WO2019221284A1 - エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手 - Google Patents

エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手 Download PDF

Info

Publication number
WO2019221284A1
WO2019221284A1 PCT/JP2019/019730 JP2019019730W WO2019221284A1 WO 2019221284 A1 WO2019221284 A1 WO 2019221284A1 JP 2019019730 W JP2019019730 W JP 2019019730W WO 2019221284 A1 WO2019221284 A1 WO 2019221284A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
weld metal
welding
wire
Prior art date
Application number
PCT/JP2019/019730
Other languages
English (en)
French (fr)
Inventor
秀徳 名古
杉村 朋子
石▲崎▼ 圭人
良彦 北川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019089329A external-priority patent/JP7252051B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US17/045,564 priority Critical patent/US11691227B2/en
Priority to KR1020207032700A priority patent/KR102484033B1/ko
Priority to CN201980031683.8A priority patent/CN112154042B/zh
Priority to EP19802906.8A priority patent/EP3795290A4/en
Publication of WO2019221284A1 publication Critical patent/WO2019221284A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Definitions

  • the present invention relates to a solid wire used for electroslag welding of a cryogenic steel 5.0 to 10.0% Ni steel applied to a tank for storing liquefied natural gas or the like at a low temperature or a chemical plant to be used. It relates to the welded joint obtained.
  • 9% Ni steel has high strength and excellent cryogenic toughness of about liquid nitrogen temperature (-196 ° C). Therefore, 9% Ni steel is widely used as a base material for manufacturing a storage tank that is stored at a low temperature, such as liquefied natural gas (LNG). These storage tanks are required to have excellent cryogenic toughness in a temperature range of ⁇ 162 ° C. or lower, which is a temperature range of a liquid such as LNG. Therefore, a weld metal (welded joint) of a welded joint formed by welding 9% Ni steel is similarly required to have high strength and excellent cryogenic toughness.
  • LNG liquefied natural gas
  • Patent Documents 1 to 5 propose a welding solid wire for cryogenic steel or a flux-cored wire for gas shielded arc welding (Gas Metal Arc Welding; GMAW).
  • any of the inventions described in Patent Documents 1 to 5 is pure Ar or gas shielded arc welding using 2% or less of oxygen, carbon dioxide gas or He gas in Ar, and the heat input is 1.4 to 2.2 kJ / Although efficiency is improved as compared with about mm and TIG welding, a construction method with higher efficiency is desired.
  • the inventors of the present invention have hitherto been studied in welding using a welding material of about 6.0 to 15.0% Ni as a construction method for achieving high-efficiency welding with a heat input of, for example, 10 kJ / mm or more.
  • the application of electroslag welding that was not present was studied.
  • a welding wire is put in a molten slag bath formed in a groove surrounded by a base material and a water-cooled copper brazing, and the Joule heat of the molten slag is mainly used as a heat source.
  • the base material and the welding wire are melted and welded.
  • electroslag welding it is possible to perform upright welding of a structure having a large plate thickness in one pass, such as in shipbuilding and industrial machinery fields. Therefore, there is an advantage of high efficiency as compared with general arc welding that requires multi-pass welding.
  • the present invention produces a welded joint including a weld metal having a high efficiency of heat input of, for example, 10 kJ / mm or more, excellent strength, and also having a cryogenic toughness by refining the weld metal structure. It is an object of the present invention to provide a solid wire for electroslag welding that can be used, and a welded joint including the weld metal.
  • the inventors of the present invention have made further studies in order to solve the above problems.
  • the strength and cryogenic toughness of the weld metal are improved by satisfying specific conditions for the chemical component system of the solid wire for electroslag welding and the weld metal using the same.
  • the solid wire by controlling the upper limit of the content of each element of Si, Mn, and Ni to a predetermined amount or less, while suppressing an excessive increase in strength, REM (Rare Earth Metal; By adding a predetermined amount of rare earth elements), it is possible to develop an intragranular transformation structure (acicular ferrite) starting from inclusions in the weld metal in the welded joint, thereby refining the weld metal structure and solving the above problems.
  • the present invention has been made based on this finding.
  • the solid wire for electroslag welding of the present invention is in mass% per total mass of the wire, C: more than 0%, 0.03% or less, Si: more than 0%, 0.10% or less, Mn: more than 0%, 0.25% or less, Ni: 10.5 to 14.0% S: more than 0%, 0.010% or less, Al: more than 0%, 0.250% or less, REM: 0.002 to 0.080%, O: more than 0%, 0.0090% or less, And the balance consists of Fe and inevitable impurities.
  • the solid wire for electroslag welding according to one aspect of the present invention is in mass% per total mass of the wire, Ca: 0.005 to 0.050%, Mg: 0.001 to 0.020%, Any one or both of these may be further contained.
  • the solid wire for electroslag welding according to one aspect of the present invention is in mass% per total mass of the wire, Cu: It may further contain more than 0% and 1.00% or less.
  • the solid wire for electroslag welding is in mass% per total mass of the wire, Cr: more than 0%, 0.50% or less, Mo: more than 0%, 0.50% or less, W: more than 0%, 0.50% or less, Nb: more than 0%, 0.10% or less, V: more than 0%, 0.10% or less, B: more than 0%, 0.010% or less, It may further contain at least one element selected from the group consisting of and satisfy the following formula (1). Cr + Mo + W ⁇ 0.50 (1)
  • the solid wire for electroslag welding according to one aspect of the present invention may be subjected to Cu plating.
  • the weld metal in the welded joint is in mass%, C: more than 0%, 0.07% or less, Si: more than 0%, 0.30% or less, Mn: more than 0%, 0.40% or less, Ni: 10.5 to 14.0% S: more than 0%, 0.0065% or less Al: 0.008 to 0.220%, And the balance consists of Fe and inevitable impurities, Among large-angle grains surrounded by grain boundaries having a crystal orientation of 15 ° or more, the total area fraction SA (%) having an equivalent circle diameter of 5 to 30 ⁇ m is 30% or more.
  • the weld metal is in mass%, REM: more than 0%, 0.040% or less, May further be contained.
  • the weld metal is in mass%, REM: more than 0.040%, 0.080% or less, May further be contained.
  • the weld metal is in mass%, Ca: 0.0003 to 0.010%, May further be contained.
  • the weld metal is in mass%, Cu: more than 0%, 1.00% or less, May further be contained.
  • the weld metal is in mass%, Cr: more than 0%, 0.50% or less, Mo: more than 0%, 0.50% or less, W: more than 0%, 0.50% or less, Nb: more than 0%, 0.10% or less, V: more than 0%, 0.10% or less, B: It may further contain at least one element selected from the group consisting of more than 0% and 0.010% or less, and may satisfy the following formula (2). Cr + Mo + W ⁇ 0.50 (2)
  • the weld metal is in mass%, O: more than 0%, 0.040% or less, N: 0% or more, 0.010% or less, May further be contained.
  • the welded joint according to one embodiment of the present invention may use a steel plate containing 5 to 10% Ni as a base material.
  • a joint can be made.
  • FIG. 1 is a diagram illustrating a schematic configuration of groove welding in the embodiment.
  • % means mass% unless otherwise specified.
  • means that the value is not less than the lower limit value and not more than the upper limit value.
  • the solid wire for electroslag welding may be simply called a wire.
  • Solid wire for electroslag welding The components of the solid wire for electroslag welding according to the embodiment of the present invention are as follows.
  • C more than 0% and 0.03% or less C is an element that contributes to securing strength by forming a solid solution strengthening and a compound.
  • the C content is preferably 0.001% or more.
  • the amount of C is made 0.03% or less.
  • the C content is preferably 0.010% or less, and more preferably 0.008% or less.
  • Si more than 0% and 0.10% or less Si is a deoxidizing element and has an effect of improving cryogenic toughness by reducing the oxygen concentration in the weld metal.
  • the Si amount is preferably 0.003% or more.
  • excessive addition of Si causes an excessive increase in strength at cryogenic temperatures due to solid solution strengthening, and the cryogenic toughness decreases, so the Si content is made 0.10% or less.
  • the amount of Si is preferably 0.08% or less, and more preferably 0.07% or less.
  • Mn more than 0% and 0.25% or less
  • Mn is a deoxidizing element and has an effect of improving cryogenic toughness by lowering the oxygen concentration in the weld metal.
  • the amount of Mn is preferably 0.005% or more, and more preferably 0.01% or more.
  • the amount of Mn is preferably 0.20% or less, and more preferably 0.10% or less.
  • Ni 10.5 to 14.0%
  • Ni is an element essential for ensuring low temperature toughness, and by improving the overall matrix toughness of weld metal at low temperatures, it is also effective in suppressing intergranular fracture at sites where the weld metal has a high cooling rate. Therefore, the Ni content is 10.5% or more.
  • the amount of Ni is preferably 10.8% or more, and more preferably 11.0% or more.
  • excessive addition of Ni causes an increase in strength and decreases the cryogenic toughness, so the Ni content is made 14.0% or less.
  • the amount of Ni is preferably 13.0% or less, and more preferably 12.8% or less.
  • S more than 0% and 0.010% or less S is an element contained as an unavoidable impurity.
  • impurities such as S segregate in the prior austenite grain boundaries, Grain boundary fracture is likely to occur due to a decrease in the bonding strength of the grain boundaries. Therefore, in order to satisfactorily suppress grain boundary fracture, the S content is set to 0.010% or less.
  • the amount of S is preferably 0.008% or less, and more preferably 0.006% or less.
  • the amount of S is defined to be more than 0%.
  • Al more than 0% and 0.250% or less Al has an effect of stably reducing the oxygen content of the weld metal as a deoxidizing element.
  • the amount of Al is preferably 0.010% or more, and more preferably 0.015% or more. However, excessive addition of Al makes it impossible to ensure cryogenic toughness, so the Al content is 0.250% or less.
  • the amount of Al is preferably 0.200% or less, and more preferably 0.180% or less.
  • REM 0.002 to 0.080% REM promotes the formation of fine acicular ferrite structure starting from inclusions by forming sulfides having good lattice matching with the ferrite phase on the surface of inclusion particles in the weld metal in welded joints. Since it is an element that improves low temperature toughness, the REM content is set to 0.002% or more.
  • the amount of REM is preferably 0.010% or more, and more preferably 0.012% or more. However, excessive addition of REM brings about coarsening of inclusions, and promotes brittle fracture starting from coarse inclusions, so that the cryogenic toughness cannot be secured, so the REM amount is made 0.080% or less. .
  • the amount of REM is preferably 0.060% or less, and more preferably 0.045% or less.
  • regulated by this embodiment is not ask
  • only one type may be selected from elements such as Sc, Y, La, Ce, Pr, and Nd, or two or more types may be combined.
  • REM is easy to float and separate by forming an oxide or sulfide in molten metal, even if added to the wire, the proportion remaining in the metal is small and often falls below the detection limit of component analysis .
  • REM contained in the weld metal below the lower detection limit is treated as an impurity.
  • O More than 0% and 0.0090% or less O is an element contained as an unavoidable impurity, but reduces the cryogenic toughness by forming a coarse oxide. Therefore, the O amount is set to 0.0090% or less.
  • the amount of O is preferably 0.0080% or less, and more preferably 0.0070% or less.
  • the amount of O is defined as more than 0%.
  • Ca 0.005 to 0.050%
  • Ca is not an essential element for the wire of this embodiment, but in the weld metal in the weld joint, inclusions are formed by forming sulfides having good lattice matching with the ferrite phase on the surface of the inclusion particles. Since it is an element that promotes the formation of a fine acicular ferrite structure at the starting point and improves the cryogenic toughness, it is preferably contained in an amount of 0.005% or more. Further, the Ca content is preferably 0.007% or more, and more preferably 0.008% or more. However, excessive addition of Ca leads to coarsening of inclusions and promotes brittle fracture starting from the coarse inclusions, so that the cryogenic toughness cannot be secured, so the Ca content is 0.050% or less. . Further, the Ca content is preferably 0.040% or less, and more preferably 0.035% or less.
  • Mg 0.001 to 0.020%
  • Mg is not an essential element for the wire of the present embodiment, but in the weld metal in the weld joint, inclusions are formed by forming an oxide having good lattice matching with the ferrite phase on the surface of the inclusion particles. Since it is an element that promotes the formation of a fine acicular ferrite structure at the starting point and improves the cryogenic toughness, it is preferably contained in an amount of 0.001% or more.
  • the Mg amount is preferably 0.0012% or more, and more preferably 0.0040% or more.
  • the amount of Mg is set to 0.020% or less.
  • the Mg content is preferably 0.018% or less, and more preferably 0.016% or less.
  • Mg contained in the weld metal below the lower detection limit is treated as an impurity.
  • Ca and Mg are elements that exhibit the same action, so any one of Ca and Mg may be included, but both may be included.
  • Cu More than 0% and 1.00% or less Cu is not an essential element for the wire of the present embodiment, but by suppressing the strength increase at cryogenic temperature and improving the room temperature strength, the cryogenic toughness and the room temperature are improved. It has the effect of improving the balance of strength. For this reason, it is preferable to contain Cu, it is more preferable to contain 0.01% or more, and it is still more preferable to contain 0.08% or more. However, excessive addition of Cu results in excessive strength and makes it impossible to ensure cryogenic toughness, so the Cu content is made 1.00% or less.
  • the amount of Cu is preferably 0.50% or less, more preferably 0.40% or less, and still more preferably 0.30% or less.
  • Cr more than 0%, 0.50% or less
  • Mo more than 0%, 0.50% or less
  • W more than 0%, 0.50% or less
  • Nb more than 0%, 0.10% or less
  • V more than 0%, 0.10% or less
  • B more than 0%, 0.010% or less
  • Cr, Mo, and W in Formula (1) are each content (mass%) per wire total mass, the unit is abbreviate
  • Cr, Mo, W, Nb, V, and B are elements that contribute to securing the strength.
  • the wire has a predetermined amount of at least one of Cr, Mo, W, Nb, V, and B, and satisfies the formula (1), thereby improving the strength without greatly reducing toughness. Is obtained.
  • the Cr, Mo, and W amounts are each preferably 0.01% or more, more preferably 0.02% or more, and preferably 0.30% or less, 0.15% or less. It is more preferable that Nb and V amounts are each preferably 0.005% or more, more preferably 0.008% or more, and preferably 0.050% or less, and 0.045% or less. It is more preferable.
  • the amount of B is preferably 0.0005% or more, more preferably 0.0008% or more, more preferably 0.0050% or less, and more preferably 0.0045% or less. preferable.
  • the parameter on the left side of Formula (1) is preferably 0.40 or less, and more preferably 0.38 or less. Further, the parameter on the left side of Expression (1) includes the case of 0.
  • Other components that can be contained in the solid wire for electroslag welding according to the present embodiment include, for example, the basic component Fe and unavoidable impurities as in the target base material.
  • the balance is Fe and Inevitable impurities.
  • inevitable impurities include P, As, Sb, Sn, Bi, and N.
  • P, As, Sb, Sn and Bi are restricted to 0.010% or less, and N is restricted to 0.005% or less. If these elements are within this range, the effect of this embodiment is not hindered not only when they are contained as inevitable impurities but also when they are actively added.
  • the solid wire for electroslag welding according to the present embodiment preferably has Cu plating on the surface in order to enhance the electrical conductivity.
  • the Cu plating amount is preferably 0.10% or more, and preferably 0.30% or less.
  • the components (elements) in the weld metal in the weld joint are the same as those in the solid wire for electroslag welding, and the effects of the components are also the same. Therefore, in the following description, the effect of the component which overlaps with the solid wire for electrogas welding mentioned above is abbreviate
  • Si more than 0%, 0.30% or less Preferred upper limit: 0.25%, more preferably 0.18% Preferred lower limit: 0.005%, more preferably 0.010%
  • Mn more than 0%, 0.40% or less Preferred upper limit: 0.37%, more preferably 0.34% Preferred lower limit: 0.05%
  • Ni 10.5 to 14.0% Preferred upper limit: 13.0%, more preferably 12.8% Preferred lower limit: 10.8%, more preferably 11.0%
  • the weld metal may further contain REM, Ca, or Cu in the following component ranges.
  • REM more than 0%, 0.040% or less Preferred upper limit: 0.035%, more preferably 0.030% Preferred lower limit: 0.003%, more preferably 0.004%
  • REM more than 0.040%, 0.080% or less Preferred upper limit: 0.070%, more preferably 0.060% Preferred lower limit: 0.045%, more preferably 0.050%
  • Cu more than 0%, 1.00% or less Preferred upper limit: 0.5%, more preferably 0.4% Preferred lower limit: 0.01%, more preferably 0.08%
  • Cr more than 0%, 0.50% or less
  • Mo more than 0%, 0.50% or less
  • W more than 0%, 0.50% or less
  • Nb more than 0%, 0.10% or less
  • V more than 0%, 0.10% or less
  • B more than 0%, further containing at least one element selected from the group consisting of 0.010% or less, and satisfying the following formula (2) preferable.
  • Cr, Mo, and W in Formula (2) are each content (mass%) per weld metal total mass, the unit is abbreviate
  • the Cr, Mo, and W amounts are each preferably 0.01% or more, more preferably 0.02% or more, and preferably 0.30% or less, 0.15% or less. It is more preferable that Nb and V amounts are each preferably 0.005% or more, more preferably 0.008% or more, and preferably 0.050% or less, and 0.045% or less. It is more preferable.
  • the amount of B is preferably 0.0005% or more, more preferably 0.0008% or more, more preferably 0.0050% or less, and more preferably 0.0045% or less. preferable.
  • the parameter on the left side of Formula (2) is preferably 0.40 or less, and more preferably 0.38 or less. Further, the parameter on the left side of Expression (2) includes the case of 0.
  • O More than 0% and 0.040% or less O forms an oxide, and the oxide acts as a starting point of void formation or a starting point of brittle fracture during the Charpy test, so that the cryogenic toughness decreases. Therefore, the O content is preferably 0.040% or less, more preferably 0.035% or less, and still more preferably 0.032% or less. In addition, since O is contained as an inevitable impurity, the amount of O is defined as more than 0%.
  • N 0% or more and 0.010% or less N strengthens the matrix of the weld metal part as a solid solution element, but is also an element inducing brittle fracture, and the cryogenic toughness is lowered. Therefore, the N content is preferably 0.010% or less, more preferably 0.008% or less, still more preferably 0.006% or less, and most preferably not contained (0% Including cases).
  • the basic composition of the weld metal according to this embodiment is as described above, and the balance is Fe inevitable impurities.
  • unavoidable impurities include P, As, Sb, Sn, Bi, and the like.
  • P, As, Sb, Sn, and Bi are each regulated to 0.010% or less. If these elements are within this range, the effect of this embodiment is not hindered not only when they are contained as inevitable impurities but also when they are actively added.
  • good toughness is realized by forming a fine acicular ferrite structure starting from inclusions including REM. Specifically, by controlling the total area fraction SA (%) of large-angle grains surrounded by grain boundaries having a crystal orientation of 15 ° or more and having an equivalent circle diameter of 5 to 30 ⁇ m to 30% or more, A predetermined toughness is obtained.
  • SA is preferably 31% or more, and more preferably 32% or more.
  • Ni is preferably 5.2% or more, and more preferably 6.5% or more. However, if the Ni content exceeds 10%, the steel material cost increases, so the Ni content is preferably 10% or less, and more preferably 9.5% or less.
  • flux In electroslag welding, additional flux is added to compensate for molten slag that decreases as welding progresses. This flux is simply referred to as flux in this specification.
  • the molten metal In electroslag welding, as the welding progresses, the molten metal is cooled to become a weld metal, and a part of the molten slag bath becomes a molten slag layer, but as the welding progresses, the molten slag layer is cooled to become solidified slag and melted. Slag is consumed. Flux is used to compensate for this decrease in molten slag bath.
  • the flux is roughly classified into a melt type flux and a bond type (fired type) flux.
  • the melt-type flux is produced by melting and pulverizing various raw materials in an electric furnace or the like.
  • the calcining flux is produced by combining various raw materials with a binder such as alkali silicate, granulating, and calcining.
  • the firing flux may use the above-mentioned carbonate as a raw material, but the carbonate is decomposed by heat during welding, generates CO 2 gas, increases the amount of oxygen in the weld metal, and affects the cryogenic toughness. Effect. Accordingly, a melt type flux is preferably used.
  • the flux used in the present embodiment is not particularly limited, but is generally used in the following composition range.
  • CaO 5-60% CaO is a basic component, is an effective component for adjusting the viscosity and melting point of molten slag, and has a high effect of reducing the oxygen content of the weld metal.
  • the amount of CaO is less than 5%, the amount of oxygen in the weld metal increases, so the amount of CaO is preferably 5% or more, and more preferably 10% or more.
  • the amount of CaO exceeds 60%, undercutting and slag entrainment occur, so the amount of CaO is preferably 60% or less, and more preferably 55% or less.
  • CaF 2 3 to 50% CaF 2 is also a basic component, and is an effective component for adjusting the viscosity and melting point of the molten slag, and has a high effect of reducing the oxygen content of the weld metal.
  • the amount of CaF 2 is less than 3%, the amount of oxygen in the weld metal increases, so the amount of CaF 2 is preferably 3% or more, and more preferably 5% or more.
  • the amount of CaF 2 is preferably 50% or less. % Or less is more preferable.
  • BaF 2 0 to 20%
  • BaF 2 is also a basic component, and is an effective component for adjusting the viscosity and melting point of the molten slag and has a high effect of reducing the oxygen content of the weld metal.
  • the amount of BaF 2 is preferably 20% or less, and more preferably 15% or less.
  • MgO 0-20% MgO is also a basic component and is an effective component for adjusting the viscosity and melting point of molten slag.
  • the viscosity and melting point can be adjusted with other components, and MgO may not be contained.
  • the MgO content exceeds 20%, the melting point of the molten slag becomes too high and the viscosity becomes high, resulting in poor penetration. Therefore, the MgO content is preferably 20% or less, more preferably 15% or less. preferable.
  • BaO is a basic component, is an effective component for adjusting the viscosity and melting point of molten slag, and has a high effect of reducing the oxygen content of the weld metal.
  • the viscosity and melting point can be adjusted with other components, and BaO may not be included.
  • the BaO content exceeds 20%, the melting point of the molten slag becomes too low and the viscosity becomes insufficient, and the molten slag is easily discharged from between the sliding copper plating and the weld metal. After that, the molten metal with molten slag becomes ineffective and the metal melts down.
  • the BaO amount is preferably 20% or less, and more preferably 15% or less.
  • Na 2 O 0 to 10% Na 2 O is a very effective component for adjusting the viscosity of the molten slag.
  • the viscosity and melting point can be adjusted with other components, and Na 2 O may not be included.
  • the amount of Na 2 O exceeds 10%, the melting point of the molten slag becomes too low and the viscosity becomes insufficient, and the molten slag is discharged from between the sliding copper plating and the weld metal. Since it becomes too easy and the suppression of the molten metal by the molten slag becomes ineffective, it falls off and is preferably 10% or less, more preferably 7% or less.
  • K 2 O 0 to 10%
  • K 2 O is a very effective component for adjusting the viscosity of the molten slag.
  • the viscosity and melting point can be adjusted with other components, and K 2 O may not be included.
  • the K 2 O amount exceeds 10%, the melting point of the molten slag becomes too low and the viscosity becomes insufficient, and the molten slag is discharged from between the sliding copper plating and the weld metal. It becomes too easy and the molten metal by molten slag can no longer be controlled and melts down.
  • the amount of K 2 O is preferably 10% or less, and more preferably 7% or less.
  • SiO 2 0 to 35%
  • SiO 2 is an acidic component, and is a component that adjusts the viscosity and melting point of the molten slag.
  • the viscosity and melting point can be adjusted with other components, and SiO 2 does not have to be included.
  • the amount of SiO 2 exceeds 35%, the viscosity of the molten slag increases and poor penetration occurs, so the amount of SiO 2 is preferably 35% or less, more preferably 30% or less.
  • Al 2 O 3 0 to 65%
  • Al 2 O 3 is an effective component for adjusting the viscosity and melting point of the molten slag.
  • the viscosity and melting point can be adjusted with other components, and Al 2 O 3 does not have to be included.
  • the amount of Al 2 O 3 exceeds 65%, the viscosity of the molten slag increases and poor penetration occurs. Therefore, it is preferably 65% or less, more preferably 60% or less.
  • the amount of Al 2 O 3 is preferably 3% or more.
  • TiO 2 : 0 to 10% and ZrO 2 : 0 to 10% TiO 2 and ZrO 2 are effective components for adjusting the melting point of the molten slag.
  • the melting point can be adjusted with other components, and TiO 2 and ZrO 2 do not have to be included.
  • TiO 2 and ZrO 2 exceed 10%, the viscosity increases rapidly in the vicinity of the melting point, so that slag entrainment tends to occur. Therefore, the amount of TiO 2 and ZrO 2 is preferably 10% or less, and more preferably 5% or less.
  • MnO 0-20% MnO is an effective component for adjusting the viscosity and melting point of molten slag.
  • the viscosity and melting point can be adjusted with other components, and MnO does not have to be included.
  • the amount of MnO exceeds 20%, the melting point of the molten slag becomes too low and the viscosity becomes insufficient, and the molten slag is easily discharged from between the sliding copper plating and the weld metal. After that, the molten metal with molten slag becomes ineffective and the metal melts down.
  • the amount of MnO is preferably 20% or less, and more preferably 15% or less.
  • FeO 0-5% FeO is an effective component for adjusting the viscosity and melting point of molten slag and has a high effect of reducing the oxygen content of the weld metal.
  • the viscosity and melting point can be adjusted with other components, and FeO may not be contained.
  • the amount of FeO exceeds 5%, slag is generated on the bead surface and seizure tends to occur, so that it is preferably 5% or less, more preferably 3% or less.
  • composition of the flux is effective in reducing the amount of oxygen in the weld metal and leads to improvement in the toughness of the weld metal part. Therefore, it is preferable to satisfy the expression (3) within the limited range of each component amount.
  • CaO in the formula (3) notation of the components such as CaF 2 are the respective content per flux total mass (mass%).
  • the preferred composition of the flux used in the present invention is as described above, and the balance is inevitable impurities such as P, S, As, Sb, Sn, Bi.
  • 9% Ni steel as a base material, solid wire for electro-slag welding having the compositions shown in Table 1, and SiO 2, CaO, CaF 2, MgO, Al 2 O 3, FeO, BaO, TiO 2 , etc.
  • a weld metal was produced under the following welding conditions using a general flux containing selenium.
  • the notation “-” in each component composition means that it is less than the detection limit value in the composition analysis or not added.
  • solid wires were all used as the tested wires. These wires are all plated with Cu.
  • the Cu plating amount is in the range of 0.10 to 0.30%, and the wire Cu amount in Table 1 indicates the total amount contained as an alloy in the wire other than Cu plating.
  • the width of the groove surrounded by the copper plating 1 (the back side of the groove) and the sliding copper plating 2 (the front side of the groove) is 10 mm, and the opening is 20 ° V. Pre-welding was performed.
  • the copper plating 1 and the sliding copper plating 2 both used what was water-cooled.
  • the composition of the weld metal thus obtained (the balance is Fe and inevitable impurities) is shown in Table 2. In addition, No. 1 and no.
  • the two weld metals used the same wire A but differed in composition because different fluxes were used. Subsequently, the following characteristics were evaluated for the weld metal.
  • Total area fraction of large-angle grains with a circle equivalent diameter of 5 to 30 ⁇ m in the weld metal structure: SA The cross section perpendicular to the welding direction was measured by EBSD (Electron Back-Scattered Diffraction) at a position of 7.5 ⁇ m from the surface of the weld metal plate.
  • EBSD measurement conditions ⁇ Device: JEOL-5410 or JSM-IT100 manufactured by JEOL Ltd. ⁇ Measurement area: 300 ⁇ 300 ⁇ m -Step (pixel) size: 0.4 ⁇ m -Phases to consider: ferrite, austenite
  • the obtained EBSD data was analyzed by analysis software OIM Analysis made by TSL Solutions.
  • the points with Confidence Index (Confidence Index) indicating the reliability of the measurement orientation are excluded from the analysis target, and the crystal orientation with the adjacent pixel is surrounded by the grain boundary with 15 ° or more
  • the unit was defined as a large-angle grain.
  • the total area fraction SA (%) of large-angle grains having an equivalent circle diameter of 5 to 30 ⁇ m was calculated. In this example, it was judged that SA having 30% or more was preferable, 31% or more being more preferable, and 32% or more being further preferable.
  • the Charpy impact test specimen was sampled perpendicular to the weld line direction so that the central axis of the Charpy specimen was located 7.5 mm from the surface of the obtained weld metal plate because the cooling rate was particularly high. This is because a cryogenic toughness test is performed on a weld metal in the vicinity of a water-cooled copper plating and a sliding copper plating, which tend to cause a decrease in the cryogenic toughness.
  • the weld metals of 1 to 10 are examples (examples) using the wires A to I of Table 1 that satisfy the requirements of the present invention, even though they were subjected to high heat input welding of 10.0 kJ / mm or more.
  • the absorbed energy vE-196 ° C. is 40 J or more, and a weld metal excellent in both tensile strength and cryogenic toughness is obtained. It was.
  • the weld metals 11 and 12 are examples (comparative examples) using the wires J and K in Table 1 that do not satisfy the requirements of the present invention, and have the following problems.
  • REM is not added to the wire J. No. produced using it. 11 weld metal had low SA and inferior cryogenic toughness. In the wire K, REM is not added, and the amount of Ni is below a predetermined value. No. produced using it. No. 12 weld metal had low SA, inferior cryogenic toughness, and also exhibited a low value of less than 690 MPa for tensile strength TS.

Abstract

入熱量が例えば10kJ/mm以上といった高能率で、強度に優れるとともに、溶接金属組織の微細化により極低温靱性にも優れた溶接金属を備える溶接継手を作製できるエレクトロスラグ溶接用ソリッドワイヤ、及び該溶接金属を備える溶接継手を提供する。ワイヤ全質量あたり、質量%で、C:0%超、0.03%以下、Si:0%超、0.10%以下、Mn:0%超、0.25%以下、Ni:10.5~14.0%、S:0%超、0.010%以下、Al:0%超、0.250%以下、REM:0.002~0.080%、O:0%超、0.0090%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とする、エレクトロスラグ溶接用ソリッドワイヤ。

Description

エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手
 本発明は、液化天然ガスなどを低温で貯蔵するタンクや使用する化学プラントに適用される極低温用鋼5.0~10.0%Ni鋼のエレクトロスラグ溶接に用いられるソリッドワイヤおよびこれを用いて得られる溶接継手に関する。
 9%Ni鋼は、高い強度と、液体窒素温度(-196℃)程度の優れた極低温靱性とを有している。そのため、9%Ni鋼は、液化天然ガス(Liquefied Natural Gas;LNG)などのように低温で貯蔵される貯蔵タンクを溶接により製造するための母材として汎用されている。これらの貯蔵タンクでは、LNGなどの液体の温度域である-162℃以下の温度域での極低温靭性に優れることが要求される。そのため、9%Ni鋼を溶接して形成される溶接継手の溶接金属(溶接接合部)においても、同様に、高い強度と優れた極低温靭性を有していることが要求される。
 従来、9%Ni鋼の溶接に際し、Ni基溶接材料を用いた被覆アーク溶接、サブマージアーク溶接、自動TIG(Tungsten Inert Gas)溶接などの溶接方法が適用されてきた。これらの溶接方法で得られた溶接金属は極低温靭性に優れるものの、9%Ni鋼母材よりも強度が低く、構造物の設計板厚はNi基溶接金属部の強度に合わせて板厚を厚くしなければならない課題がある。一方、鉄鋼各社は極低温用鋼のNi量削減を進めており、7%Ni鋼や5%Ni鋼の実用化・検討がなされている。
 特許文献1~5には、極低温鋼用の溶接用ソリッドワイヤあるいはガスシールドアーク溶接(Gas Metal Arc Welding;GMAW)用フラックス入りワイヤが提案されている。
日本国特開2015-9247号公報 日本国特開2016-20004号公報 日本国特開2016-93823号公報 日本国特許第5880662号公報 日本国特許第5244059号公報
 しかしながら、特許文献1~5に記載のいずれの発明も純ArもしくはArに2%以下の酸素、炭酸ガスもしくはHeガスを用いたガスシールドアーク溶接で、入熱量は1.4~2.2kJ/mm程度とTIG溶接と比較して能率は向上しているものの、さらなる高能率の施工法が望まれている。
 本発明者らは、入熱量が例えば10kJ/mm以上といった高能率の溶接を達成するための施工法として、6.0~15.0%Ni程度の溶接材料を用いた溶接において従来検討されていなかったエレクトロスラグ溶接を適用することについて検討を行った。
 ここで、エレクトロスラグ溶接は、母材と水冷された銅当て金とで囲まれた開先内に形成された溶融スラグ浴の中に溶接ワイヤを入れ、主に溶融スラグのジュール熱を熱源として母材と溶接ワイヤとを溶融させて溶接する方法である。エレクトロスラグ溶接によれば、造船や産業機械分野などのように板厚が大きい構造物の立向き溶接を1パスで行なうことが可能である。そのため、多パス溶接が必要となる一般のアーク溶接と比較して高能率であるという利点がある。
 しかしながら、エレクトロスラグ溶接では、溶接時の入熱が大きく、溶接金属が高温で長時間保持されるため、溶接金属の組織が著しく粗大化し、十分な極低温靭性を確保することが難しい。特に、水冷された銅当て金の近傍において溶接時の冷却速度が著しく大きくなるが、このような部位では溶接金属の強度が局所的に上昇し、その結果、吸収エネルギーが低下して極低温靱性が低下するというおそれがある。
 以上を鑑みて、本発明は、入熱量が例えば10kJ/mm以上といった高能率で、強度に優れるとともに、溶接金属組織の微細化により極低温靱性にも優れた溶接金属を備える溶接継手を作製することができるエレクトロスラグ溶接用ソリッドワイヤ、及び該溶接金属を備える溶接継手を提供することを目的とする。
 本発明者らは、上記課題を解決するため、さらに鋭意検討を重ねた。その結果、エレクトロスラグ溶接用ソリッドワイヤおよびそれを用いた溶接金属の化学成分系が特定の条件を満たすようにすることで、溶接金属の強度及び極低温靱性が良好となることを見出した。より具体的には、上記ソリッドワイヤにおいて、Si、MnおよびNiの各元素の含有量の上限を所定量以下に規制することで、強度の過大な上昇を抑制しつつ、REM(Rare Earth Metal;希土類元素類)を所定量添加することで、溶接継手における溶接金属において介在物を起点とする粒内変態組織(アシキュラーフェライト)を発現させ、溶接金属組織を微細化して、上記課題を解決できることを見出した。本発明は、この知見に基づいてなされたものである。
 すなわち、本発明のエレクトロスラグ溶接用ソリッドワイヤは、ワイヤ全質量あたり、質量%で、
 C :0%超、0.03%以下、
 Si:0%超、0.10%以下、
 Mn:0%超、0.25%以下、
 Ni:10.5~14.0%、
 S:0%超、0.010%以下、
 Al:0%超、0.250%以下、
 REM:0.002~0.080%、
 O:0%超、0.0090%以下、
を含有し、残部がFeおよび不可避的不純物からなることを特徴とする。
 本発明の一態様に係るエレクトロスラグ溶接用ソリッドワイヤは、ワイヤ全質量あたり、質量%で、
 Ca:0.005~0.050%、
 Mg:0.001~0.020%、
のいずれか一方もしくは両方さらに含有していてもよい。
 本発明の一態様に係るエレクトロスラグ溶接用ソリッドワイヤは、ワイヤ全質量あたり、質量%で、
 Cu:0%超、1.00%以下をさらに含有していてもよい。
 本発明の一態様に係るエレクトロスラグ溶接用ソリッドワイヤは、ワイヤ全質量あたり、質量%で、
 Cr:0%超、0.50%以下、
 Mo:0%超、0.50%以下、
 W :0%超、0.50%以下、
 Nb:0%超、0.10%以下、
 V :0%超、0.10%以下、
 B :0%超、0.010%以下、
からなる群より選ばれる少なくとも一種の元素をさらに含有し、かつ、下記式(1)を満足していてもよい。
 Cr+Mo+W≦0.50 ・・・(1)
 本発明の一態様に係るエレクトロスラグ溶接用ソリッドワイヤは、ワイヤにCuめっきが施されていてもよい。
 また、本発明の溶接継手は、該溶接継手における溶接金属が、質量%で、
 C :0%超、0.07%以下、
 Si:0%超、0.30%以下、
 Mn:0%超、0.40%以下、
 Ni:10.5~14.0%、
 S:0%超、0.0065%以下
 Al:0.008~0.220%、
を含有し、残部がFeおよび不可避的不純物からなり、
 結晶方位が15°以上の粒界で囲まれた大角粒のうち、円相当径が5~30μmのものの合計面積分率SA(%)が30%以上であることを特徴とする。
 本発明の一態様に係る溶接継手は、溶接金属が、質量%で、
 REM:0%超、0.040%以下、
をさらに含有していてもよい。
 本発明の一態様に係る溶接継手は、溶接金属が、質量%で、
 REM:0.040%超、0.080%以下、
をさらに含有していてもよい。
 本発明の一態様に係る溶接継手は、溶接金属が、質量%で、
 Ca:0.0003~0.010%、
をさらに含有していてもよい。
 本発明の一態様に係る溶接継手は、溶接金属が、質量%で、
 Cu:0%超、1.00%以下、
をさらに含有していてもよい。
 本発明の一態様に係る溶接継手は、溶接金属が、質量%で、
 Cr:0%超、0.50%以下、
 Mo:0%超、0.50%以下、
 W :0%超、0.50%以下、
 Nb:0%超、0.10%以下、
 V :0%超、0.10%以下、
 B :0%超、0.010%以下
からなる群より選ばれる少なくとも一種の元素をさらに含有し、かつ、下記式(2)を満足していてもよい。
 Cr+Mo+W≦0.50 ・・・(2)
 本発明の一態様に係る溶接継手は、溶接金属が、質量%で、
 O:0%超、0.040%以下、
 N:0%以上、0.010%以下、
をさらに含有していてもよい。
 本発明の一態様に係る溶接継手は、母材として5~10%のNiを含有する鋼板を用いてもよい。
 本発明のエレクトロスラグ溶接用ソリッドワイヤによれば、入熱量が例えば10kJ/mm以上の高能率で、強度に優れるとともに、溶接金属組織の微細化により極低温靱性にも優れた溶接金属を備える溶接継手を作製することができる。
図1は、実施例における開先溶接の概略構成を示す図である。
 以下、本発明について実施の形態を参照して、詳細に説明する。以下、「%」は特に断りのない限り、質量%を意味する。また、「~」とはその下限の値以上、その上限の値以下であることを意味する。また、本明細書では、エレクトロスラグ溶接用ソリッドワイヤを単にワイヤと呼ぶ場合がある。
(エレクトロスラグ溶接用ソリッドワイヤ)
 本発明の実施形態に係るエレクトロスラグ溶接用ソリッドワイヤの成分は、以下のとおりである。
 C:0%超、0.03%以下
 Cは、固溶強化および化合物を形成して強度確保に寄与する元素である。上記作用を有効に発揮させるため、C量は0.001%以上であることが好ましい。但し、C量を過剰に添加すると強度の過大な上昇を招き、極低温靭性が低下するため、C量を0.03%以下とする。C量は、0.010%以下であることが好ましく、0.008%以下であることがより好ましい。
 Si:0%超、0.10%以下
 Siは脱酸元素であり、溶接金属中の酸素濃度を低下させることで極低温靭性の向上作用を有する。上記作用を有効に発揮させるため、Si量は0.003%以上であることが好ましい。但し、Siの過剰添加は固溶強化により極低温での強度の過大な上昇を招き、極低温靭性が低下するため、Si量を0.10%以下とする。Si量は、0.08%以下であることが好ましく、0.07%以下であることがより好ましい。
 Mn:0%超、0.25%以下
 Mnは脱酸元素であり、溶接金属中の酸素濃度を低下させることで極低温靭性の向上作用を有する。上記作用を有効に発揮させるため、Mn量は0.005%以上であることが好ましく、0.01%以上であることがより好ましい。但し、Mnの過剰添加は固溶強化により極低温での強度の過大な上昇を招き、極低温靭性が低下するため、Mn量を0.25%以下とする。Mn量は、0.20%以下であることが好ましく、0.10%以下であることがより好ましい。
 Ni:10.5~14.0%
 Niは、低温靭性の確保に必須の元素であり、かつ、溶接金属の低温でのマトリックス靭性を全般に向上させることで、溶接金属の冷却速度が大きい部位における粒界破壊の抑制にも効果的な元素であるため、Ni量を10.5%以上とする。Ni量は10.8%以上であることが好ましく、11.0%以上であることがより好ましい。但し、Niの過剰添加は強度の上昇を招き、極低温靭性が低下するため、Ni量を14.0%以下とする。Ni量は、13.0%以下であることが好ましく、12.8%以下であることがより好ましい。
 S:0%超、0.010%以下
 Sは、不可避的不純物として含有される元素であるが、溶接金属の冷却速度が大きい部位においては、旧オーステナイト粒界にS等の不純物が偏析し、粒界の結合力が低下することで、粒界破壊が発生しやすくなる。したがって、粒界破壊を良好に抑制するために、S量は0.010%以下とする。S量は0.008%以下であることが好ましく、0.006%以下であることがより好ましい。なお、Sは不可避的不純物として含有されるため、S量は0%超と規定する。
 Al:0%超、0.250%以下
 Alは、脱酸元素として溶接金属の酸素量を安定的に下げる効果がある。Al量は、0.010%以上であることが好ましく、0.015%以上であることがより好ましい。但し、Alの過剰添加は極低温靱性が確保できなくなるため、Al量を0.250%以下とする。Al量は、0.200%以下であることが好ましく、0.180%以下であることがより好ましい。
 REM:0.002~0.080%
 REMは、溶接継手における溶接金属において、介在物粒子の表面に、フェライト相と良好な格子整合性を有する硫化物を形成することで、介在物起点の微細アシキュラーフェライト組織生成を促進し、極低温靱性を向上させる元素であるため、REM量を0.002%以上とする。REM量は0.010%以上であることが好ましく、0.012%以上であることがより好ましい。但し、REMの過剰添加は、介在物の粗大化をもたらし、粗大介在物を起点とした脆性破壊を助長することで、極低温靱性が確保できなくなるため、REM量を0.080%以下とする。REM量は0.060%以下であることが好ましく、0.045%以下であることがより好ましい。
 なお、本実施形態で規定するREMの元素は特に問わない。例えば、Sc、Y、La、Ce、Pr、Nd等の元素から1種のみを選択しても良いし、2種以上を組み合せても良い。
 また、REMは溶融金属中で酸化物あるいは硫化物を形成して浮上分離しやすいため、たとえワイヤに添加されていても金属中に残存する割合は小さく、成分分析の検出下限を下回ることが多い。本実施形態において、検出下限を下回って溶接金属に含有されるREMは、不純物として扱うこととする。
 O:0%超、0.0090%以下
 Oは、不可避的不純物として含有される元素であるが、粗大な酸化物を形成することで、極低温靱性を低下させる。したがって、O量は0.0090%以下とする。O量は0.0080%以下であることが好ましく、0.0070%以下であることがより好ましい。
なお、Oは不可避的不純物として含有されるため、O量は0%超と規定する。
 Ca:0.005~0.050%
 Caは、本実施形態のワイヤに必須の元素ではないが、溶接継手における溶接金属において、介在物粒子の表面に、フェライト相と良好な格子整合性を有する硫化物を形成することで、介在物起点の微細アシキュラーフェライト組織生成を促進し、極低温靱性を向上させる元素であるため、0.005%以上含有することが好ましい。また、Ca量は0.007%以上であることが好ましく、0.008%以上であることがより好ましい。
 但し、Caの過剰添加は、介在物の粗大化をもたらし、粗大介在物を起点とした脆性破壊を助長することで、極低温靱性が確保できなくなるため、Ca量を0.050%以下とする。また、Ca量は0.040%以下であることが好ましく、0.035%以下であることがより好ましい。
 Mg:0.001~0.020%
 Mgは、本実施形態のワイヤに必須の元素ではないが、溶接継手における溶接金属において、介在物粒子の表面に、フェライト相と良好な格子整合性を有する酸化物を形成することで、介在物起点の微細アシキュラーフェライト組織生成を促進し、極低温靱性を向上させる元素であるため、0.001%以上含有することが好ましい。また、Mg量は0.0012%以上であることが好ましく、0.0040%以上であることがより好ましい。
 但し、Mgの過剰添加は、介在物の粗大化をもたらし、粗大介在物を起点とした脆性破壊を助長することで、極低温靱性が確保できなくなるため、Mg量を0.020%以下とする。また、Mg量は0.018%以下であることが好ましく、0.016%以下であることがより好ましい。
 なお、Mgは溶融金属中で酸化物を形成して浮上分離しやすいため、たとえワイヤに添加されていても溶接金属中に残存する割合は小さく、成分分析の検出下限を下回ることが多い。本実施形態において、検出下限を下回って溶接金属に含有されるMgは、不純物として扱うこととする。
 本実施形態においてCaおよびMgは同様の作用を奏する元素であるため、CaおよびMgのいずれか一方を所定量含有するものであればよいが、両方を含有するものであってもよい。
 Cu:0%超、1.00%以下
 Cuは本実施形態のワイヤに必須の元素ではないが、極低温での強度上昇を抑制しつつ、室温強度を向上させることで、極低温靱性と室温強度のバランスを改善させる作用がある。このため、Cuは含有することが好ましく、0.01%以上含有することがより好ましく、0.08%以上含有することが更に好ましい。但し、Cuの過剰添加は強度が過大となり、極低温靱性が確保できなくなるため、Cu量を1.00%以下とする。Cu量は、0.50%以下であることが好ましく、0.40%以下であることがより好ましく、0.30%以下であることが更に好ましい。
 また、Cr:0%超、0.50%以下、Mo:0%超、0.50%以下、W:0%超、0.50%以下、Nb:0%超、0.10%以下、V:0%超、0.10%以下、B:0%超、0.010%以下からなる群より選ばれる少なくとも一種の元素をさらに含有し、かつ、下記式(1)を満足することが好ましい。
 なお、式(1)中のCr、MoおよびWは、ワイヤ全質量あたりのそれぞれの含有量(質量%)であるが、単位を省略している。
 Cr+Mo+W≦0.50 ・・・(1)
 Cr、Mo、W、Nb、VおよびBは、強度確保に寄与する元素である。上記ワイヤがCr、Mo、W、Nb、VおよびBのうち少なくとも一種を所定量含有し、かつ、式(1)を満足することで、靱性を大きく低下させることなく、強度が向上するという効果が得られる。
 Cr、MoおよびW量は、それぞれ0.01%以上であることが好ましく、0.02%以上であることがより好ましく、また、0.30%以下であることが好ましく、0.15%以下であることがより好ましい。
 NbおよびV量は、それぞれ0.005%以上であることが好ましく、0.008%以上であることがより好ましく、また、0.050%以下であることが好ましく、0.045%以下であることがより好ましい。
 B量は、0.0005%以上であることが好ましく、0.0008%以上であることがより好ましく、また、0.0050%以下であることが好ましく、0.0045%以下であることがより好ましい。
 式(1)左辺のパラメータは、0.40以下が好ましく、0.38以下がより好ましい。また、式(1)左辺のパラメータは0の場合を含む。
 本実施形態に係るエレクトロスラグ溶接用ソリッドワイヤに含有し得るその他の成分としては、例えば、対象母材と同様、基本成分であるFeおよび不可避的不純物があり、ある態様においては、残部がFeおよび不可避的不純物である。不可避的不純物として、例えばP、As、Sb、Sn、Bi、Nなどが挙げられる。その内、P、As、Sb、SnおよびBiはそれぞれ0.010%以下、Nは0.005%以下に規制される。これらの元素は、この範囲内であれば、不可避的不純物として含有される場合だけではなく、積極的に添加された場合であっても、本実施形態の効果を妨げない。
 本実施形態のエレクトロスラグ溶接用ソリッドワイヤは、通電性を高めるため、表面にCuめっきが施されていることが好ましい。そのCuめっき量は、0.10%以上が好ましく、また、0.30%以下であることが好ましい。
(溶接継手)
 上記エレクトロスラグ溶接用ソリッドワイヤを用いて、エレクトロスラグ溶接を実施することにより、入熱量が例えば10.0kJ/mm以上の高能率で、強度及び極低温靱性に優れた溶接金属を有する溶接継手を作製できる。上記溶接継手における溶接金属中の成分(元素)は、エレクトロスラグ溶接用ソリッドワイヤ中の成分と同じであって、各成分の作用効果も同一である。したがって、以下の記載において、前述したエレクトロガス溶接用ソリッドワイヤと重複する成分の作用効果は、説明の重複を避けるため省略して、好ましい範囲のみ記載する。
 C:0%超、0.07%以下
  好ましい上限:0.05%、より好ましくは0.04%
  好ましい下限:0.003%、より好ましくは0.008%
 Si:0%超、0.30%以下
  好ましい上限:0.25%、より好ましくは0.18%
  好ましい下限:0.005%、より好ましくは0.010%
 Mn:0%超、0.40%以下
  好ましい上限:0.37%、より好ましくは0.34%
  好ましい下限:0.05%
 Ni:10.5~14.0%
  好ましい上限:13.0%、より好ましくは12.8%
  好ましい下限:10.8%、より好ましくは11.0%
 S:0%超、0.0065%以下
  好ましい上限:0.0052%、より好ましくは0.0045%
 Al:0.008~0.220%
  好ましい上限:0.100%、より好ましくは0.080%
  好ましい下限:0.010%、より好ましくは0.015%
 上記溶接金属は、REM、CaまたはCuをそれぞれ以下の成分範囲でさらに含有していてもよい。
 REM:0%超、0.040%以下
  好ましい上限:0.035%、より好ましくは0.030%
  好ましい下限:0.003%、より好ましくは0.004%
 REM:0.040%超、0.080%以下
  好ましい上限:0.070%、より好ましくは0.060%
  好ましい下限:0.045%、より好ましくは0.050%
 Ca:0.0003~0.010%
  好ましい上限:0.005%、より好ましくは0.004%
  好ましい下限:0.0005%、より好ましくは0.0010%
 Cu:0%超、1.00%以下
  好ましい上限:0.5%、より好ましくは0.4%
  好ましい下限:0.01%、より好ましくは0.08%
 また、Cr:0%超、0.50%以下、Mo:0%超、0.50%以下、W:0%超、0.50%以下、Nb:0%超、0.10%以下、V:0%超、0.10%以下、B:0%超、0.010%以下からなる群より選ばれる少なくとも一種の元素をさらに含有し、かつ、下記式(2)を満足することが好ましい。なお、式(2)中のCr、MoおよびWは、溶接金属全質量あたりのそれぞれの含有量(質量%)であるが、単位を省略している。
 Cr+Mo+W≦0.50 ・・・(2)
 Cr、MoおよびW量は、それぞれ0.01%以上であることが好ましく、0.02%以上であることがより好ましく、また、0.30%以下であることが好ましく、0.15%以下であることがより好ましい。
 NbおよびV量は、それぞれ0.005%以上であることが好ましく、0.008%以上であることがより好ましく、また、0.050%以下であることが好ましく、0.045%以下であることがより好ましい。
 B量は、0.0005%以上であることが好ましく、0.0008%以上であることがより好ましく、また、0.0050%以下であることが好ましく、0.0045%以下であることがより好ましい。
 式(2)左辺のパラメータは、0.40以下が好ましく、0.38以下がより好ましい。また、式(2)左辺のパラメータは0の場合を含む。
 O:0%超、0.040%以下
 Oは酸化物を形成し、当該酸化物がシャルピー試験時のボイド形成の起点、或いは脆性破壊の起点として作用するため、極低温靭性が低下する。したがって、O量は、0.040%以下とすることが好ましく、0.035%以下とすることがより好ましく、0.032%以下とすることが更に好ましい。なお、Oは不可避的不純物として含有されるため、O量は0%超と規定する。
 N:0%以上、0.010%以下
 Nは固溶元素として溶接金属部のマトリックスを強化する一方、脆性破壊を誘発する元素でもあり、極低温靭性が低下する。したがって、N量は、0.010%以下とすることが好ましく、0.008%以下とすることがより好ましく、0.006%以下とすることが更に好ましく、もっとも望ましくは含有しない(0%の場合を含む)。
 本実施形態に係る溶接金属の基本組成は上記のとおりであり、残部は、Fe不可避的不純物である。不可避的不純物として、例えばP、As、Sb、Sn、Bi等が挙げられる。その内、P、As、Sb、SnおよびBiはそれぞれ0.010%以下に規制される。これらの元素は、この範囲内であれば、不可避的不純物として含有される場合だけではなく、積極的に添加された場合であっても、本実施形態の効果を妨げない。
 本実施形態に係る溶接金属では、REMを含む介在物を起点とする微細なアシキュラーフェライト組織の形成により、良好な靭性を実現している。具体的には、結晶方位が15°以上の粒界で囲まれた大角粒のうち、円相当径が5~30μmのものの合計面積分率SA(%)を30%以上に制御することで、所定の靭性が得られる。SAは、31%以上とすることが好ましく、32%以上とすることがより好ましい。
 上記溶接継手の作製に用いられる母材は、5~10%のNiを含有する鋼板を用いることが好ましい。Ni量が5%未満では、極低温靭性が確保できないなどの問題がある。Ni量は、好ましくは5.2%以上であり、より好ましくは6.5%以上である。但し、Ni量が10%を超えると鋼材コストが上昇するため、Ni量は10%以下であることが好ましく、9.5%以下であることがより好ましい。
(フラックス)
 エレクトロスラグ溶接では、溶接が進むにつれて減少する溶融スラグを補うためにフラックスが追加投入されるが、このフラックスを本明細書では単にフラックスという。エレクトロスラグ溶接では、溶接が進行するにつれて溶融金属は冷却されて溶接金属となり、溶融スラグ浴の一部は溶融スラグ層となるが、溶接の進行につれて溶融スラグ層が冷却されて固化スラグとなり、溶融スラグが消費される。この溶融スラグ浴の減少を補うため、フラックスが用いられる。
 フラックスは、溶融型フラックスとボンド型(焼成型)フラックスとに大別される。溶融型フラックスは、種々の原料を電気炉などで溶解し、粉砕することにより製造される。一方、焼成型フラックスは、種々の原料をケイ酸アルカリなどのバインダーにより結合し、造粒した後、焼成することにより製造される。焼成型フラックスは前述の炭酸塩を原料として用いる場合があるが、溶接時に炭酸塩が熱により分解し、COガスを発生し、溶接金属中の酸素量が増加し、極低温靭性に影響を及ぼす。従って、好ましくは溶融型フラックスを用いる。
 本実施形態に用いられるフラックスは、特段限定されないが、一般的には次のような組成範囲で用いられる。
 CaO:5~60%
 CaOは塩基性成分であり、溶融スラグの粘性および融点を調節するために有効な成分であると共に、溶接金属の酸素量を低減させる効果が高い。CaO量が5%未満の場合、溶接金属の酸素量が増加するため、CaO量は5%以上であることが好ましく、10%以上がより好ましい。但し、CaO量が60%を超えると、アンダーカットおよびスラグ巻き込みが発生するため、CaO量は60%以下が好ましく、55%以下がより好ましい。
 CaF:3~50%
 CaFも塩基性成分であり、溶融スラグの粘性および融点を調節するために有効な成分であると共に、溶接金属の酸素量を低減させる効果が高い。CaF量が3%未満の場合、溶接金属の酸素量が増加するため、CaF量は3%以上が好ましく、5%以上がより好ましい。但し、CaF量が50%を超えると、アンダーカットおよびスラグ巻き込みが発生し易くなると共に、溶接時にフッ化ガスが発生して溶接が安定しないため、CaF量は50%以下が好ましく、45%以下がより好ましい。
 BaF:0~20%
 BaFも塩基性成分であり、溶融スラグの粘性および融点を調節するために有効な成分であると共に、溶接金属の酸素量を低減させる効果が高い。本実施形態では、他成分で粘性および融点、さらには溶接金属酸素量の調整が可能であり、BaFを含まなくてもよい。一方、含有する場合は、BaF量が20%を超えると溶融スラグの融点が低くなり過ぎて粘性が不足し、摺動式銅当て金と溶接金属との間から溶融スラグが排出しやすくなり過ぎ、溶融スラグによる溶融金属の抑えが効かなくなり溶落する。このため、BaF量は20%以下が好ましく、15%以下がより好ましい。
 MgO:0~20%
 MgOも塩基性成分であり、溶融スラグの粘性および融点を調整するために有効な成分である。本実施形態では、他成分で粘性および融点の調整が可能であり、MgOを含まなくてもよい。一方、含有する場合は、MgO量が20%を超えると溶融スラグの融点が高くなり過ぎ粘性も高くなる結果、溶込み不良が生じるため、MgO量は20%以下が好ましく、15%以下がより好ましい。
 BaO:0~20%
 BaOは、塩基性成分であり、溶融スラグの粘性および融点を調節するために有効な成分であると共に、溶接金属の酸素量を低減させる効果が高い。ただし、本実施形態では、他成分で粘性および融点の調整が可能であり、BaOを含まなくてもよい。一方、含有する場合は、BaO量が20%を超えると、溶融スラグの融点が低くなり過ぎて粘性が不足し、摺動式銅当て金と溶接金属との間から溶融スラグが排出しやすくなり過ぎ、溶融スラグによる溶融金属の抑えが効かなくなり溶落する。このため、BaO量は、20%以下が好ましく、15%以下がより好ましい。
 NaO:0~10%
 NaOは、溶融スラグの粘性を調整するために非常に有効な成分である。ただし、本実施形態では、他成分で粘性および融点の調整が可能であり、NaOを含まなくてもよい。一方、含有する場合は、NaO量が10%を超えると、溶融スラグの融点が低くなり過ぎて粘性が不足し、摺動式銅当て金と溶接金属との間から溶融スラグが排出しやすくなり過ぎ、溶融スラグによる溶融金属の抑えが効かなくなり溶落するため、10%以下が好ましく、より好ましくは7%以下である。
 KO:0~10%
 KOは、溶融スラグの粘性を調整するために非常に有効な成分である。ただし、本実施形態では、他成分で粘性および融点の調整が可能であり、KOを含まなくてもよい。一方、含有する場合は、KO量が10%を超えると、溶融スラグの融点が低くなり過ぎて粘性が不足し、摺動式銅当て金と溶接金属との間から溶融スラグが排出しやすくなり過ぎ、溶融スラグによる溶融金属の抑えが効かなくなり溶落する。このため、KO量は、10%以下が好ましく、7%以下がより好ましい。
 SiO:0~35%
 SiOは酸性成分であり、溶融スラグの粘性および融点を調整する成分である。本実施形態では、他成分で粘性および融点の調整が可能であり、SiOを含まなくてもよい。一方、含有する場合は、SiO量が35%を超えると、溶融スラグの粘性が高くなり、溶込み不良が生じるため、SiO量は35%以下が好ましく、30%以下がより好ましい。
 Al:0~65%
 Alは溶融スラグの粘性および融点を調整するために有効な成分である。本実施形態では、他成分で粘性および融点の調整が可能であり、Alを含まなくてもよい。一方、含有する場合は、Al量が65%を超えると溶融スラグの粘性が高くなり、溶込み不良が生じるため、65%以下であることが好ましく、60%以下がより好ましい。また、Al量は、3%以上が好ましい。
 TiO:0~10%およびZrO:0~10%
 TiOおよびZrOは、溶融スラグの融点を調整するために有効な成分である。本実施形態では、他成分で融点の調整が可能であり、TiOおよびZrOを含まなくてもよい。一方、含有する場合、TiOおよびZrOがそれぞれ10%を超えると、融点付近で粘度が急激に高くなるため、スラグ巻込みが発生しやすくなる。そのため、TiOおよびZrO量はそれぞれ10%以下が好ましく、5%以下がより好ましい。
 MnO:0~20%
 MnOは、溶融スラグの粘性および融点を調整するために有効な成分である。本実施形態では、他成分で粘性および融点の調整が可能であり、MnOを含まなくてもよい。一方、含有する場合は、MnO量が20%を超えると、溶融スラグの融点が低くなり過ぎて粘性が不足し、摺動式銅当て金と溶接金属との間から溶融スラグが排出しやすくなり過ぎ、溶融スラグによる溶融金属の抑えが効かなくなり溶落する。このため、MnO量は20%以下が好ましく、15%以下がより好ましい。
 FeO:0~5%
 FeOは、溶融スラグの粘性および融点を調整するために有効な成分であると共に、溶接金属の酸素量を低減させる効果が高い。本実施形態では、他成分で粘性および融点の調整が可能であり、FeOを含まなくてもよい。一方、含有する場合は、FeO量が5%を超えると、ビード表面にスラグが生成して焼付きやすくなるため、5%以下が好ましく、3%以下がより好ましい。
 フラックスの組成は、溶接金属の酸素量低減に効果的であり、溶接金属部の靭性向上に繋がるため、各成分量の限定範囲内かつ式(3)を満足することが好ましい。なお、式(3)中のCaO、CaF等の各成分の表記は、フラックス全質量あたりのそれぞれの含有量(質量%)である。
 (CaO+CaF+BaF+MgO+BaO+NaO+KO)/(SiO+0.5(Al+TiO+ZrO+MnO+FeO))≧1.00 ・・・(3)
 (但し、SiO、Al、TiO、ZrO、MnO、およびFeOのいずれも含まない場合は>100とする。)
 本発明に用いられるフラックスの好ましい組成は上記のとおりであり、残部はP、S、As、Sb、Sn、Bi等の不可避的不純物である。
 本実施例では、母材として9%Ni鋼、表1に示す組成を有するエレクトロスラグ溶接用ソリッドワイヤ、およびSiO、CaO、CaF、MgO、Al、FeO、BaO、TiO等を含有する一般的なフラックスを用い、下記の溶接条件にて溶接金属を作製した。なお、表1および表2において、各成分組成における“‐”なる表記は、組成分析における検出限界値未満であるか、或いは添加していないことを意味する。
 また、試験したワイヤとして全てソリッドワイヤを用いた。これらワイヤは、すべてCuめっきを施したものである。Cuめっき量は、0.10~0.30%の範囲とし、表1のワイヤCu量は、Cuめっき以外でワイヤに合金として含有する量の総和を示している。
Figure JPOXMLDOC01-appb-T000001
 また、図1に示すように、銅当て金1(開先の裏側)および摺動式銅当て金2(開先の表側)に囲まれた開先の幅は10mmであり、20°V開先溶接を行った。なお、銅当て金1および摺動式銅当て金2はいずれも、水冷されたものを用いた。
 溶接方法:エレクトロスラグ溶接
 溶接条件:
  母材の板厚:30mm
  開先形状:図1を参照
  ワイヤ:表1を参照
  ワイヤ径=1.6mm
  入熱条件:約17.3~21.8kJ/mm(溶接電流340~400A-溶接電圧32~40V)
  溶接姿勢:立向き1パス
 このようにして得られた溶接金属の組成(残部はFeおよび不可避的不純物である)を表2に示す。なお、No.1およびNo.2の溶接金属は、同じワイヤAを用いたが、異なるフラックスを使用したため組成が相違している。続いて、上記溶接金属について、以下の特性を評価した。
(溶接金属組織に存在する大角粒のうち、円相当径が5~30μmのものの合計面積分率:SA)
 溶接方向に垂直な断面で、溶接金属の板表面から7.5μmの位置をEBSD(Electron Back-Scattered Diffraction)測定した。
 EBSD測定条件
 ・装置:日本電子株式会社製、JEOL-5410またはJSM-IT100
 ・測定面積:300×300μm
 ・ステップ(ピクセル)サイズ:0.4μm
 ・考慮する相:フェライト、オーステナイト
 得られたEBSDデータを、株式会社TSLソリューションズ製解析ソフトOIM Analysisにより解析した。データ点のうち、測定方位の信頼性を示すコンフィデンズ・インデックス(Confidence Index)が0.100以下の点は解析対象から除外し、隣接するピクセルとの結晶方位が15°以上の粒界で囲まれたユニットを大角粒と定義した。また、大角粒のうち、円相当径が5~30μmのものの合計面積分率SA(%)を算出した。本実施例では、SAが30%以上のものを好ましいと判断し、31%以上のものをより好ましいと判断し、32%以上のものを更に好ましいと判断した。
(引張強度:TS)
 溶接金属の中央部より、溶接線方向に平行にJIS Z3111記載のA2号引張試験片あるいはJIS G0567記載のつば付棒状試験片を採取して、JIS Z2241に記載の方法で引張り試験を行った。本実施例では、引張強度TS>690MPaの溶接金属を合格とした。
(極低温靭性:vE-196℃
 得られた溶接金属の板表面から7.5mm位置にシャルピー試験片の中心軸が位置するように、溶接線方向に垂直にシャルピー衝撃試験片(JIS Z3111 4号Vノッチ試験片)を採取し、JIS Z 2242に記載の方法で-196℃でのシャルピー衝撃試験を実施した。同様の試験を3回行い、その平均値を算出したとき、吸収エネルギーvE-196℃が40J以上の溶接金属を極低温靭性に優れると評価した。
 なお、得られた溶接金属の板表面から7.5mm位置にシャルピー試験片の中心軸が位置するように、溶接線方向に垂直にシャルピー衝撃試験片を採取したのは、特に冷却速度が大きいため極低温靱性の低下が生じやすい、水冷された銅当て金および摺動式銅当て金の近傍の溶接金属について極低温靱性の試験を行うためである。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、以下のように考察することができる。
 まず、表2のNo.1~10の溶接金属は、本発明の要件を満足する表1のワイヤA~Iを用いた例(実施例)であり、10.0kJ/mm以上の大入熱溶接を施したにもかかわらず、引張強度TS>690MPaを満たすとともに、SAが30%以上の高い値を示した結果、吸収エネルギーvE-196℃が40J以上となり、引張強度および極低温靭性の両方に優れた溶接金属が得られた。
 これに対し、表2のNo.11、12の溶接金属は、本発明の要件を満足しない表1のワイヤJ、Kを用いた例(比較例)であり、以下の不具合を有している。
 ワイヤJは、REMが添加されていない。それを用いて作製されたNo.11の溶接金属は、SAが低く、極低温靱性が劣っていた。
 ワイヤKは、REMが添加されていないのに加え、Ni量が所定の値を下回っている。それを用いて作製されたNo.12の溶接金属は、SAが低く、極低温靱性が劣っており、また、引張強度TSについても690MPa未満の低い値を示した。
 以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能である。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2018年5月17日出願の日本特許出願(特願2018-095768)及び2019年5月9日出願の日本特許出願(特願2019-089329)に基づくものであり、その内容は本出願の中に参照として援用される。
 1 銅当て金
 2 摺動式銅当て金

Claims (13)

  1.  ワイヤ全質量あたり、
     質量%で、
     C :0%超、0.03%以下、
     Si:0%超、0.10%以下、
     Mn:0%超、0.25%以下、
     Ni:10.5~14.0%、
     S:0%超、0.010%以下、
     Al:0%超、0.250%以下、
     REM:0.002~0.080%、
     O:0%超、0.0090%以下、
    を含有し、残部がFeおよび不可避的不純物からなることを特徴とする、エレクトロスラグ溶接用ソリッドワイヤ。
  2.  ワイヤ全質量あたり、
     質量%で、
     Ca:0.005~0.050%、
     Mg:0.001~0.020%、
    のいずれか一方もしくは両方をさらに含有することを特徴とする、請求項1に記載のエレクトロスラグ溶接用ソリッドワイヤ。
  3.  ワイヤ全質量あたり、
     質量%で、
     Cu:0%超、1.00%以下、
    をさらに含有することを特徴とする、請求項1に記載のエレクトロスラグ溶接用ソリッドワイヤ。
  4.  ワイヤ全質量あたり、
     質量%で、
     Cr:0%超、0.50%以下、
     Mo:0%超、0.50%以下、
     W :0%超、0.50%以下、
     Nb:0%超、0.10%以下、
     V :0%超、0.10%以下、
     B :0%超、0.010%以下、
    からなる群より選ばれる少なくとも一種の元素をさらに含有し、
     かつ、下記式(1)を満足することを特徴とする、請求項1に記載のエレクトロスラグ溶接用ソリッドワイヤ。
     Cr+Mo+W≦0.50 ・・・(1)
  5.  前記ワイヤにCuめっきが施されたことを特徴とする、請求項1に記載のエレクトロスラグ溶接用ソリッドワイヤ。
  6.  溶接継手であって、
     前記溶接継手における溶接金属は、質量%で、
     C :0%超、0.07%以下、
     Si:0%超、0.30%以下、
     Mn:0%超、0.40%以下、
     Ni:10.5~14.0%、
     S:0%超、0.0065%以下、
     Al:0.008~0.220%、
    を含有し、残部がFeおよび不可避的不純物からなり、
     結晶方位が15°以上の粒界で囲まれた大角粒のうち、円相当径が5~30μmのものの合計面積分率SA(%)が30%以上であることを特徴とする、溶接継手。
  7.  前記溶接金属は、質量%で、
     REM:0%超、0.040%以下、
    をさらに含有することを特徴とする、請求項6に記載の溶接継手。
  8.  前記溶接金属は、質量%で、
     REM:0.040%超、0.080%以下、
    をさらに含有することを特徴とする、請求項6に記載の溶接継手。
  9.  前記溶接金属は、質量%で、
     Ca:0.0003~0.010%、
    をさらに含有することを特徴とする、請求項6に記載の溶接継手。
  10.  前記溶接金属は、質量%で、
     Cu:0%超、1.00%以下、
    さらに含有することを特徴とする、請求項6に記載の溶接継手。
  11.  前記溶接金属は、質量%で、
     Cr:0%超、0.50%以下、
     Mo:0%超、0.50%以下、
     W :0%超、0.50%以下、
     Nb:0%超、0.10%以下、
     V :0%超、0.10%以下、
     B :0%超、0.010%以下
    からなる群より選ばれる少なくとも一種の元素をさらに含有し、
     かつ、下記式(2)を満足することを特徴とする、請求項6に記載の溶接継手。
     Cr+Mo+W≦0.50 ・・・(2)
  12.  前記溶接金属は、質量%で、
     O:0%超、0.040%以下、
     N:0%以上、0.010%以下、
    をさらに含有することを特徴とする、請求項6に記載の溶接継手。
  13.  母材として5~10%のNiを含有する鋼板を用いることを特徴とする、請求項6に記載の溶接継手。
PCT/JP2019/019730 2018-05-17 2019-05-17 エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手 WO2019221284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/045,564 US11691227B2 (en) 2018-05-17 2019-05-17 Solid wire for electroslag welding, and welding joint
KR1020207032700A KR102484033B1 (ko) 2018-05-17 2019-05-17 일렉트로슬래그 용접용 솔리드 와이어 및 용접 이음매
CN201980031683.8A CN112154042B (zh) 2018-05-17 2019-05-17 电渣焊用实芯焊丝及焊接接头
EP19802906.8A EP3795290A4 (en) 2018-05-17 2019-05-17 SOLID WIRE FOR MILK WELDING, AND WELDING FITTING

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-095768 2018-05-17
JP2018095768 2018-05-17
JP2019-089329 2019-05-09
JP2019089329A JP7252051B2 (ja) 2018-05-17 2019-05-09 エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手

Publications (1)

Publication Number Publication Date
WO2019221284A1 true WO2019221284A1 (ja) 2019-11-21

Family

ID=68540163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019730 WO2019221284A1 (ja) 2018-05-17 2019-05-17 エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手

Country Status (1)

Country Link
WO (1) WO2019221284A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244059B1 (ja) 1970-02-14 1977-11-04
JP2015009247A (ja) 2013-06-27 2015-01-19 株式会社神戸製鋼所 溶接用ソリッドワイヤおよび溶接方法並びに溶接金属
JP2016020004A (ja) 2013-11-08 2016-02-04 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ
JP2016093823A (ja) 2014-11-14 2016-05-26 株式会社神戸製鋼所 溶接用ソリッドワイヤおよび溶接方法、並びに溶接金属
JP2017197792A (ja) * 2016-04-25 2017-11-02 新日鐵住金株式会社 液体水素用Ni鋼
JP2018043288A (ja) * 2016-09-13 2018-03-22 株式会社神戸製鋼所 エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
JP2018095768A (ja) 2016-12-15 2018-06-21 Dic株式会社 被表面修飾半導体ナノ結晶及びこれを用いたカラーフィルタ
JP2019089329A (ja) 2017-11-13 2019-06-13 ゼネラル・エレクトリック・カンパニイ 箔ベースの構築材料を使用する可搬式大規模付加製造のためのプロセス監視

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244059B1 (ja) 1970-02-14 1977-11-04
JP2015009247A (ja) 2013-06-27 2015-01-19 株式会社神戸製鋼所 溶接用ソリッドワイヤおよび溶接方法並びに溶接金属
JP2016020004A (ja) 2013-11-08 2016-02-04 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ
JP5880662B2 (ja) 2013-11-08 2016-03-09 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ及び極低温用鋼の溶接方法ならびに溶接継手の製造方法
JP2016093823A (ja) 2014-11-14 2016-05-26 株式会社神戸製鋼所 溶接用ソリッドワイヤおよび溶接方法、並びに溶接金属
JP2017197792A (ja) * 2016-04-25 2017-11-02 新日鐵住金株式会社 液体水素用Ni鋼
JP2018043288A (ja) * 2016-09-13 2018-03-22 株式会社神戸製鋼所 エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
JP2018095768A (ja) 2016-12-15 2018-06-21 Dic株式会社 被表面修飾半導体ナノ結晶及びこれを用いたカラーフィルタ
JP2019089329A (ja) 2017-11-13 2019-06-13 ゼネラル・エレクトリック・カンパニイ 箔ベースの構築材料を使用する可搬式大規模付加製造のためのプロセス監視

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795290A4 *

Similar Documents

Publication Publication Date Title
JP4476018B2 (ja) 改良9Cr−1Mo鋼用溶接ワイヤ
JP4776508B2 (ja) エレクトロガスアーク溶接用フラックス入りワイヤ
WO2018051823A1 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
US20080099455A1 (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
JP6901868B2 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
KR102020105B1 (ko) 서브머지드 아크 용접 방법
US20170239758A1 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
JP4209913B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP5097499B2 (ja) 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ
JP7276597B2 (ja) サブマージアーク溶接用ワイヤおよびそれを用いた溶接継手部の製造方法
JPWO2019186701A1 (ja) サブマージアーク溶接用Ni基合金ワイヤ、及び溶接継手の製造方法
WO2022030200A1 (ja) ガスメタルアーク溶接用ソリッドワイヤ
JP7252051B2 (ja) エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手
JP2017148863A (ja) エレクトロスラグ溶接用Ni基溶接材料
WO2019221284A1 (ja) エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手
WO2017145854A1 (ja) エレクトロスラグ溶接用Ni基溶接材料
JP2009018337A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP7231499B2 (ja) フラックス入りワイヤ及び溶接方法
JP7267521B1 (ja) サブマージアーク溶接方法
JP7235185B1 (ja) サブマージアーク溶接用メタルコアードワイヤおよびそれを用いたサブマージアーク溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207032700

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019802906

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019802906

Country of ref document: EP

Effective date: 20201217