WO2020217963A1 - Ni基合金フラックス入りワイヤ - Google Patents

Ni基合金フラックス入りワイヤ Download PDF

Info

Publication number
WO2020217963A1
WO2020217963A1 PCT/JP2020/015588 JP2020015588W WO2020217963A1 WO 2020217963 A1 WO2020217963 A1 WO 2020217963A1 JP 2020015588 W JP2020015588 W JP 2020015588W WO 2020217963 A1 WO2020217963 A1 WO 2020217963A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
wire
less
present
content
Prior art date
Application number
PCT/JP2020/015588
Other languages
English (en)
French (fr)
Inventor
良彦 北川
和博 福田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP20795006.4A priority Critical patent/EP3928918A4/en
Priority to CN202080024311.5A priority patent/CN113613829A/zh
Priority to KR1020217033072A priority patent/KR20210136121A/ko
Priority to US17/441,889 priority patent/US20220016734A1/en
Publication of WO2020217963A1 publication Critical patent/WO2020217963A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods

Definitions

  • the present invention relates to a wire containing a Ni-based alloy flux.
  • high-Ni alloys such as 5-9% Ni steel, which is typical as low-temperature steel, are widely used in storage tanks for LNG, liquid nitrogen, liquid oxygen, and the like.
  • a high Ni alloy in order to ensure low temperature toughness equivalent to that of the base metal in the welded joint, it is not a welding wire (so-called common metal wire) having a component similar to the high Ni alloy of ferrite structure.
  • Ni-based alloy welding wire is generally used.
  • Patent Document 1 a Ni-based alloy flux containing a weld metal having excellent welding workability in all postures, good pit resistance and bead appearance, and good high temperature cracking resistance.
  • a wire containing a Ni-based alloy flux in which the content of a component in the wire is limited to a specific range is disclosed.
  • Patent Document 2 in a wire containing a Ni-based alloy flux, the content of components in the wire is limited to a specific range to improve the pore defect resistance.
  • Patent Document 2 the pore defect resistance in vertical butt welding is improved, and there is room for improvement especially in lateral welding in which it is difficult to suppress pore defects.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a wire containing a Ni-based alloy flux, which is excellent in welding workability and excellent pore defect resistance even when lateral welding is performed.
  • the flux-containing wire according to one aspect of the present invention is a Ni-based alloy flux-containing wire having a Ni-based alloy outer skin and a flux filled in the Ni-based alloy outer skin, and Ni: per total mass of the wire. 45 to 75% by mass, Cr: 20% by mass or less, Mo: 10 to 20% by mass, Fe: 10.0% by mass or less, TiO 2 : 3 to 11% by mass, Ca: 0.01 to 2.0% by mass , F: 1.0% by mass or less (including 0% by mass), and Nb: less than 0.5% by mass (including 0% by mass).
  • the above-mentioned wire containing Ni-based alloy flux further contains at least one selected from the group consisting of metal Ti, metal Al, and metal Mg: 0.01 to 1.0% by mass in total, based on the total mass of the wire.
  • a wire containing a Ni-based alloy flux limited to 0.05% by mass or less (including 0% by mass) may be used.
  • Ni-based alloy flux-cored wire further, the total wire mass per, Si: 0.1 ⁇ 1.5 wt%, Al 2 O 3: 1.0 wt% or less (including 0 mass%), ZrO 2 : At least one selected from the group consisting of 0.5 to 3.0% by mass and Na, K, Li: A wire containing a Ni-based alloy flux containing 0.1 to 1.0% by mass in total. May be good.
  • the above-mentioned Ni-based alloy flux-cored wire further contains a Ni-based alloy flux-cored wire containing W: 1.0 to 5.0% by mass and Mn: 1.5 to 5.5% by mass per total wire mass. It may be.
  • Ni-based alloy flux-containing wire further contains B: 0.10% by mass or less (including 0% by mass), and V: 0.03% by mass or less (including 0% by mass), based on the total mass of the wire. ), P: 0.010% by mass or less (including 0% by mass), and S: 0.010% by mass or less (including 0% by mass), which may be a wire containing a Ni-based alloy flux. ..
  • the present invention it is possible to provide a wire containing a Ni-based alloy flux, which is excellent in welding workability and excellent pore defect resistance even when lateral welding is performed.
  • FIG. 1 is a schematic explanatory view showing the shape of a test plate.
  • the Ni-based alloy flux-cored wire of the present embodiment (hereinafter, also simply referred to as "flux-containing wire” or “wire”) is a flux-cored wire in which the outer skin made of Ni-based alloy is filled with flux.
  • the wire of the present embodiment comprises a tubular exodermis and a flux filled inside the exodermis.
  • the wire of the present embodiment may be in any form of a seamless type having no seam on the outer skin, a seam type having a seam on the outer skin such as a C cross section and a laminated cross section.
  • the composition of the Ni-based alloy that forms the outer skin of the wire is also not particularly limited, but it is preferable to form the outer skin with, for example, a Hastelloy C276 alloy.
  • the diameter of the wire is also not particularly limited, but is preferably 0.9 to 1.6 mm.
  • the flux ratio of the wire (ratio of the flux mass to the total mass of the wire) is also not particularly limited, but is preferably 15 to 30% by mass.
  • each component contained in the wire of the present embodiment may be contained in either the outer skin or the flux.
  • the content of each component in the wire is the ratio (mass%) of the mass of the component to the total mass of the wire.
  • TiO 2 is a component that forms slag that is uniform and has good encapsulation properties, and is added to the wire of the present embodiment as a main component of the slag forming agent. If the content of TiO 2 in the wire of the present embodiment is less than 3% by mass, the slag encapsulation property deteriorates. On the other hand, if the content of TiO 2 is more than 11% by mass, the amount of slag generated becomes excessive, and slag entrainment is likely to occur in the welded portion. Therefore, the TiO 2 content of the wire of the present embodiment is set to 3 to 11% by mass.
  • the content of TiO 2 in the wire of the present embodiment is preferably 4% by mass or more, more preferably 5% by mass or more, and preferably 10% by mass or less, more preferably 9% by mass or less.
  • the TIO 2 source in the wire of the present embodiment include rutile, white titanium, potassium titanate, sodium titanate, calcium titanate and the like.
  • the TiO 2 conversion value of the Ti oxide in the wire is taken as the above-mentioned TiO 2 content.
  • Ca is a component that lowers the melting point of slag. Bubbles generated from the molten metal during lateral welding move upward in the molten metal to reach the interface between the molten metal and the base metal, and then move along the interface in the molten metal to melt with the molten metal. It reaches the interface with the slag and then moves through the molten slag and is released to the outside. Alternatively, it directly reaches the interface between the molten metal and the molten slag without reaching the interface between the molten metal and the base metal, and then moves in the molten slag and is discharged to the outside.
  • the slag solidifies quickly, the release of bubbles that have reached the interface between the molten metal and the slag to the outside is hindered, resulting in pore defects. Therefore, in order to improve the pore defect resistance, it is effective to lower the melting point of the slag and prolong the time until the slag solidifies, and for that purpose, it is effective to include Ca in the wire.
  • the present inventors have found. If the Ca content in the wire of the present embodiment is less than 0.01% by mass, the above-mentioned effect of improving the pore defect resistance cannot be obtained. On the other hand, if the Ca content exceeds 2.0% by mass, the bead shape may deteriorate and the amount of spatter generated may increase.
  • the Ca content of the wire is set to 0.01 to 2.0% by mass. Further, in the wire of the present embodiment, the Ca content is preferably 0.1% by mass or more, more preferably 0.3% by mass or more. The Ca content of the wire is preferably 1.5% by mass or less, more preferably 1.0% by mass or less. Examples of the Ca source include CaO, CaCO 3 , CaF 2, and the like, and CaO is used in this embodiment.
  • the Ca content means the content of all Ca contained in the wire, and is the total of Ca contained in Ca simple substance, Ca alloy, and Ca compound.
  • F is a component that lowers the partial pressure of hydrogen in the arc and suppresses the invasion of hydrogen into the weld metal, and may be added to the wire of the present embodiment, but if it is added in excess, pore defects increase. There is a fear. Therefore, when F is contained in the wire of the present embodiment, the content thereof is 1.0% by mass or less, preferably 0.5% by mass or less, and more preferably 0.3% by mass or less. From the viewpoint of suppressing pore defects, the wire of the present embodiment does not have to contain F, and therefore, the lower limit of the F content of the wire of the present embodiment is not particularly limited.
  • the F content of the wire of the present embodiment may be 0% by mass or more, for example, 0.05% by mass or more, or 0.1% by mass or more.
  • the F source in the wire of the present embodiment include NaF, K 2 SiF 6 , CaF 2, and the like.
  • the total amount of F contained in various fluorides contained in the wire that is, the F-converted value of the amount of fluoride in the wire is defined as the F content.
  • Metal Ti + Metal Mg + Metal Al 0.01-1.0% by mass>
  • Ti, Mg and Al in the metallic state are deoxidizing components, reduce the amount of dissolved oxygen in the weld metal, and are molten metal. It has the effect of suppressing the generation of CO gas due to the reaction of C and O in the inside and reducing the amount of pore defects generated. Therefore, the wire of the present embodiment may contain at least one selected from the group consisting of metal Ti, metal Mg, and metal Al.
  • the total content of the metal Ti, the metal Mg, and the metal Al (hereinafter, also referred to as “metal Ti + metal Mg + metal Al”) is preferably 0.01% by mass or more, more preferably 0. It is 0.03% by mass or more, more preferably 0.05% by mass or more, and preferably 1.0% by mass or less, more preferably 0.7% by mass or less, still more preferably 0.3% by mass or less. ..
  • the metal Ti source, metal Mg source, and metal Al source in the wire of the present embodiment include a Ni-based alloy forming the outer skin, a single Ti, Mg, Al, Fe—Ti alloy, and Fe that can be contained in the flux. -Al alloy, Ni-Mg alloy, etc.
  • the total value of the Ti contained in the wire in the metallic state that is, the Ti dissolved in sulfuric acid, is defined as the metallic Ti content. That is, the content of Ti derived from an oxide that is insoluble in sulfuric acid is not included in the content of metallic Ti. The same applies to the contents of metal Mg and metal Al.
  • C is contained as an unavoidable impurity in the wire of the present embodiment.
  • the C content of the wire of the present embodiment is suppressed to 0.05% by mass or less. Is preferable.
  • Si 0.1 to 1.5% by mass> Since Si is a component that increases the viscosity of slag and is an effective component for obtaining a good bead shape, it may be contained in the wire of the present embodiment, but if it is excessively contained, the slag peelability is lowered. There is a fear. Therefore, in the wire of the present embodiment, the Si content is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more, and preferably 0.3% by mass or more. It is 1.5% by mass or less, more preferably 1.2% by mass or less, still more preferably 1.0% by mass or less.
  • the Si source in the wire of the present embodiment includes Si oxides such as silica sand, potassium slag, wollastonite, sodium silicate and potassium silicate, Si alone, and Si alloys such as Fe—Si that can be contained in the flux. ..
  • the total amount of Si contained in the wire in various forms is defined as the Si content.
  • ZrO 2 is a component that improves the sprayability of the arc and improves the stability of the arc even in a low welding current range, and may be contained in the wire of the present embodiment, but if it is contained in excess, the slag peeling property is improved. There is a risk that the slag will decrease, and the melting point of the slag will increase, reducing the pore defect resistance. Therefore, in the wire of the present embodiment, the content of ZrO 2 is preferably 0.5% by mass or more, more preferably 0.7% by mass or more, still more preferably 1.0% by mass or more, and more preferably.
  • the ZrO 2 source in the wire of the present embodiment for example, zircon sand and zirconia, and the like.
  • the ZrO 2 conversion value of the Zr oxide in the wire is taken as the above-mentioned ZrO 2 content.
  • Na, K, and Li are components that improve the stability of the arc, and the wire of the present embodiment may contain at least one selected from the group consisting of Na, K, and Li. If the content of the component is excessive, the amount of spatter generated may increase. Therefore, in the wire of the present embodiment, the total content of Na, K, and Li (hereinafter, also referred to as “Na + K + Li”) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further. It is preferably 0.3% by mass or more, preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.6% by mass or less.
  • Examples of the Na source, K source, and Li source in the wire of the present embodiment include LiF, NaF, KF, Na 3 AlF 6 , K 2 SiF 6 , K 2 TiF 6 , soda feldspar, and potassium feldspar. Can be mentioned.
  • the total amount of Na contained in various Na compounds contained in the wire that is, the Na conversion value of the amount of Na compound in the wire is defined as the Na content. The same applies to the K content and the Li content.
  • Al 2 O 3 is a component that increases the viscosity of slag and is an effective component for obtaining a good bead shape. Therefore, it may be contained in the wire of the present embodiment, but if it is excessively contained, the slag peelability is lowered. There is a risk of Therefore, in the wire of the present embodiment, the content of Al 2 O 3 is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, still more preferably 0.6% by mass or less. The wire of the present embodiment does not have to contain Al 2 O 3 , and therefore, the lower limit of the content of Al 2 O 3 of the wire of the present embodiment is not particularly limited.
  • the content of Al 2 O 3 in the wire of the present embodiment may be 0% by mass, for example, 0.1% by mass or more, or 0.2% by mass or more.
  • the Al 2 O 3 source in the wire of the present embodiment include alumina and mica.
  • Ni is alloyed with various metals to give the weld metal excellent mechanical performance and corrosion resistance. If the Ni content of the wire of the present embodiment is less than 45% by mass, a stable austenite structure is not formed when the weld metal is diluted. On the other hand, if the Ni content exceeds 75% by mass, the amount of other alloying elements added becomes insufficient, and mechanical performance cannot be ensured. Therefore, the Ni content of the wire of the present embodiment is set to 45 to 75% by mass. Further, in the wire of the present embodiment, the Ni content is preferably 47% by mass or more, more preferably 50% by mass or more, and preferably 70% by mass or less, more preferably 65% by mass or less.
  • the Ni source in the wire of the present embodiment includes a Ni-based alloy forming an outer skin, a metallic Ni contained in the flux, a Ni—Mo alloy, and the like.
  • the total amount of Ni contained in the wire in various forms is defined as the Ni content.
  • Mo has the effect of improving the corrosion resistance and strength of the weld metal, but when the content is more than 20% by mass, the high temperature crack resistance is lowered. Therefore, the Mo content of the wire of the present embodiment is set to 10 to 20% by mass. Further, in the wire of the present embodiment, the Mo content is preferably 11% by mass or more, more preferably 12% by mass or more, and preferably 19% by mass or less, more preferably 18% by mass or less.
  • the Mo source in the wire of the present embodiment includes a Ni-based alloy forming an outer skin, a metal Mo contained in a flux, a Fe—Mo alloy, and the like. In the present embodiment, the total amount of Mo contained in the wire in various forms is defined as the Mo content.
  • W 1.0 to 5.0% by mass> W is a component that improves the strength of the weld metal, but if the content is excessive, the high temperature crack resistance may decrease. Therefore, in the wire of the present embodiment, the W content is preferably 1.0% by mass or more, more preferably 1.2% by mass or more, still more preferably 1.5% by mass or more, and preferably 5 by mass. It is 0.0% by mass or less, more preferably 4.5% by mass or less, still more preferably 4.0% by mass or less.
  • the W source in the wire of the present embodiment includes a Ni-based alloy forming an outer skin, a single W metal contained in the flux, an Fe—W alloy, WC, and the like. In the present embodiment, the total amount of W contained in the wire in various forms is defined as the W content.
  • Mn has the effect of detoxifying S by forming a low melting point compound with Ni and combining with S which deteriorates high temperature cracking resistance, but if the content is excessive, the slag peeling property may decrease. Therefore, in the wire of the present embodiment, the Mn content is preferably 1.5% by mass or more, more preferably 2.0% by mass or more, still more preferably 2.5% by mass or more, and preferably 5 by mass. It is 5.5% by mass or less, more preferably 5.0% by mass or less, still more preferably 4.5% by mass or less.
  • Examples of the Mn source in the wire of the present embodiment include a Ni-based alloy forming the outer skin, a single Mn metal contained in the flux, a Fe—Mn alloy, MnO 2 and MnCO 3 .
  • the total amount of Mn contained in the wire in various forms is defined as the Mn content.
  • the Cr content of the wire of the present embodiment is set to 20% by mass or less. Further, in the wire of the present embodiment, the Cr content is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and preferably 20% by mass or less, more preferably. Is 19% by mass or less, more preferably 18% by mass or less.
  • the Cr source in the wire according to the present embodiment there Ni based alloy forming the outer skin, Cr metal simple substance contained in the flux, Fe-Cr alloy and Cr 2 O 3 and the like.
  • the total amount of Cr contained in the wire in various forms is defined as the Cr content.
  • Fe is a component that improves the ductility of the weld metal, but if the amount of Fe in the wire exceeds 10.0% by mass, the high temperature crack resistance deteriorates. Therefore, the Fe content of the wire of the present embodiment is set to 10.0% by mass or less. Further, in the wire of the present embodiment, the Fe content is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, still more preferably 2.0% by mass or more, and preferably 9% or more. It is 0.0% by mass or less, more preferably 8.0% by mass or less.
  • the Fe source in the wire of the present embodiment includes a Ni-based alloy forming the outer skin, a single Fe metal contained in the flux, an Fe—Mn alloy, an Fe—Cr alloy, a Fe—Mo alloy, an Fe—Ti alloy, and the like. There is.
  • the total amount of Fe contained in the wire in various forms is defined as the Fe content.
  • the total content of Ni, Cr, Mo, and Fe is preferably 65% or more, more preferably 72% or more, and particularly preferably 78% or more.
  • B is a component having an effect of segregating at the grain boundaries in the weld metal and preventing a decrease in elongation due to segregation of hydrogen at the grain boundaries, and may be contained in the wire of the present embodiment, but is excessive. If it is contained in, the high temperature cracking resistance may decrease. Therefore, in the wire of the present embodiment, the content of B is preferably 0.10% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.02% by mass or less. From the viewpoint of suppressing pore defects, the wire of the present embodiment does not have to contain B, and therefore, the lower limit of the B content of the wire of the present embodiment is not particularly limited.
  • the B content of the wire of the present embodiment may be 0% by mass, for example, 0.005% by mass or more, or 0.01% by mass or more.
  • the B source in the wire of the present embodiment includes an oxide such as B 2 O 3 and a metal such as an Fe—B alloy.
  • the total amount of B contained in the wire in various forms is defined as the B content.
  • Nb is an element added to improve the strength of Ni-based alloys, but if it is added in excess, the high temperature cracking resistance will decrease. Therefore, the Nb content of this embodiment is suppressed to less than 0.5%.
  • the Nb content of the present embodiment is more preferably 0.10% by mass or less, still more preferably 0.05% by mass or less.
  • Examples of the Nb source in the wire of the present embodiment include a Ni-based alloy forming the outer skin, a single Nb metal contained in the flux, an Fe—Nb alloy, and Nb 2 O 5 . In the present embodiment, the total amount of Nb contained in the wire in various forms is defined as the Nb content.
  • V 0.03% by mass or less> V is a component contained as an unavoidable impurity in the wire of the present embodiment. If the amount of V in the wire exceeds 0.03% by mass, it combines with Ni to form a low melting point compound, which may reduce the high temperature cracking resistance. Therefore, the V content of the wire of the present embodiment is preferably suppressed to 0.03% by mass or less.
  • P and S are components contained as unavoidable impurities in the wire of the present embodiment.
  • P or S in the wire exceeds 0.010% by mass, a low melting point compound of these elements and Ni is generated in the grain boundaries, so that the high temperature cracking resistance is lowered. Therefore, it is preferable that the P content and the S content of the wire of the present embodiment are suppressed to 0.010% by mass or less, respectively.
  • the wire of the present embodiment may contain components other than the above components as long as the effects of the present invention are exhibited.
  • Fe oxide, MgO, etc. can be contained in a total amount of 3% or less as long as the effect of the wire of the present embodiment is not impaired.
  • the remaining portion of the wire of the present embodiment contains unavoidable impurities.
  • unavoidable impurities N, Ta and the like may be contained.
  • the method for manufacturing the wire of the present embodiment is not particularly limited, and examples thereof include the methods shown below.
  • a band of Ni-based alloy constituting the exodermis is prepared, and the band is molded by a molding roll while being fed in the longitudinal direction to form a U-shaped open tube.
  • an open tube is filled with a flux containing various raw materials so as to have a desired component composition, and then processed so that the cross section becomes circular.
  • the wire is drawn by cold working to obtain a flux-cored wire having a desired diameter. Annealing may be performed during the cold working.
  • the seams of the outer skin formed in the manufacturing process may be welded to form a seamless wire, or the seams may be left as they are without welding.
  • the outer skin of the Ni-based alloy is filled with a flux containing a raw material as appropriate, and the wire is drawn so as to have a diameter of 1.2 mm.
  • the overall composition of the wire is as shown in Table 1. Manufactured.
  • a JIS G3106 SM490A steel sheet having a groove having an opening of 35 ° upward and 25 ° downward and a depth of 7 mm and an R of 3 mm at the bottom was prepared.
  • Four passes of welding were performed on the grooves of the steel sheet using the wires of each example under the following conditions, and the pore defect resistance, arc stability, spatter suppression property, bead shape, and slag peeling property were evaluated.
  • ⁇ Stomata defect resistance> A radiation transmission test (JIS Z3104-1995) was carried out, the number of pore defects having a diameter of 0.5 mm or more was measured in the range of a welding length of 250 mm, and the pore defect resistance was evaluated as follows according to the number of pore defects. ⁇ (especially good): 0 to 5 ⁇ (good): 6 to 10 ⁇ (slightly defective): 11 to 15 ⁇ (defective): 16 or more
  • ⁇ Slag peelability> The slag was removed using a hammer or an air chipper, and the slag peelability was evaluated according to the following criteria. ⁇ (especially good): Slag could be easily removed with a hammer ⁇ (Good): Slag could be removed with a hammer ⁇ (Slightly poor): Slag could be removed with an air chipper, although it was difficult with a hammer ⁇ ( Defective): It was difficult to remove slag even with an air chipper.
  • the wires of Examples 1 to 4 were examples of the invention of this example, and the evaluation results were good.
  • the wire of Example 5 had a slightly poor pore defect resistance because the Ca content was below the lower limit of the range specified in the present invention.
  • the wire of Example 6 had poor pore defect resistance because the Ca content was below the lower limit of the range specified in the present invention.
  • the content of TiO 2 is below the lower limit of the range specified in the present invention
  • the content of F is above the upper limit of the range specified in the present invention
  • the content of Mo is the range specified in the present invention. Since the content of Nb exceeds the upper limit of the range specified in the present invention, the pore defect property is poor, and the arc stability and the bead shape are slightly poor.

Abstract

Ni基合金製外皮と、前記Ni基合金製外皮内に充填されたフラックスを備えるNi基合金フラックス入りワイヤであり、ワイヤ全質量あたり、Ni:45~75質量%、Cr:20質量%以下、Mo:10~20質量%、Fe:10.0質量%以下、TiO:3~11質量%、Ca:0.01~2.0質量%、F:1.0質量%以下(0質量%を含む)、及びNb:0.5質量%未満(0質量%を含む)を含有するNi基合金フラックス入りワイヤ。

Description

Ni基合金フラックス入りワイヤ
 本発明は、Ni基合金フラックス入りワイヤに関する。
 低温用鋼として代表的な5~9%Ni鋼等の各種高Ni合金は、LNG、液体窒素、また液体酸素などの貯蔵タンク等に広く用いられている。
 このような高Ni合金の溶接では、溶接継手部に母材と同等の低温靱性を確保するため、フェライト組織の高Ni合金に類似した成分を有する溶接ワイヤ(いわゆる、共金系ワイヤ)ではなく、Ni基合金溶接ワイヤを使用するのが一般的である。
 近年、高Ni合金の溶接においても被覆アーク溶接やTIG溶接に比べて、より高い作業能率が期待できるNi基合金フラックス入りワイヤを用いたガスシールドアーク溶接が拡大しつつあり、溶接品質や溶接作業性等の向上を目的として、種々の検討がなされている。
 例えば、特許文献1においては、全姿勢における溶接作業性が優れていると共に、良好な耐ピット性及びビード外観が得られ、良好な耐高温割れ性を有する溶着金属が得られるNi基合金フラックス入りワイヤを提供することを目的とし、ワイヤ中の成分の含有量が特定の範囲に制限されたNi基合金フラックス入りワイヤが開示されている。
日本国特開2011-140064号公報 日本国特許第5968855号公報
 ここで、Ni基合金フラックス入りワイヤを用いた溶接においては、溶融金属内で発生したガスによる気孔欠陥が発生しやすいという問題があった。
 このような問題に対して、特許文献2では、Ni基合金フラックス入りワイヤにおいて、ワイヤ中の成分の含有量を特定の範囲に制限して耐気孔欠陥性の向上を図っている。
 しかしながら、特許文献2においては、立向突合せ溶接における耐気孔欠陥性の向上を図っており、特に気孔欠陥の抑制が困難である横向溶接においては、改善の余地があった。
 本発明は上記に鑑みてなされたものであり、溶接作業性に優れ、横向溶接を行った場合においても耐気孔欠陥性に優れるNi基合金フラックス入りワイヤを提供することを目的とする。
 本発明者らは、Ni基合金フラックス入りワイヤの横向溶接について、鋭意検討した結果、横向溶接時に溶融金属から発生した気泡は、溶融金属中を上方向に移動して溶融金属と溶融スラグとの界面に到達し、その後溶融スラグ中を移動して外部に放出されることを確認した。そして、スラグの凝固が早いと、溶融金属とスラグとの界面に到達した気泡の外部への放出が妨げられることにより、気孔欠陥が生じる。耐気孔欠陥性を向上させるには、スラグの融点を下げてスラグが凝固するまでの時間を長くすることが有効であり、そのためにはワイヤにCaを含有させることが効果的であることを本発明者らは見出し、本発明をなすに至った。
 即ち、本発明の一態様に係るフラックス入りワイヤは、Ni基合金製外皮と前記Ni基合金製外皮内に充填されたフラックスを備えるNi基合金フラックス入りワイヤであり、ワイヤ全質量あたり、Ni:45~75質量%、Cr:20質量%以下、Mo:10~20質量%、Fe:10.0質量%以下、TiO:3~11質量%、Ca:0.01~2.0質量%、F:1.0質量%以下(0質量%を含む)、及びNb:0.5質量%未満(0質量%を含む)を含有する。
 上記のNi基合金フラックス入りワイヤは、さらに、ワイヤ全質量あたり、金属Ti、金属Al、金属Mgからなる群より選ばれる少なくとも1種:合計0.01~1.0質量%を含有し、C:0.05質量%以下(0質量%を含む)に制限されたNi基合金フラックス入りワイヤであってもよい。
 上記のNi基合金フラックス入りワイヤは、さらに、ワイヤ全質量あたり、Si:0.1~1.5質量%、Al:1.0質量%以下(0質量%を含む)、ZrO:0.5~3.0質量%、及びNa、K、Liからなる群より選ばれる少なくとも1種:合計で0.1~1.0質量%を含有するNi基合金フラックス入りワイヤであってもよい。
 上記のNi基合金フラックス入りワイヤは、さらに、ワイヤ全質量あたり、W:1.0~5.0質量%、及びMn:1.5~5.5質量%を含有するNi基合金フラックス入りワイヤであってもよい。
 上記のNi基合金フラックス入りワイヤは、さらにワイヤ全質量あたり、B:0.10質量%以下(0質量%を含む)、を含有し、V:0.03質量%以下(0質量%を含む)、P:0.010質量%以下(0質量%を含む)、及びS:0.010質量%以下(0質量%を含む)に制限された、Ni基合金フラックス入りワイヤであってもよい。
 本発明によれば、溶接作業性に優れ、横向溶接を行った場合においても耐気孔欠陥性に優れるNi基合金フラックス入りワイヤを提供することができる。
図1は、試験板形状を示す概略説明図である。
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 本実施形態のNi基合金フラックス入りワイヤ(以下単に「フラックス入りワイヤ」又は「ワイヤ」とも記載する)は、Ni基合金からなる外皮内にフラックスが充填されているフラックス入りワイヤである。詳細には、本実施形態のワイヤは、筒状の外皮と、その外皮の内部に充填されるフラックスとからなる。
 本実施形態のワイヤは、外皮に継目のないシームレスタイプ、C断面、重ね断面等のように外皮に継目のあるシームタイプのいずれの形態であってもよい。ワイヤにおける外皮を形成するNi基合金の組成も特に限定されないが、例えばハステロイC276系合金により外皮を形成することが好ましい。ワイヤの直径も、特に限定されないが、好ましくは0.9~1.6mmである。ワイヤのフラックス率(ワイヤ全質量に対するフラックス質量の比率)も特に限定されないが、好ましくは15~30質量%である。
 次に、本実施形態のワイヤの組成について説明する。なお、本実施形態のワイヤに含まれる各成分は、外皮、フラックスのいずれに含まれていても良い。以下の説明において特に断りのない限り、ワイヤ中の各成分の含有量は、ワイヤ全質量に対する当該成分の質量の比率(質量%)である。
<TiO:3~11質量%>
 TiOは均一で被包性の良いスラグを形成する成分であり、スラグ形成剤の主成分として本実施形態のワイヤに添加される。本実施形態のワイヤにおけるTiOの含有量が3質量%未満だとスラグの被包性が劣化する。一方、TiOの含有量が11質量%超だとスラグ生成量が過剰となって、溶接部にスラグ巻き込みが発生しやすくなる。したがって、本実施形態のワイヤのTiOの含有量は3~11質量%とする。
 また、本実施形態のワイヤにおいてTiOの含有量は好ましくは4質量%以上、より好ましくは5質量%以上であり、また、好ましくは10質量%以下、より好ましくは9質量%以下である。
 なお、本実施形態のワイヤにおけるTiO源として例えばルチール、白チタン、チタン酸カリウム、チタン酸ソーダ、チタン酸カルシウム等がある。
 ここで、本実施形態において、ワイヤ中のTi酸化物のTiO換算値を上述のTiO含有量としている。
<Ca:0.01~2.0質量%>
 Caはスラグの融点を下げる成分である。
 横向溶接時に溶融金属から発生した気泡は、溶融金属中を上方向に移動して溶融金属と母材との界面に到達し、次いで溶融金属中を当該界面に沿って移動して溶融金属と溶融スラグとの界面に到達し、その後溶融スラグ中を移動して外部に放出される。または、溶融金属と母材との界面に到達せずに、直接溶融金属と溶融スラグとの界面に到達し、その後溶融スラグ中を移動して外部に放出される。したがって、スラグの凝固が早いと、溶融金属とスラグとの界面に到達した気泡の外部への放出が妨げられ、その結果、気孔欠陥が生じる。よって、耐気孔欠陥性を向上させるには、スラグの融点を下げてスラグが凝固するまでの時間を長くすることが有効であり、そのためにはワイヤにCaを含有させることが効果的であることを本発明者らは見出した。
 本実施形態のワイヤにおけるCaの含有量が0.01質量%未満だと上記の耐気孔欠陥性向上の効果を得ることができない。一方、Caの含有量が2.0質量%超だと、ビード形状の劣化、及び、スパッタ発生量の増加が生じる恐れがある。したがって、ワイヤのCaの含有量は0.01~2.0質量%とする。
 また、本実施形態のワイヤにおいてCaの含有量は好ましくは0.1質量%以上、より好ましくは0.3質量%以上である。また、ワイヤのCa含有量は、好ましくは1.5質量%以下、より好ましくは1.0質量%以下である。
 Ca源として例えばCaO、CaCO、CaF等があり、本実施形態ではCaOを用いる。ここで、本実施形態において、Ca含有量は、ワイヤ中に含まれるすべてのCaの含有量を意味しており、Ca単体、Ca合金、Ca化合物に含まれるCaを合計したものである。
<F:1.0質量%以下>
 Fは、アーク中の水素分圧を低下させ、溶接金属への水素の侵入を抑制する成分であり、本実施形態のワイヤに添加してもよいが、過剰に添加すると、気孔欠陥が増加する恐れがある。したがって、本実施形態のワイヤにFを含有させる場合、その含有量は1.0質量%以下、好ましくは0.5質量%以下、より好ましくは0.3質量%以下とする。
 気孔欠陥抑制の観点からは、本実施形態のワイヤはFを含有しなくてもよく、したがって、本実施形態のワイヤのFの含有量の下限は特に限定されない。即ち、本実施形態のワイヤのFの含有量は0質量%であってもよく、例えば0.05質量%以上であってもよく、0.1質量%以上であってもよい。
 なお、本実施形態のワイヤにおけるF源としては、NaF、KSiF、CaF等がある。ここで、ワイヤ中に含まれる種々のフッ化物に含まれるFの含有量を合計した量、即ち、ワイヤ中のフッ化物量のF換算値をFの含有量とする。
<金属Ti+金属Mg+金属Al:0.01~1.0質量%>
 金属状態のTi、Mg及びAl(以下それぞれ「金属Ti」、「金属Mg」、及び「金属Al」とも記載する)は脱酸成分であり、溶接金属中の溶存酸素量を低下させ、溶融金属内におけるCとOの反応によるCOガスの発生を抑制し、気孔欠陥発生量を減少させる作用を有する。したがって、本実施形態のワイヤは金属Ti、金属Mg、及び金属Alからなる群より選ばれる少なくとも1種を含有してもよい。一方、本実施形態のワイヤにおいてこれらの成分の含有量が過剰だと、耐高温割れ性が劣化したり、スパッタ発生量が増加したりする恐れがある。
 したがって、本実施形態のワイヤにおいて、金属Ti、金属Mg及び金属Alの含有量の合計(以下「金属Ti+金属Mg+金属Al」とも記載する)は好ましくは0.01質量%以上、より好ましくは0.03質量%以上、更に好ましくは0.05質量%以上であり、また、好ましくは1.0質量%以下、より好ましくは0.7質量%以下、更に好ましくは0.3質量%以下である。
 なお、本実施形態のワイヤにおける金属Ti源、金属Mg源、金属Al源としては、外皮を形成するNi基合金や、フラックスに含まれ得る単体のTi、Mg、Al、Fe-Ti合金、Fe-Al合金、Ni-Mg合金等がある。
 本実施形態においては、ワイヤ中にこのように金属状態で含まれるTi、即ち硫酸に溶解するTiの含有量を合計した値を金属Tiの含有量とする。すなわち、硫酸に溶解しない酸化物に由来するTiの含有量は、金属Tiの含有量には算入しない。金属Mg及び金属Alの含有量についても同様である。
<C:0.05質量%以下>
 Cは、本実施形態のワイヤに不可避不純物として含有される。溶融金属内におけるCとOの反応によるCOガスの発生を抑制し、気孔欠陥発生量を減少させるためには、本実施形態のワイヤのCの含有量は、0.05質量%以下に抑制することが好ましい。
<Si:0.1~1.5質量%>
 Siはスラグの粘性を高める成分であり、良好なビード形状を得るために有効な成分であるため、本実施形態のワイヤに含有させてもよいが、過剰に含有させるとスラグ剥離性が低下する恐れがある。
 したがって、本実施形態のワイヤにおいて、Siの含有量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは1.5質量%以下、より好ましくは1.2質量%以下、更に好ましくは1.0質量%以下である。
 なお、本実施形態のワイヤにおけるSi源としては、珪砂、カリ長石、珪灰石、珪酸ナトリウム及び珪酸カリウム等のSi酸化物や、Si単体、フラックスに含まれ得るFe-Si等のSi合金がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるSiの含有量を合計した量をSi含有量とする。
<ZrO:0.5~3.0質量%>
 ZrOはアークの吹き付け性を向上させ、低溶接電流域においてもアークの安定性を向上させる成分であり、本実施形態のワイヤに含有させてもよいが、過剰に含有させるとスラグ剥離性が低下する恐れ、及び、スラグの融点が上昇して耐気孔欠陥性が低下する恐れがある。
 したがって、本実施形態のワイヤにおいて、ZrOの含有量は、好ましくは0.5質量%以上、より好ましくは0.7質量%以上、更に好ましくは1.0質量%以上であり、また、好ましくは3.0質量%以下、より好ましくは2.7質量%以下、更に好ましくは2.5質量%以下である。
 なお、本実施形態のワイヤにおけるZrO源としては、例えばジルコンサンド及びジルコニア等が挙げられる。ここで、本実施形態において、ワイヤ中のZr酸化物のZrO換算値を上述のZrOの含有量としている。
<Na+K+Li:0.1~1.0質量%>
 Na、K、及びLiは、アークの安定性を向上させる成分であり、本実施形態のワイヤはNa、K、及びLiからなる群より選ばれる少なくとも1種を含有してもよいが、これらの成分の含有量が過剰だとスパッタ発生量が増加する恐れがある。
 したがって、本実施形態のワイヤにおいて、Na、K、及びLiの含有量の合計(以下「Na+K+Li」とも記載する)は好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは1.0質量%以下、より好ましくは0.8質量%以下、更に好ましくは0.6質量%以下である。
 なお、本実施形態のワイヤにおけるNa源、K源、及びLi源としては、例えば、LiF、NaF、KF、NaAlF、KSiF、KTiF、ソーダ長石及びカリウム長石等が挙げられる。本実施形態においては、ワイヤ中に含まれる種々のNa化合物に含まれるNaの含有量を合計した量、即ち、ワイヤ中のNa化合物量のNa換算値をNaの含有量とする。Kの含有量及びLiの含有量についても同様である。
<Al:1.0質量%以下>
 Alはスラグの粘性を高める成分であり、良好なビード形状を得るために有効な成分であるので本実施形態ワイヤに含有させてもよいが、過剰に含有させるとスラグ剥離性が低下する恐れがある。
 したがって、本実施形態のワイヤにおいて、Alの含有量は、好ましくは1.0質量%以下、より好ましくは0.8質量%以下、さらに好ましくは0.6質量%以下である。
 本実施形態のワイヤはAlを含有しなくてもよく、したがって、本実施形態のワイヤのAlの含有量の下限は特に限定されない。即ち、本実施形態のワイヤのAlの含有量は0質量%であってもよく、例えば0.1質量%以上であってもよく、0.2質量%以上であってもよい。
 なお、本実施形態のワイヤにおけるAl源としては、例えばアルミナ、マイカ等が挙げられる。ここで、本実施形態において、ワイヤ中のAl酸化物のAl換算値をAlの含有量としている。
<Ni:45~75質量%>
 Niは種々の金属と合金化して、溶接金属に優れた機械性能及び耐食性を付与する。本実施形態のワイヤのNi含有量が45質量%未満だと、溶接金属が希釈されたときに安定したオーステナイト組織が形成されない。一方、Ni含有量が75質量%超だと、他の合金元素の添加量が不十分となり、機械性能が確保できなくなる。したがって、本実施形態のワイヤのNiの含有量は45~75質量%とする。
 また、本実施形態のワイヤにおいて、Niの含有量は好ましくは47質量%以上、より好ましくは50質量%以上であり、また、好ましくは70質量%以下、より好ましくは65質量%以下である。
 なお、本実施形態のワイヤにおけるNi源としては、外皮を形成するNi基合金、フラックス中に含まれる金属Ni及びNi-Mo合金等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるNiの含有量を合計した量をNi含有量とする。
<Mo:10~20質量%>
 Moは溶接金属の耐食性及び強度を向上させる効果があるが、含有量が20質量%超であると耐高温割れ性が低下する。したがって、本実施形態のワイヤのMo含有量は10~20質量%とする。
 また、本実施形態のワイヤにおいて、Moの含有量は好ましくは11質量%以上、より好ましくは12質量%以上であり、また、好ましくは19質量%以下、より好ましくは18質量%以下である。
 なお、本実施形態のワイヤにおけるMo源としては、外皮を形成するNi基合金、フラックスに含まれる金属Mo及びFe-Mo合金等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるMoの含有量を合計した量をMo含有量とする。
<W:1.0~5.0質量%>
 Wは溶接金属の強度を向上させる成分だが、含有量が過剰だと耐高温割れ性が低下する恐れがある。
 したがって、本実施形態のワイヤにおいて、Wの含有量は好ましくは1.0質量%以上、より好ましくは1.2質量%以上、更に好ましくは1.5質量%以上であり、また、好ましくは5.0質量%以下、より好ましくは4.5質量%以下、更に好ましくは4.0質量%以下である。
 なお、本実施形態のワイヤにおけるW源としては、外皮を形成するNi基合金、フラックスに含まれる単体のW金属、Fe-W合金、WC等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるWの含有量を合計した量をW含有量とする。
<Mn:1.5~5.5質量%>
 MnはNiと低融点化合物を形成して耐高温割れ性を劣化させるSと結合してSを無害化する効果があるが、含有量が過剰だとスラグ剥離性が低下する恐れがある。
 したがって、本実施形態のワイヤにおいて、Mnの含有量は好ましくは1.5質量%以上、より好ましくは2.0質量%以上、更に好ましくは2.5質量%以上であり、また、好ましくは5.5質量%以下、より好ましくは5.0質量%以下、更に好ましくは4.5質量%以下である。
 なお、本実施形態のワイヤにおけるMn源としては、外皮を形成するNi基合金、フラックスに含まれる単体のMn金属、Fe-Mn合金、MnO及びMnCO等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるMnの含有量を合計した量をMn含有量とする。
<Cr:20質量%以下>
 Crは溶接金属の耐食性及び強度を向上させる効果があるが、ワイヤ中のCr量が20質量%超だと、耐高温割れ性が低下する。したがって、本実施形態のワイヤのCrの含有量は20質量%以下とする。
 また、本実施形態のワイヤにおいて、Crの含有量は好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上であり、また、好ましくは20質量%以下、より好ましくは19質量%以下、更に好ましくは18質量%以下である。
 なお、本実施形態のワイヤにおけるCr源としては、外皮を形成するNi基合金、フラックスに含まれる単体のCr金属、Fe-Cr合金及びCr等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるCrの含有量を合計した量をCr含有量とする。
<Fe:10.0質量%以下>
 Feは溶接金属の延性を向上させる成分だが、ワイヤ中のFe量が10.0質量%超だと、耐高温割れ性が劣化する。したがって、本実施形態のワイヤのFeの含有量は10.0質量%以下とする。
 また、本実施形態のワイヤにおいて、Feの含有量は好ましくは0.5質量%以上、より好ましくは1.0質量%以上、更に好ましくは2.0質量%以上であり、また、好ましくは9.0質量%以下、より好ましくは8.0質量%以下である。
 なお、本実施形態のワイヤにおけるFe源としては、外皮を形成するNi基合金、フラックスに含まれる単体のFe金属、Fe-Mn合金、Fe-Cr合金、Fe-Mo合金及びFe-Ti合金等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるFeの含有量を合計した量をFe含有量とする。
 ここで、Ni、Cr、Mo、Feの合計の含有量は、65%以上であることが好ましく、72%以上であることがより好ましく、78%以上であることが特に好ましい。
<B:0.10質量%以下>
 Bは、溶接金属中において結晶粒界に偏析し、水素が結晶粒界に偏析することによる伸びの低下を防ぐ作用を有する成分であり、本実施形態のワイヤに含有させてもよいが、過剰に含有させると耐高温割れ性が低下する恐れがある。
 したがって、本実施形態のワイヤにおいて、Bの含有量は好ましくは0.10質量%以下、より好ましくは0.05質量%以下、更に好ましくは0.02質量%以下である。
 気孔欠陥抑制の観点からは、本実施形態のワイヤはBを含有しなくてもよく、したがって、本実施形態のワイヤのBの含有量の下限は特に限定されない。即ち、本実施形態のワイヤのBの含有量は0質量%であってもよく、例えば0.005質量%以上であってもよく、0.01質量%以上であってもよい。
 なお、本実施形態のワイヤにおけるB源としては、B等の酸化物や、Fe-B合金等の金属等がある。本明細書においては、ワイヤ中にこのように種々の形態で含まれるBの含有量を合計した量をB含有量とする。
<Nb:0.5質量%未満>
 NbはNi基合金において強度を向上させるために添加される元素だが、過剰に添加すると耐高温割れ性が低下する。よって、本実施形態のNb含有量は0.5%未満に抑制する。本実施形態のNb含有量はより好ましくは0.10質量%以下、更に好ましくは0.05質量%以下である。
 なお、本実施形態のワイヤにおけるNb源としては、外皮を形成するNi基合金、フラックスに含まれる単体のNb金属、Fe-Nb合金、Nb等がある。本実施形態においては、ワイヤ中にこのように種々の形態で含まれるNbの含有量を合計した量をNb含有量とする。
<V:0.03質量%以下>
 Vは、本実施形態のワイヤに不可避不純物として含有される成分である。ワイヤ中のV量が0.03質量%を超えると、Niと化合して低融点化合物を生成するため、耐高温割れ性が低下する恐れがある。よって、本実施形態のワイヤのV含有量は、0.03質量%以下に抑制することが好ましい。
<P:0.010質量%以下>
<S:0.010質量%以下>
 P及びSは、本実施形態のワイヤに不可避不純物として含有される成分である。ワイヤ中のP量又はS量が0.010質量%を超えると、結晶粒界中にこれらの元素とNiとの低融点化合物が生成するため、耐高温割れ性が低下する。よって、本実施形態のワイヤのP含有量及びS含有量は、それぞれ0.010質量%以下に抑制することが好ましい。
<残部>
 本実施形態のワイヤは、本発明の効果を奏する範囲において上記の成分以外の成分を含有してもよい。例えば、酸化Fe、MgOなどを本実施形態のワイヤの効果を損なわない範囲で、合計で3%以下含むことができる。
 また、本実施形態のワイヤの残部には不可避不純物が含まれる。不可避不純物としては、N、Ta等が含有され得る。
 本実施形態のワイヤの製造方法は特に限定されないが、例えば、以下に示す方法が挙げられる。
 まず、外皮を構成するNi基合金の帯を準備し、この帯を長手方向に送りながら成形ロールにより成形して、U字状のオープン管にする。次に、所望の成分組成となるように、各種原料を配合したフラックスをオープン管に充填し、その後、断面が円形になるように加工する。その後、冷間加工により伸線し、所望の径のフラックス入りワイヤとする。
 なお、冷間加工途中に焼鈍を施してもよい。また、製造の過程で成形した外皮の合わせ目を溶接して継ぎ目が無いワイヤとしてもよく、前記合わせ目を溶接せず継ぎ目のまま残してもよい。
 以下、実施例を挙げて本発明についてより詳細に説明するが、本発明はこれに限定されるものではない。
 Ni基合金の外皮中に、原料を適宜配合したフラックスを充填し、直径が1.2mmとなるように伸線加工し、ワイヤ全体の組成が表1に示すとおりである例1~7のワイヤを製造した。
 図1に示すように、上方に35°、下方に25°開口した深さが7mm、底部のRが3mmの溝が形成されたJIS G3106 SM490A鋼板を用意した。当該鋼板の溝に対し、各例のワイヤを用いて以下の条件で4パスの溶接を行い、耐気孔欠陥性、アーク安定性、スパッタ抑制性、ビード形状、スラグ剥離性を評価した。
(溶接条件)
 溶接姿勢:横向
 電流:200A
 電圧:31V
 シールドガス種類:100%CO
 シールドガス流量:25L/min
<耐気孔欠陥性>
 放射線透過試験(JIS Z3104-1995)を行い、溶接長250mmの範囲でφ0.5mm以上の気孔欠陥数を計測し、気孔欠陥数に応じて以下のように耐気孔欠陥性を評価した。
 ◎(特に良好):0~5個
 ○(良好):6~10個
 △(やや不良):11~15個
 ×(不良):16個以上
<スラグ剥離性>
 ハンマー、又はエアチッパーを用いてスラグの除去を行い、以下の基準でスラグ剥離性を評価した。
 ◎(特に良好):ハンマーで容易にスラグを除去できた
 ○(良好):ハンマーでスラグを除去できた
 △(やや不良):ハンマーでは困難であったが、エアチッパーでスラグを除去できた
 ×(不良):エアチッパーを用いてもスラグ除去が困難であった
<アーク安定性、スパッタ抑制性、ビード形状>
 溶接時のアーク安定性及びスパッタ抑制性と、溶接部のビード外観は、夫々、官能評価により極めて良好であった場合を◎、良好であった場合を○、やや不良であった場合を△、不良であった場合を×と評価した。
Figure JPOXMLDOC01-appb-T000001
 例1~4のワイヤは、本実施例の発明例であり、評価結果が良好であった。
 例5のワイヤは、Caの含有量が本発明において規定する範囲の下限を下回るため、耐気孔欠陥性がやや不良であった。
 例6のワイヤは、Caの含有量が本発明において規定する範囲の下限を下回るため、耐気孔欠陥性が不良であった。
 例7のワイヤは、TiOの含有量が本発明において規定する範囲の下限を下回り、Fの含有量が本発明において規定する範囲の上限を上回り、Moの含有量が本発明において規定する範囲の下限を下回り、Nbの含有量が本発明において規定する範囲の上限を上回るため、耐気孔欠陥性が不良であり、アーク安定性及びビード形状がやや不良であった。
 本出願は、2019年4月22日出願の日本特許出願(特願2019-081053)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (9)

  1.  Ni基合金製外皮と、前記Ni基合金製外皮内に充填されたフラックスを備えるNi基合金フラックス入りワイヤであり、
     ワイヤ全質量あたり、
     Ni:45~75質量%、
     Cr:20質量%以下、
     Mo:10~20質量%、
     Fe:10.0質量%以下、
     TiO:3~11質量%、
     Ca:0.01~2.0質量%、
     F:1.0質量%以下(0質量%を含む)、及び
     Nb:0.5質量%未満(0質量%を含む)
     を含有するNi基合金フラックス入りワイヤ。
  2.  さらに、ワイヤ全質量あたり、
     金属Ti、金属Al、金属Mgからなる群より選ばれる少なくとも1種:合計0.01~1.0質量%
     を含有し、
     C:0.05質量%以下(0質量%を含む)
     に制限された、請求項1に記載のNi基合金フラックス入りワイヤ。
  3.  さらに、ワイヤ全質量あたり、
     Si:0.1~1.5質量%、
     Al:1.0質量%以下(0質量%を含む)、
     ZrO:0.5~3.0質量%、及び
     Na、K、Liからなる群より選ばれる少なくとも1種:合計で0.1~1.0質量%
     を含有する、請求項1又は2に記載のNi基合金フラックス入りワイヤ。
  4.  さらに、ワイヤ全質量あたり、
     W:1.0~5.0質量%、及び
     Mn:1.5~5.5質量%
     を含有する請求項1又は2に記載のNi基合金フラックス入りワイヤ。
  5.  さらに、ワイヤ全質量あたり、
     W:1.0~5.0質量%、及び
     Mn:1.5~5.5質量%
     を含有する請求項3に記載のNi基合金フラックス入りワイヤ。
  6.  さらにワイヤ全質量あたり、
     B:0.10質量%以下(0質量%を含む)、
     を含有し、
     V:0.03質量%以下(0質量%を含む)、
     P:0.010質量%以下(0質量%を含む)、及び
     S:0.010質量%以下(0質量%を含む)
     に制限された、請求項1又は2に記載のNi基合金フラックス入りワイヤ。
  7.  さらにワイヤ全質量あたり、
     B:0.10質量%以下(0質量%を含む)、
     を含有し、
     V:0.03質量%以下(0質量%を含む)、
     P:0.010質量%以下(0質量%を含む)、及び
     S:0.010質量%以下(0質量%を含む)
     に制限された、請求項3に記載のNi基合金フラックス入りワイヤ。
  8.  さらにワイヤ全質量あたり、
     B:0.10質量%以下(0質量%を含む)、
     を含有し、
     V:0.03質量%以下(0質量%を含む)、
     P:0.010質量%以下(0質量%を含む)、及び
     S:0.010質量%以下(0質量%を含む)
     に制限された、請求項4に記載のNi基合金フラックス入りワイヤ。
  9.  さらにワイヤ全質量あたり、
     B:0.10質量%以下(0質量%を含む)、
     を含有し、
     V:0.03質量%以下(0質量%を含む)、
     P:0.010質量%以下(0質量%を含む)、及び
     S:0.010質量%以下(0質量%を含む)
     に制限された、請求項5に記載のNi基合金フラックス入りワイヤ。
PCT/JP2020/015588 2019-04-22 2020-04-06 Ni基合金フラックス入りワイヤ WO2020217963A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20795006.4A EP3928918A4 (en) 2019-04-22 2020-04-06 NI-BASED ALLOY CORED WIRE
CN202080024311.5A CN113613829A (zh) 2019-04-22 2020-04-06 Ni基合金药芯焊丝
KR1020217033072A KR20210136121A (ko) 2019-04-22 2020-04-06 Ni기 합금 플럭스 코어드 와이어
US17/441,889 US20220016734A1 (en) 2019-04-22 2020-04-06 Ni-BASED ALLOY FLUX-CORED WIRE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081053A JP7244340B2 (ja) 2019-04-22 2019-04-22 Ni基合金フラックス入りワイヤ
JP2019-081053 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020217963A1 true WO2020217963A1 (ja) 2020-10-29

Family

ID=72937490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015588 WO2020217963A1 (ja) 2019-04-22 2020-04-06 Ni基合金フラックス入りワイヤ

Country Status (6)

Country Link
US (1) US20220016734A1 (ja)
EP (1) EP3928918A4 (ja)
JP (1) JP7244340B2 (ja)
KR (1) KR20210136121A (ja)
CN (1) CN113613829A (ja)
WO (1) WO2020217963A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7401345B2 (ja) * 2020-02-28 2023-12-19 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140064A (ja) 2010-01-09 2011-07-21 Kobe Steel Ltd Ni基合金フラックス入りワイヤ
JP2015217395A (ja) * 2014-05-14 2015-12-07 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP5968855B2 (ja) 2013-10-31 2016-08-10 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
US20160271736A1 (en) * 2012-11-22 2016-09-22 Posco Welded joint of extremely low-temperature steel, and welding materials for preparing same
JP2017148863A (ja) * 2016-02-25 2017-08-31 株式会社神戸製鋼所 エレクトロスラグ溶接用Ni基溶接材料
JP2019081053A (ja) 2019-03-01 2019-05-30 株式会社大一商会 遊技機
WO2019186686A1 (ja) * 2018-03-27 2019-10-03 日本製鉄株式会社 被覆アーク溶接棒用のNi基合金心線、被覆アーク溶接棒、及び被覆アーク溶接棒の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257193B2 (ja) * 2013-07-12 2018-01-10 株式会社神戸製鋼所 肉盛溶接用フラックス入りワイヤ
JP5763859B1 (ja) * 2014-11-07 2015-08-12 日本ウエルディング・ロッド株式会社 Ni基合金フラックス入りワイヤ
JP6385846B2 (ja) * 2015-02-10 2018-09-05 日鐵住金溶接工業株式会社 9%Ni鋼溶接用フラックス入りワイヤ
JP6476058B2 (ja) * 2015-04-28 2019-02-27 株式会社神戸製鋼所 ガスシールドアーク溶接用フラックス入りワイヤ及び溶接方法
JP6441179B2 (ja) * 2015-07-31 2018-12-19 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP6794295B2 (ja) * 2017-03-01 2020-12-02 日鉄溶接工業株式会社 9%Ni鋼溶接用フラックス入りワイヤ
CN109226995A (zh) * 2018-10-31 2019-01-18 首钢集团有限公司 一种自保护堆焊用药芯焊丝

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140064A (ja) 2010-01-09 2011-07-21 Kobe Steel Ltd Ni基合金フラックス入りワイヤ
US20160271736A1 (en) * 2012-11-22 2016-09-22 Posco Welded joint of extremely low-temperature steel, and welding materials for preparing same
JP5968855B2 (ja) 2013-10-31 2016-08-10 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP2015217395A (ja) * 2014-05-14 2015-12-07 株式会社神戸製鋼所 Ni基合金フラックス入りワイヤ
JP2017148863A (ja) * 2016-02-25 2017-08-31 株式会社神戸製鋼所 エレクトロスラグ溶接用Ni基溶接材料
WO2019186686A1 (ja) * 2018-03-27 2019-10-03 日本製鉄株式会社 被覆アーク溶接棒用のNi基合金心線、被覆アーク溶接棒、及び被覆アーク溶接棒の製造方法
JP2019081053A (ja) 2019-03-01 2019-05-30 株式会社大一商会 遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3928918A4

Also Published As

Publication number Publication date
EP3928918A1 (en) 2021-12-29
JP7244340B2 (ja) 2023-03-22
KR20210136121A (ko) 2021-11-16
CN113613829A (zh) 2021-11-05
EP3928918A4 (en) 2022-04-27
US20220016734A1 (en) 2022-01-20
JP2020175433A (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
KR101193273B1 (ko) 모든 자세 용접이 가능한 가스 실드 아크 용접용 플럭스 내장 와이어
KR101692591B1 (ko) Ni기 합금 플럭스 코어드 와이어
JP5359561B2 (ja) 高張力鋼用フラックス入りワイヤ
KR101708997B1 (ko) Ni기 합금 플럭스 코어드 와이어
JP4566899B2 (ja) 高強度ステンレス鋼溶接用フラックス入りワイヤ
JP5242665B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
WO2018051823A1 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
JP5400461B2 (ja) フラックス入りワイヤ
JP2015217393A (ja) 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP2008221231A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP5314339B2 (ja) フラックス入りワイヤ
JP2018153853A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP5459083B2 (ja) 高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP6453178B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP6794295B2 (ja) 9%Ni鋼溶接用フラックス入りワイヤ
JP2010142873A (ja) フラックス入りワイヤ
KR102156027B1 (ko) 플럭스 코어드 와이어
WO2020217963A1 (ja) Ni基合金フラックス入りワイヤ
JP6599807B2 (ja) 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
WO2020012925A1 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP7231499B2 (ja) フラックス入りワイヤ及び溶接方法
JP2020015092A (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP2020131234A (ja) セルフシールドアーク溶接用ステンレス鋼フラックス入りワイヤ
JP7401345B2 (ja) Ni基合金フラックス入りワイヤ
JP5457301B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020795006

Country of ref document: EP

Effective date: 20210923

ENP Entry into the national phase

Ref document number: 20217033072

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE