が増え、優れた耐食性が発揮できる。また、リン濃度を変えた無電解ニッケル-リン合金めっき被膜を積層させると、ピンホール欠陥が異なる位置に形成されながら成膜するため、外乱が直接的に基材へと到着しにくくなり、耐食性向上が期待できる。
 <工程(C)>
 前記第2のニッケル含有めっき被膜層は、ニッケル塩と、還元剤としてリン化合物とを含む無電解メッキ浴を用いて金属基材上に形成することができる。ニッケル塩としては、例えば、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、炭酸ニッケルなどが挙げられる。リン化合物としては、例えば、次亜リン酸ナトリウム、次亜リン酸カリウムなどが挙げられる。
 前記第2のニッケル-リン合金めっき層の成膜速度は、好ましくは10~15μm/h(時間)、より好ましくは11~13μm/h(時間)である。第2のニッケル-リン合金めっき被膜層の膜厚は、それぞれ5μm以上が好ましく、7~25μmがより好ましく、ピンホールが発生しにくい被膜性能およびコストの観点から10~20μmがさらに好ましい。
 [封孔処理]
 封孔処理は、前記金めっき被膜層のピンホールをニッケル単体の金属によって封孔し、前記第1および第2のニッケル含有めっき被膜層のピンホールを金単体の金属によって封孔することにより行われる。
 <工程(X)>
 工程(X)では、前記工程(C)と後述する工程(D)の間に、工程(C)で得られた積層体を加熱処理することにより、金属が熱拡散して、前記金めっき被膜層のピンホールをニッケル単体の金属によって封孔し、かつ、前記第1および第2のニッケル含有めっき被膜層のピンホールを金単体の金属によって封孔処理する。金およびニッケル単体の存在はエネルギー分散型X線分析(EDS)によって確認できる。
 加熱条件は、好ましくは、250℃以上で2時間以上、より好ましくは300~350℃で2~6時間である。
 [フッ化ニッケル被膜層]
 フッ化ニッケル被膜層は前記第2のニッケル含有めっき被膜層上に形成される。フッ化ニッケル被膜層は不働態被膜である。前記第2のニッケル含有めっき被膜層表面を工程(D)にてフッ化処理することにより、前記ニッケル含有めっき被膜層上に不働態被膜としてフッ化ニッケル被膜層が形成される。
 フッ化ニッケル被膜層の厚みは、好ましくは70nm以上、より好ましくは80~200nm、さらに好ましくは100~150nmである。フッ化ニッケル被膜層の厚さが前記範囲であることにより、金めっき被膜層と第2のニッケル含有めっき被膜層との密着性が向上する。
 <工程(D)>
 工程(D)では、前記工程(A)~(C)および必要に応じて前記工程(X)を経て、前記ニッケル含有めっき被膜層表面をフッ素ガスにてフッ化することでフッ化ニッケル被膜層を形成する。
 工程(D)は、フッ素ガス濃度が、好ましくは8体積%以上、より好ましくは10体積%以上の雰囲気下で行われる。成膜温度は好ましくは、250℃以上、より好ましくは300℃以上である。また、フッ化処理時間は2時間以上が好ましい。フッ素ガスに同伴されるガスとしては、窒素ガスなどの不活性ガスが挙げられる。本発明の一実施形態では、上記反応条件により厚膜のフッ化ニッケルからなるフッ化不働態膜が得られるが、部材の使用目的によって、ニッケル合金めっき皮膜の厚み、反応温度、反応時間を調節することにより、フッ化ニッケル被膜の膜厚を任意に調整できる。なお、上記反応温度は反応炉内のガス雰囲気を熱伝対で測定した温度を意味する。
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。積層体の各層(フッ化ニッケル被膜層を除く)の膜厚は、重量の増加分と層面積と既知の密度とから算出した。フッ化ニッケル被膜層の膜厚は、X線光電子分光法(XPS)により後述する方法にて算出した。
 [実施例1]
 <工程(A)>
 ステンレス鋼(SUS316L)の表面に、前処理として、脱脂、酸洗浄およびニッケルストライク処理を施した。該ニッケルストライク処理を施したステンレス鋼の表面に、無電解ニッケル-リンめっき薬剤「ニムデン(商標)NSX」(上村工業(株)製)を使用して、めっき温度90℃、pH4.5~4.8の条件下、めっき時間25分で、成膜時のリン含有量が8質量%以上10質量%未満である第1のニッケル含有めっき被膜層(膜厚:10μm)を形成した。
 <工程(B)>
 2種類の無電解金めっき液「フラッシュゴールドNC(置換型)」および「セルフゴールドOTK-IT(還元型)」(いずれも奥野製薬工業(株)製)をこの順で使用して、工程(A)で形成した第1のニッケル含有めっき被膜層上に、それぞれ置換型めっき温度70℃で5分および還元型めっき温度60℃で10分の処理をこの順で行い、合計0.6μm厚の金めっき被膜層を形成した。
 <工程(C)>
 工程(B)で形成した金めっき被膜層の表面に、工程(A)と同様にしてニッケルストライク処理を施した。該ニッケルストライク処理を施した金めっき被膜層の表面に、無電解ニッケル-リンめっき薬剤「ニムデン(商標)HDX」(上村工業(株)製)を使用して、めっき時間50分で、成膜時のリン含有量が10質量%以上12質量%以下である第2のニッケル含有めっき被膜層(膜厚:10μm)を形成した。
 <工程(X)>
 工程(A)、工程(B)および工程(C)で形成した第1のニッケル含有めっき被膜層、金めっき被膜層および第2のニッケル含有めっき被膜層を有するステンレス鋼を常圧気相流通式反応炉の内部に装着し、炉内温度を300℃まで昇温させ、その状態を2時間保持した。
 加熱後、該ステンレス鋼をエネルギー分散型X線分析(EDS)で分析したところ、第1および第2のニッケル含有めっき被膜層のピンホールは金単体の金属で封孔され、金めっき被膜層のピンホールはニッケル単体の金属で封孔されたことを確認した。
 <工程(D)>
 工程(X)の後、前記常圧気相流通式反応炉内部の大気を窒素ガスで置換し、続いて100体積%酸素ガスを導入して窒素ガスを酸素ガスに完全置換し、その状態を12時間保持した。次いで、酸素ガスを窒素ガスに置換した後、10体積%フッ素ガス(残り90体積%は窒素ガス)を導入して、その状態を12時間保持してフッ化ニッケル被膜層を形成させた。さらに、窒素ガスを12時間流通させ成膜安定化した。得られた最表面層がフッ化ニッケル被膜であるステンレス鋼について、X線光電子分光法(XPS)により検出したFおよびNi量比からフッ化ニッケルの存在を確認した。FおよびNiのスパッタリングタイムおよび既知のスパッタレート2.4nm/min(SiO2換算)から、フッ化ニッケル被膜の厚みを求めたところ、103nmであった。
 [実施例2]
 実施例1と同様に工程(A)を実施した後、実施例1の工程(B)において金の還元めっき処理を20分に変更した以外は実施例1と同様の方法で、1.2μm厚の金めっき被膜層を形成させた。その後、実施例1と同様に、工程(C)、工程(X)および工程(D)を実施した。実施例1と同様にフッ化ニッケル被膜の厚みを求めたところ、103nmであった。
 [実施例3]
 実施例1においてステンレス鋼(SUS316L)の代わりにアルミニウム合金(A5052)を用いて、前処理として、脱脂、活性化処理、酸洗浄および亜鉛置換処理を施した。その後、実施例1と同様の方法で工程(A)、工程(B)、工程(C)、工程(X)および工程(D)を実施した。実施例1と同様にフッ化ニッケル被膜の厚みを求めたところ、103nmであった。なお、前記活性化処理は、処理剤として酸性フッ化アンモニウムと硝酸の混酸を用い、室温で30秒間行った。前記酸洗浄は、洗浄剤として硝酸を用い、室温で25秒間行った。前記亜鉛置換処理は、処理剤としてジンケート浴を用い、室温で25秒間行った。また、前記酸洗浄および前記亜鉛置換処理は、上記条件でそれぞれ2回ずつ行った。
 [比較例1]
 ステンレス鋼(SUS316L)の表面に、前処理として、脱脂、酸洗浄およびニッケルストライク処理を施した。該ニッケルストライク処理を施したステンレス鋼の表面に、無電解ニッケル-リンめっき薬剤「ニムデン(商標)NSX」(上村工業(株)製)を使用して、めっき温度90℃、pH4.5~4.8の条件下、成膜速度10μm/25分で、成膜時のリン含有量が8質量%以上10質量%未満である第1のニッケル含有めっき被膜層を形成した。次いで、無電解ニッケル-リンめっき薬剤「ニムデン(商標)HDX」(上村工業(株)製)を使用して、成膜速度10μm/50分で、成膜時のリン含有量が10質量%以上12質量%以下の第2のニッケル含有めっき被膜層を形成した。これにより、ニッケルストライク処理を施したステンレス鋼上に、合計20μm厚のニッケル含有めっき被膜層を形成させた。その後、実施例1と同様の方法で工程(D)を実施して、ニッケルストライク処理を施したステンレス鋼の表面にニッケル含有めっき被膜層およびフッ化ニッケル被膜層を形成した。
 [比較例2]
 比較例1において、金属基材をステンレス鋼(SUS316L)からアルミニウム合金(A5052)を用いて、前処理として、脱脂、活性化処理、酸洗浄および亜鉛置換処理を施した後、比較例1と同様に無電解ニッケル-リン合金めっき被膜層およびフッ化ニッケル被膜層を形成した。
 [比較例3]
 実施例1において工程(A)、工程(B)および工程(C)のみを実施し、つまり工程(X)および工程(D)は実施せず、ステンレス鋼上に第1のニッケル含有めっき被膜層、金めっき被膜層および第2のニッケル含有めっき被膜層を形成した。
 [評価]
 上記実施例1~3および比較例1~3で得られた金属基材表面上の被膜について、塩酸耐食試験を行った。評価結果を表1に示す。
 <塩酸耐食試験>
 縦15mm×横15mm×厚さ1mmの試験片を35質量%塩酸溶液に25℃で5時間浸漬させた。浸漬前後の質量減少量[mg/dm2]に基づいて下記基準で塩酸耐食性を評価した。
(評価基準)
A:0.1mg/dm2未満
B:0.1mg/dm2以上3.0mg/dm2未満
C:3.0mg/dm2以上10.0mg/dm2未満
D:10.0mg/dm2以上
Figure JPOXMLDOC01-appb-T000001
 表1中、SUSはステンレス鋼(SUS316L)、Alはアルミニウム合金(A5052)を示す。
1・・・金属基材
2・・・第1のニッケル含有めっき被膜層
3・・・金めっき被膜層
4・・・第2のニッケル含有めっき被膜層
5・・・フッ化ニッケル被膜層
6・・・ピンホール
7・・・ピンホールが封孔処理された箇所

Claims (14)

  1.  金属基材と、
     前記金属基材上に形成された第1のニッケル含有めっき被膜層と、
     前記第1のニッケル含有めっき被膜層上に形成された金めっき被膜層と、
     前記金めっき被膜層上に形成された第2のニッケル含有めっき被膜層と、
     前記第2のニッケル含有めっき被膜層上に形成されたフッ化ニッケル被膜層とを有する積層体。
  2.  前記金めっき被膜層のピンホールがニッケル単体の金属によって封孔され、かつ、
     前記第1および第2のニッケル含有めっき被膜層のピンホールが金単体の金属によって封孔されている、請求項1に記載の積層体。
  3.  前記金属基材が、ステンレス鋼、鉄、アルミニウム、アルミニウム合金、銅および銅合金からなる群より選ばれる少なくとも1つの金属を含む、請求項1または2に記載の積層体。
  4.  前記金属基材と前記第1のニッケル含有めっき被膜層の間、および、前記金めっき被膜層と前記第2のニッケル含有めっき被膜層の間に、ニッケルストライク層を有する、請求項1~3のいずれか1項に記載の積層体。
  5.  前記第1のニッケル含有めっき被膜層が、リン濃度が8質量%以上10質量%未満のニッケル-リン合金めっき層を含み、かつ、前記第2のニッケル含有めっき被膜層が、リン濃度が10質量%以上12質量%以下のニッケル-リン合金めっき層を含む、請求項1~4のいずれか1項に記載の積層体。
  6.  前記金めっき被膜層が、置換型金めっき被膜層および還元型金めっき被膜層を、前記第1のニッケル含有めっき被膜層側からこの順で含む、請求項1~5のいずれか1項に記載の積層体。
  7.  前記フッ化ニッケル被膜層の厚みが70nm以上である、請求項1~6のいずれか1項に記載の積層体。
  8.  金属基材上に第1のニッケル含有めっき被膜層を形成する工程(A)、
     前記第1のニッケル含有めっき被膜層上に金めっき被膜層を形成する工程(B)、
     前記金めっき被膜層上に第2のニッケル含有めっき被膜層を形成する工程(C)、および
     前記第2のニッケル含有めっき被膜層上にフッ化ニッケル被膜層を形成する工程(D)を含む、積層体の製造方法。
  9.  前記工程(C)と前記工程(D)の間に、工程(C)で得られた積層体を温度250℃以上の条件で加熱処理することにより、前記金めっき被膜層のピンホールをニッケル単体の金属によって封孔し、かつ、前記第1および第2のニッケル含有めっき被膜層のピンホールを金単体の金属によって封孔する工程(X)を含む、請求項8に記載の積層体の製造方法。
  10.  前記工程(D)が、フッ素ガス濃度8体積%以上および温度250℃以上の雰囲気下で行われる、請求項8または9に記載の積層体の製造方法。
  11.  前記工程(A)の前および前記工程(C)の前に、金属基材に対し電流密度3~20A/dm2の条件でニッケルストライク処理を施す工程を含む、請求項8~10のいずれか1項に記載の積層体の製造方法。
  12.  前記工程(A)が、リン濃度が8質量%以上10質量%未満のニッケル-リン合金めっき層を形成させる工程を含み、かつ、
     前記工程(C)が、リン濃度が10質量%以上12質量%以下のニッケル-リン合金めっき層を形成させる工程を含む、請求項8~11のいずれか1項に記載の積層体の製造方法。
  13.  前記工程(B)が、置換型金めっき被膜層を形成させる工程(b1)と、該工程(b1)の後に、還元型金めっき被膜層を形成させる工程(b2)とを含む、請求項8~12のいずれか1項に記載の積層体の製造方法。
  14.  請求項1~7のいずれか1項に記載の積層体からなる、半導体製造装置の構成部材。
PCT/JP2020/030620 2019-09-13 2020-08-11 積層体およびその製造方法 WO2021049235A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/614,172 US20220227104A1 (en) 2019-09-13 2020-08-11 Laminate and method for producing same
CN202080037913.4A CN113874550B (zh) 2019-09-13 2020-08-11 层叠体及其制造方法
SG11202113245YA SG11202113245YA (en) 2019-09-13 2020-08-11 Laminate and method for producing same
EP20863294.3A EP4029689A4 (en) 2019-09-13 2020-08-11 LAYERED BODY AND MANUFACTURING METHOD THEREOF
KR1020217041402A KR20220010770A (ko) 2019-09-13 2020-08-11 적층체 및 그 제조 방법
JP2021545174A JPWO2021049235A1 (ja) 2019-09-13 2020-08-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-167048 2019-09-13
JP2019167048 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049235A1 true WO2021049235A1 (ja) 2021-03-18

Family

ID=74866498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030620 WO2021049235A1 (ja) 2019-09-13 2020-08-11 積層体およびその製造方法

Country Status (8)

Country Link
US (1) US20220227104A1 (ja)
EP (1) EP4029689A4 (ja)
JP (1) JPWO2021049235A1 (ja)
KR (1) KR20220010770A (ja)
CN (1) CN113874550B (ja)
SG (1) SG11202113245YA (ja)
TW (1) TWI745036B (ja)
WO (1) WO2021049235A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581021B2 (ja) 1994-10-28 1997-02-12 日本電気株式会社 半導体パッケージ
JPH10256708A (ja) * 1997-03-10 1998-09-25 Ocean:Kk 回路電極部の製造方法及び回路電極部
JP2954716B2 (ja) 1990-03-08 1999-09-27 三菱アルミニウム株式会社 フッ化不働態膜を形成した工業材料およびその製造方法
JP3094000B2 (ja) 1997-09-12 2000-10-03 昭和電工株式会社 フッ化表面層を有する金属材料もしくは金属皮膜ならびにフッ化方法
JP2001234360A (ja) * 2000-02-24 2001-08-31 Ibiden Co Ltd 高耐食ニッケル−金めっき
JP2004360066A (ja) 2003-05-09 2004-12-24 Showa Denko Kk 耐食性材料およびその製造方法
JP2007287362A (ja) * 2006-04-13 2007-11-01 Aisin Takaoka Ltd 燃料電池構成部品及びその製造方法
JP2008056978A (ja) * 2006-08-30 2008-03-13 Showa Denko Kk 最表面層がフッ化ニッケル膜である金属材料およびその製造方法
JP2010037603A (ja) * 2008-08-05 2010-02-18 Sumitomo Metal Mining Co Ltd 接続端子部およびその製造方法
JP2010077529A (ja) * 2008-08-26 2010-04-08 Showa Denko Kk 摺動部品およびその製造方法
JP2013127115A (ja) * 2011-11-17 2013-06-27 Tdk Corp 被覆体及び電子部品
JP2018138687A (ja) * 2017-02-24 2018-09-06 日立化成株式会社 接続構造、接続構造の製造方法、接続構造体及び半導体装置
WO2018232162A1 (en) * 2017-06-16 2018-12-20 Corning Incorporated Extending the reflection bandwidth of silver coating stacks for highly reflective mirrors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581021Y2 (ja) 1992-07-30 1998-09-17 ジャトコ株式会社 自動変速機のライン圧制御装置
US6747343B2 (en) * 2000-03-08 2004-06-08 Texas Instruments Incorporated Aluminum leadframes with two nickel layers
JP3094000U (ja) 2002-11-12 2003-05-23 株式会社金杉工芸 メガネレンズクリーナー
CN100392151C (zh) * 2003-05-09 2008-06-04 昭和电工株式会社 耐腐蚀性材料及其制造方法
JP5214179B2 (ja) * 2007-06-12 2013-06-19 株式会社トクヤマ メタライズド基板およびその製造方法
US8710679B2 (en) * 2007-12-04 2014-04-29 Hitachi Metals, Ltd. Electrode structure and its manufacturing method, and semiconductor module
JP5588150B2 (ja) * 2009-02-06 2014-09-10 セイコーインスツル株式会社 樹脂封止型半導体装置
JP5680342B2 (ja) * 2009-09-02 2015-03-04 Tdk株式会社 めっき膜、プリント配線板及びモジュール基板
CN102978671B (zh) * 2012-12-03 2016-04-13 恒汇电子科技有限公司 一种智能卡封装框架的电镀方法
JP6588973B2 (ja) * 2015-05-07 2019-10-09 株式会社日立製作所 耐食部材とその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954716B2 (ja) 1990-03-08 1999-09-27 三菱アルミニウム株式会社 フッ化不働態膜を形成した工業材料およびその製造方法
JP2581021B2 (ja) 1994-10-28 1997-02-12 日本電気株式会社 半導体パッケージ
JPH10256708A (ja) * 1997-03-10 1998-09-25 Ocean:Kk 回路電極部の製造方法及び回路電極部
JP3094000B2 (ja) 1997-09-12 2000-10-03 昭和電工株式会社 フッ化表面層を有する金属材料もしくは金属皮膜ならびにフッ化方法
JP2001234360A (ja) * 2000-02-24 2001-08-31 Ibiden Co Ltd 高耐食ニッケル−金めっき
JP2004360066A (ja) 2003-05-09 2004-12-24 Showa Denko Kk 耐食性材料およびその製造方法
JP2007287362A (ja) * 2006-04-13 2007-11-01 Aisin Takaoka Ltd 燃料電池構成部品及びその製造方法
JP2008056978A (ja) * 2006-08-30 2008-03-13 Showa Denko Kk 最表面層がフッ化ニッケル膜である金属材料およびその製造方法
JP2010037603A (ja) * 2008-08-05 2010-02-18 Sumitomo Metal Mining Co Ltd 接続端子部およびその製造方法
JP2010077529A (ja) * 2008-08-26 2010-04-08 Showa Denko Kk 摺動部品およびその製造方法
JP2013127115A (ja) * 2011-11-17 2013-06-27 Tdk Corp 被覆体及び電子部品
JP2018138687A (ja) * 2017-02-24 2018-09-06 日立化成株式会社 接続構造、接続構造の製造方法、接続構造体及び半導体装置
WO2018232162A1 (en) * 2017-06-16 2018-12-20 Corning Incorporated Extending the reflection bandwidth of silver coating stacks for highly reflective mirrors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4029689A4

Also Published As

Publication number Publication date
SG11202113245YA (en) 2021-12-30
CN113874550A (zh) 2021-12-31
CN113874550B (zh) 2024-01-30
US20220227104A1 (en) 2022-07-21
TW202115281A (zh) 2021-04-16
TWI745036B (zh) 2021-11-01
EP4029689A4 (en) 2023-02-22
EP4029689A1 (en) 2022-07-20
JPWO2021049235A1 (ja) 2021-03-18
KR20220010770A (ko) 2022-01-26

Similar Documents

Publication Publication Date Title
KR101437806B1 (ko) 금속 재료용 내식 합금 코팅막 및 그의 형성 방법
JP5251078B2 (ja) 容器用鋼板とその製造方法
JP5157487B2 (ja) 容器用鋼板とその製造方法
EP2494094B1 (en) Immersion tin silver plating in electronics manufacture
JP3094000B2 (ja) フッ化表面層を有する金属材料もしくは金属皮膜ならびにフッ化方法
WO2016056491A1 (ja) 金属の表面改質方法および金属製品
US20060228569A1 (en) Production method of substrate with black film and substrate with black film
WO2021049235A1 (ja) 積層体およびその製造方法
JP5000236B2 (ja) 最表面層がフッ化ニッケル膜である金属材料およびその製造方法
WO2021070561A1 (ja) 積層体およびその製造方法
WO2021020064A1 (ja) 積層体およびその製造方法
US12031213B2 (en) Laminate
JP2004360066A (ja) 耐食性材料およびその製造方法
JP4476736B2 (ja) 黒色膜付基材の製造方法
KR20120108632A (ko) 니켈-텅스텐-몰리브덴 합금 무전해 도금액 및 이를 이용한 코팅물
JP2006089821A (ja) 半導体加工装置用部材の耐食処理方法およびその処理部材
WO2005014881A2 (en) Production method of substrate with black film and substrate with black film
JP2010090823A (ja) 真空ポンプ用部品およびその製造方法
JP2010077529A (ja) 摺動部品およびその製造方法
JP2006089822A (ja) 耐ハロゲン腐食性皮膜被覆部材およびその皮膜被覆部材の製造方法
KR101386019B1 (ko) 니켈-인-텅스텐-지르코늄 합금 무전해 도금액을 이용한 무전해 도금 방법
EP2491163B1 (en) Composition and process for improved zincating of magnesium and magnesium alloy substrates
JPH04214893A (ja) 被覆層を有するアルミニウム系材料およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545174

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217041402

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020863294

Country of ref document: EP

Effective date: 20220413