WO2021000945A1 - 锂离子电池用涂胶隔膜及其制备方法和应用 - Google Patents

锂离子电池用涂胶隔膜及其制备方法和应用 Download PDF

Info

Publication number
WO2021000945A1
WO2021000945A1 PCT/CN2020/100170 CN2020100170W WO2021000945A1 WO 2021000945 A1 WO2021000945 A1 WO 2021000945A1 CN 2020100170 W CN2020100170 W CN 2020100170W WO 2021000945 A1 WO2021000945 A1 WO 2021000945A1
Authority
WO
WIPO (PCT)
Prior art keywords
base film
rubberized
lithium ion
separator
thickness
Prior art date
Application number
PCT/CN2020/100170
Other languages
English (en)
French (fr)
Inventor
潘仪
白莉
潘增
朱燕
张萌
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US17/624,477 priority Critical patent/US20220359952A1/en
Priority to JP2021577323A priority patent/JP7352665B2/ja
Priority to KR1020227000815A priority patent/KR20220018049A/ko
Priority to EP20834638.7A priority patent/EP3996192A1/en
Publication of WO2021000945A1 publication Critical patent/WO2021000945A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of separators for lithium-ion batteries, and in particular to a rubber-coated separator for lithium-ion batteries, and a preparation method and application thereof.
  • the existing diaphragm coating layer structure can realize the basic function of bonding the pole piece and the diaphragm together, and improve the forming performance of the battery core, that is, the hardness of the battery core. At the same time, the pole piece and the diaphragm are bonded together, which significantly improves the flatness of the interface and suppresses the deformation of the pole core.
  • Most of the existing battery-coated diaphragm products are prepared by using a liquid slurry system.
  • the coating layer can be divided into water-based coating and oil-based coating.
  • the coating layer can be continuous (such as full coating) or non-continuous (such as dot coating and spraying).
  • the inventor of the present application has discovered through many experiments that whether it is a water-based coating or an oil-based coating, or a full coating or a dispersed coating, there is a phenomenon of accumulation and agglomeration of particles.
  • Oil-based coating rubber-coated diaphragms on the one hand, the oil-based coating is made of chemical solvents, which causes serious environmental pollution and high cost; on the other hand, the oil-based system has a complicated pore-making process, which is difficult to control, and it is difficult to obtain a pore size. Consistent, uniformly distributed adhesive layer.
  • the oil-based rubber-coated separators on the market have poor permeability of the rubber layer, and the increase in air permeability value is about 50s or more (gurley value 100cc). After hot pressing, the air permeability value increases more, which will seriously hinder the lithium ion in the diaphragm.
  • the overall transmission in the aperture greatly increases the impedance of the battery, and the ion conductance is reduced by more than 5%, which accelerates the overall polarization of the battery, and affects the battery's performance such as cycle and rate.
  • the full-coated form has a full-covered rubber layer, which affects the overall air permeability of the diaphragm.
  • the gas permeability value of the rubberized layer increases by about 50s or more (gurley value 100cc), and the ion conductivity decreases by 5 % Above, it will increase more after hot pressing, which will affect the rate discharge and cycle performance of the battery; in spot coating and spraying methods, the process window is narrow, and the consistency of the glue layer in the horizontal plane and cross-sectional direction of the diaphragm is poor. After the glued particles are agglomerated, the horizontal distribution of the glue layer is uneven, which will eventually seriously affect the consistency of the diaphragm.
  • the air permeability value of the glue layer has a large deviation, resulting in inconsistent lithium ion transmission in the diaphragm.
  • the uneven transmission of lithium ions, large fluctuations in ion conductivity, and the difference can reach 100%, the local polarization of the battery will cause a lot of safety hazards such as lithium evolution.
  • the thickness of the glue layer of the same diaphragm fluctuates widely, reaching 1-10 ⁇ m, which makes it difficult to guarantee the bonding strength between the diaphragm and the pole piece, which affects the quality control and performance of the diaphragm and battery. Also larger.
  • the purpose of the present disclosure is to overcome the problems of serious environmental pollution and poor consistency of the rubber-coated diaphragm in the prior art, and to provide a rubber-coated diaphragm for a lithium ion battery with environmental protection and high diaphragm consistency, and a preparation method and application thereof.
  • a rubberized separator for a lithium ion battery includes a base film and a glue layer formed on the surface of the base film.
  • the thickness deviation percentage of the adhesive layer is 0%-8%.
  • the difference between the air permeability of the rubberized membrane and the air permeability of the base film is 0s/100cc-20s/100cc.
  • the difference between the air permeability value of the rubber-coated membrane and the air permeability value of the base film is 0s/100cc-15s/100cc.
  • the difference between the ionic conductivity of the base film and the ionic conductivity of the glue-coated membrane is 0 S/cm-10 -5 S/cm.
  • the coating layer includes a resin
  • the resin is polyethylene oxide, polyethylene wax, polypropylene oxide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride copolymer, polypropylene One or more of nitrile, polymethyl (meth)acrylate, acrylate copolymer and aramid fiber.
  • the resin is one or more of polyethylene oxide, polyvinylidene fluoride, and polymethyl (meth)acrylate.
  • the glue coating layer is continuously distributed.
  • the glue coating layer is distributed discontinuously.
  • the base film is one or more of polyolefin film, non-woven fabric and polyimide film; or, the base film is a polyolefin film, non-woven fabric or polyimide film.
  • a composite film with ceramic coating is formed on the imide film.
  • the average thickness of the base film is 3 ⁇ m-72 ⁇ m.
  • the average thickness of the glue layer is 50 nm-100 ⁇ m.
  • the average thickness of the glue layer is 80 nm-10 ⁇ m.
  • a method for preparing a rubberized separator for a lithium ion battery includes applying an electrostatic powder spray method without using a solvent to coat a resin powder on the surface of a base film to form on the surface of the base film. Adhesive layer.
  • the resin powder is coated on one side of the base film using an electrostatic powder spraying method, or the resin powder is coated on both sides of the base film using an electrostatic powder spraying method.
  • the glue coating layer is continuously distributed.
  • the glue coating layer is distributed discontinuously.
  • the resin powder is polyethylene oxide, polyethylene wax, polypropylene oxide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride copolymer, polyacrylonitrile, poly(methyl) One or more of methyl acrylate, acrylate copolymer and aramid.
  • the resin powder is one or more of polyethylene oxide, polyvinylidene fluoride, and polymethyl (meth)acrylate.
  • the particle size D50 of the resin powder is 50 nm-50 ⁇ m.
  • the particle size D50 of the resin powder is 80 nm-5 ⁇ m.
  • the base film is one or more of polyolefin film, non-woven fabric and polyimide film; or, the base film is a polyolefin film, non-woven fabric or polyimide film.
  • a composite film with ceramic coating is formed on the imide film.
  • the average thickness of the base film is 3 ⁇ m-72 ⁇ m.
  • the average thickness of the glue layer is 50 nm-100 ⁇ m.
  • the average thickness of the glue layer is 80 nm-10 ⁇ m.
  • the conditions of the electrostatic powder spraying include: the spraying amount is 0.05g/min-500g/min, the base film moving speed is 2m/min-500m/min, the spraying distance is 10cm-30cm, and the spraying voltage It is 10kv-30kv.
  • the conditions of the electrostatic powder spraying include: the spraying amount is 0.1g/min-300g/min, the base film moving speed is 5m/min-300m/min, the spraying distance is 15cm-25cm, and the spraying voltage It is 15kv-25kv.
  • the method further includes applying the resin powder to the surface of the base film by using the electrostatic powder spraying method, and then hot pressing the base film on which the glue layer is formed.
  • the hot pressing conditions include a hot pressing temperature of 30°C-120°C, and a hot pressing time of 2s-300s.
  • the static electricity of the base film after the hot pressing is removed.
  • a lithium ion battery comprising the above-mentioned rubberized separator for lithium ion batteries or the rubberized separator for lithium ion batteries obtained by the above method.
  • the rubber-coated separator for a lithium ion battery according to the present disclosure has the advantages of environmental protection and high consistency of the separator, thereby ensuring the bonding strength between the separator and the pole pieces, thereby reducing the impact of the separator on the quality control and use performance of the battery.
  • the thickness of the glue layer refers to the thickness of the glued part, that is, only the glue layer thickness of the glued part is measured in the measurement.
  • the present disclosure provides a rubber-coated separator for lithium-ion batteries (hereinafter, the rubber-coated separator may also be referred to simply as a separator).
  • the rubber-coated separator for lithium-ion batteries includes a base film and
  • the maximum thickness of, D min is the minimum thickness of the glue layer, and D ave is the average thickness of the glue layer.
  • the thickness deviation percentage of the glue layer is 0%-8%. According to a specific embodiment of the present disclosure, the thickness deviation percentage of the glue layer is 0%-5%. In a specific example disclosed, the thickness deviation percentage of the glue layer is 0%-3%. According to another specific example of the present disclosure, the thickness deviation percentage of the glue layer is 0%. As a specific example of the thickness deviation percentage of the adhesive layer, for example, 0%, 1%, 2%, 3%, 4%, 5%, 5.5%, 6%, 7%, and 8% can be cited.
  • the thickness deviation percentage of the adhesive layer is determined according to the following method.
  • the resolution of the thickness gauge is not greater than 0.1 ⁇ m.
  • the measurement position is measured at 3 points at equal distances in the horizontal direction, and one group is measured every 200mm in the longitudinal direction. A total of 5 groups were tested, and a total of 15 points of the thickness of the glued diaphragm were measured.
  • the thickness of the glue layer is the thickness of the glue diaphragm minus the thickness of the corresponding base film to obtain 15 glue layer thickness values.
  • the average value of 15 points is recorded as the average thickness of the adhesive layer D ave
  • the maximum value among 15 points is recorded as the maximum thickness of the adhesive layer D max
  • the minimum value among 15 points is recorded as the thickness of the adhesive layer.
  • the minimum value D min of the thickness of the adhesive layer is calculated by the following formula.
  • Thickness deviation percentage (D max -D min )/D ave ⁇ 100%
  • the air permeability value increase value of the adhesive layer to the base film (that is, the difference between the air permeability value of the adhesive film and the air permeability value of the base film) is 0s/100cc-20s/100cc, According to a specific embodiment of the present disclosure, the air permeability value of the adhesive layer to the base film increases by 0s/100cc-15s/100cc. According to a specific example of the present disclosure, the air permeability value of the adhesive layer to the base film The increase value is 0s/100cc-10s/100cc.
  • the air permeability value of the adhesive layer to the base film increases by 0s/100cc-5s/100cc, according to another specific example of the present disclosure
  • the increase value of the air permeability value of the adhesive layer to the base film is 0s/100cc-2s/100cc.
  • the increased value of the air permeability of the coating layer to the base film for example, 0s/100cc, 1s/100cc, 2s/100cc, 3s/100cc, 4s/100cc, 5s/100cc, 6s/100cc can be cited. , 7s/100cc, 8s/100cc, 9s/100cc, 10s/100cc, 11s/100cc, 12s/100cc, 13s/100cc, 14s/100cc, 15s/100cc, 16s/100cc, 17s/100cc, 18s/100cc, 19s /100cc and 20s/100cc etc.
  • the air permeability increase value of the adhesive layer to the base film is measured according to the following steps.
  • the sample size is 100mm ⁇ 100mm; if the width of the diaphragm is less than 100mm, the sample size is 100mm ⁇ the width of the diaphragm.
  • Increased value of the air permeability value of the adhesive layer to the base film air permeability value of the adhesive film-air permeability value of the base film.
  • the reduction value of the ionic conductivity of the base film by the glue layer is less than 0S/cm- 10 -5 S/cm, according to a specific embodiment of the present disclosure, the reduction value of the ionic conductivity of the adhesive layer to the base film is 0 S/cm-0.2 ⁇ 10 -5 S/cm, according to a specific example of the present disclosure , The reduction value of the ionic conductivity of the adhesive layer to the base film is 0S/cm-0.1 ⁇ 10 -5 S/cm. According to another specific embodiment of the present disclosure, the ionic conductance of the adhesive layer to the base film is reduced The value is 0S/cm-0.03 ⁇ 10 -5 S/cm.
  • the reduction value of the ionic conductivity of the adhesive layer to the base film is calculated according to the following formula.
  • the reduction value of the ionic conductivity of the coating layer to the base film the ionic conductivity of the base film-the ionic conductivity of the coating diaphragm.
  • the glue layer includes a resin
  • the resin is polyethylene oxide, polyethylene wax, polypropylene oxide, polyetherimide, and polyvinylidene fluoride.
  • the resin is poly One or more of ethylene, vinylidene fluoride copolymer, polyacrylonitrile, polymethyl (meth)acrylate, acrylate copolymer, and aramid; according to a specific embodiment of the present disclosure, the resin is poly One or more of ethylene oxide, polyvinylidene fluoride, and polymethyl (meth)acrylate.
  • the glue layer may be continuously distributed or discontinuously distributed.
  • the base film is not particularly limited, and may be various materials commonly used for base films in the art.
  • the base film is one or more of polyolefin film, non-woven fabric and polyimide film; or, the base film is polyolefin film, non-woven fabric Or a composite film with ceramic coating or other functional coating formed on the polyimide film.
  • a coating formed of alumina, boehmite, or the like may be used.
  • the other functional coating for example, it may be a high-temperature resistant coating such as aramid, or an ion coating.
  • the average thickness of the base film is 3 ⁇ m-72 ⁇ m, for example, 3 ⁇ m, 3.1 ⁇ m...71.9 ⁇ m, 72 ⁇ m; according to a specific embodiment of the present disclosure, the average thickness of the base film is 6 ⁇ m- 32 ⁇ m; According to a specific example of the present disclosure, the average thickness of the base film is 6 ⁇ m-25 ⁇ m.
  • the average thickness of the glue layer may be 50 nm-100 ⁇ m, for example, 50 nm, 51 nm...99 ⁇ m, 100 ⁇ m. According to a specific embodiment of the present disclosure, the average thickness of the glue layer may be According to a specific example of the present disclosure, the average thickness of the glue layer may be 80 nm-10 ⁇ m.
  • the average thickness of the adhesive layer is less than 50nm, the functional performance of the coating cannot be fully exerted; if the average thickness of the adhesive layer exceeds 100 ⁇ m, the thickness of the coating is too large, the functional role is redundant, and the volume is too large. , Reduce the energy density of the battery.
  • the present disclosure provides a method for preparing a rubberized separator for a lithium ion battery.
  • the method includes coating a resin powder on the surface of a base film by electrostatic powder spraying to form a coating on the surface of the base film. Glue layer.
  • the electrostatic powder spraying method is a method of directly coating resin powder on the surface of the base film without using a solvent to form a glue layer on the surface of the base film.
  • the resin is polyethylene oxide, polyethylene wax, polypropylene oxide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride copolymer, One or more of polyacrylonitrile, polymethyl (meth)acrylate, acrylate copolymer and aramid; according to an embodiment of the present disclosure, the resin is polyethylene oxide, polyvinylidene fluoride and poly One or more of methyl (meth)acrylate.
  • the particle size D50 of the resin powder is 50nm-50 ⁇ m, for example 50nm, 51nm...49 ⁇ m, 50 ⁇ m; according to an embodiment of the present disclosure, the particle size D50 of the resin powder is 50nm-5 ⁇ m According to a specific example of the present disclosure, the particle size D50 of the resin powder is 80nm-5 ⁇ m.
  • the particle size of the resin powder is less than 50nm, it is difficult to select the resin and the application window is small.
  • the particle size of the resin powder is greater than 50 ⁇ m, the particle size is too large, which affects the thickness of the diaphragm and ion conduction. Performance issues.
  • the base film is not particularly limited, and may be various materials commonly used for base films in the art.
  • the base film is one or more of polyolefin film, non-woven fabric and polyimide film; or, the base film is polyolefin film, non-woven fabric Or a composite film with ceramic coating or other functional coating formed on the polyimide film.
  • a coating formed of alumina, boehmite, or the like may be used.
  • the other functional coating for example, it may be a high-temperature resistant coating such as aramid, or an ion coating.
  • the average thickness of the base film is 3 ⁇ m-72 ⁇ m, for example, 3 ⁇ m, 3.1 ⁇ m...71.9 ⁇ m, 72 ⁇ m; according to an embodiment of the present disclosure, the average thickness of the base film is 6 ⁇ m-32 ⁇ m According to a specific example of the present disclosure, the average thickness of the base film is 6 ⁇ m-25 ⁇ m.
  • the average thickness of the glue layer may be 50 nm-100 ⁇ m, for example, 50 nm, 51 nm...99 ⁇ m, 100 ⁇ m. According to a specific embodiment of the present disclosure, the average thickness of the glue layer may be According to a specific example of the present disclosure, the average thickness of the glue layer may be 80 nm-10 ⁇ m.
  • the glued diaphragm is obtained by the principle of electrostatic powder spraying.
  • electrostatic powder spraying when electrostatic powder spraying is used for coating, the spray gun and resin powder of electrostatic powder spraying are connected to the negative electrode, and the operating table and the base film are connected to the negative electrode.
  • the positive pole is connected to ground.
  • an electrostatic field is formed between the end of the spray gun and the base film.
  • the electric field force experienced by the resin powder is proportional to the voltage of the electrostatic field and the charge amount of the powder, and inversely proportional to the distance between the spray gun and the base film.
  • the voltage is high enough, the area near the spray gun forms an air ionization zone, and the air is generated strongly. Corona discharge.
  • the resin powder is ejected through the nozzle, and is charged by contact when passing through the edge of the electrode needle of the gun.
  • the surface nuclear charge is increased again.
  • These negatively charged powders are electrostatically charged. Under the action of the field, it moves to the surface of the base film and is evenly deposited on the surface of the base film.
  • the conditions of the electrostatic powder spraying include: the spraying amount is 0.05g/min-500g/min, for example, the spraying amount is 0.05g/min, 0.06g/min...499.99g/min, 500g/min.
  • the base film moving speed is 5-500m/min, for example the base film moving speed is 5m/min, 6m/min...499m/min, 500m/min
  • the spraying distance is 10cm-30cm, for example, the spraying distance is 10cm, 11cm ...29cm, 30cm
  • the spraying voltage is 10kv-30kv, for example, the spraying voltage is 10kv, 10.1kv...29.9kv, 30kv;
  • the conditions of the electrostatic powder spraying include: the spraying amount is 1g/ min-300g/min, base film moving speed is 5m/min-300m/min, spraying distance is 15cm-25cm, spraying voltage is 15kv-25kv.
  • base film moving speed refers to the moving speed of the base film in the spray area.
  • Spray distance refers to the distance between the base film and the spray nozzle.
  • the charged base film is placed between grounded longitudinal plates, and the dried resin powder is placed in the powder storage tank of the solid powder electrostatic spraying system, wherein the resin powder has an opposite charge to the base film.
  • the two electrostatic spray guns are fixed on both sides of the base film respectively, and the nozzles are parallel to the longitudinal plate; start the electrostatic spray system with the spraying volume of 0.05g/min-500g/min, and turn on the spray gun at the same time as 5m/min-
  • the base film is wound up at a speed of 500m/min, the spraying distance is 10cm-30cm, the spraying voltage is 10kv-30kv, and the resin powder adheres to the base film under the action of the electric field force.
  • the resin powder may be coated on one side of the base film by electrostatic spraying, or on both sides of the base film.
  • the glue layer formed on the base film may be continuously distributed or discontinuously distributed.
  • the method further includes applying the resin powder to the surface of the base film by using the electrostatic powder spraying method, and then hot pressing the base film on which the glue layer is formed. Hot pressing can ensure the effective fixation of the glue layer on the base film, facilitate the bonding strength of the glue base film during use, and ensure that the performance of the glue base film is optimized during the application process.
  • the conditions of the hot pressing include: the hot pressing temperature is 30°C-120°C, the hot pressing time is 2s-300s, for example, the hot pressing temperature is 30°C, 31°C...119°C, 120°C , The hot pressing time is 2s, 3s...299s, 300s.
  • the method further includes removing static electricity of the base film after the hot pressing after the hot pressing of the base film formed with the glue layer.
  • the method of removing static electricity is not particularly limited.
  • an electrostatic rod or an ion rod may be used to eliminate static electricity of the base film.
  • the method for preparing a rubberized separator for lithium ion batteries according to the present disclosure has the following advantages: the thickness deviation of the same coating layer is small (thickness deviation is less than 10%); the gas permeability value of the coating layer to the base film is increased Small, about 0s/100cc-20s/100cc; After hot pressing, the air permeability value of the coating layer to the base film increases to 0s/100cc-20s/100cc; the decrease value of the ion conductivity of the coating layer to the base film is less than 0S/cm -10 -5 S/cm; under different magnifications, the battery rate performance of the glued diaphragm is consistent with that of the glued diaphragm; the cycle performance of the glued diaphragm battery is better than the base film before glue.
  • the present disclosure avoids the use of chemical solvents and plays a role in environmental protection; at the same time, the electrostatic powder spraying In this way, the uniform distribution of the glue layer on the base film can be achieved by controlling the electrostatic field voltage, spraying distance, and traveling speed, and it also avoids the difficult problem of the oil-based hole making process.
  • the present disclosure adopts the design and selection of solid powder particles and ensures that the solid powders carry the same kind of charge through static electricity. Avoid physical agglomeration between tiny particles, so that the particles of the coating layer can be freely designed to achieve single-layer or multi-layer single-particle dispersion on the base film, and achieve design controllability in the horizontal and cross-sectional directions of the base film. Achieve consistent distribution.
  • the resin powders are charged with the same kind of charge, which avoids physical agglomeration between fine particles, so that the resin powder can be effectively controlled and single particle adhesion can be achieved
  • the base film On the surface of the base film, it finally provides a normal transmission channel for lithium ions.
  • the transmission channel of lithium ions is consistent and the internal polarization of the cell is small. While ensuring the adhesion of the base film, it meets the electrical performance requirements of the battery, especially Rate performance and long cycle life requirements.
  • the present disclosure provides a lithium ion battery, which includes the above-mentioned rubberized separator for lithium ion batteries or the rubberized separator for lithium ion batteries obtained by the aforementioned method. It should be noted that the features and advantages described above for the rubberized separator for lithium ion batteries and the preparation method thereof are also applicable to the lithium ion battery, and will not be repeated here.
  • Electrostatic removal treatment using an electrostatic rod to eliminate static electricity of the base film to obtain a diaphragm with an average thickness of 80nm glue layer.
  • a positively charged polyethylene ceramic base film with a thickness of 15 ⁇ m (purchased from Suzhou Jieli, consisting of a polyethylene base with an average thickness of 12 ⁇ m and an alumina coating with an average thickness of 3 ⁇ m coated on the surface of the substrate ) Put the dry polymethyl methacrylate resin powder into the powder storage tank of the solid powder electrostatic spraying system between the grounded vertical plates.
  • the resin powder has the opposite electrical charge to the base film.
  • the electrostatic spray gun is fixed on both sides of the base film, and the spray head is parallel to the longitudinal plate;
  • Electrostatic removal treatment using an electrostatic rod to eliminate static electricity of the base film, and obtain a diaphragm with an average thickness of 10 ⁇ m adhesive layer.
  • a positively charged polypropylene base film (purchased from Cangzhou Mingzhu) with an average thickness of 25 ⁇ m is placed between grounded longitudinal plates, and the dried resin powder is placed in the powder storage tank of the solid powder electrostatic spraying system.
  • the resin powder has an electrical charge opposite to that of the base film. Fix two electrostatic spray guns on both sides of the base film, with the nozzles parallel to the longitudinal plate;
  • Electrostatic removal treatment using an electrostatic rod to eliminate the static electricity of the base film to obtain a diaphragm with an average thickness of 50 nm in thickness.
  • Example 2 The same raw materials as in Example 1 are used to prepare the rubberized membrane, the difference is that in this comparative example, the preparation method adopts the method of dip coating. specific:
  • the polyethylene base film (purchased from Suzhou Jieli) with an average thickness of 6 ⁇ m is passed through the area of the cartridge with the coating slurry by dip coating; the coating speed is 10m/min, and the coating amount is 0.5g/m 2 .
  • the coating compound is coated on the surface of a 25 ⁇ m polypropylene base film (purchased from Cangzhou Mingzhu) through a micro-gravure roll, the coating speed is 30 m/min, and the coating amount is 0.8 g/m 2 .
  • step 3 Dry the diaphragm obtained in step 2) in an oven at 35° C. to obtain a rubberized diaphragm.
  • Example 2 The same resin powder and base film as in Example 1 were used to prepare the glued diaphragm, the difference is that this comparative example uses the electrostatic spraying method of liquid powder to prepare the glued diaphragm.
  • a positively charged polyethylene base film (purchased from Suzhou Jieli) with an average thickness of 6 ⁇ m is placed between the grounded longitudinal plates, and the coating slurry is placed in the storage tank of the electrostatic spraying system.
  • the slurry has an electric charge opposite to that of the base film.
  • Anti-static treatment use an electrostatic rod to eliminate the static electricity of the base film to obtain a glued diaphragm.
  • the resolution of the thickness gauge is not greater than 0.1 ⁇ m.
  • the measurement position is measured at 3 points at equal distances in the horizontal direction, and one group is measured every 200mm in the longitudinal direction. A total of 5 groups were tested, and a total of 15 points of the thickness of the glued diaphragm were measured.
  • the thickness of the glue layer is the thickness of the glue diaphragm minus the thickness of the corresponding base film to obtain 15 glue layer thickness values.
  • the average value of 15 points is recorded as the average thickness of the adhesive layer D ave
  • the maximum value among 15 points is recorded as the maximum thickness of the adhesive layer D max
  • the minimum value among 15 points is recorded as the thickness of the adhesive layer.
  • the minimum value D min of the thickness of the adhesive layer is calculated by the following formula.
  • Thickness deviation percentage (D max -D min )/D ave ⁇ 100%
  • the sample size is 100mm ⁇ 100mm; if the width of the diaphragm is less than 100mm, the sample size is 100mm ⁇ the width of the diaphragm.
  • Increased value of the air permeability value of the adhesive layer to the base film air permeability value of the adhesive film-air permeability value of the base film.
  • R is the resistance value of the single-layer diaphragm
  • k is the slope of the curve when the degree of fit is greater than 0.99
  • is the ionic conductivity of the diaphragm in S/cm
  • d is the thickness of the diaphragm
  • R is the resistance of the diaphragm
  • S is the area of the diaphragm.
  • the positive electrode uses lithium nickel cobalt manganese oxide and the negative electrode uses artificial graphite to make a square battery with a capacity of 50Ah.
  • a current of 0.5C is charged to 4.2V, and a current of 0.5C is discharged to 2.5V. Then charge to 4.2V with a current of 0.5C and discharge to 2.5V with a current of 5C.
  • the capacity value of 5C divided by the capacity value of 0.5C is the 5C discharge capacity retention rate.
  • the positive electrode uses lithium nickel cobalt manganese oxide and the negative electrode uses artificial graphite to make a square battery with a capacity of 50Ah.
  • the rubber-coated diaphragm obtained by the method of the present disclosure has significantly lower thickness deviation percentage of the same rubber-coated layer. Small, the increase in air permeability of the adhesive layer to the base film is significantly smaller, and the decrease in ion conductance of the adhesive layer to the base film is also significantly smaller, and the 5C discharge capacity retention rate and the 1000 cycle capacity retention rate are also small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

公开了一种锂离子电池用涂胶隔膜及其制备方法和应用。本公开的锂离子电池用涂胶隔膜包括基膜和形成在所述基膜表面的涂胶层,所述涂胶层的厚度偏差百分比不高于10%,其中,厚度偏差百分比=(D max-D min)/D ave×100%,D max为所述涂胶层的厚度的最大值,D min为涂胶层的厚度的最小值,D ave为涂胶层的厚度的平均值。

Description

锂离子电池用涂胶隔膜及其制备方法和应用
优先权信息
本公开请求于2019年07月03日向中国国家知识产权局提交的、专利申请号为201910595330.2、申请名称为“锂离子电池用涂胶隔膜及其制备方法和应用”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开涉及锂离子电池用隔膜领域,具体涉及一种锂离子电池用涂胶隔膜及其制备方法和应用。
背景技术
现有隔膜涂胶层结构,可实现极片和隔膜粘接在一起的基本功能,提高电芯的成型性能,即电芯的硬度。同时,极片和隔膜粘结在一起,明显改善界面平整度,并抑制极芯的变形。现有的电池内涂胶隔膜产品,大多采用液态浆料体系来制备。
目前按照涂胶层可分为水系涂层和油系涂层,另外涂胶层有连续的(例如满涂),也有非连续的(例如点涂及喷涂等)。
公开内容
本申请的发明人经过多次实验发现,无论是水系涂层或者是油系涂层,再或者是满涂、分散涂布,均存在颗粒的堆积团聚现象。
并且,在实际使用时,发现现有技术的隔膜在其自身结构和使用性能上未能达到最佳的使用效果和工作效能,仍存在有诸多不足。现将其缺点归纳如下:
油系涂层涂胶隔膜,一方面,其油性涂层采用化学溶剂配制而成,对环境污染严重、成本高;另一方面,油系体系造孔工艺复杂,控制难度高,较难获得孔径一致、分布均一的涂胶层。由此,市场的上油系涂胶隔膜,涂胶层的透过性差,透气值增加值约50s以上(gurley值100cc),热压后透气值增加更多,这将严重阻碍锂离子在隔膜孔径中的整体的传输,大幅度提高电池的阻抗,离子电导降低5%以上,加速电池整体的极化,影响电池的循环和倍率等性能。
而水系涂层的涂胶隔膜中,满涂形式其胶层为全覆盖隔膜,影响隔膜的整体的透气性,涂胶层的透气值增加值约50s以上(gurley值100cc),离子电导降低5%以上,热压后增加更多,从而影响电池的倍率放电及循环性能;点涂及喷涂方式中,工艺窗口较窄,涂胶层 在隔膜的水平面和截面方向上一致性均较差。涂胶颗粒团聚后,涂胶层水平分布不均匀,最终严重影响隔膜的一致性,涂胶层透气值偏差大,导致锂离子在隔膜中的传输不一致。锂离子的不均匀传输,离子电导波动大,差异可达到100%,电池的局部极化,将产生析锂等大量的安全隐患。同时,难以控制涂胶层的厚度,同一隔膜的涂胶层厚度波动范围大,达到1-10μm,导致隔膜和极片间的粘结强度难以保证,对隔膜以及电池的质量管控和使用性能影响也较大。
本公开的目的是为了克服现有技术存在的涂胶隔膜环境污染严重和一致性差等问题,提供一种环保、隔膜一致性高的锂离子电池用涂胶隔膜及其制备方法和应用。
根据本公开的第一方面,提供一种锂离子电池用涂胶隔膜,该锂离子电池用涂胶隔膜包括基膜和形成在所述基膜表面的涂胶层,所述涂胶层的厚度偏差百分比不高于10%,其中,厚度偏差百分比=(D max-D min)/D ave×100%,D max为所述涂胶层的厚度的最大值,D min为涂胶层的厚度的最小值,D ave为涂胶层的厚度的平均值。
根据本公开的实施例,所述涂胶层的厚度偏差百分比为0%-8%。
根据本公开的实施例,所述涂胶隔膜的透气值与所述基膜的透气值的差值为0s/100cc-20s/100cc。
根据本公开的实施例,所述涂胶隔膜的透气值与所述基膜的透气值的差值为0s/100cc-15s/100cc。
根据本公开的实施例,所述基膜的离子电导率与所述涂胶隔膜的离子电导率的差值为0S/cm-10 -5S/cm。
根据本公开的实施例,所述涂胶层包括树脂,所述树脂为聚氧化乙烯、聚乙烯蜡、聚氧化丙烯、聚醚酰亚胺、聚偏氟乙烯、偏氟乙烯共聚物、聚丙烯腈、聚(甲基)丙烯酸甲酯、丙烯酸酯共聚物和芳纶中的一种或多种。
根据本公开的实施例,所述树脂为聚氧化乙烯、聚偏氟乙烯和聚(甲基)丙烯酸甲酯中的一种或多种。
根据本公开的实施例,所述涂胶层连续分布。
根据本公开的实施例,所述涂胶层非连续分布。
根据本公开的实施例,所述基膜为聚烯烃膜、无纺布和聚酰亚胺膜中的一种或多种;或者,所述基膜为在聚烯烃膜、无纺布或聚酰亚胺膜上形成有陶瓷涂层的复合膜。
根据本公开的实施例,所述基膜的平均厚度为3μm-72μm。
根据本公开的实施例,所述涂胶层的平均厚度为50nm-100μm。
根据本公开的实施例,所述涂胶层的平均厚度为80nm-10μm。
根据本公开第二方面,提供一种锂离子电池用涂胶隔膜的制备方法,该方法包括采用 静电粉末喷涂法不使用溶剂将树脂粉末涂覆在基膜的表面以在所述基膜表面形成涂胶层。
根据本公开的实施例,采用静电粉末喷涂法将所述树脂粉末涂覆在基膜的单侧,或者采用静电粉末喷涂法将所述树脂粉末涂覆在基膜的双侧。
根据本公开的实施例,所述涂胶层连续分布。
根据本公开的实施例,所述涂胶层非连续分布。
根据本公开的实施例,所述树脂粉末为聚氧化乙烯、聚乙烯蜡、聚氧化丙烯、聚醚酰亚胺、聚偏氟乙烯、偏氟乙烯共聚物、聚丙烯腈、聚(甲基)丙烯酸甲酯、丙烯酸酯共聚物和芳纶中的一种或多种。
根据本公开的实施例,所述树脂粉末为聚氧化乙烯、聚偏氟乙烯和聚(甲基)丙烯酸甲酯中的一种或多种。
根据本公开的实施例,所述树脂粉末的粒径D50为50nm-50μm。
根据本公开的实施例,所述树脂粉末的粒径D50为80nm-5μm。
根据本公开的实施例,所述基膜为聚烯烃膜、无纺布和聚酰亚胺膜中的一种或多种;或者,所述基膜为在聚烯烃膜、无纺布或聚酰亚胺膜上形成有陶瓷涂层的复合膜。
根据本公开的实施例,所述基膜的平均厚度为3μm-72μm。
根据本公开的实施例,所述涂胶层的平均厚度为50nm-100μm。
根据本公开的实施例,所述涂胶层的平均厚度为80nm-10μm。
根据本公开的实施例,所述静电粉末喷涂的条件包括:喷涂量为0.05g/min-500g/min,基膜移动速度为2m/min-500m/min,喷涂距离为10cm-30cm,喷涂电压为10kv-30kv。
根据本公开的实施例,所述静电粉末喷涂的条件包括:喷涂量为0.1g/min-300g/min,基膜移动速度为5m/min-300m/min,喷涂距离为15cm-25cm,喷涂电压为15kv-25kv。
根据本公开的实施例,该方法还包括在采用所述静电粉末喷涂法将树脂粉末涂覆在基膜的表面之后,将形成有涂胶层的基膜进行热压。
根据本公开的实施例,所述热压的条件包括,热压温度为30℃-120℃,热压时间为2s-300s。
根据本公开的实施例,在将形成有涂胶层的基膜进行所述热压之后,除去热压后基膜的静电。
根据本公开第三方面,提供了一种锂离子电池,所述锂离子电池包括上述的锂离子电池用涂胶隔膜或采用上述的方法得到的锂离子电池用涂胶隔膜。
根据本公开的锂离子电池用涂胶隔膜具有环保、隔膜一致性高的优点,从而可以保证隔膜和极片间的粘结强度,进而降低隔膜对电池的质量管控和使用性能的影响。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
公开详细描述
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在本公开中,“涂胶层厚度”是指有涂胶部分的厚度,即测定时只测定涂胶部分的涂胶层厚度。
在本公开第一方面,本公开提供一种锂离子电池用涂胶隔膜(以下也有将涂胶隔膜简称为隔膜的情况),该锂离子电池用涂胶隔膜包括基膜和形成在所述基膜表面的涂胶层,所述涂胶层的厚度偏差百分比不低于10%,其中,厚度偏差百分比=(D max-D min)/D ave×100%,D max为所述涂胶层的厚度的最大值,D min为涂胶层的厚度的最小值,D ave为涂胶层的厚度的平均值。
根据本公开的实施例,所述涂胶层的厚度偏差百分比为0%-8%,根据本公开的一个具体实施例,所述涂胶层的厚度偏差百分比为0%-5%,根据本公开的一个具体示例,所述涂胶层的厚度偏差百分比为0%-3%,根据本公开的另一个具体示例,所述涂胶层的厚度偏差百分比为0%。作为所述涂胶层的厚度偏差百分比的具体例子,例如可以举出:0%、1%、2%、3%、4%、5%、5.5%、6%、7%和8%等。
在本公开中,所述涂胶层的厚度偏差百分比按照以下方法测定。
参照国标GB/T6672-2001的规定测量涂胶隔膜的厚度值,其中测厚仪的分辨率不大于0.1μm,测量位置沿横向等距离测量3个点,纵向方向上每隔200mm测一组,共测试5组,一共测得15个点的涂胶隔膜厚度值。
涂胶层厚度为涂胶隔膜厚度值减去对应基膜厚度值,得到15个涂胶层厚度值。其中,15个点的平均值记为涂胶层的厚度平均值D ave,15个点中的最大值记为涂胶层的厚度的最大值D max,15个点中的最小值记为涂胶层的厚度的最小值D min,则厚度偏差百分比通过下式计算得到。
厚度偏差百分比=(D max-D min)/D ave×100%
根据本公开的实施例,所述涂胶层对基膜的透气值增加值(也即所述涂胶隔膜的透气值与基膜的透气值的差值)为0s/100cc-20s/100cc,根据本公开的一个具体实施例,所述涂胶层对基膜的透气值增加值为0s/100cc-15s/100cc,根据本公开的一个具体示例,所述涂胶层对基膜的透气值增加值为0s/100cc-10s/100cc,根据本公开的再一个具体示例,所述涂胶层对基膜的透气值增加值为0s/100cc-5s/100cc,根据本公开的另一个具体示例,所述涂胶层对基膜的透气值增加值为0s/100cc-2s/100cc。
作为所述涂胶层对基膜的透气值增加值的具体例子,例如可以举出:0s/100cc、1s/100cc、2s/100cc、3s/100cc、4s/100cc、5s/100cc、6s/100cc、7s/100cc、8s/100cc、9s/100cc、10s/100cc、11s/100cc、12s/100cc、13s/100cc、14s/100cc、15s/100cc、16s/100cc、17s/100cc、18s/100cc、19s/100cc和20s/100cc等。
在本公开中,所述涂胶层对基膜的透气值增加值按照以下步骤进行测定。
1)测定基膜透气值
在基膜上沿纵向相隔150mm裁取基膜3块,若基膜宽度≥100mm时,取试样大小为100mm×100mm,若基膜宽度<100mm时,取样大小为100mm×基膜宽度。将基膜置于100cc透气范围的透气仪测试头下进行透气度测试,纵向方向上每隔20mm测一组,共测试5组,一共测得15个透气值,以该15个透气值的平均值作为基膜透气值。
2)测定涂胶隔膜透气值
在涂胶隔膜上沿纵向相隔150mm裁取隔膜3块,若隔膜宽度≥100mm时,取试样大小为100mm×100mm,若隔膜宽度<100mm时,取样大小为100mm×隔膜宽度。将隔膜置于100cc透气范围的透气仪测试头下中进行透气度测试,纵向方向上每隔20mm测一组,共测试5组,一共测得15个透气值,以该15个透气值的平均值作为涂胶隔膜透气值。
3)计算涂胶层透气值增加量
涂胶层对基膜的透气值增加值=涂胶隔膜透气值-基膜透气值。
根据本公开的实施例,所述涂胶层对基膜的离子电导降低值(也即所述基膜的离子电导率与所述涂胶隔膜的离子电导率的差值)小于0S/cm-10 -5S/cm,根据本公开的一个具体实施例,所述涂胶层对基膜的离子电导降低值为0S/cm-0.2×10 -5S/cm,根据本公开的一个具体示例,所述涂胶层对基膜的离子电导降低值为0S/cm-0.1×10 -5S/cm,根据本公开的再一个具体实施例,所述涂胶层对基膜的离子电导降低值为0S/cm-0.03×10 -5S/cm。
在本公开中,所述涂胶层对基膜的离子电导率降低值按照以下公式计算得到。
涂胶层对基膜的离子电导降低值=基膜离子电导率-涂胶隔膜离子电导率。
根据本公开的实施例,从进一步提高隔膜一致性方面来考虑,所述涂胶层包括树脂,所述树脂为聚氧化乙烯、聚乙烯蜡、聚氧化丙烯、聚醚酰亚胺、聚偏氟乙烯、偏氟乙烯共 聚物、聚丙烯腈、聚(甲基)丙烯酸甲酯、丙烯酸酯共聚物和芳纶中的一种或多种;根据本公开的一个具体实施例,所述树脂为聚氧化乙烯、聚偏氟乙烯和聚(甲基)丙烯酸甲酯中的一种或多种。
根据本公开的实施例,所述涂胶层可以为连续分布,也可以为非连续分布。
根据本公开的实施例,所述基膜没有特别的限定,可以为本领域通常用于基膜的各种材料。根据本公开的一个具体实施例,所述基膜为聚烯烃膜、无纺布和聚酰亚胺膜中的一种或多种;或者,所述基膜为在聚烯烃膜、无纺布或聚酰亚胺膜上形成有陶瓷涂层或其它功能涂层的复合膜。
作为上述陶瓷涂层,例如可以为氧化铝、勃姆石等形成的涂层。
作为上述其它功能涂层,例如可以为芳纶等耐高温涂层,也可以是离子涂层。
根据本公开的实施例,所述基膜的平均厚度为3μm-72μm,例如3μm、3.1μm……71.9μm、72μm;根据本公开的一个具体实施例,所述基膜的平均厚度为6μm-32μm;根据本公开的一个具体示例,所述基膜的平均厚度为6μm-25μm。
根据本公开的实施例,所述涂胶层的平均厚度可以为50nm-100μm,例如50nm、51nm……99μm、100μm,根据本公开的一个具体实施例,所述涂胶层的平均厚度可以为50nm-10μm,根据本公开的一个具体示例,所述涂胶层的平均厚度可以为80nm-10μm。通过使所述涂胶层的平均厚度在上述范围内,对基膜功能性能改善最优。另外,若所述涂胶层的平均厚度小于50nm,涂层的功能性能不能完全发挥;若所述涂胶层的平均厚度超过100μm,涂层厚度过大,功能作用冗余,体积占用过大,降低了电池的能量密度。
在本公开第二方面,本公开提供一种制备锂离子电池用涂胶隔膜的方法,该方法包括采用静电粉末喷涂法将树脂粉末涂覆在基膜的表面以在所述基膜表面形成涂胶层。
在本公开中,静电粉末喷涂法是不使用溶剂而直接将树脂粉末涂覆在基膜的表面以在所述基膜表面形成涂胶层的方法。
根据本公开的实施例,从进一步提高隔膜一致性方面来考虑,所述树脂为聚氧化乙烯、聚乙烯蜡、聚氧化丙烯、聚醚酰亚胺、聚偏氟乙烯、偏氟乙烯共聚物、聚丙烯腈、聚(甲基)丙烯酸甲酯、丙烯酸酯共聚物和芳纶中的一种或多种;根据本公开的一个实施例,所述树脂为聚氧化乙烯、聚偏氟乙烯和聚(甲基)丙烯酸甲酯中的一种或多种。
根据本公开的实施例,所述树脂粉末的粒径D50为50nm-50μm,例如50nm、51nm……49μm、50μm;根据本公开的一个实施例,所述树脂粉末的粒径D50为50nm-5μm;根据本公开的一个具体示例,所述树脂粉末的粒径D50为80nm-5μm。所述树脂粉末的粒径小于50nm时,存在树脂选型困难,应用窗口小的问题,所述树脂粉末的粒径大于50μm时,存在粒径过大,影响隔膜的厚度、离子导通等综合性能的问题。
根据本公开的实施例,所述基膜没有特别的限定,可以为本领域通常用于基膜的各种材料。根据本公开的一个具体实施例,所述基膜为聚烯烃膜、无纺布和聚酰亚胺膜中的一种或多种;或者,所述基膜为在聚烯烃膜、无纺布或聚酰亚胺膜上形成有陶瓷涂层或其它功能涂层的复合膜。
作为上述陶瓷涂层,例如可以为氧化铝、勃姆石等形成的涂层。
作为上述其它功能涂层,例如可以为芳纶等耐高温涂层,也可以是离子涂层。
根据本公开的实施例,所述基膜的平均厚度为3μm-72μm,例如3μm、3.1μm……71.9μm、72μm;根据本公开的一个实施例,所述基膜的平均厚度为6μm-32μm;根据本公开的一个具体示例,所述基膜的平均厚度为6μm-25μm。
根据本公开的实施例,所述涂胶层的平均厚度可以为50nm-100μm,例如50nm、51nm……99μm、100μm,根据本公开的一个具体实施例,所述涂胶层的平均厚度可以为50nm-10μm根据本公开的一个具体示例,所述涂胶层的平均厚度可以为80nm-10μm。通过使所述涂胶层的平均厚度在上述范围内,对基膜功能性能改善最优。另外,平均厚度小于50nm,涂层的功能性能不能完全发挥;超过100μm,涂层厚度过大,功能作用冗余,体积占用过大,降低了电池的能量密度。
在本公开中,所述涂胶隔膜是利用静电粉末喷涂的原理得到,具体而言,在利用静电粉末喷涂进行涂覆时,静电粉末喷涂的喷枪及树脂粉末接负极,操作台及基膜接正极并接地,在高压电源的高电压作用下,喷枪的端部与基膜之间就形成一个静电场。树脂粉末所受到的电场力与静电场的电压和粉末的带电量成正比,与喷枪和基膜间的距离成反比,当电压足够高时,喷枪附近区域形成空气电离区,这时空气产生强烈的电晕放电。树脂粉末经喷嘴喷出,通过枪口的电极针边缘时因接触而带电,当经过电晕放电所产生的气体电离区时,再一次增加其表面核电荷数,这些带负电荷的粉末在静电场作用下,向基膜表面运动,并均匀的被沉积在基膜表面上。
根据本公开的实施例,所述静电粉末喷涂的条件包括:喷涂量为0.05g/min-500g/min,例如喷涂量为0.05g/min、0.06g/min……499.99g/min、500g/min,基膜移动速度为5-500m/min,例如基膜移动速度为5m/min、6m/min……499m/min、500m/min,喷涂距离为10cm-30cm,例如喷涂距离为10cm、11cm……29cm、30cm,喷涂电压为10kv-30kv,例如喷涂电压为10kv、10.1kv……29.9kv、30kv;根据本公开的一个实施例,所述静电粉末喷涂的条件包括:喷涂量为1g/min-300g/min,基膜移动速度为5m/min-300m/min,喷涂距离为15cm-25cm,喷涂电压为15kv-25kv。
在此,“基膜移动速度”是指基膜在喷涂区的走速。“喷涂距离”是指基膜与喷涂喷头的距离。
在本公开的一个实施方式中,将带电荷的基膜置于接地的纵向平板间,干燥的树脂粉末装入固体粉末静电喷涂系统的储粉罐中,其中树脂粉末带有与基膜相反电性的电荷,将两个静电喷枪分别固定于基膜的两侧,喷头与纵向平板平行;启动静电喷涂系统,以喷涂量为0.05g/min-500g/min,开启喷枪同时以5m/min-500m/min速度收卷基膜,设置喷涂距离为10cm-30cm,喷涂电压为10kv-30kv,树脂粉末在电场力的作用附着在基膜上。
根据本公开的实施例,可以采用静电喷涂将树脂粉末涂覆在基膜的单侧,也可以涂覆在基膜的双侧。另外,基膜上形成的涂胶层可以连续分布,也可以是非连续分布。
根据本公开的实施例,该方法还包括在采用所述静电粉末喷涂法将树脂粉末涂覆在基膜的表面之后,将形成有涂胶层的基膜进行热压。通过进行热压,可以保证涂胶层在基膜上的有效固定,便于涂胶基膜在使用过程中的粘结强度,保证应用过程中涂胶基膜的性能最佳化。
根据本公开的实施例,所述热压的条件包括,热压温度为30℃-120℃,热压时间为2s-300s,例如热压温度为30℃、31℃……119℃、120℃,热压时间为2s、3s……299s、300s。
根据本公开的实施例,该方法还包括在将形成有涂胶层的基膜进行所述热压之后,除去热压后基膜的静电。通过除去静电,具有防止静电积累产生安全隐患的优点。
作为上述除去静电的方法没有特别的限定,例如可以使用静电棒或离子棒消除基膜静电。
根据本公开的制备锂离子电池用涂胶隔膜的方法,其具有以下的优点,同一涂胶层的厚度偏差百分比小(厚度偏差为10%以下);涂胶层对基膜的透气值增加值小,约0s/100cc-20s/100cc;热压后,涂胶层对基膜的透气值增加值为0s/100cc-20s/100cc;涂胶层对基膜的离子电导降低值小于0S/cm-10 -5S/cm;涂胶隔膜在不同倍率下,电池倍率性能与涂胶隔膜性能一致;涂胶隔膜电池循环性能优于涂胶前基膜。
根据本公开的制备锂离子电池用涂胶隔膜的方法,与传统涂胶隔膜的油系涂层相比,本公开避免了使用化学溶剂,起到了环保等的作用;同时,采用静电粉末喷涂的方式,通过控制静电场电压、喷涂距离、走速等可以实现涂胶层在基膜上的均匀分布,也避免了油系造孔工艺难度大的问题。
根据本公开的制备锂离子电池用涂胶隔膜的方法,与传统涂胶隔膜的水系涂层相比,本公开通过固体粉末颗粒的设计和选择,并通过静电保证固体粉末间带同种电荷,避免了微小颗粒间的物理团聚,由此涂胶层的颗粒可以自由设计,实现单层或多层单颗粒分散于基膜上,在基膜的水平和截面两个方向上达到设计可控、实现分布一致。
根据本公开的制备锂离子电池用涂胶隔膜的方法,通过静电粉末喷涂,树脂粉末间带同种电荷,避免了微小颗粒间的物理团聚,从而树脂粉末得以有效控制,可以实现单颗粒 粘附于基膜表面,最终为锂离子提供正常的传输通道,锂离子的传输通道一致性强,电芯内部极化小,在保证基膜粘结作用的同时,满足电池的电性能要求,特别是倍率性能和长循环寿命要求。
在本公开第三个方面,本公开提供了一种锂离子电池,所述锂离子电池包括上述的锂离子电池用涂胶隔膜或采用上述的方法得到的锂离子电池用涂胶隔膜。需要说明的是,上述针对锂离子电池用涂胶隔膜及其制备方法所描述的特征和优点同样适用于该锂离子电池,此处不再赘述。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
实施例1
(1)将阿科玛的聚偏二氟乙烯树脂粉碎,用筛网筛分,控制粒径D50为80nm,并烘干;
(2)将带正电荷的平均厚度为6μm的聚乙烯基膜(购自苏州捷力)置于接地的纵向平板间,将干燥的聚偏二氟乙烯树脂粉末装入固体粉末静电喷涂系统的储粉罐中,其中树脂粉末带有与基膜相反电性的电荷,将两个静电喷枪分别固定于基膜的两侧,喷头与纵向平板平行;
(3)启动静电喷涂系统,喷涂量的参数设置为1g/min,开启喷枪同时以5m/min速度收卷基膜,设置喷涂距离为15cm,喷涂电压为15kv,树脂粉末在电场力的作用下附着在基膜上;
(4)热压过辊处理,将附着有树脂粉末的基膜在60℃下进行辊压处理,保证树脂粉末与基膜的粘接效果;
(5)去静电处理,使用静电棒消除基膜静电,得到带有平均厚度为80nm涂胶层的隔膜。
实施例2
(1)将陶氏化学的聚甲基丙烯酸甲酯粉碎,用筛网筛分,控制粒径D50为5μm,并烘干;
(2)将带正电荷的厚度为15μm的聚乙烯陶瓷基膜(购自苏州捷力,由平均厚度为12μm的聚乙烯基底以及涂覆在基底表面的平均厚度为3μm的氧化铝涂层构成)置于接地的纵向平板间,将干燥的聚甲基丙烯酸甲酯树脂粉末装入固体粉末静电喷涂系统的储粉罐中,其中树脂粉末带有与基膜相反电性的电荷,将两个静电喷枪分别固定于基膜的两侧,喷头与 纵向平板平行;
(3)启动静电喷涂系统,喷涂量的参数设置为300g/min,开启喷枪同时以300m/min速度收卷基膜,设置喷涂距离为25cm,喷涂电压为25kv,树脂粉末在电场力的作用下附着在基膜上;
(4)热压过辊处理,将附着有树脂粉末的基膜在90℃下进行辊压处理,保证树脂粉末与基膜的粘接效果;
(5)去静电处理,使用静电棒消除基膜静电,得到带有平均厚度为10μm涂胶层的隔膜。
实施例3
(1)将巴斯夫的聚氧化乙烯树脂粉碎,用筛网筛分,控制粒径D50为2μm左右,并烘干;
(2)将带正电荷的平均厚度为25μm的聚丙烯基膜(购自沧州明珠)置于接地的纵向平板间,将干燥的树脂粉末装入固体粉末静电喷涂系统的储粉罐中,其中树脂粉末带有与基膜相反电性的电荷,将两个静电喷枪分别固定于基膜的两侧,喷头与纵向平板平行;
(3)启动静电喷涂系统,喷涂量的参数设置为100g/min,开启喷枪同时以100m/min速度收卷基膜,设置喷涂距离为20cm,喷涂电压为20kv,胶粒粉末在电场力的作用下附着在基膜上;
(4)热压过辊处理,将附着有树脂粉末的基膜在35℃下进行辊压处理,保证树脂粉末与基膜的粘接效果;
(5)去静电处理,使用静电棒消除基膜静电,得到带有平均厚度为4μm的涂胶层的隔膜。
实施例4
(1)将比克公司的聚丙烯腈树脂粉碎,用筛网筛分,控制粒径D50为50nm,并烘干;
(2)将带正电荷的厚度为12μm的聚乙烯基膜(购自苏州捷力)置于接地的纵向平板间,将干燥的树脂粉末装入固体粉末静电喷涂系统的储粉罐中,其中树脂粉末带有与基膜相反电性的电荷,将两个静电喷枪分别固定于基膜的两侧,喷头与纵向平板平行;
(3)启动静电喷涂系统,喷涂量的参数设置为0.06g/min,开启喷枪同时以3m/min速度收卷基膜,设置喷涂距离为28cm,喷涂电压为28kv,树脂粉末在电场力的作用下附着在基膜上;
(4)热压过辊处理,将附着有树脂粉末的基膜在35℃下进行辊压处理,保证树脂粉 末与基膜的粘接效果;
(5)去静电处理,使用静电棒消除基膜静电,得到带有平均厚度为50nm厚度的涂胶层的隔膜。
对比例1
油系对比组
采用与实施例1相同的原材料来制备涂胶隔膜,所不同的是,在本对比例中,制备方法采用浸渍涂布的方式。具体的:
1)将阿科玛的聚偏二氟乙烯研磨、筛分得到D50为80nm的树脂粉末,然后将其溶解于N-甲基吡咯烷酮(NMP)溶剂中,搅拌均匀后得到固含量为20重量%的涂层浆料;
2)将平均厚度为6μm的聚乙烯基膜(购自苏州捷力)通过浸渍涂布的方式,通过带有涂层浆料的料盒区域;涂覆速度为10m/min,涂覆量为0.5g/m 2
3)基膜通过60℃的烘箱烘干,得到涂胶隔膜。
对比例2
水系喷涂对比组
采用与实施例2相同的树脂粉末以及基膜。本对比例采用水系旋转喷涂的方法,具体的:
1)将陶氏化学的聚甲基丙烯酸甲酯树脂研磨,筛分得到D50为5μm的树脂粉末,然后将其与去离子水混合,搅拌均匀后得到固含量为35重量%的涂层浆料;
2)将涂层胶料通过水系旋转喷头喷涂在15μm聚乙烯陶瓷基膜表面(购自苏州捷力,由平均厚度为12μm的聚乙烯基底以及涂覆在基底表面的平均厚度为3μm的氧化铝涂层构成),涂覆速度为25m/min,涂覆量为1g/m 2
3)基膜通过90℃烘箱烘干,制得涂胶隔膜。
对比例3
水系辊涂对比
1)将比克化学的聚氧化乙烯与去离子水混合,形成固含量为35重量%的涂层浆料;
2)将涂层胶料通过微凹版辊涂覆在25μm聚丙烯基膜(购自沧州明珠)表面,涂覆速度为30m/min,涂覆量为0.8g/m 2
3)将步骤2)得到的隔膜通过35℃烘箱烘干,制得涂胶隔膜。
对比例4
采用与实施例1相同的树脂粉末和基膜来制备涂胶隔膜,所不同的是,本对比例采用液态粉料的静电喷涂法来制备涂胶隔膜。
1)将阿科玛的聚偏二氟乙烯树脂粉碎,用筛网筛分,控制粒径D50为80nm;然后将其与去离子水混合,搅拌均匀后得到固含量为35重量%的涂层浆料;
(2)将带正电荷的平均厚度为6μm的聚乙烯基膜(购自苏州捷力)置于接地的纵向平板间,涂层浆料置于静电喷涂系统的储物罐中,其中涂层浆料带有与基膜相反电性的电荷,将两个静电喷枪分别固定于基膜的两侧,喷头与纵向平板平行;
(3)启动静电喷涂系统,喷涂量的参数设置为3g/min,开启喷枪同时以5m/min速度收卷基膜,设置喷涂距离为15cm,喷涂电压为15kv,雾化压力为0.1Mpa,浆料在电场力的作用下附着在基膜上;
(4)热压过辊处理,将附着有树脂的基膜在60℃下进行辊压处理,保证浆料与基膜的粘接效果;
(5)去静电处理,使用静电棒消除基膜静电,得到涂胶隔膜。
测试例1
按照以下方法,对实施例1-4和对比例1-4中的涂胶前的基膜以及涂胶隔膜进行测试,其结果如表1所示。
1)厚度偏差
参照国标GB/T6672-2001的规定测量涂胶隔膜的厚度值,其中测厚仪的分辨率不大于0.1μm,测量位置沿横向等距离测量3个点,纵向方向上每隔200mm测一组,共测试5组,一共测得15个点的涂胶隔膜厚度值。
涂胶层厚度为涂胶隔膜厚度值减去对应基膜厚度值,得到15个涂胶层厚度值。其中,15个点的平均值记为涂胶层的厚度平均值D ave,15个点中的最大值记为涂胶层的厚度的最大值D max,15个点中的最小值记为涂胶层的厚度的最小值D min,则厚度偏差百分比通过下式计算得到。
厚度偏差百分比=(D max-D min)/D ave×100%
2)基膜透气值
在基膜上沿纵向相隔150mm裁取基膜3块,若基膜宽度≥100mm时,取试样大小为100mm×100mm,若基膜宽度<100mm时,取样大小为100mm×基膜宽度。将基膜置于100cc透气范围的透气仪测试头下进行透气度测试,纵向方向上每隔20mm测一组,共测试5组,一共测得15个透气值,以该15个透气值的平均值作为基膜透气值。
3)涂胶隔膜透气值
在涂胶隔膜上沿纵向相隔150mm裁取隔膜3块,若隔膜宽度≥100mm时,取试样大小为100mm×100mm,若隔膜宽度<100mm时,取样大小为100mm×隔膜宽度。将隔膜置于100cc透气范围的透气仪测试头下中进行透气度测试,纵向方向上每隔20mm测一组,共测试5组,一共测得15个透气值,以该15个透气值的平均值作为涂胶隔膜透气值。
4)涂胶层透气值增加量
涂胶层对基膜的透气值增加值=涂胶隔膜透气值-基膜透气值。
5)离子电导率
裁取同样大小的隔膜4块,将隔膜放入浓度为1mol/L的LiPF 6,EC:EMC:DMC=1:1:1的电解液中,保持密封,浸泡2h。依次放入不同层数的隔膜置于软包电池中,封口。分别测试4种层数隔膜软包电池的交流阻抗。以隔膜层数为横坐标,隔膜电阻为纵坐标做曲线,求出曲线的斜率和线性拟合度,当线性拟合度大于0.99时,隔膜的离子电导率按照公式1和公式2进行计算。当线性拟合度小于0.99时,重新测试。
R=k×1  公式1
R为单层隔膜的电阻值;k为拟合度大于0.99时,曲线的斜率;
σ=d/(R×S)  公式2
σ为隔膜的离子电导率,单位为S/cm
d为隔膜的厚度
R为隔膜的电阻值
S为隔膜的面积。
该实验平行进行15组。
6)5C放电容量保持率%
正极使用镍钴锰酸锂,负极使用人造石墨,制作容量为50Ah的方形电池。0.5C的电流充电至4.2V,0.5C的电流放电至2.5V。再用0.5C的电流充电至4.2V,以5C的电流进行放电至2.5V,5C的容量值除以0.5C的容量值,即为5C的放电容量保持率。
7)1000次循环容量保持率
正极使用镍钴锰酸锂,负极使用人造石墨,制作容量为50Ah的方形电池。使用1C的电流进行充放电循环测试,充电截止电压4.2V,放电截止电压2.5V。将第1000次的放电容量除以第一次的放电容量,即为1000次循环的容量保持率。
表1
Figure PCTCN2020100170-appb-000001
通过上述表1可知,相比现有技术的油系对比组、水系喷涂对比组和水系满涂对比组,通过本公开的方法得到的涂胶隔膜,其同一涂胶层的厚度偏差百分比显著较小,涂胶层对基膜的透气值增加值显著较小,涂胶层对基膜的离子电导降低值也显著较小,并且5C放电容量保持率和1000次循环容量保持率也较小。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种锂离子电池用涂胶隔膜,其中,包括基膜和形成在所述基膜表面的涂胶层,所述涂胶层的厚度偏差百分比不高于10%,其中,厚度偏差百分比=(D max-D min)/D ave×100%,D max为所述涂胶层的厚度的最大值,D min为所述涂胶层的厚度的最小值,D ave为所述涂胶层的厚度的平均值。
  2. 根据权利要求1所述锂离子电池用涂胶隔膜,其中,所述涂胶层的厚度偏差百分比为0%-8%。
  3. 根据权利要求1或2所述锂离子电池用涂胶隔膜,其中,所述涂胶隔膜的透气值与所述基膜的透气值的差值为0s/100cc-20s/100cc。
  4. 根据权利要求1-3中任一项所述锂离子电池用涂胶隔膜,其中,所述基膜的离子电导率与所述涂胶隔膜的离子电导率的差值为0S/cm-10 -5S/cm。
  5. 根据权利要求1-4中任一项所述锂离子电池用涂胶隔膜,其中,所述涂胶层包括树脂,所述树脂为聚氧化乙烯、聚乙烯蜡、聚氧化丙烯、聚醚酰亚胺、聚偏氟乙烯、偏氟乙烯共聚物、聚丙烯腈、聚(甲基)丙烯酸甲酯、丙烯酸酯共聚物和芳纶中的一种或多种。
  6. 根据权利要求1-5中任一项所述锂离子电池用涂胶隔膜,其中,所述基膜为聚烯烃膜、无纺布和聚酰亚胺膜中的一种或多种;或者
    所述基膜为在聚烯烃膜、无纺布或聚酰亚胺膜上形成有陶瓷涂层的复合膜。
  7. 根据权利要求1-6中任一项所述锂离子电池用涂胶隔膜,其中,所述基膜的平均厚度为3μm-72μm。
  8. 根据权利要求1-7中任一项所述锂离子电池用涂胶隔膜,其中,所述涂胶层的平均厚度为50nm-100μm。
  9. 一种制备锂离子电池用涂胶隔膜的方法,其中,包括采用静电粉末喷涂法将树脂粉末涂覆在基膜的表面以在所述基膜表面形成涂胶层。
  10. 根据权利要求9所述的方法,其中,采用静电粉末喷涂法将所述树脂粉末涂覆在基膜的单侧,或者采用静电粉末喷涂法将所述树脂粉末涂覆在基膜的双侧。
  11. 根据权利要求9或10所述的方法,其中,所述树脂粉末为聚氧化乙烯、聚乙烯蜡、聚氧化丙烯、聚醚酰亚胺、聚偏氟乙烯、偏氟乙烯共聚物、聚丙烯腈、聚(甲基)丙烯酸甲酯、丙烯酸酯共聚物和芳纶中的一种或多种。
  12. 根据权利要求9-11中任一项所述的方法,其中,所述树脂粉末的粒径D50为50nm-50μm。
  13. 根据权利要求9-12中任一项所述的方法,其中,所述基膜为聚烯烃膜、无纺布和聚酰亚胺膜中的一种或多种;或者
    所述基膜为在聚烯烃膜、无纺布或聚酰亚胺膜上形成有陶瓷涂层的复合膜。
  14. 根据权利要求9-13中任一项所述的方法,其中,所述基膜的平均厚度为3μm-72μm。
  15. 根据权利要求9-14中任一项所述的方法,其中,所述涂胶层的平均厚度为50nm-100μm。
  16. 根据权利要求9-15中任一项所述的方法,其中,所述静电喷涂的条件包括:喷涂量为0.05g/min-500g/min,基膜移动速度为2m/min-500m/min,喷涂距离为10cm-30cm,喷涂电压为10kv-30kv。
  17. 根据权利要求9-16中任一项所述的方法,其中,进一步包括:在采用所述静电粉末喷涂法将树脂粉末涂覆在基膜的表面之后,将形成有涂胶层的基膜进行热压。
  18. 根据权利要求9-17中任一项所述的方法,其中,所述热压的条件包括,热压温度为30℃-120℃,热压时间为2s-300s。
  19. 根据权利要求9-18中任一项所述的方法,其中,进一步包括:在将形成有涂胶层的基膜进行所述热压之后,除去热压后基膜的静电。
  20. 一种锂离子电池,其中,所述锂离子电池包括权利要求1-8中任一项所述的锂离子电池用涂胶隔膜或采用权利要求9-19中任一项所述的方法得到的锂离子电池用涂胶隔膜。
PCT/CN2020/100170 2019-07-03 2020-07-03 锂离子电池用涂胶隔膜及其制备方法和应用 WO2021000945A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/624,477 US20220359952A1 (en) 2019-07-03 2020-07-03 Adhesive-coated separator for lithium ion battery, preparation method therefor and use thereof
JP2021577323A JP7352665B2 (ja) 2019-07-03 2020-07-03 リチウムイオン電池用の接着剤付きセパレータ、その製造方法及び応用
KR1020227000815A KR20220018049A (ko) 2019-07-03 2020-07-03 리튬 이온 배터리용 접착제-코팅된 분리막, 그의 제조 방법, 및 그의 용도
EP20834638.7A EP3996192A1 (en) 2019-07-03 2020-07-03 Adhesive-coated separator for lithium ion battery, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910595330.2 2019-07-03
CN201910595330.2A CN112259901B (zh) 2019-07-03 2019-07-03 锂离子电池用涂胶隔膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021000945A1 true WO2021000945A1 (zh) 2021-01-07

Family

ID=74100895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100170 WO2021000945A1 (zh) 2019-07-03 2020-07-03 锂离子电池用涂胶隔膜及其制备方法和应用

Country Status (6)

Country Link
US (1) US20220359952A1 (zh)
EP (1) EP3996192A1 (zh)
JP (1) JP7352665B2 (zh)
KR (1) KR20220018049A (zh)
CN (1) CN112259901B (zh)
WO (1) WO2021000945A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092359A (zh) * 2021-03-29 2021-07-09 湖北亿纬动力有限公司 一种用于涂胶隔膜的胶在电解液中溶胀度的测量方法及应用
CN113708007A (zh) * 2021-08-27 2021-11-26 北京宇程科技有限公司 一种聚酰亚胺/聚醚酰亚胺复合膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511517B1 (en) * 1999-04-22 2003-01-28 Nbt Gmbh Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism
CN102569698A (zh) * 2010-12-08 2012-07-11 索尼公司 层压微孔膜、电池隔膜和非水电解质电池
CN103370196A (zh) * 2010-11-05 2013-10-23 东丽电池隔膜株式会社 复合多孔质膜及其制造方法
CN104389174A (zh) * 2014-09-18 2015-03-04 上海联晟材料科技有限公司 一种无纺布隔膜的喷涂处理方法
CN105957996A (zh) * 2016-06-23 2016-09-21 袁春华 一种锂离子电池陶瓷复合隔膜的制备方法
CN106410093A (zh) * 2016-10-20 2017-02-15 常州市鼎日环保科技有限公司 一种锂离子电池复合隔膜的制备方法
CN108431108A (zh) * 2016-03-29 2018-08-21 东丽株式会社 聚烯烃微多孔膜、电池用隔膜以及它们的制造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1739866A (zh) * 2004-08-23 2006-03-01 徐州正菱涂装有限公司 在基材上静电涂装两种或两种以上粉末涂料复合涂层的工艺
CN101379234A (zh) * 2005-12-21 2009-03-04 格雷斯公司 可静电施涂的热熔性粉末涂料和添加剂
JP2010140800A (ja) * 2008-12-12 2010-06-24 Dainippon Printing Co Ltd 燃料電池用のセパレータおよびその製造方法
JP2011108515A (ja) * 2009-11-18 2011-06-02 Teijin Ltd 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
WO2014021290A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JP5971662B2 (ja) * 2012-09-24 2016-08-17 エルジー・ケム・リミテッド リチウム二次電池用セパレータの製造方法、その方法で製造されたセパレータ、及びそれを含むリチウム二次電池
KR101676446B1 (ko) * 2013-09-30 2016-11-15 주식회사 엘지화학 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
CN104157811A (zh) * 2013-12-11 2014-11-19 中航锂电(洛阳)有限公司 一种锂离子电池复合隔膜、制备方法和应用
CN104600232B (zh) * 2015-01-09 2017-10-24 北京石油化工学院 一种超高分子量聚乙烯微孔膜的改性方法
JP6627222B2 (ja) * 2015-02-05 2020-01-08 東レ株式会社 電池用セパレータの製造方法、および電池用セパレータの捲回体
CN104766938B (zh) * 2015-02-10 2018-04-27 龙岩紫荆创新研究院 一种复合型锂离子电池隔膜及其制备方法
CN107431166B (zh) * 2015-10-09 2020-12-18 东丽株式会社 积层聚烯烃微多孔膜、电池用隔离膜及其制造方法
CN107799696A (zh) * 2016-08-29 2018-03-13 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法和锂离子电池
CN106784526B (zh) * 2016-12-21 2019-08-09 浙江南都电源动力股份有限公司 一种作为锂离子电池用的陶瓷涂覆隔膜及其制备方法
CN108242522B (zh) * 2016-12-23 2021-09-03 比亚迪股份有限公司 一种聚合物复合膜及其制备方法以及包括其的锂离子电池
EP3576203A4 (en) * 2017-01-26 2020-10-14 Envision Aesc Energy Devices Ltd. PROCESS FOR PRODUCING A LAYERED BATTERY
JP6513893B1 (ja) * 2017-12-27 2019-05-15 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN108819393A (zh) * 2018-05-31 2018-11-16 上海工程技术大学 一种聚砜酰胺/二氧化钛/聚砜酰胺复合锂电池隔膜及其制备方法
CN109301139B (zh) * 2018-08-31 2024-04-26 上海顶皓新材料科技有限公司 一种锂离子电池用聚合物涂层隔膜
CN109568173B (zh) * 2019-01-21 2021-09-28 诺斯贝尔化妆品股份有限公司 一种以透明质酸为骨架的胶原纳米速溶面膜及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511517B1 (en) * 1999-04-22 2003-01-28 Nbt Gmbh Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism
CN103370196A (zh) * 2010-11-05 2013-10-23 东丽电池隔膜株式会社 复合多孔质膜及其制造方法
CN102569698A (zh) * 2010-12-08 2012-07-11 索尼公司 层压微孔膜、电池隔膜和非水电解质电池
CN104389174A (zh) * 2014-09-18 2015-03-04 上海联晟材料科技有限公司 一种无纺布隔膜的喷涂处理方法
CN108431108A (zh) * 2016-03-29 2018-08-21 东丽株式会社 聚烯烃微多孔膜、电池用隔膜以及它们的制造方法
CN105957996A (zh) * 2016-06-23 2016-09-21 袁春华 一种锂离子电池陶瓷复合隔膜的制备方法
CN106410093A (zh) * 2016-10-20 2017-02-15 常州市鼎日环保科技有限公司 一种锂离子电池复合隔膜的制备方法

Also Published As

Publication number Publication date
JP2022538604A (ja) 2022-09-05
EP3996192A1 (en) 2022-05-11
US20220359952A1 (en) 2022-11-10
CN112259901B (zh) 2022-03-18
JP7352665B2 (ja) 2023-09-28
CN112259901A (zh) 2021-01-22
KR20220018049A (ko) 2022-02-14

Similar Documents

Publication Publication Date Title
CN105958009B (zh) 一种高安全性锂离子电池复合极片及其制备方法,锂离子电池
WO2022199628A1 (zh) 一种正极片和锂离子电池
TWI614934B (zh) 電池隔板上之陶瓷塗層
KR101556049B1 (ko) 비수전해질 2차 전지와 그 제조 방법
WO2022143210A1 (zh) 极片及电池
US20140342225A1 (en) Electrode for electrochemical device
CN105932209B (zh) 一种作为锂离子电池用的陶瓷涂覆隔膜及其制备方法
CN104518200B (zh) 一种含石墨烯导电胶层的锂离子电池正极片的制作方法
CN105529425A (zh) 一种陶瓷隔膜及其制备方法和应用
JP5873605B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
WO2022057666A1 (zh) 一种正极片及电池
JP5733190B2 (ja) 電極の製造方法、製造装置
WO2021189454A1 (zh) 一种电极组件及包含其的电化学装置和电子装置
JP6304236B2 (ja) 電気化学素子電極用複合粒子の製造方法
CN112072068B (zh) 一种正极极片及包括该正极极片的锂离子电池
WO2021000945A1 (zh) 锂离子电池用涂胶隔膜及其制备方法和应用
WO2023093576A1 (zh) 一种极片和锂离子电池
KR102384939B1 (ko) 집전체 코트용 접착제 도공액
CN111900329A (zh) 一种极片及其制备方法和用途
CN109817872A (zh) 一种非全覆盖涂层隔膜及其制备方法和装置
CN107431187A (zh) 具有多孔粘合剂涂层的电极及其制造方法和包括该电极的锂二次电池
CN112038573A (zh) 极片及其制备方法、电芯及电池
WO2019091462A1 (zh) 聚合物隔膜及其制备方法以及锂离子电池
JP2015053180A (ja) 電池用セパレータ
WO2024051291A1 (zh) 一种极片和电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021577323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227000815

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020834638

Country of ref document: EP

Effective date: 20220203

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834638

Country of ref document: EP

Kind code of ref document: A1