WO2020255808A1 - フラックス入りワイヤ及び溶接方法 - Google Patents

フラックス入りワイヤ及び溶接方法 Download PDF

Info

Publication number
WO2020255808A1
WO2020255808A1 PCT/JP2020/022756 JP2020022756W WO2020255808A1 WO 2020255808 A1 WO2020255808 A1 WO 2020255808A1 JP 2020022756 W JP2020022756 W JP 2020022756W WO 2020255808 A1 WO2020255808 A1 WO 2020255808A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
mass
flux
less
total
Prior art date
Application number
PCT/JP2020/022756
Other languages
English (en)
French (fr)
Inventor
石▲崎▼ 圭人
聖 八島
瞬 泉谷
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US17/620,211 priority Critical patent/US20220362892A1/en
Priority to CN202080032583.XA priority patent/CN113784815B/zh
Priority to KR1020217038928A priority patent/KR102675635B1/ko
Priority to EP20827339.1A priority patent/EP3988240A4/en
Publication of WO2020255808A1 publication Critical patent/WO2020255808A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a flux-cored wire, and particularly to a flux-cored wire suitable for welding in an upward posture or an upright posture. It also relates to a gas shielded arc welding method using the flux-cored wire.
  • the flux-cored wire has versatility that can be applied to all postures including downward welding, vertical welding, horizontal welding, and upward welding.
  • vertical welding and upward welding are particularly difficult to weld because the bead appearance is more likely to be poor or melted down due to the influence of gravity. Therefore, there is a problem that it is difficult to obtain good melt resistance and bead appearance in all postures.
  • Patent Document 1 contains Al, Mg and BaF 2 as essential flux components in specific amounts, and the flux for gas shielded arc welding in which the flux filling rate and the contents of Mn and Si with respect to the total wire mass are optimized.
  • the incoming wire is disclosed.
  • arc welding is performed on this flux-containing wire with DC positive electrode properties in a welding current range of a low current to a medium current of about 50 to 300 A, the amount of spatter generated in all-position welding is small.
  • a weld metal having good weldability and good toughness can be obtained.
  • the applicable welding current range of the flux-cored wire of Patent Document 1 is in the range of low current to medium current.
  • the examples are limited to the welding current of 200 A.
  • the welding current for performing full-posture welding is preferably 210 to 290 A in vertical downward welding and downward / horizontal fillet welding.
  • the welding current in the vertical improvement / upward welding is preferably 110 to 140 A.
  • the arc voltage is preferably 23 to 29V for vertical downward welding and downward / horizontal fillet welding, but is preferably 14 to 18V for vertical improvement / upward welding. is there.
  • the present invention suppresses welding defects mainly due to melt-off while ensuring high efficiency in a welding current range of a relatively high current in upward posture or vertical posture welding, particularly under the condition of a welding current exceeding 200 A. It is an object of the present invention to provide a flux-cored wire having a good bead appearance. Another object of the present invention is to provide a highly efficient welding method using the flux-cored wire.
  • a flux-containing wire containing a flux as a core and a hoop as an outer skin, wherein the flux contains a strongly deoxidized metal element (flux) containing Mg and Al and a fluorine compound powder (flux) .
  • the total content of the strongly deoxidized metal element (flux) is 15 to 35% by mass with respect to the total mass of the flux, and Mg and Al of the strongly deoxidized metal element (flux) are at least one.
  • the portion is contained as a strongly deoxidized metal powder (flux) which is at least one of a metal powder and an alloy powder, and the strongly deoxidized metal powder (flux) has a particle size of 60% by mass or more and 150 ⁇ m or less.
  • the total content of the fluorine compound powder (flux) is 10 to 45 mass% with respect to the flux to the total mass
  • the fluorine compound powder (flux) is more than 60 wt% is a particle size of less than 75 [mu] m
  • the The flux-containing wire contains the flux in an amount of 10 to 30% by mass based on the total weight of the wire
  • the flux-containing wire contains C (ware) : 0.5% by mass or less based on the total weight of the wire , Si (wire).
  • the flux-containing wire has Ni (wire) : 15% by mass or less, Mo (ware) : 5.0% by mass or less, W (ware) : 3.0% by mass or less, Nb with respect to the total wire mass.
  • the water content (WC) with respect to the total mass of the wire is 0.010 to 0.100% by mass, and the total content of the water content (WC) and the strongly deoxidized metal element (wire) is The flux-containing wire according to any one of [1] to [4] above, which satisfies the relationship of 105 ⁇ (total content of strongly deoxidized metal element (wire) / WC) ⁇ 170.
  • welding can be performed in all postures even in a relatively high welding current range.
  • welding current exceeds 200 A, welding defects mainly due to melt-through are suppressed, and high-efficiency welding is possible while maintaining a good bead appearance.
  • the flux-cored wire (hereinafter, may be simply referred to as “wire”) according to the present embodiment includes a flux as a core and a hoop as an exodermis.
  • the flux contains a strongly deoxidized metal element (flux) containing Mg and Al and a fluorine compound powder (flux), and the total content of the strongly deoxidized metal element (flux) is 15 with respect to the total mass of the flux. It is ⁇ 35% by mass.
  • At least one of the metal powder and the alloy powder of one or more kinds related to the strongly deoxidized metal element (flux) is contained as the strongly deoxidized metal powder (flux), and the strongly deoxidized metal powder (flux) is 60.
  • the particle size of 100% by mass or more is 150 ⁇ m or less.
  • the total content of the fluorine compound powder (flux) is 10 to 45% by weight of the flux to the total mass, the fluorine compound powder (flux) is more than 60% by weight or less of particle size 75 [mu] m.
  • the flux-cored wire contains 10 to 30% by mass of flux with respect to the total mass of the wire. That is, the flux ratio is 10 to 30% by mass.
  • the flux-containing wire has C (ware) : 0.5% by mass or less, Si (ware) : 0.05 to 1.0% by mass, and Al (wire) : 1.0 to 3% with respect to the total weight of the wire.
  • the flux serving as the core of the flux-cored wire contains a strongly deoxidized metal element (flux) and a fluorine compound powder (flux) .
  • the strongly deoxidized metal element contains two or more kinds of Mg and Al as essential, and other strongly deoxidized metal elements include Ti, Zr, Ca, rare earth elements (hereinafter, may be referred to as "REM") and the like. Is optionally contained, and as any strongly deoxidized metal element, it is preferable to further contain at least one element selected from the group consisting of Ti, Zr and Ca.
  • the flux contains Ni; deoxidizing elements such as Si and Mn; oxides such as SiO 2 , TiO 2 , and FeO; nitrides and the like, if necessary. It may be added, and the balance becomes iron powder and impurities.
  • Mg which is a strongly deoxidized metal element, is an element that can obtain a sufficient deoxidizing effect and realize good toughness. Moreover, since the oxide of Mg has a high melting point, the rate of formation of slag formed on the surface of the molten pool is improved. The higher the current, the higher the temperature of the molten pool and the lower the viscosity and surface tension of the molten pool. Therefore, in upward welding and vertical welding, the higher the current is, the more likely it is that melt-off and bead appearance defects occur. However, by adding an appropriate amount of Mg, even when the welding current exceeds 200 A, slag can be formed early on the surface of the molten pool before the shape of the molten pool changes due to gravity.
  • Mg has a high vapor pressure and contributes to welding workability by stabilizing the arc with metal steam.
  • it has a high stabilizing effect in the explosion transfer, which is a form of droplet transfer.
  • the explosive transition is a transition mode in which the gas component in the droplet formed at the tip of the wire explodes and migrates to the base metal.
  • Mg is contained in the flux, but a part thereof may be contained in the exodermis (hereinafter, may be simply referred to as "hoop").
  • metal powder Mg, Mg-Al, an alloy powder such as Fe-Mg, fluoride MgF 2 or the like as an example.
  • the metal powder of Mg may be referred to as Mg powder
  • the alloy powder of Mg—Al may be referred to as Mg—Al powder and the like.
  • the content of Mg (wire) is 0.3 to 0.9% by mass, preferably 0.55% by mass or more, and preferably 0.85% by mass or less with respect to the total mass of the wire.
  • the content of Mg (flux) contained in the flux is preferably 1.5% by mass or more, and preferably 8.0% by mass or less, based on the total mass of the flux.
  • Al is an element essential to the flux as a strongly deoxidized metal element, but a part of it may be contained in the exodermis (hoop).
  • metal powder Al Mg-Al
  • fluorides such AlF 3
  • the Al (wire) content is 1.0% by mass or more with respect to the total mass of the wire.
  • the upper limit of the content is 3.5% by mass or less, it is possible to prevent an excessive explosion transition, so that the arc is stable.
  • the content of Al (wire) is 1.0 to 3.5% by mass, preferably 1.8% by mass or more, and preferably 3.1% by mass or less, based on the total mass of the wire.
  • the content of Al (flux) contained in the flux is preferably 10.0% by mass or more, and preferably 25.0% by mass or less, based on the total mass of the flux.
  • Mg and Al are strongly deoxidized metal elements essential for flux in the present invention from the viewpoint of slag formation rate and arc stability. Further, at least one of these elements needs to be contained together in the flux as a strongly deoxidized metal powder (flux) in the form of a metal powder or an alloy powder. That is, the strongly deoxidized metal powder (flux) is combined with oxygen in the welding process to obtain the toughness improving effect by deoxidizing and the droplet transfer stabilizing effect by metal vapor, but even if it is contained in the oxide state. , Such an effect cannot be obtained.
  • the flux is not completely melted at the time of welding, and the undissolved oxide flows toward the edge due to the convection of the molten pool, so that uniform slag formation cannot be expected over the entire surface of the molten pool.
  • the oxide state refers to, for example, Al 2 O 3 , Mg O, and the like.
  • the strongly deoxidized metal powder contains Mg and Al as a metal powder composed of a single metal powder or a composite metal, that is, an alloy powder. Specifically, it includes Al powder or Mg powder which is a single metal powder of Al or Mg, and metal powder made of a composite metal containing at least one of Al and Mg, that is, an alloy powder. Examples of the metal powder made of the composite metal include Fe-Al powder, Ni-Al-Si powder, Fe-Mg powder, Mg-Al powder and the like.
  • the strongly deoxidized metal powder (flux) may be composed of one kind of metal powder or may be composed of a plurality of metal powders.
  • Mg (flux) and Al (flux) added to the flux have a property of combining with oxygen in the weld metal and slagging out. Since Mg is a very strong deoxidizing metal element, almost all of it slags out with almost no residue in the weld metal. On the other hand, Al does not have as much deoxidizing power as Mg, about 60% slags out, and about 40% remains in the weld metal.
  • the slag which is an oxide containing Al and Mg, has a spinel structure containing MgAl 2 O 4 and FeAl 2 O 4, and is a very stable oxide having a high melting point. The solidification rate of the slag is faster than, for example, the solidification rate of a normal titanium slag system, and is particularly excellent in melt-down resistance during upward welding and vertical welding.
  • the amount of metal added to Mg (wire) and Al (wire) that is, the content of Mg and Al with respect to the total mass of the wire is 0.35 ⁇ (2 ⁇ Mg (wire) /0.6 ⁇ Al (wire) ) ⁇ 1. It is preferable to satisfy the relationship of .50.
  • By setting the ratio of the metal addition amount to 0.35 or more it is possible to prevent an increase in the Al yield amount in the weld metal.
  • the ratio value represented by (2 ⁇ Mg (wire) /0.6 ⁇ Al (wire) ) is more preferably 0.80 or more, and further 0.85 or more. It is preferable, 1.30 or less is more preferable, 1.20 or less is further preferable, and 1.15 or less is further preferable.
  • the strongly deoxidized metal powder has a particle size of 150 ⁇ m or less. If the amount of strongly deoxidized metal powder (flux) having a particle size of 150 ⁇ m or less is less than 60% by mass, the flux is not completely melted during welding, the slag formation speed is slowed down, and good melt resistance and bead appearance shape may not be obtained. There is sex. In addition, since the undissolved metal powder flows toward the edge due to the convection of the molten pool, uniform slag formation cannot be expected over the entire surface of the molten pool.
  • the particle size of 150 ⁇ m or less preferably occupies 70% by mass or more, and more preferably 80% by mass or more. Further, it is more preferable that the particle size is 60% by mass or more and 100 ⁇ m or less.
  • the particle size of the strongly deoxidized metal powder or the fluorine compound powder can be measured by using a sieve having an appropriate opening size based on JIS Z 8801-1: 2006.
  • the total content of the strongly deoxidized metal element (flux) contained in the flux is 15 to 35% by mass with respect to the total mass of the flux. By setting the total content of the strongly deoxidized metal element (flux) to 15% by mass or more, slag formation is sufficient and good leaching resistance can be obtained. Further, when the total content is 35% by mass or less, a good bead appearance can be obtained.
  • the total content of the strongly deoxidized metal element (flux) is preferably 18% by mass or more, and preferably 32% by mass or less, based on the total mass of the flux.
  • the total content of the strongly deoxidized metal element (wire) contained in the wire is 2.2% by mass or more, preferably 2.5% by mass or more, based on the total mass of the wire.
  • the content of the strongly deoxidized metal element (wire) is 2.2% by mass or more, the molten pool can be suitably suppressed by slag, and melting of upward welding and vertical welding at a welding current of 200 A or more. Suppress the fall.
  • the content of the strongly deoxidized metal element (wire) is 4.0% by mass or less, excessive formation of slag can be suppressed and a better bead appearance can be realized, which is preferable.
  • the total content including these elements is the strongly deoxidized metal element (wire).
  • the total content of the strongly deoxidized metal element (flux) is used.
  • the total content of the fluorine compound powder (flux) is 10 to 45% by mass with respect to the total mass of the flux. When the total content is 10% by mass or more, the detached droplets can be made finer. Further, when the total content is 45% by mass or less, droplets are satisfactorily formed.
  • the total content of the fluorine compound powder (flux) is preferably 10.5% by mass or more, and preferably 41% by mass or less.
  • the total content of the fluorine conversion value F of the fluorine compound powder (wire) contained in the flux-cored wire is 0.30 to 1.20% by mass with respect to the total mass of the wire.
  • the total content of the fluorine compound powder (wire) is 0.30% by mass or more, the droplet transfer is achieved by making the detached droplets finer. Further, when the total content is 1.20% by mass or less, droplets are satisfactorily formed without excessive volatilization inside the wire.
  • the total content of the fluorine conversion value F of the fluorine compound powder (wire) is preferably 0.40% by mass or more, and preferably 0.90% by mass or less.
  • the fluorine compound powder has a particle size of 75 ⁇ m or less.
  • the particle size of the fluorine compound powder preferably occupies 70% by mass or more, and more preferably 75% by mass or more.
  • the fluorine compound powder examples include BaF 2 , SrF 2 , Na 3 AlF 6 , NaF, CaF 2, AlF 3 , MgF 2, and the like, and these may be contained alone or in combination of two or more.
  • the fluorine compound powder (flux) is at least one compound powder selected from the group consisting of BaF 2 , SrF 2 , Na 3 AlF 6, AlF 3 , MgF 2 , NaF and CaF 2 for welding workability. From this point of view, at least one compound powder selected from the group consisting of BaF 2 , SrF 2 , Na 3 AlF 6 , NaF, MgF 2 and CaF 2 is more preferable.
  • Ba has a low work function, has an effect of further stabilizing the cathode point, and contributes to improvement of welding workability, it is more preferable to contain BaF 2 , which is a fluoride related to Ba.
  • the content of BaF 2 (wire) with respect to the total mass of the wire is preferably 1.0% by mass or more, more preferably 1.2% by mass or more from the viewpoint of welding workability. Further, from the viewpoint of reducing sputtering, the content of BaF 2 (wire) is preferably 6% by mass or less, and more preferably 5.5% by mass or less.
  • the flux-cored wire according to the present embodiment contains water, it is preferable because an explosive effect due to volume expansion at the time of steaming can be obtained when a sudden amount of heat is applied in the vicinity of the arc. As a result, the formed droplets are atomized, the enlargement of the droplets is suppressed, and spatter can be reduced. Further, oxygen in the water (H 2 O) Mn, Al, by causing metal and the oxidation reaction, such as Mg, slag is an oxide is formed on the molten Ikegami. This makes it possible to improve the melt-down resistance in all-posture welding such as vertical welding and upward welding.
  • the water content (WC) with respect to the total weight of the wire is preferably 0.010% by mass or more, and preferably 0.100% by mass or less.
  • the water content (WC) is more preferably 0.015% by mass (150% by mass) or more, and more preferably 0.050% by mass (500% by mass) or less.
  • the amount of water in the wire can be determined by the Karl Fischer method using dry air as the carrier gas.
  • the relationship between the water content (WC, mass%) and the total content (mass%) of the strongly deoxidized metal element (ware) with respect to the total weight of the wire is 105 ⁇ (strong deoxidized metal element (wire). ) Satisfying the total content / WC) ⁇ 170 is preferable from the viewpoint of leaching resistance.
  • the ratio (WC / F) of the total (mass%) of the fluorine conversion value F of the WC (mass%) and the fluorine compound (wire) is preferably 0.025 or more, more preferably 0.030 or more. Further, in consideration of welding workability, 0.100 or less is preferable, and 0.090 or less is more preferable.
  • the flux in the present embodiment is 10 to 30% by mass, that is, the flux ratio is 10 to 30% by mass with respect to the total mass of the wire.
  • the flux ratio is more preferably 11% by mass or more, and more preferably 20% by mass or less.
  • C (ware) 0.5% by mass or less
  • Mn (ware) 1.0 to 3.0% by mass
  • Si with respect to the total mass of the wire.
  • Wire Contains 0.05 to 1.0% by mass.
  • C (wire) 0.5% by mass or less (including 0% by mass)> Since C is arbitrarily added to adjust the strength of the weld metal, the lower limit is not specified. On the other hand, by setting C (wire) to 0.5% by mass or less with respect to the total mass of the wire, it is possible to prevent the strength of the weld metal from becoming too high and the toughness from decreasing.
  • the content of C (wire) is preferably 0.2% by mass or less.
  • Mn is an element effective for deoxidizing effect and solid solution strengthening, and can improve mechanical performance such as tensile strength and toughness.
  • the content of Mn (wire) is 1.0 to 3.0% by mass with respect to the total mass of the wire. By containing 1.0% by mass or more, the effect of solid solution strengthening can be sufficiently obtained, and good mechanical performance can be obtained. Further, by setting the content to 3.0% by mass or less, excessive improvement in strength can be suppressed, and appropriate toughness can be ensured.
  • the Mn content is preferably 1.5% by mass or more, preferably 2.5% by mass or less, and more preferably 2.0% by mass or less with respect to the total mass of the wire.
  • Si is an element that improves the compatibility between the base metal and the weld metal
  • the flux contains 0.05% by mass or more with respect to the total mass of the wire.
  • the upper limit is set to 1.0% by mass.
  • the Si content is preferably 0.1% by mass or more, and preferably 0.80% by mass or less.
  • Ni is an element capable of improving toughness and tensile strength at high heat input and high interpass temperature, it may be optionally added if necessary. Excessive addition of Ni reduces the viscosity of the molten pool. If the viscosity of the molten pool decreases in the case of upward welding or vertical welding, there is a risk of welding defects such as melt-down and poor bead appearance due to the influence of gravity.
  • Ni (wire) when optionally added, it is preferably 15% by mass or less, more preferably 5% by mass or less, based on the total mass of the wire. Further, in order to obtain the above effect, the Ni content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more.
  • Ni In the form of adding Ni, it is preferable to use at least one metal simple substance or compound selected from the group consisting of metal Ni, Cu-Ni, Fe-Ni, and Ni-Mg contained in the flux. By containing it in this form, slag formation becomes dominant, and it becomes possible to better suppress melt-off during upward welding or vertical welding.
  • Mo, Nb, V, and Cr are all elements capable of improving toughness or tensile strength, they may be optionally added if necessary for adjusting toughness or tensile strength. Moreover, these elements are elements that form carbides having a high melting point. Examples of high melting point carbides include Mo 2 C, Nb C, VC, and Cr 3 C 2 . Due to their high melting point, these carbides are prematurely formed as slag on the surface of the molten pool. From this characteristic, it is possible to suppress melt-off during upward welding and obtain a good bead appearance.
  • Mo, Nb, V, and Cr are Mo (wire) : 5.0% by mass or less, Nb (wire) : 5.0% by mass or less, V (wire) : 5.0% by mass or less, and Cr (wire). ) : It is preferable to include it so as to satisfy any one of 30% by mass or less from the viewpoint of maintaining a good bead appearance, and it is more preferable to include it so as to satisfy all of them.
  • the total content of Mo, Nb and V is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the wire.
  • the form of addition of Mo, Nb, V, and Cr is not particularly limited, and the addition may be in the hoop or in the flux. Further, the total content of Mo, Nb and V is preferably 0.005% by mass or more with respect to the total mass of the wire.
  • W is an element effective for improving the strength, it may be optionally added if necessary for adjusting the tensile strength. Since excessive addition of W causes deterioration of toughness due to excessive strength, the content of W is preferably 3.0% by mass or less with respect to the total mass of the wire.
  • Ti is a strongly deoxidized metal element and is an element effective for improving toughness due to the deoxidizing effect.
  • An appropriate amount may be added to adjust the toughness, but if Ti is added excessively, the inclusions become coarse and the amount of inclusions becomes excessive, so that the toughness decreases. Therefore, the Ti content is preferably suppressed to 3.0% by mass or less with respect to the total mass of the wire.
  • Zr is a strongly deoxidized metal element and is an element effective for improving toughness due to the deoxidizing effect.
  • An appropriate amount may be added to adjust the toughness, but if Zr is added excessively, the inclusions become coarse and the amount of inclusions becomes excessive, so that the toughness decreases. Therefore, the Zr content is preferably 2.0% by mass or less with respect to the total mass of the wire.
  • Ca is added from CaF 2 , CaCO 3, etc., and is a strongly deoxidized metal element like Ti and Zr, and is an element effective for improving toughness due to the deoxidizing effect.
  • An appropriate amount may be added to adjust the toughness, but if Ca is added excessively, the inclusions become coarse and the amount of inclusions becomes excessive, so that the toughness decreases. Therefore, the Ca content is preferably 3.0% by mass or less with respect to the total mass of the wire.
  • REM rare earth metal
  • wire 0.5% by mass or less
  • REM rare earth metal
  • the total content of REM is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, based on the total mass of the wire.
  • the REM La, Ce, and Y are more preferably used.
  • the above Ti (wire) Zr (wire) , Ca (wire) , and REM become strongly deoxidized metal elements together with Al and Mg.
  • Al and Mg may be contained not only in the flux but also in the exodermis, but it is preferable that they are contained in the flux.
  • the content of Mg (wire) , Al (ware) , Zr (wire) , Ti (wire) and Ca (wire) ( mass% of the total weight of the wire) is 5 ⁇ ⁇ (Mg). It is preferable to satisfy the relationship of (wire) + Al (wire) ) / (Zr (wire) + Ti (wire) + Ca (wire) ) ⁇ ⁇ 70.
  • Mg (ware) and Al (wire) mean the total amount of Mg and Al contained in the flux and the outer skin, that is, Mg and Al contained in the entire wire, respectively.
  • Oxides of these elements have a high melting point and form slag at an early stage on the surface of the molten pool, suppressing leaching and poor bead appearance.
  • Mg and Al tend to aggregate slag and form slag over the entire surface of the molten pool.
  • Zr, Ti and Ca slag is easily dispersed, slag formation tends to be concentrated toward the edge due to the flow of the molten pool, and a remarkable effect of ensuring slag resistance and good bead appearance does not appear.
  • the value represented by the above ratio is 70 or less, it is preferable from the viewpoint of toughness, and sufficient toughness can be secured.
  • the ratio is more preferably 25 or more, further preferably 27 or more, still more preferably 60 or less, still more preferably 55 or less.
  • O oxygen
  • the content of O (wire) is preferably 0.05% by mass or less, more preferably 0.04% by mass or less, based on the total mass of the wire.
  • oxygen contained in the wire causes an oxidation reaction with metals such as Al and Mg in the weld metal, so that an oxide (slag) is formed on the molten pool. This makes it possible to improve the melt-down resistance in all-posture welding such as vertical welding and upward welding.
  • N is effective in improving strength and combines with Ti, Zr, Nb, Cr and Mn to form a nitride and contributes to toughness.
  • the content of N (wire) is preferably 0.05% by mass or less in order to suppress deterioration of toughness due to excessive strength and occurrence of welding defects such as pore defects and cracks.
  • S is an element that lowers the surface tension of the molten pool. Moreover, if a large amount is added, the possibility of cracking increases. Therefore, the content of S (wire) is preferably 0.05% by mass or less from the viewpoints of melt resistance, bead appearance shape, and crack resistance.
  • P is an impurity element, and the content of P (wire) is preferably suppressed to 0.05% by mass or less from the viewpoint of crack resistance.
  • B has the effect of refining the microstructure of the weld metal by adding a small amount and improving the low temperature toughness of the weld metal.
  • the content of B (wire) is preferably 0.05% by mass or less with respect to the total mass of the wire.
  • B can be added from alloy powders such as metal B, Fe-B, Fe-Mn-B, and Mn-B from flux.
  • Cu is an element that contributes to improving the strength of the weld metal.
  • the Cu (wire) content is preferably 5.0% by mass or less with respect to the total mass of the wire in order to prevent the weld metal from becoming excessive in strength and decreasing toughness.
  • Cu can be added from alloy powders such as metal Cu, Cu—Zr, and Fe—Si—Cu from flux.
  • ⁇ Ba (wire) 5.0% by mass or less> Ba is added from BaF 2 , BaCO 3, etc., and has the effect of stabilizing the arc and reducing the amount of spatter generated. However, if Ba is added in excess, arc deflection occurs and welding workability deteriorates. Therefore, the content of Ba (wire) is preferably 5.0% by mass or less, more preferably 3.0% by mass or less, based on the total mass of the wire .
  • Total alkali metal elements (wire) : 3.0% by mass or less> Alkali metal elements improve arc stability and contribute to improving welding workability such as spatter reduction. Excessive addition of a compound related to an alkali metal element may deteriorate the hygroscopicity of the wire and cause welding defects such as cracks and pore defects. Therefore, the total content of the alkali metal elements is preferably 3.0% by mass or less with respect to the total mass of the wire.
  • the alkali metal element include Na, K, Li and the like, which are added to the flux in the form of oxides, fluorides and the like, or adhered to the hoop surface.
  • Fe (wire) 40% by mass or more>
  • the content of Fe (wire) is preferably 40% by mass or more, more preferably 60% by mass or more, and further preferably 80% by mass or more.
  • the Fe (wire) content is preferably 95% by mass or less, more preferably 94% by mass or less.
  • Fe is contained as Fe (Hoop) constituting the exodermis, iron powder added to the flux, and Fe (flux) of the alloy powder.
  • the balance of the wire becomes an impurity, and examples thereof include Ta and Be.
  • the hoop serving as the outer skin of the flux-cored wire according to the present embodiment is not particularly limited in thickness and width, but for example, the thickness is preferably 0.5 mm or more, and preferably 1.5 mm or less.
  • the width is preferably 30 mm or less.
  • the width of the hoop By setting the width of the hoop to 30 mm or less, it is possible to suppress the coarsening of droplets and to make the detached droplets finer at the time of explosion transition. Therefore, the occurrence of spatter can be suppressed, which is preferable.
  • the lower limit of the width of the hoop is not particularly limited, but 10 mm or more is preferable from the viewpoint of preventing leakage of flux and vaporized fluorine from the seam.
  • the metal leaf in the hoop can be either mild steel metal leaf or stainless steel metal leaf depending on the purpose of welding.
  • a mild steel-based metal leaf when the characteristics of producing a welded joint of a structure with sufficient penetration are required.
  • a SUS (stainless steel) metal foil when performing welding work such as overlay welding in which the penetration is shallow and the dilution of the base metal is suppressed and the amount of welding is desired to be increased.
  • C (Hoop) 0.005 to 0.040% by mass or less
  • Si (Hoop) 0.005 to 0.050% by mass or less
  • Mn with respect to the total mass of the hoop.
  • (Hoop) 0.01 to 0.30% by mass or less
  • P (Hop) 0.01% by mass or less
  • S (Hop) 0.01% by mass or less.
  • the relationship between the contents Si (Hoop) and Mn (Hoop) of Si and Mn with respect to the total mass of the hoop, and the contents Si (wire) and Mn (ware) with respect to the total mass of the wire is 0.01 ⁇ ⁇ (Si).
  • a metal foil satisfying (Hoop) + Mn (Hoop) ) ⁇ (HR / 100) ⁇ / (Si (wire) + Mn (wire) ) ⁇ ⁇ 0.25 is preferable.
  • HR means a hoop ratio, and the hoop ratio is preferably 70 to 90% by mass.
  • C (Hoop) contributes to the improvement of strength.
  • the lower limit is not specified for adjusting the tensile strength, it is preferably 0.005% by mass or more from the viewpoint of the mechanical performance of the weld metal.
  • the C (Hop) content is more preferably 0.030% by mass or less with respect to the total mass of the hoop.
  • Si contributes to the electrical resistance of the metal leaf.
  • the Si content is 0.005% by mass or more with respect to the total mass of the hoop.
  • the Si content is preferably 0.050% by mass or less from the viewpoint of welding workability.
  • the welding amount can be increased as in the case of Si (Hoop) . Further, by setting the upper limit of the Mn (Hoop) content to 0.40% by mass or less, the welding workability is improved as in the case of Si (Hoop) .
  • P and S (Hoop) are preferably 0.01% by mass or less, respectively.
  • P is an element contained as an impurity, but it tends to segregate and deteriorates toughness and weldability. Therefore, the lower the content, the more preferable.
  • S has a property of lowering the surface tension. When welding is performed with a wire having a large amount of S in the total mass of the wire, the surface tension on the surface of the molten pool becomes low, and the melt-off and deterioration of the bead appearance become remarkable. On the other hand, from the viewpoint of droplet transfer, the lower the surface tension, the more the droplet detachment is promoted and the welding workability is improved.
  • the above parameter is preferably 0.25 or less from the viewpoint of welding workability.
  • the above parameter is preferably 0.01 or more.
  • SUS-based metal foil examples include C (Hoop) : 0.0001 to 0.06% by mass, Si (Hop) : 0.1 to 0.8% by mass, and Mn (Hoop ) with respect to the total mass of the hoop. ) : 0.05 to 3.00% by mass, P (Hoop) : 0.05% by mass or less, S (Hoop) : 0.05% by mass or less, Cr (Hoop) : 10.5 to 30.0% by mass And Ni (Hop) : A metal foil containing 3.0 to 14.0% by mass.
  • the Cr and Ni the relationship of the amount Cr (Hoop) and Ni (Hoop) and the content Cr to total mass of the wire (wire) and Ni (wire) for the hoop to the total mass, 0.80 ⁇ ⁇ (Cr ( Hop) + Ni (Hoop) ) ⁇ (HR / 100) / (Cr (wire) + Ni (wire) ) ⁇ ⁇ 1.20 is preferable.
  • HR means a hoop ratio, and the hoop ratio is preferably 70 to 90% by mass.
  • C contributes to the improvement of strength.
  • the C content is preferably 0.0001% by mass or more from the viewpoint of the mechanical performance of the weld metal.
  • the C content is 0.06% by mass or less, the hoop can be easily processed and the wire can be easily manufactured, which is preferable.
  • Si contributes to the electrical resistance of the metal leaf.
  • the Si content is more preferably 0.1% by mass or more with respect to the total mass of the hoop.
  • the Si content is preferably 0.8% by mass or less from the viewpoint of welding workability.
  • Mn contributes to electrical resistance in the same manner as Si.
  • the Mn content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. Further, from the viewpoint of welding workability, the Mn content is preferably 3.00% by mass or less, more preferably 2.50% by mass or less.
  • P and S are preferably 0.05% by mass or less, respectively.
  • P is an element contained as an impurity, but it tends to segregate and deteriorates toughness and weldability. Therefore, the lower the content, the more preferable.
  • S has a property of lowering the surface tension. When welding is performed with a wire having a large amount of S in the total mass of the wire, the surface tension on the surface of the molten pool becomes low, and the melt-off and deterioration of the bead appearance become remarkable. On the other hand, from the viewpoint of droplet transfer, the lower the surface tension, the more the droplet detachment is promoted and the welding workability is improved.
  • the hoop portion occupies most of the droplets formed at the tip of the wire during welding, it is preferable to add an appropriate amount of S to the hoop in consideration of welding workability. ..
  • the above effect can be expected by setting the content of S (Hoop) in the hoop to 0.0005% by mass or more with respect to the total mass of the hoop, which is preferable.
  • S (Hop) is excessively added to the hoop, the surface tension becomes too low, and the arc pressure may blow off the droplets and sputter, so that S (Hop) is contained.
  • the amount is preferably 0.05% by mass or less.
  • Cr is an essential element, and the amount of Cr added contributes more to the electrical resistance of the metal leaf than Si or Mn.
  • the content of Cr (Hoop) is 10.5% by mass or more with respect to the total mass of the hoop.
  • the Cr (Hoop) content is preferably 30.0% by mass or less from the viewpoint of welding workability.
  • Ni is an essential element like Cr, and its addition amount contributes more to the electrical resistance of the metal leaf than Si and Mn.
  • the content of Ni (Hoop) is 3.0% by mass or more with respect to the total mass of the hoop.
  • the content of Ni (Hoop) is preferably 14.0% by mass or less from the viewpoint of welding workability.
  • the welding amount increases and the efficiency is improved.
  • the above parameter is preferably 1.20 or less.
  • the flux-cored wire according to the present embodiment does not melt off even under the condition of a welding current of more than 200 A, and has an excellent bead appearance, so that welding can be performed with high efficiency.
  • the welding posture is not particularly limited, but is preferably used for all welding postures because of its excellent melt-down resistance, and is particularly preferably used for welding in at least one of an upright posture and an upward posture. Further, it can be suitably used for welding in which the posture changes continuously from the upward posture to the vertical posture.
  • the type of gas used for welding is not particularly limited, and examples thereof include Ar gas, CO 2 gas, O 2 gas alone, and a mixed gas thereof.
  • Ar gas it is preferable to use a shield gas containing 70% by volume or more of Ar.
  • CO 2 gas it is preferable to use a shield gas containing 70% by volume or more of CO 2 .
  • the flow rate of the gas is also not particularly limited, but is, for example, about 15 to 30 L / min.
  • the shape of the welding current waveform to be set may be a straight line or a pulse shape.
  • the straight line here means that the waveform shape is not special.
  • the welding current range is preferably used in the range of low current to high current, and even in the case of upward welding or vertical welding, it can be used at more than 200 A.
  • the welding voltage is also not particularly limited, and is, for example, 15 to 35V.
  • the welding speed is also not particularly limited, but is, for example, 10 to 50 cm / min.
  • the wire protrusion length is not particularly limited, and may be set to, for example, 10 to 30 mm. All of the above conditions are not limited to these examples, and the welding conditions may be determined according to the application.
  • composition of flux-cored wire The content with respect to the total mass of the wire is shown in Tables 1 and 2, and the content with respect to the total mass of the flux is shown in Table 3, respectively.
  • the water content (WC) with respect to the total mass of the wire was measured by a Karl Fischer moisture measuring device (coulometric moisture meter) using CA-200 manufactured by Mitsubishi Chemical Analytech.
  • the measurement conditions are as follows. Three samples in which the flux-cored wire was cut to 3 cm were prepared, and the water content was evaluated by measuring with the Karl Fischer method. At the time of measurement, heating was performed at 750 ° C. in order to vaporize the water content of the flux in the flux-containing wire, and the dried air was guided to the measuring device as a carrier gas. The results are shown in "Wire Moisture (WC)" in Table 2, and the unit is mass%.
  • W15 to W20 which contain Al and Mg as strongly deoxidized metal elements and whose total content with respect to the total mass of the wire is less than 2.2% by mass, all have excellent melt resistance and bead appearance.
  • the result was inferior. It was also confirmed that the ratio of the content of the strongly deoxidized metal element to the water content with respect to the total mass of the wire affects the melt resistance and the appearance of the bead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

本発明のフラックス入りワイヤは、コアとなるフラックスと外皮となるフープとを含み、前記フラックスには、Mg及びAlを含む強脱酸金属元素(flux)とフッ素化合物粉(flux)とを含み、前記強脱酸金属元素(flux)に係る強脱酸金属粉(flux)は、60質量%以上が150μm以下の粒度のものであり、前記フッ素化合物粉(flux)は、60質量%以上が75μm以下の粒度のものであり、更に、フラックス率は10~30質量%であり、且つ、特定の成分組成を満たすものである。

Description

フラックス入りワイヤ及び溶接方法
 本発明はフラックス入りワイヤに関し、特に上向姿勢や立向姿勢での溶接においても好適なフラックス入りワイヤに関する。また、前記フラックス入りワイヤを用いたガスシールドアーク溶接方法にも関する。
 従来、フラックス入りワイヤは下向溶接、立向溶接、横向溶接、上向溶接等を含む全姿勢によっても適用できる汎用性を有している。しかしながら、下向溶接に比べ、立向溶接および上向溶接においては、重力の影響によりビード外観不良や溶落ちが発生し易くなるため、特に溶接が難しい。そのため、全姿勢において良好な耐溶落ち性およびビード外観を得ることは困難であるという課題があった。
 この課題に対し、特許文献1ではAl、Mg及びBaFを必須のフラックス成分として特定量含み、かつフラックス充填率及びワイヤ全質量に対するMn及びSiの含有量を適正化したガスシールドアーク溶接用フラックス入りワイヤを開示している。このフラックス入りワイヤは、50~300A程度といった低電流から中電流の溶接電流範囲において直流正極性でアーク溶接を行うと、全姿勢溶接でのスパッタ発生量が少ない。これに加え、溶接性が良好であるとともに、靱性の良好な溶接金属を得ることができる。
 また、特許文献2に開示されたガスシールドアーク溶接用メタル系フラックス入りワイヤ及びガスシールドアーク溶接方法では、Ar-CO混合ガスを使用し、直流正極性で立向下進溶接してもスパッタ発生量が少なく、十分なのど厚を確保することができる。さらに、直流正極性で立向下進以外の溶接姿勢により溶接しても溶接作業性が良好である。
日本国特開平11-58069号公報 日本国特開2005-186138号公報
 しかしながら、特許文献1のフラックス入りワイヤの適用溶接電流範囲は低電流から中電流の範囲とされる。特に溶接の困難な立向溶接においては、実施例をみると溶接電流200Aでの実施にとどまっている。特許文献2では、全姿勢溶接を行うための溶接電流は、立向下進溶接及び下向・水平すみ肉溶接においては210乃至290Aとすることが好ましい。しかしながら、立向上進/上向溶接における溶接電流は110乃至140Aとすることが好ましいとされている。アーク電圧についても、立向下進溶接及び下向・水平すみ肉溶接においては23乃至29Vとすることが好ましいものの、立向上進/上向溶接においては14乃至18Vにすることが好ましいという記述がある。
 このように、立向姿勢または上向姿勢での溶接に関し、溶接電流を上げると溶落ちやビード外観不良等の溶接欠陥の発生が顕著になる。そのため、低い電流域で溶接する必要があり、溶接作業の高能率性という観点から改善の余地があった。
 そこで本発明は、上向姿勢や立向姿勢溶接において比較的高い電流の溶接電流範囲、特に200Aを超える溶接電流の条件で高能率性を確保しつつ、溶落ちを主とした溶接欠陥を抑制し、かつビード外観が良好なフラックス入りワイヤを提供することを目的とする。また、前記フラックス入りワイヤを用いた、高能率な溶接方法を提供することも目的とする。
 本発明者らは鋭意研究を重ねた結果、特定の構成を有するフラックス入りワイヤとすることで上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]~[12]に係るものである。
[1]コアとなるフラックスと、外皮となるフープとを含むフラックス入りワイヤであって、前記フラックスは、Mg及びAlを含む強脱酸金属元素(flux)と、フッ素化合物粉(flux)とを含み、前記強脱酸金属元素(flux)の合計の含有量は前記フラックス全質量に対して15~35質量%であり、前記強脱酸金属元素(flux)のうちMg及びAlは、少なくとも一部が、金属粉及び合金粉の少なくともいずれか一方である強脱酸金属粉(flux)として含まれ、前記強脱酸金属粉(flux)は、60質量%以上が150μm以下の粒度であり、前記フッ素化合物粉(flux)の合計の含有量は前記フラックス全質量に対して10~45質量%であり、前記フッ素化合物粉(flux)は、60質量%以上が75μm以下の粒度であり、前記フラックス入りワイヤは前記フラックスをワイヤ全質量に対して10~30質量%含有し、かつ前記フラックス入りワイヤはワイヤ全質量に対して、C(wire):0.5質量%以下、Si(wire):0.05~1.0質量%、Al(wire):1.0~3.5質量%、Mn(wire):1.0~3.0質量%、Mg(wire):0.3~0.9質量%、フッ素化合物(wire)のフッ素換算値Fの合計:0.30~1.20質量%、及び強脱酸金属元素(wire)の合計:2.2質量%以上、を含有するフラックス入りワイヤ。
[2]前記フラックス入りワイヤはワイヤ全質量に対して、Ni(wire):15質量%以下、Mo(wire):5.0質量%以下、W(wire):3.0質量%以下、Nb(wire):5.0質量%以下、V(wire):5.0質量%以下、Cr(wire):30質量%以下、Ti(wire):3.0質量%以下、Zr(wire):2.0質量%以下、O(wire):0.05質量%以下、N(wire):0.05質量%以下、S(wire):0.05質量%以下、P(wire):0.05質量%以下、B(wire):0.05質量%以下、Cu(wire):5.0質量%以下、Ba(wire):5.0質量%以下、アルカリ金属元素(wire)の合計:3.0質量%以下、Ca(wire):3.0質量%以下、希土類元素(wire)の合計:0.5質量%以下、及びFe(wire):40質量%以上をさらに含有する前記[1]に記載のフラックス入りワイヤ。
[3]前記フッ素化合物粉(flux)はBaF、SrF、NaAlF、NaF、MgF及びCaFからなる群より選ばれる少なくとも1の化合物粉である前記[1]に記載のフラックス入りワイヤ。
[4]前記フッ素化合物粉(flux)はBaF、SrF、NaAlF、NaF、MgF及びCaFからなる群より選ばれる少なくとも1の化合物粉である前記[2]に記載のフラックス入りワイヤ。
[5]ワイヤ全質量に対する水分量(WC)が0.010~0.100質量%であり、かつ前記水分量(WC)と前記強脱酸金属元素(wire)の合計の含有量とが、105≦(強脱酸金属元素(wire)の合計の含有量/WC)≦170の関係を満たす前記[1]~[4]のいずれか1に記載のフラックス入りワイヤ。
[6]ワイヤ全質量に対する前記Al(wire)及び前記Mg(wire)の含有量が、0.35≦(2×Mg(wire)/0.6×Al(wire))≦1.50の関係を満たす前記[1]~[4]のいずれか1に記載のフラックス入りワイヤ。
[7]前記強脱酸金属元素(flux)として、Zr、Ti及びCaからなる群より選ばれる少なくとも1の元素をさらに含み、ワイヤ全質量に対する各元素の含有量が、5≦{(Mg(wire)+Al(wire))/(Zr(wire)+Ti(wire)+Ca(wire))}≦70の関係を満たす前記[1]~[4]のいずれか1に記載のフラックス入りワイヤ。
[8]前記フラックスにNiを、金属Ni、Cu-Ni、Fe-Ni、及びNi-Mgからなる群より選ばれる少なくとも1種として含む前記[1]~[4]のいずれか1に記載のフラックス入りワイヤ。
[9]前記[1]~[4]のいずれか1に記載のフラックス入りワイヤを用いたガスシールドアーク溶接方法であって、溶接電流を200A超とし、シールドガス雰囲気中で溶接を行うガスシールドアーク溶接方法。
[10]上向姿勢及び立向姿勢の少なくともいずれか一方の溶接姿勢で溶接を行う前記[9]に記載のガスシールドアーク溶接方法。
[11]前記シールドガスがArを70体積%以上含む前記[9]に記載のガスシールドアーク溶接方法。
[12]前記シールドガスがCOを70体積%以上含む前記[9]に記載のガスシールドアーク溶接方法。
 本発明によれば、比較的高い溶接電流範囲においても全姿勢で溶接することができる。特に上向姿勢または立向姿勢において、200Aを超える溶接電流であっても、溶落ちを主とした溶接欠陥を抑制し、ビード外観を良好に維持しつつ高能率な溶接が可能となる。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 明細書中、「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また、物質名や元素の直後に付与する「(flux)」とは、フラックス中に含まれるものを指す。同様に、「(wire)」とは、フラックス入りワイヤ中に含まれるものを指し、「(Hoop)」とは、フープ中に含まれるものを指す。
 本実施形態に係るフラックス入りワイヤ(以下、単に「ワイヤ」と称することがある。)は、コアとなるフラックスと、外皮となるフープとを含む。
 フラックスは、Mg及びAlを含む強脱酸金属元素(flux)と、フッ素化合物粉(flux)とを含み、上記強脱酸金属元素(flux)の合計の含有量はフラックス全質量に対して15~35質量%である。上記強脱酸金属元素(flux)に係る1種以上の、金属粉及び合金粉の少なくともいずれか一方を、強脱酸金属粉(flux)として含み、強脱酸金属粉(flux)は、60質量%以上が150μm以下の粒度である。
 また、上記フッ素化合物粉(flux)の合計の含有量はフラックス全質量に対して10~45質量%であり、フッ素化合物粉(flux)は、60質量%以上が75μm以下の粒度である。
 フラックス入りワイヤはフラックスをワイヤ全質量に対して10~30質量%含有する。すなわち、フラックス率は10~30質量%である。
 さらに、フラックス入りワイヤはワイヤ全質量に対して、C(wire):0.5質量%以下、Si(wire):0.05~1.0質量%、Al(wire):1.0~3.5質量%、Mn(wire):1.0~3.0質量%、Mg(wire):0.3~0.9質量%、フッ素化合物(wire)のフッ素換算値Fの合計:0.30~1.20質量%、及び強脱酸金属元素(wire)の合計:2.2質量%以上、を含有する。
<フラックス>
 本実施形態に係るフラックス入りワイヤのコアとなるフラックスは、強脱酸金属元素(flux)とフッ素化合物粉(flux)とを含む。強脱酸金属元素とは、Mg及びAlの2種以上を必須として含み、その他の強脱酸金属元素として、Ti、Zr、Ca、希土類元素(以後「REM」と称することがある。)等が任意に含まれてもよい、任意の強脱酸金属元素として、Ti、Zr及びCaからなる群より選ばれる少なくとも1の元素をさらに含むことが好ましい。なお、フラックスは、強脱酸金属元素とフッ素化合物粉以外にも、必要に応じて、Ni;SiやMn等の脱酸元素;SiO、TiO、FeO等の酸化物;窒化物等を添加してもよく、残部は鉄粉および不純物となる。
 強脱酸金属元素であるMgは、十分な脱酸効果を得ることができ、良好な靱性を実現することができる元素である。また、Mgの酸化物は高融点のため、溶融池表面上に形成するスラグの生成速度が向上する。高電流で溶接を行うほど、溶融池の温度は上昇し、溶融池の粘性、表面張力は低下する。そのため、上向溶接や立向溶接では高電流の溶接であるほど、溶落ちやビード外観不良が発生しやすい。しかしながら、Mgを適正量添加することによって、溶接電流を200A超とした場合でも、溶融池形状が重力によって変化する前に、溶融池表面上で早期にスラグ形成することができる。これにより、溶落ちやビード外観不良を防止することができる。さらに、Mgは蒸気圧が高く、金属蒸気によるアーク安定化により溶接作業性に寄与する。特に、溶滴移行の一形態である爆発移行での安定効果が高い。なお、爆発移行とは、ワイヤ先端に形成される溶滴内のガス成分が爆発して母材へ移行する移行形態である。
 Mgはフラックスに含まれるが、一部が外皮(以下、単に「フープ」と称することがある。)に含まれていてもよい。なお、フラックスに含まれる形態としては、Mgの金属粉、Mg-Al、Fe-Mg等の合金粉、MgF等のフッ化物が一例として挙げられる。なお、金属粉や合金粉に関し、以後、例えばMgの金属粉をMg粉、Mg-Alの合金粉をMg-Al粉等と称することがある。
 Mg(wire)の含有量を、ワイヤ全質量に対して0.3質量%以上とすることで、上記強脱酸金属元素としての効果を得ることができる。一方、含有量の上限を0.9質量%以下とすることにより、溶接部に介在物が形成されて機械的性能が十分に得られないことを防ぐことができる。
 よって、Mg(wire)の含有量はワイヤ全質量に対して0.3~0.9質量%であり、0.55質量%以上が好ましく、また、0.85質量%以下が好ましい。また、フラックス中に含まれるMg(flux)の含有量は、フラックス全質量に対し、1.5質量%以上が好ましく、また、8.0質量%以下が好ましい。
 AlはMgと同様、強脱酸金属元素としてフラックスに必須で含まれる元素であるが、一部が外皮(フープ)に含まれていてもよい。なお、フラックスに含まれる形態としては、Alの金属粉、Mg-Al、Fe-Al等の合金粉、AlF等のフッ化物が一例として挙げられる。
 Al(wire)の含有量を、ワイヤ全質量に対して1.0質量%以上とすることで、早期のスラグ形成効果による耐溶落ち性およびアークを安定させ、爆発移行を推進させる効果を得ることができる。一方、含有量の上限を3.5質量%以下とすることにより、過剰な爆発移行となることも防ぐことができるため、アークが安定する。
 よって、Al(wire)の含有量はワイヤ全質量に対して1.0~3.5質量%であり、1.8質量%以上が好ましく、また、3.1質量%以下が好ましい。また、フラックス中に含まれるAl(flux)の含有量は、フラックス全質量に対し、10.0質量%以上が好ましく、また、25.0質量%以下が好ましい。
 以上のように、MgおよびAlは、スラグ形成速度、アーク安定性の観点から本発明においてフラックスに必須の強脱酸金属元素となる。さらに、これらの元素の少なくとも一つは強脱酸金属粉(flux)として、金属粉又は合金粉の態様でフラックス中に共に含有する必要がある。すなわち、強脱酸金属粉(flux)は溶接の過程で酸素と結びつくことによって、脱酸による靱性向上効果、金属蒸気による溶滴移行安定効果が得られるが、酸化物の状態で含有しても、このような効果は得られない。また、酸化物であると、溶接時にフラックスが溶けきらず、溶け残った酸化物は溶融池の対流によって際の方へ流れるため、溶融池表面全域に均一なスラグ形成が見込めなくなる。尚、酸化物の状態とは、例えばAl、MgO等を指す。
 強脱酸金属粉(flux)はMg及びAlを単一金属粉又は複合金属からなる金属粉、すなわち合金粉として含む。具体的には、AlまたはMgの単一金属粉であるAl粉またはMg粉や、Al及びMgの少なくともいずれか一方を含む複合金属からなる金属粉、すなわち合金粉を含む。上記複合金属からなる金属粉としては、例えば、Fe-Al粉やNi-Al-Si粉、Fe-Mg粉、Mg-Al粉等が挙げられる。強脱酸金属粉(flux)は1種の金属粉から構成されても、複数の金属粉から構成されてもよい。
 また、フラックス中に添加したMg(flux)とAl(flux)は溶接金属中の酸素と結合し、スラグアウトする特性がある。Mgは非常に強力な脱酸金属元素であることから、溶接金属中には殆ど残存せずに、ほぼ全量スラグアウトする。一方、AlはMgほどの脱酸力はなく、約60%がスラグアウトし、約40%が溶接金属中に残存する。
 このAlとMgを含む酸化物であるスラグはMgAlやFeAlなどを含有するスピネル構造を有し、非常に安定で高融点の酸化物となる。当該スラグの凝固速度は例えば通常のチタンスラグ系の凝固速度よりも速く、特に上向溶接や立向溶接時において耐溶落ち性に優れる。
 Mg(wire)とAl(wire)の金属添加量、すなわちMgとAlのワイヤ全質量に対する含有量は、0.35≦(2×Mg(wire)/0.6×Al(wire))≦1.50の関係を満たすことが好ましい。金属添加量の上記比を0.35以上とすることにより、溶接金属中のAl歩留まり量を上昇させることを防ぐことができる。また、スラグが過剰に形成されることを防ぎ、溶込み、ビードのなじみ、スラグ被り等の悪化を防ぐこともできる。そのため、良好なビード外観を実現することができる。一方、金属添加量の上記比を1.50以下とすることにより、十分なスラグ量を形成し、上向溶接や立向溶接といった全姿勢溶接においても、溶融池をスラグにより好適に抑えることができ、耐溶落ち性に優れる。なお、上記効果をより得るためには、(2×Mg(wire)/0.6×Al(wire))で表される比の値が0.80以上がより好ましく、0.85以上がさらに好ましく、また、1.30以下がより好ましく、1.20以下がさらに好ましく、1.15以下がよりさらに好ましい。
 さらに、強脱酸金属粉(flux)は、その60質量%以上が150μm以下の粒度となるようにする。150μm以下の粒度である強脱酸金属粉(flux)が60質量%を下回ると溶接時にフラックスが溶けきらず、スラグの形成速度が遅くなり、良好な耐溶落ち性やビード外観形状が得られない可能性がある。また、溶け残った金属粉は溶融池の対流によって際の方へ流れるため、溶融池表面全域に均一なスラグ形成が見込めなくなる。良好な耐溶落ち性やビード外観形状を得るために、150μm以下の粒度が70質量%以上を占めることが好ましく、80質量%以上を占めることがより好ましい。また、60質量%以上が、100μm以下の粒度とすることも、より好ましい。
 なお、本明細書において、強脱酸金属粉やフッ素化合物粉の粒度は、JIS Z 8801-1:2006に基づき、適切な目開きサイズの篩を用いて測定することができる。
 フラックスに含まれる強脱酸金属元素(flux)の合計の含有量は、フラックス全質量に対して15~35質量%である。強脱酸金属元素(flux)の合計の含有量を15質量%以上とすることで、スラグ形成が十分で、良好な耐溶落ち性が得られる。また、合計の含有量を35質量%以下とすることで良好なビード外観が得られる。強脱酸金属元素(flux)の合計の含有量は、フラックス全質量に対して、18質量%以上が好ましく、また、32質量%以下が好ましい。
 ワイヤに含まれる強脱酸金属元素(wire)の合計の含有量は、ワイヤ全質量に対して2.2質量%以上であり、2.5質量%以上が好ましい。強脱酸金属元素(wire)の含有量を2.2質量%以上とすることで、溶融池をスラグにより好適に抑えることができ、200A以上の溶接電流における上向溶接、立向溶接の溶落ちを抑制する。また、強脱酸金属元素(wire)の含有量は4.0質量%以下であるとスラグが過剰に形成されることを抑制でき、より良好なビード外観を実現できることから好ましい。
 なお、強脱酸金属元素としてAl及びMg以外に、後述するZr、Ti、Ca、REMといった元素が含まれる場合には、それら元素も含めた合計の含有量を強脱酸金属元素(wire)又は強脱酸金属元素(flux)の合計の含有量とする。
 本実施形態におけるフッ素化合物粉(flux)はフラックス中に添加されることで、爆発移行時の離脱溶滴の微細化を図ることができる。フッ素化合物粉(flux)の合計の含有量は、フラックス全質量に対して10~45質量%である。合計の含有量が10質量%以上であることにより、離脱溶滴の微細化が図られる。また、合計の含有量が45質量%以下であることにより、溶滴が良好に形成される。フッ素化合物粉(flux)の合計の含有量は、10.5質量%以上が好ましく、また、41質量%以下が好ましい。
 フラックス入りワイヤに含まれるフッ素化合物粉(wire)のフッ素換算値Fの合計の含有量は、ワイヤ全質量に対して0.30~1.20質量%である。フッ素化合物粉(wire)の合計の含有量が0.30質量%以上であると、その溶滴移行は離脱溶滴の微細化が図られる。また、合計の含有量が1.20質量%以下であると、ワイヤ内部で過剰な揮発が起こることなく、溶滴の形成が良好に行われる。フッ素化合物粉(wire)のフッ素換算値Fの合計の含有量は0.40質量%以上が好ましく、また、0.90質量%以下が好ましい。
 フッ素化合物粉(flux)は、その60質量%以上が75μm以下の粒度となるようにする。75μm以下の粒度であるフッ素化合物粉を60質量%以上とすることにより、フラックスが溶けきらないことを防ぐ。その結果、フッ素を十分に気化させ、アークの安定性を維持し、良好な作業性が得られる傾向にある。良好な作業性を得るためには、75μm以下の粒度が70質量%以上を占めることが好ましく、75質量%以上を占めることがより好ましい。
 フッ素化合物粉(flux)としては、BaF、SrF、NaAlF、NaF、CaF2、AlF、MgF等が挙げられ、これらを1種含んでも2種以上含んでいてもよい。中でも、フッ素化合物粉(flux)は、BaF、SrF、NaAlF6、AlF、MgF、NaF及びCaFからなる群より選ばれる少なくとも1の化合物粉であることが溶接作業性の点から好ましく、BaF、SrF、NaAlF、NaF、MgF及びCaFからなる群より選ばれる少なくとも1の化合物粉がより好ましい。また、Baは仕事関数が低く、陰極点をより安定させる効果を持ち溶接作業性の向上に寄与することから、Baに係るフッ化物であるBaFを含むことがより好ましい。
 フッ素化合物粉としてBaFが含まれる場合、BaF2(wire)のワイヤ全質量に対する含有量は、溶接作業性の点から1.0質量%以上が好ましく、1.2質量%以上がより好ましい。また、スパッタ低減の点からBaF2(wire)の含有量は6質量%以下が好ましく、5.5質量%以下がより好ましい。
 本実施形態に係るフラックス入りワイヤ中には、水分が含まれると、アーク近傍で急激な熱量が加わった際に、水蒸気化するときの体積膨張による爆発効果を得ることができるため好ましい。これによって、形成された溶滴が細粒化し、溶滴の肥大化が抑制されてスパッタの低減を図ることができる。また、水(HO)中の酸素がMn、Al、Mgなどの金属と酸化反応を起こすことによって、酸化物であるスラグが溶融池上に形成する。これにより、立向溶接や上向溶接等の全姿勢溶接において耐溶落ち性を向上させることが可能となる。
 ワイヤ全質量に対する水分量(WC)は0.010質量%以上が好ましく、また、0.100質量%以下が好ましい。水分量(WC)を0.010質量%(100質量ppm)以上とすることにより、スラグ形成に要する酸素量が十分にワイヤ側から供給され、溶落ちをより抑制し、溶接することができる。また、水分量(WC)を0.100質量%(1000質量ppm)以下とすることにより、蒸気圧過剰に起因してアークが不安定となることを防ぐことができ、スパッタの発生を抑制することができる。WCは0.015質量%(150質量ppm)以上がより好ましく、また、0.050質量%(500質量ppm)以下がより好ましい。なお、ワイヤ中の水分量は、キャリアガスとして乾燥した空気を用いたカールフィッシャー法により求めることができる。
 上記に加え、水分量(WC、質量%)と、ワイヤ全質量に対する強脱酸金属元素(wire)の合計の含有量(質量%)との関係が、105≦(強脱酸金属元素(wire)の合計の含有量/WC)≦170を満たすと、耐溶落ち性の観点から好ましい。
 上記効果が得られる一方、アーク中で水から分離された水素によるワイヤ中の水素量が多くなるほど、溶接金属中の拡散性水素量が増大する。その結果、溶接欠陥である低温割れの発生が起こるリスクが高まる。この拡散性水素量の低減を図るためにはフッ素の添加が有効な手段である。そのため、WC(質量%)とフッ素化合物(wire)のフッ素換算値Fの合計(質量%)との比(WC/F)を0.025以上とすることが好ましく、0.030以上がより好ましく、また、溶接作業性を考慮すると、0.100以下が好ましく、0.090以下がより好ましい。
 本実施形態におけるフラックスは、ワイヤ全質量に対して10~30質量%、すなわちフラックス率が10~30質量%である。フラックス率を10質量%以上とすることにより、フラックスを構成する各成分やそれらの組合せによる効果を十分に発揮することができる。また、フラックス率を30質量%以下とすることにより、外皮となるフープを薄肉とする必要がないため、アークを安定させ、スパッタの発生を抑制することができる。フラックス率は11質量%以上がより好ましく、また、20質量%以下がより好ましい。
 フラックス入りワイヤの構成について、先述した元素や化合物に加え、ワイヤ全質量に対してC(wire):0.5質量%以下、Mn(wire):1.0~3.0質量%、及びSi(wire):0.05~1.0質量%を含む。
<C(wire):0.5質量%以下(0質量%を含む)>
 Cは溶接金属の強度調整のために任意で添加するため下限は規定しない。一方、C(wire)をワイヤ全質量に対して0.5質量%以下とすることにより、溶接金属の強度が高くなり過ぎて靱性が低下するのを防ぐことができる。C(wire)の含有量は0.2質量%以下が好ましい。
<Mn(wire):1.0~3.0質量%>
 Mnは脱酸効果および固溶強化として有効な元素であり、引張強度および靱性といった機械的性能を向上させることができる。Mn(wire)の含有量は、ワイヤ全質量に対して1.0~3.0質量%である。1.0質量%以上含有することにより、固溶強化の効果を十分に得ることができ、良好な機械的性能が得られる。また、含有量を3.0質量%以下とすることにより、過剰な強度向上を抑制することができ、適正な靱性を確保することができる。Mnの含有量はワイヤ全質量に対して1.5質量%以上が好ましく、また、2.5質量%以下が好ましく、2.0質量%以下がより好ましい。
<Si(wire):0.05~1.0質量%>
 Siは母材と溶接金属とのなじみをよくする元素であることから、フラックス中に、ワイヤ全質量に対して0.05質量%以上含む。また、靱性を低下させないために、その上限を1.0質量%とする。上記効果をより得るためには、Siの含有量は0.1質量%以上が好ましく、また、0.80質量%以下が好ましい。
 上記元素や化合物の他、必要に応じて任意で、添加可能な元素について以下詳述する。なお、以下の元素の含有量はいずれも、ワイヤ全質量に対する質量%である。
<Ni(wire):15質量%以下>
 Niは高入熱・高パス間温度において、靱性および引張強度を向上させることが可能となる元素であることから、必要であれば任意で添加してもよい。Niを過剰に添加すると溶融池の粘性が低下する。上向溶接や立向溶接の場合に溶融池の粘性が低下すると、重力の影響によって溶落ちやビード外観不良といった溶接欠陥が発生する危険性がある。そのため、Ni(wire)を任意で添加する場合はワイヤ全質量に対して15質量%以下が好ましく、5質量%以下とすることがより好ましい。また、上記効果を得るためには、Niの含有量は0.01質量%以上が好ましく、0.05質量%以上がより好ましい。
 Niを添加する場合の形態において、金属Ni、Cu-Ni、Fe-Ni、及びNi-Mgからなる群より選ばれる少なくとも1種の金属単体又は化合物をフラックス中に含有して用いることが好ましい。この形態で含有させることにより、スラグ形成が優位となり上向溶接時や立向溶接時の溶落ちをより良好に抑制することが可能となる。
<Mo(wire):5.0質量%以下>
<Nb(wire):5.0質量%以下>
<V(wire):5.0質量%以下>
<Cr(wire):30質量%以下>
 Mo、Nb、V、及びCrはいずれも靱性または引張強度を向上させることが可能となる元素であることから、靱性または引張強度を調整するために必要であれば任意で添加してもよい。また、これらの元素は高融点の炭化物を形成する元素である。なお、高融点の炭化物の一例として、MoC、NbC、VC、Crが挙げられる。これらの炭化物は高融点ゆえに、スラグとして溶融池の表面上に早期形成される。この特性から、上向溶接時の溶落ち抑制や良好なビード外観を得ることが出来る。
 Mo、Nb、V、及びCrはそれぞれ、Mo(wire):5.0質量%以下、Nb(wire):5.0質量%以下、V(wire):5.0質量%以下及びCr(wire):30質量%以下のうちいずれか1を満たすように含むことが、良好なビード外観を維持することから好ましく、すべてを満たすように含むことがより好ましい。また、Mo、Nb及びVの合計の含有量はワイヤ全質量に対して5.0質量%以下であることが好ましく、3.0質量%以下であることがより好ましい。
 Mo、Nb、V、及びCrの添加形態は特に問わず、添加はフープ中でもよいし、フラックス中に含まれてもよい。また、Mo、Nb及びVの含有量は合計でワイヤ全質量に対して0.005質量%以上であることが好ましい。
<W(wire):3.0質量%以下>
 Wは強度向上に有効な元素であることから引張強度を調整するために必要であれば任意で添加してもよい。Wを過剰に添加すると強度過剰による靱性劣化が起こることから、Wの含有量はワイヤ全質量に対して3.0質量%以下が好ましい。
<Ti(wire):3.0質量%以下>
 Tiは強脱酸金属元素であり、脱酸効果による靱性向上に有効な元素である。靱性の調整のために適正量添加してもよいが、Tiを過剰に添加すると介在物の粗大化、介在物量過多となることから、靱性が低下する。したがって、Tiの含有量は、ワイヤ全質量に対して3.0質量%以下に抑制することが好ましい。
<Zr(wire):2.0質量%以下>
 ZrはTiと同様、強脱酸金属元素であり、脱酸効果による靱性向上に有効な元素である。靱性の調整のために適正量添加してもよいが、Zrを過剰に添加すると介在物の粗大化、介在物量過多となることから、靱性が低下する。したがって、Zrの含有量はワイヤ全質量に対して2.0質量%以下が好ましい。
<Ca(wire):3.0質量%以下>
 Caは、CaF、CaCO等から添加され、Ti、Zrと同様、強脱酸金属元素であり、脱酸効果による靱性向上に有効な元素である。靱性の調整のために適正量添加してもよいが、Caを過剰に添加すると介在物の粗大化、介在物量過多となることから、靱性が低下する。したがって、Caの含有量はワイヤ全質量に対して3.0質量%以下が好ましい。
<REM(希土類金属)(wire):0.5質量%以下>
 REM(希土類金属)はアークを安定にし、スパッタ低減に有効な元素である。また、脱酸、脱硫効果もあり、靱性の向上にも寄与する。REMを過剰に添加するとアーク偏向が起こり易くなり、溶接作業性が劣化する。そのため、REMの含有量の合計はワイヤ全質量に対して0.5質量%以下が好ましく、0.2質量%以下がより好ましい。REMとしては、La、Ce、Yがより好ましく用いられる。
 上記Ti(wire)Zr(wire)、Ca(wire)、及びREMは、Al及びMgとともに強脱酸金属元素となる。Al及びMgは、フラックスのみならず、外皮に含まれてもよいが、フラックスに含まれていることが好ましい。強脱酸金属元素のうち、Mg(wire)、Al(wire)、Zr(wire)、Ti(wire)及びCa(wire)の含有量(ワイヤ全質量に対する質量%)が、5≦{(Mg(wire)+Al(wire))/(Zr(wire)+Ti(wire)+Ca(wire))}≦70の関係を満たすことが好ましい。ここでMg(wire)、Al(wire)とはそれぞれ、フラックスと外皮に含まれるMg、Alの総量、すなわちワイヤ全体に含まれるMg、Alを意味する。これらの元素の酸化物は高融点であり、溶融池表面において早期にスラグ形成し、溶落ちやビード外観不良を抑制する。特に、Mg及びAlはスラグが凝集しやすく、溶融池表面の全域にスラグ形成する傾向がある。一方、Zr、Ti及びCaはスラグが分散しやすく、溶融池の流れによって際の方へスラグ形成が集中する傾向があり、耐溶落ち性および良好なビード外観を確保する著しい効果は現れない。
 しかしながら、これら元素はフェライト核生成サイトとして寄与しやすい元素であるため、靱性の向上を図ることができる。よって、Zr、Ti、Caを添加する場合、Mg(wire)及びAl(wire)の含有量の合計とZr(wire)、Ti(wire)及びCa(wire)の含有量の合計の比率である{(Mg(wire)+Al(wire))/(Zr(wire)+Ti(wire)+Ca(wire))}で表される値が5以上であれば、十分なMg(wire)、Al(wire)量が確保されている好ましい範囲であって、耐溶落ち性および良好なビード外観を得ることができる。一方、上記比率で表される値が70以下であれば、靱性の観点から好ましく、十分な靱性を確保することができる。
 上記比率は25以上がより好ましく、27以上がさらに好ましく、また、60以下がより好ましく、55以下がさらに好ましい。
<O(酸素)(wire):0.05質量%以下>
 Oは、シールドガスやフラックス中の酸化物、水分等から供給される。溶接中にOが過剰に添加されると溶融池の表面張力が低下し、上向溶接や立向溶接において溶落ちやビード外観不良が発生する。そのため、O(wire)の含有量はワイヤ全質量に対して0.05質量%以下が好ましく、0.04質量%以下がより好ましい。一方ワイヤ中に含まれる酸素は溶接金属中でAl、Mgなどの金属と酸化反応を起こすことによって、酸化物(スラグ)が溶融池上に形成する。これにより、立向溶接や上向溶接等の全姿勢溶接において耐溶落ち性を向上させることが可能となる。
<N(wire):0.05質量%以下>
 Nは強度向上に有効であるとともに、Ti、Zr、Nb、CrやMnと結合し、窒化物を形成し、靱性に寄与する。強度過剰による靱性の劣化や気孔欠陥や割れ等の溶接欠陥の発生を抑制するため、N(wire)の含有量は0.05質量%以下であることが望ましい。
<S(wire):0.05質量%以下>
 SはOと同じように、溶融池の表面張力を低下する元素である。また、多量に添加すると、割れが発生する可能性が高くなる。よって、耐溶落ち性、ビード外観形状、耐割れ性の観点からS(wire)の含有量は0.05質量%以下あることが好ましい。
<P(wire):0.05質量%以下>
 Pは不純物元素であり、耐割れ性の観点からP(wire)の含有量は0.05質量%以下に抑制することが好ましい。
<B(wire):0.05質量%以下>
 Bは、微量の添加により溶接金属のミクロ組織を微細化し、溶接金属の低温靱性を向上させる効果がある。溶接金属に高温割れが発生するのを抑制するため、B(wire)の含有量はワイヤ全質量に対して、0.05質量%以下が好ましい。なお、Bは、鋼製外皮に含まれる成分の他、フラックスからの金属B、Fe-B、Fe-Mn-B、Mn-B等の合金粉末から添加できる。
<Cu(wire):5.0質量%以下>
 Cuは、溶接金属の強度向上に寄与する元素である。溶接金属の強度が過剰になり靱性が低下するのを抑制するため、ワイヤ全質量に対してCu(wire)の含有量は5.0質量%以下が望ましい。なお、Cuは鋼製外皮表面に施したフープCuめっき分の他、フラックスからの金属Cu、Cu-Zr、Fe-Si-Cu等の合金粉末から添加できる。
<Ba(wire):5.0質量%以下>
 Baは、BaF、BaCO等から添加され、アークを安定にし、スパッタ発生量を低減する効果を有する。しかしながら、Baは過剰に添加すると、アーク偏向が起こり、溶接作業性が劣化する。したがって、ワイヤ全質量に対してBa(wire)の含有量は5.0質量%以下が好ましく、3.0質量%以下がより好ましい。
<アルカリ金属元素(wire)の合計:3.0質量%以下>
 アルカリ金属元素はアーク安定性が向上し、スパッタ低減等の溶接作業性向上に寄与する。アルカリ金属元素に係る化合物を過剰に添加するとワイヤの耐吸湿性が劣化し、割れおよび気孔欠陥等の溶接欠陥が発生する可能性がある。そのため、アルカリ金属元素の合計の含有量は、ワイヤ全質量に対して3.0質量%以下が好ましい。なおアルカリ金属元素は、Na、K、Li等が挙げられ、酸化物、弗化物等の形態でフラックスに添加、またはフープ表面に付着させる。
<Fe(wire):40質量%以上>
 Fe(wire)の含有量は40質量%以上が好ましく、60質量%以上がより好ましく、80質量%以上がさらに好ましい。また、Fe(wire)の含有量は95質量%以下が好ましく、94質量%以下がより好ましい。Feは外皮を構成するFe(Hoop)やフラックスに添加されている鉄粉、合金粉のFe(flux)として含有される。
 ワイヤの残部は不純物となり、例えば、Ta、Be等が挙げられる。
<フープ>
 本実施形態に係るフラックス入りワイヤの外皮となるフープは、厚さも幅も特に限定されないが、例えば厚さは0.5mm以上が好ましく、1.5mm以下が好ましい。また、幅は30mm以下が好ましい。
 フープの厚さを0.5mm以上とすることにより、溶接によって加熱された時にシーム部からフラックスが漏れ出しにくく、スパッタの発生を抑制することができる。また、厚さを1.5mm以下とすることにより、溶滴の粗大化を抑制でき、爆発移行時の離脱溶滴の微細化を図ることができるため、スパッタの発生を抑制することができる。
 フープの幅は30mm以下とすることにより、溶滴の粗大化を抑制でき、爆発移行時の離脱溶滴の微細化を図ることができる。そのため、スパッタの発生を抑制することができ、好ましい。また、フープの幅の下限は特に限定されないが、シームからフラックスや気化したフッ素の漏れを防ぐ点から10mm以上が好ましい。
 フープにおける金属箔は、溶接する目的によって、軟鋼系の金属箔、ステンレス系の金属箔を用途によって使い分けることができる。例えば、溶込みを十分に出し、構造物の溶接継手を作製する特性が求められる場合には軟鋼系の金属箔を用いることが好ましい。また、肉盛り溶接のような、溶込みが浅く母材希釈を抑制し、且つ溶着量を増大させたい溶接施工を実施する場合はSUS(ステンレススチール)系の金属箔を用いることが好ましい。
 軟鋼系の金属箔としては、例えば、フープ全質量に対して、C(Hoop):0.005~0.040質量%以下、Si(Hoop):0.005~0.050質量%以下、Mn(Hoop):0.01~0.30質量%以下、P(Hoop):0.01質量%以下及びS(Hoop):0.01質量%以下含有する金属箔が挙げられる。さらに、SiとMnの、フープ全質量に対する含有量Si(Hoop)とMn(Hoop)、及びワイヤ全質量に対する含有量Si(wire)とMn(wire)の関係が、0.01≦{(Si(Hoop)+Mn(Hoop))×(HR/100)}/(Si(wire)+Mn(wire))}≦0.25を満たす金属箔が好ましい。ここでHRとはフープ率を意味し、上記フープ率は70~90質量%が好ましい。
 上記軟鋼系の金属箔において、C(Hoop)は強度の向上に寄与する。引張強度の調整のため、特に下限は規定しないが、溶接金属の機械的性能の観点から、0.005質量%以上とすることが好ましい。一方、C(Hoop)を0.040質量%以下とすることにより、フープの加工がしやすく、ワイヤの製造が容易になる。さらに、製造の容易性の観点からC(Hoop)含有量はフープ全質量に対して0.030質量%以下がより好ましい。
 上記軟鋼系の金属箔において、Si(Hoop)は金属箔の電気抵抗に寄与する。Siの添加量が大きい程、金属箔の電気抵抗は高くなり、溶接中においてワイヤに入るジュール熱は大きくなる。すなわち、ワイヤが溶けやすくなるため、溶着量が増加し、高能率化の効果がある。上記効果を得るためにはSiの含有量をフープ全質量に対して0.005質量%以上とすることがより好ましい。一方、ジュール熱が大きくなり過ぎると溶滴の粘性および表面張力が低下し、アーク圧がかかることによってスパッタが多くなる可能性がある。よって、Siの含有量は0.050質量%以下が溶接作業性の点から好ましい。
 上記軟鋼系の金属箔において、Mn(Hoop)の含有量は0.01質量%以上とすることにより、Si(Hoop)と同様、溶着量を増加することができる。またMn(Hoop)の含有量の上限は、0.40質量%以下とすることでSi(Hoop)と同様、溶接作業性が改善される。
 P(Hoop)及びS(Hoop)の含有量はそれぞれ0.01質量%以下であることが好ましい。
 Pは不純物として含まれる元素であるが、偏析しやすく靱性や溶接性を悪化させることから、その含有量は低いほど好ましい。
 Sは表面張力を低下させる特性を持つ。ワイヤ全質量におけるS量が多いワイヤで溶接した場合、溶融池の表面の表面張力は低くなり、溶落ちやビード外観の劣化が顕著になる。一方で、溶滴移行の観点からいうと、表面張力が低い方が、溶滴離脱が促進し溶接作業性が良好となる。
 また、SiとMnは、フープ全質量に対する含有量Si(Hoop)とMn(Hoop)、及びワイヤ全質量に対する含有量Si(wire)とMn(wire)の関係(比)が、0.01≦{(Si(Hoop)+Mn(Hoop))×(HR/100)/(Si(wire)+Mn(wire))}≦0.25を満たすことが好ましい。
 {(Si(Hoop)+Mn(Hoop))×(HR/100)/(Si(wire)+Mn(wire))}のパラメータを0.25以下とすることで電気抵抗が過剰に高くなるのを防ぎ、溶接中においてワイヤに入るジュール熱が大きくなるのを防ぐことができる。これによって、溶滴の粘性および表面張力が低下することなく維持され、アーク圧がかかることによる作業性の悪化を抑制できる傾向がある。よって、上記パラメータは0.25以下が溶接作業性の点から好ましい。
 {(Si(Hoop)+Mn(Hoop))×(HR/100)/(Si(wire)+Mn(wire))}を0.01以上とすることで、溶着量の減少による能率の悪化を抑制できる傾向にある。したがって、上記パラメータは0.01以上であることが好ましい。
 SUS系の金属箔としては、例えば、フープ全質量に対して、C(Hoop):0.0001~0.06質量%、Si(Hoop):0.1~0.8質量%、Mn(Hoop):0.05~3.00質量%、P(Hoop):0.05質量%以下、S(Hoop):0.05質量%以下、Cr(Hoop):10.5~30.0質量%及びNi(Hoop):3.0~14.0質量%含有する金属箔が挙げられる。さらに、CrとNiの、フープ全質量に対する含有量Cr(Hoop)とNi(Hoop)及びワイヤ全質量に対する含有量Cr(wire)とNi(wire)の関係が、0.80≦{(Cr(Hoop)+Ni(Hoop))×(HR/100)/(Cr(wire)+Ni(wire))}≦1.20を満たす金属箔が好ましい。ここでHRはフープ率を意味し、上記フープ率は70~90質量%が好ましい。
 上記SUS系の金属箔において、Cは強度の向上に寄与する。引張強度の調整のため、特に下限は規定しないが、溶接金属の機械的性能の観点から、Cの含有量を0.0001質量%以上とすることが好ましい。一方、Cの含有量を0.06質量%以下とすることにより、フープの加工がしやすく、ワイヤの製造が容易になることから好ましい。
 上記SUS系の金属箔において、Siは金属箔の電気抵抗に寄与する。Siの添加量が大きい程、金属箔の電気抵抗は高くなり、溶接中においてワイヤに入るジュール熱は大きくなる。すなわち、ワイヤが溶けやすくなるため、溶着量が増加し、高能率化の効果がある。上記効果を得るために、Siの含有量はフープ全質量に対して0.1質量%以上がより好ましい。一方、ジュール熱が大きくなり過ぎると溶滴の粘性および表面張力が低下し、アーク圧がかかることによってスパッタが多くなる可能性がある。よって、Siの含有量は0.8質量%以下が溶接作業性の点から好ましい。
 上記SUS系の金属箔において、MnはSiと同様電気抵抗に寄与する。溶着量の観点からMnの含有量は0.05質量%以上とすることが好ましく、より好ましくは0.1質量%以上である。また、溶接作業性の観点からMnの含有量は3.00質量%以下が好ましく、より好ましくは2.50質量%以下である。
 上記SUS系の金属箔において、P及びSはそれぞれ0.05質量%以下であることが好ましい。
 Pは不純物として含まれる元素であるが、偏析しやすく靱性や溶接性を悪化させることから、その含有量は低いほど好ましい。
 Sは表面張力を低下させる特性を持つ。ワイヤ全質量におけるS量が多いワイヤで溶接した場合、溶融池の表面の表面張力は低くなり、溶落ちやビード外観の劣化が顕著になる。一方で、溶滴移行の観点からいうと、表面張力が低い方が、溶滴離脱が促進し溶接作業性が良好となる。本実施形態のフラックス入りワイヤはフープ部分が溶接中にワイヤ先端で形成する溶滴の大部分を占めることから、フープにSを適量添加する形態とすることが溶接作業性を考えた上で好ましい。フープ中のS(Hoop)の含有量はフープ全質量に対して0.0005質量%以上とすることで上記効果を期待でき、好ましい。一方、S(Hoop)をフープ中に過度に添加すると、表面張力が低くなり過ぎてしまい、アーク圧によって、溶滴が吹き飛ばされ、スパッタ化してしまう可能性があるため、S(Hoop)の含有量は0.05質量%以下とすることが好ましい。
 上記SUS系の金属箔において、Crは必須元素であり、その添加量からSiやMnよりも金属箔の電気抵抗に寄与する。Crの添加量が大きい程、金属箔の電気抵抗は高くなり、溶接中においてワイヤに入るジュール熱は大きくなる。すなわち、ワイヤが溶けやすくなるため、溶着量が増加し、高能率化の効果がある。上記効果を十分に得るためにはCr(Hoop)の含有量をフープ全質量に対して10.5質量%以上とすることがより好ましい。一方、ジュール熱が大きくなり過ぎると溶滴の粘性および表面張力が低下し、アーク圧がかかることによってスパッタが多くなる可能性がある。よって、Cr(Hoop)の含有量は30.0質量%以下が溶接作業性の点から好ましい。
 上記SUS系の金属箔において、NiはCrと同様に必須元素であり、その添加量からSiやMnよりも金属箔の電気抵抗に寄与する。Niの添加量が大きい程、金属箔の電気抵抗は高くなり、溶接中においてワイヤに入るジュール熱は大きくなる。すなわち、ワイヤが溶けやすくなるため、溶着量が増加し、高能率化の効果がある。上記効果を得るためにはNi(Hoop)の含有量をフープ全質量に対して3.0質量%以上とすることがより好ましい。一方、ジュール熱が大きくなり過ぎると溶滴の粘性および表面張力が低下し、アーク圧がかかることによってスパッタが多くなる可能性がある。よって、Ni(Hoop)の含有量は14.0質量%以下が溶接作業性の点から好ましい。
 上記SUS系の金属箔において、上記の通りCrとNiは金属箔の電気抵抗に大きく寄与する。CrとNiの、フープ全質量に対する含有量Cr(Hoop)とNi(Hoop)、及びワイヤ全質量に対する含有量Cr(wire)とNi(wire)の関係(比)が、0.80≦{(Cr(Hoop)+Ni(Hoop))×(HR/100)/(Cr(wire)+Ni(wire))}≦1.20を満たすことが好ましい。
 {(Cr(Hoop)+Ni(Hoop))×(HR/100)/(Cr(wire)+Ni(wire))}のパラメータが0.80以上であることにより、溶着量が増大し、能率の改善が得られるため好ましい。また、スパッタ低減効果を得るためには、上記パラメータは1.20以下であることが好ましい。
<溶接方法、溶接条件>
 本実施形態に係るフラックス入りワイヤは、溶接電流200A超の条件下でも溶落ちが生じることなく、ビード外観にも優れるため、高能率での溶接が可能である。
 溶接姿勢は特に限定されないが、耐溶落ち性に優れることから全溶接姿勢に好適に用いられ、特に立向姿勢及び上向姿勢の少なくともいずれか一方の溶接姿勢での溶接により好適に用いられる。また、上向姿勢から立向姿勢まで連続して姿勢が変化していくような溶接にも好適に用いることができる。
 ガスシールドアーク溶接の中でも、電極側を-(マイナス)、母材側を+(プラス)とする正極性を用いてガスシールドアーク溶接を行うことが好ましい。
 溶接に用いられるガスの種類は特に制限されないが、例えばArガス、COガス、Oガス単体およびこれらの混合ガス等が挙げられる。Arガスを用いる場合には、Arを70体積%以上含むシールドガスを用いることが好ましい。COガスを用いる場合には、COを70体積%以上含むシールドガスを用いることが好ましい。
 ガスの流量も特に制限されないが、例えば15~30L/min程度である。
 設定する溶接電流波形の形状は直線であってもパルス形状であってもよい。尚、ここでいう直線とは特殊な波形形状にしないという意味である。
 直流である場合、溶接電流範囲は低電流から高電流の範囲に好適に用いられ、上向溶接又は立向溶接の場合でも、200A超で使用可能である。溶接電圧も特に限定されず、例えば15~35Vである。溶接速度も特に限定されないが、例えば10~50cm/分である。その他、ワイヤ突出し長さについても特に制限されず、例えば10~30mmに設定すればよい。上記条件はいずれも、これらの例に限定されるものでは無く、用途に応じて溶接条件を決定すればよい。
 以下に、実施例を挙げて本発明をさらに具体的に説明する。本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。また、ここで説明する溶接条件は一例であり、本実施の形態では、以下の溶接条件に限定されるものではない。
<評価方法>
(強脱酸金属粉(flux)及びフッ素化合物粉(flux)の粒度)
 フラックスに含まれる、強脱酸金属粉(flux)(Al粉、Mg粉、及びAl-Mg粉)の粒度とその割合は、JIS Z 8801-1:2006に基づき、目開き150μmの篩を用いて測定した。結果を表3の「フラックス中の強脱酸金属元素、粒度150μm以下の割合」に示す。
 フラックスに含まれる、フッ素化合物粉(flux)の粒度とその割合は、JIS Z 8801-1:2006に基づき、目開き75μmの篩を用いて測定した。結果を表3の「フラックス中のフッ素化合物粉、粒度75μm以下の割合」に示す。
(フラックス入りワイヤの組成)
 ワイヤ全質量に対する含有量を表1及び表2に、フラックス全質量に対する含有量は表3に、それぞれ示す。
(水分量)
 ワイヤ全質量に対する水分量(WC)は三菱ケミカルアナリテック社製のCA-200を用いたカールフィッシャー水分測定装置(電量法水分計)により測定した。測定条件は以下のとおりである。
 フラックス入りワイヤを3cmに切断した試料を3本用意し、水分量をカールフィッシャー法で測定することで評価した。測定時、フラックス入りワイヤ中フラックスの水分を気化させるために750℃で加熱を行い、乾燥させた空気をキャリアガスとして測定装置へ導いた。結果を表2の「ワイヤ水分量(WC)」に示すが、単位は質量%である。
(溶接条件)
 圧延鋼材SS400(JIS G 3106:2017)からなる、板厚12mmの平板に対し、得られたフラックス入りワイヤを用いて下記条件によりビードオンプレート溶接を行った。なお、溶接電圧(アーク電圧)、溶接速度、送給速度は表4に記載のとおりである。
・ワイヤ径:φ1.4mm
・シールドガス:CO、流量25L/min
・溶接姿勢:上向姿勢
・溶接電流:直流正極性
・ワイヤ突出し長さ:15mm
 溶接電流は90Aから溶接を始め、溶接電流を徐々に上げていき、溶落ちが発生しない最大の電流値を「境界電流」とした。
 溶落ちしない境界電流とその他条件を表4に示す。
(耐溶落ち性)
 耐溶落ち性は、溶接電流値を上げながら上向溶接を行い、溶落ちの有無を目視で評価した。溶落ちが発生しない最大の電流値である境界電流値を求めた。評価は、境界電流値が230A以上であったものを「A」とし、200A以上230A未満であったものを「B」とし、200A未満であったものを「C」とした。A及びBが合格であり、Cが不合格である。結果を表4に示す。
(ビード外観)
 ビード外観は、上向姿勢で溶接長さ30cmの溶接を行い、溶接部のビード形状を目視観察することにより評価を行った。評価は、良好なビード形状を「A」とし、ビード幅が変動する箇所が2か所以下である場合を「B」とし、ビード幅が変動する箇所が3か所以上である場合を「C」とした。A及びBが合格であり、Cが不合格である。結果を表4に示す。
<フラックス入りワイヤの作製>
 軟鋼を外皮とし、この外皮を円筒状に成型しながら、その内部にフラックスを充填することで、表1及び表2に示す組成を有する実施例(W1~W14)及び比較例(W15~W20)のフラックス入りワイヤを作製した。なお、表1及び表2に示すW1~W20のフラックス率はいずれも13質量%であり、表1及び表2に示すW1~W20の組成の残部はFe及び不純物で構成されている。
 表1中の各欄の数値は各成分のワイヤ全質量あたりの含有量(質量%)を示し、「REM」欄の数値は希土類元素の含有量(質量%)の合計を示す。また、表中の「-」とは検出限界以下であったことを意味する。
 表2に示しているフラックス中のフッ素化合物粉の添加量、並びに、フラックス中の強脱酸金属元素の添加量、Mg(flux)の含有量、及びAl(flux)の含有量はいずれも、フラックス全質量あたりの含有量(質量%)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、強脱酸金属元素としたAl及びMgを含み、それらのワイヤ全質量に対する合計の含有量が2.2質量%に満たないW15~W20はいずれも耐溶落ち性やビード外観に劣る結果となった。また、強脱酸金属元素の含有量とワイヤ全質量に対する水分量との比が、耐溶落ち性やビード外観に影響を及ぼすことが確認された。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年6月20日出願の日本特許出願(特願2019-114818)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (12)

  1.  コアとなるフラックスと、外皮となるフープとを含むフラックス入りワイヤであって、
     前記フラックスは、Mg及びAlを含む強脱酸金属元素(flux)と、フッ素化合物粉(flux)とを含み、
     前記強脱酸金属元素(flux)の合計の含有量は前記フラックス全質量に対して15~35質量%であり、
     前記強脱酸金属元素(flux)のうちMg及びAlは、少なくとも一部が、金属粉及び合金粉の少なくともいずれか一方である強脱酸金属粉(flux)として含まれ、
     前記強脱酸金属粉(flux)は、60質量%以上が150μm以下の粒度であり、
     前記フッ素化合物粉(flux)の合計の含有量は前記フラックス全質量に対して10~45質量%であり、
     前記フッ素化合物粉(flux)は、60質量%以上が75μm以下の粒度であり、
     前記フラックス入りワイヤは前記フラックスをワイヤ全質量に対して10~30質量%含有し、かつ
     前記フラックス入りワイヤはワイヤ全質量に対して、C(wire):0.5質量%以下、Si(wire):0.05~1.0質量%、Al(wire):1.0~3.5質量%、Mn(wire):1.0~3.0質量%、Mg(wire):0.3~0.9質量%、フッ素化合物(wire)のフッ素換算値Fの合計:0.30~1.20質量%、及び強脱酸金属元素(wire)の合計:2.2質量%以上、を含有するフラックス入りワイヤ。
  2.  前記フラックス入りワイヤはワイヤ全質量に対して、Ni(wire):15質量%以下、Mo(wire):5.0質量%以下、W(wire):3.0質量%以下、Nb(wire):5.0質量%以下、V(wire):5.0質量%以下、Cr(wire):30質量%以下、Ti(wire):3.0質量%以下、Zr(wire):2.0質量%以下、O(wire):0.05質量%以下、N(wire):0.05質量%以下、S(wire):0.05質量%以下、P(wire):0.05質量%以下、B(wire):0.05質量%以下、Cu(wire):5.0質量%以下、Ba(wire):5.0質量%以下、アルカリ金属元素(wire)の合計:3.0質量%以下、Ca(wire):3.0質量%以下、希土類元素(wire)の合計:0.5質量%以下、及びFe(wire):40質量%以上をさらに含有する請求項1に記載のフラックス入りワイヤ。
  3.  前記フッ素化合物粉(flux)はBaF、SrF、NaAlF、NaF、MgF及びCaFからなる群より選ばれる少なくとも1の化合物粉である請求項1に記載のフラックス入りワイヤ。
  4.  前記フッ素化合物粉(flux)はBaF、SrF、NaAlF、NaF、MgF及びCaFからなる群より選ばれる少なくとも1の化合物粉である請求項2に記載のフラックス入りワイヤ。
  5.  ワイヤ全質量に対する水分量(WC)が0.010~0.100質量%であり、かつ
     前記水分量(WC)と前記強脱酸金属元素(wire)の合計の含有量とが、105≦(強脱酸金属元素(wire)の合計の含有量/WC)≦170の関係を満たす請求項1~4のいずれか1項に記載のフラックス入りワイヤ。
  6.  ワイヤ全質量に対する前記Al(wire)及び前記Mg(wire)の含有量が、0.35≦(2×Mg(wire)/0.6×Al(wire))≦1.50の関係を満たす請求項1~4のいずれか1項に記載のフラックス入りワイヤ。
  7.  前記強脱酸金属元素(flux)として、Zr、Ti及びCaからなる群より選ばれる少なくとも1の元素をさらに含み、ワイヤ全質量に対する各元素の含有量が、5≦{(Mg(wire)+Al(wire))/(Zr(wire)+Ti(wire)+Ca(wire))}≦70の関係を満たす請求項1~4のいずれか1項に記載のフラックス入りワイヤ。
  8.  前記フラックスにNiを、金属Ni、Cu-Ni、Fe-Ni、及びNi-Mgからなる群より選ばれる少なくとも1種として含む請求項1~4のいずれか1項に記載のフラックス入りワイヤ。
  9.  請求項1~4のいずれか1項に記載のフラックス入りワイヤを用いたガスシールドアーク溶接方法であって、溶接電流を200A超とし、シールドガス雰囲気中で溶接を行うガスシールドアーク溶接方法。
  10.  上向姿勢及び立向姿勢の少なくともいずれか一方の溶接姿勢で溶接を行う請求項9に記載のガスシールドアーク溶接方法。
  11.  前記シールドガスがArを70体積%以上含む請求項9に記載のガスシールドアーク溶接方法。
  12.  前記シールドガスがCOを70体積%以上含む請求項9に記載のガスシールドアーク溶接方法。
PCT/JP2020/022756 2019-06-20 2020-06-09 フラックス入りワイヤ及び溶接方法 WO2020255808A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/620,211 US20220362892A1 (en) 2019-06-20 2020-06-09 Flux-cored wire and welding method
CN202080032583.XA CN113784815B (zh) 2019-06-20 2020-06-09 药芯焊丝和焊接方法
KR1020217038928A KR102675635B1 (ko) 2019-06-20 2020-06-09 플럭스 코어드 와이어 및 용접 방법
EP20827339.1A EP3988240A4 (en) 2019-06-20 2020-06-09 CORRED WIRE AND WELDING PROCESSES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-114818 2019-06-20
JP2019114818A JP7231499B2 (ja) 2019-06-20 2019-06-20 フラックス入りワイヤ及び溶接方法

Publications (1)

Publication Number Publication Date
WO2020255808A1 true WO2020255808A1 (ja) 2020-12-24

Family

ID=73995587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022756 WO2020255808A1 (ja) 2019-06-20 2020-06-09 フラックス入りワイヤ及び溶接方法

Country Status (6)

Country Link
US (1) US20220362892A1 (ja)
EP (1) EP3988240A4 (ja)
JP (1) JP7231499B2 (ja)
KR (1) KR102675635B1 (ja)
CN (1) CN113784815B (ja)
WO (1) WO2020255808A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231476B2 (ja) * 2019-05-09 2023-03-01 株式会社神戸製鋼所 フラックス入りワイヤ、溶接方法及び溶接金属
CN115815881B (zh) * 2022-12-09 2024-08-09 山东聚力焊接材料有限公司 一种智能高空平台作业车臂架焊接用药芯材料和含该药芯材料的焊丝及其制备方法
CN116079280B (zh) * 2023-04-10 2023-08-18 西安热工研究院有限公司 耐热腐蚀Ni-Cr焊丝、制造方法和焊接工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357155B2 (ja) * 1982-08-31 1988-11-10 Kobe Steel Ltd
JPH01284497A (ja) * 1988-01-21 1989-11-15 Nippon Steel Corp ガスシールドアーク溶接用複合ワイヤ
JPH0255696A (ja) * 1988-08-17 1990-02-26 Kobe Steel Ltd ガスシールドアーク溶接フラックス入りワイヤ
JPH0413497A (ja) * 1990-05-01 1992-01-17 Kobe Steel Ltd 薄板用セルフシールドアーク溶接フラックス入りワイヤ
JPH04356397A (ja) * 1991-02-22 1992-12-10 Nippon Steel Corp セルフシールドアーク溶接複合ワイヤ
JPH1158069A (ja) 1997-08-22 1999-03-02 Kobe Steel Ltd ガスシールドアーク溶接用フラックス入りワイヤ
JP2005186138A (ja) 2003-12-26 2005-07-14 Kobe Steel Ltd ガスシールドアーク溶接用メタル系フラックス入りワイヤ及びガスシールドアーク溶接方法
WO2017013965A1 (ja) * 2015-07-17 2017-01-26 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP2019114818A (ja) 2019-04-18 2019-07-11 パナソニックIpマネジメント株式会社 部品実装装置および部品有無判断方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578906B2 (ja) * 1988-05-16 1997-02-05 新日本製鐵株式会社 セルフシールドアーク溶接用複合ワイヤ
JPH05393A (ja) * 1991-06-25 1993-01-08 Nippon Steel Corp セルフシールドアーク溶接用複合ワイヤ
JPH08174275A (ja) * 1994-12-22 1996-07-09 Nippon Steel Corp 高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ
JPH09262693A (ja) * 1996-03-28 1997-10-07 Kobe Steel Ltd アーク溶接用フラックス入りワイヤ
JPH09277087A (ja) * 1996-04-18 1997-10-28 Kobe Steel Ltd アーク溶接用フラックス入りワイヤ
JP3513380B2 (ja) * 1998-01-26 2004-03-31 株式会社神戸製鋼所 直流正極性用炭酸ガスアーク溶接フラックス入りワイヤ及び溶接方法
JP3580720B2 (ja) * 1999-03-05 2004-10-27 株式会社神戸製鋼所 溶接用フラックス入りワイヤ
US20080093351A1 (en) * 2006-10-19 2008-04-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux-cored wire for gas shielded arc welding for creep-resisting steels
JP5384312B2 (ja) * 2009-12-18 2014-01-08 日鐵住金溶接工業株式会社 耐候性鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP6390204B2 (ja) * 2013-06-25 2018-09-19 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ
CN104028913A (zh) * 2014-05-30 2014-09-10 洛阳双瑞特种合金材料有限公司 一种无缝自保护药芯焊丝
JP6509007B2 (ja) * 2015-03-30 2019-05-08 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤの製造方法
JP6666098B2 (ja) * 2015-09-29 2020-03-13 株式会社神戸製鋼所 高電流パルスアーク溶接方法及びフラックス入り溶接ワイヤ
CN109530960B (zh) * 2018-11-21 2021-03-26 武汉铁锚焊接材料股份有限公司 一种适用于全位置焊接的小规格自保护药芯焊丝及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357155B2 (ja) * 1982-08-31 1988-11-10 Kobe Steel Ltd
JPH01284497A (ja) * 1988-01-21 1989-11-15 Nippon Steel Corp ガスシールドアーク溶接用複合ワイヤ
JPH0255696A (ja) * 1988-08-17 1990-02-26 Kobe Steel Ltd ガスシールドアーク溶接フラックス入りワイヤ
JPH0413497A (ja) * 1990-05-01 1992-01-17 Kobe Steel Ltd 薄板用セルフシールドアーク溶接フラックス入りワイヤ
JPH04356397A (ja) * 1991-02-22 1992-12-10 Nippon Steel Corp セルフシールドアーク溶接複合ワイヤ
JPH1158069A (ja) 1997-08-22 1999-03-02 Kobe Steel Ltd ガスシールドアーク溶接用フラックス入りワイヤ
JP2005186138A (ja) 2003-12-26 2005-07-14 Kobe Steel Ltd ガスシールドアーク溶接用メタル系フラックス入りワイヤ及びガスシールドアーク溶接方法
WO2017013965A1 (ja) * 2015-07-17 2017-01-26 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ
JP2019114818A (ja) 2019-04-18 2019-07-11 パナソニックIpマネジメント株式会社 部品実装装置および部品有無判断方法

Also Published As

Publication number Publication date
US20220362892A1 (en) 2022-11-17
CN113784815A (zh) 2021-12-10
EP3988240A4 (en) 2023-07-19
KR102675635B1 (ko) 2024-06-14
CN113784815B (zh) 2023-09-26
EP3988240A1 (en) 2022-04-27
KR20220002564A (ko) 2022-01-06
JP2021000646A (ja) 2021-01-07
JP7231499B2 (ja) 2023-03-01

Similar Documents

Publication Publication Date Title
KR101193273B1 (ko) 모든 자세 용접이 가능한 가스 실드 아크 용접용 플럭스 내장 와이어
CN101157164B (zh) 高张力钢用气体保护弧焊药芯焊丝
KR100920550B1 (ko) 티타니아계 가스 실드 아크 용접용 플럭스 함유 와이어
WO2020255808A1 (ja) フラックス入りワイヤ及び溶接方法
JP5400461B2 (ja) フラックス入りワイヤ
JP5400472B2 (ja) フラックス入りワイヤ
JP2017148821A (ja) 2相ステンレス鋼向けアーク溶接用フラックス入りワイヤおよび溶接金属
KR20090012045A (ko) 용접 금속 및 티타니아계 플럭스 코어드 와이어
KR20100006546A (ko) 티타니아계 가스 실드 아크 용접용 플럭스 충전 와이어
JP2011025298A (ja) ガスシールドアーク溶接方法
JP2010017717A (ja) フラックス入りワイヤ
JP2010142873A (ja) フラックス入りワイヤ
JP6875232B2 (ja) 多電極ガスシールドアーク片面溶接方法
WO2020217963A1 (ja) Ni基合金フラックス入りワイヤ
WO2020012925A1 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP2010064087A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP2020015092A (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP6726008B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2021177106A1 (ja) エレクトロスラグ溶接用フラックス及びエレクトロスラグ溶接方法
JP2524774B2 (ja) ステンレス鋼の潜弧溶接方法
JPH09262693A (ja) アーク溶接用フラックス入りワイヤ
JP3718464B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP7188899B2 (ja) セルフシールドアーク溶接用フラックス入りワイヤ
JP2003145291A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2019221284A1 (ja) エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217038928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020827339

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020827339

Country of ref document: EP

Effective date: 20220120